CA1208471A - Electrophotographic recording material - Google Patents

Electrophotographic recording material

Info

Publication number
CA1208471A
CA1208471A CA000451689A CA451689A CA1208471A CA 1208471 A CA1208471 A CA 1208471A CA 000451689 A CA000451689 A CA 000451689A CA 451689 A CA451689 A CA 451689A CA 1208471 A CA1208471 A CA 1208471A
Authority
CA
Canada
Prior art keywords
recording material
photoconductive layer
aniline
carboxylic acid
condensation product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000451689A
Other languages
French (fr)
Inventor
Erwin Lind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Application granted granted Critical
Publication of CA1208471A publication Critical patent/CA1208471A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0517Organic non-macromolecular compounds comprising one or more cyclic groups consisting of carbon-atoms only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/26Electrographic processes using a charge pattern for the production of printing plates for non-xerographic printing processes
    • G03G13/28Planographic printing plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/065Etching masks applied by electrographic, electrophotographic or magnetographic methods

Abstract

ABSTRACT OF THE DISCLOSURE

The invention describes an electrophotographic recording material composed of an electrically conductive support layer, which is suitable in particular for the production of printing forms or printed circuits, and of a photoconductive layer comprised of an organic photoconductor, a binder and a sensitizer. The photoconductive layer additionally contains a condensation product of benzophenone-2-carboxylic acid and a dialkyl aniline, for example, benzophenone-2-carboxylic acid and diethyl aniline or 4'-methylbenzophenone-2-carboxylic acid and diethyl aniline.

Description

-- ~æo~

ELECTROPHOTOGRAPHIC_RECORDING MATERIAL

BACKGROUND OF THE INVENTION

Th e p r e s e n t in v e n t i o n r el a t e s to an electrophotographic recording material composed of an electrically conductive layer support, which is suitable, in particular, for the production of printing forms or printed circuitsl and of a photoconductive layer comprised of an organic photoconductor~ a binder and a sensitizer.
Recording materials for reproduction by electrophotographic means are known. They are, for example, employed in electrophotographic processes in which a photoconductive layer which consists of or contains organic or inorganic photoconductors, is electrostatically charged in the absence of actinic radiation and subsequently ~5 imagewise exposed. Thereby, the electric charge flows off in the areas which are struck by light, and the image thus produced is made visible by means of a developer, is transferred, if appropriate, and is fixed.
Processes for the production of electrophotographic recording materials and for the filmless production of printing forms are widely used today. Apart from a good sensitivity to light, the photoconductive layer must exhibit low discharge in the dark and a low sensitivity to
2~ 7~

pre-exposure, and the known layers do not always possess these properties to a sufficient degree.
A great number of organic compounds which possess more or less satisfying photoconductor properties and which can be used in the production of layers for electrophol:ographic purposes are kno~7n. Compounds which possess less satisfying photoconductor properties include, for example, the condensation products of an aromatic o-dicarboxylic acid anhydride and an aromatic amine which are disclosed by German Patent No. 12 17 785 (equivalent to U.S. Patent 3,290,1~6). Compounds which possess good photoconductor properties include, for example, the oxadiazole derivatives described in German Patent No. 10 58 836 ( equivalent to U. S . Patent No . 3,189,447).
It is also Icnown to use mixtures of several photoconductors in electrophotographic recording materials.
For example, German Patent No. 12 17 785 describes the addition of a substituted oxadiazole to a photoconductive layer comprising a condensation product of phthalic acid anyhride and diethyl aniline. This improves the light sensitivity of the layer.
In the production of printing forms or printed circuits by electrophotographic means it is of crucial importance that in addition to a good light sensitivity the photoconductive layer also possesses good resolution properties and allows for a correct gradual reproduction of screen density values of screened images. In the production of printing forms, process cameras are employed which, due tv a special lens, make it possible to expose even large formats of, for example, 680 mm x 500 mm, in such a way that even in the marginal zones f ine structures, such as thin lines or screen dots, are exactly reproduced. To ensure a sharp image reproduction, the light beams falling in through the lens have to be limited by a shutter, which makes longer o~

exposure times necessary. The exposure times employed in current practice vary between about 30 and 50 seconds. This means that during this time the charge must not -Elow off in the non-exposed areas, i.e., a photoconduct~r layer suitable for the production of high-quality printing Eorms must not be conductive in the dark.
Furthermore, when printing forms are produced by electrophotograhic means, the photoconductor layer should be soluble in aqueous-alkaline solvents, which requires the use of appropriate binders.
When the highly light-sensitive oxadiazoles are used in combination with alkali-soluble binders, it is found, however, that discharge in the dark occurs to such an e~tent that, after exposure by means of a process camera, it i5 no possible to develop fine lines and screen dots.

S~MMARY OF THE INVENTION

It is therefore an object of the present invention to provide an electrophotographic recording material comprising a photoconductive layer which has only low conductivity in the dark. Another object of the present invention is to provide an electrophotographic recording material as abo~e wherein the photoconductive layer has a significantly reduced sensitivity to pre-exposure.
Still another object of the present invention is to 2~ provide an electrophotog~aphic recording material with a reduced dischargein the dark of the photoconductive layer so that the toner images obtained by the subsequent application of toner are rich in contrast and pOSS`QSS a high marginal definition.

1~84~1 Yet another object of the present invention is to provide an electrophotographic recording material as above which may be produced by simple means, using, for example, inexpensive, commercially available substances or substances which can be produced employing simple processes.
In accomplishing the foregoing objects, there has been provided in accordance with the present invention an electrophotographic recording material which comprises an electrically conductive support layer and a photoconductive layer applied thereto, wherein the photoconductive layer comprises an organic photoconductor, a binder, a sensitizer, and a condensation produ~ of a benæophenone-2-carbo~ylic acid and-a dialkyl aniline. The dialkyl aniline preferably comprises an alkyl group having from 1 to 4 earbon atoms, and may particularly be dimethyl aniline or diethyl aniline.
Th e condensation pr o d u c t may also comprise 4'-methylbenzophenone-2-carboxylic acid. The sensitizer may comprise a mixture Astrazone Orange R (C.I. 48 040~ with either Brilliant Green ~C.I. 42 040) or a Rhodamine dyestuff. The binder may comprise a high molecular substance which is soluble in aqueous and alcoholic solvent systems, and in partieular eomprises a copolymer of styrene and ~aleie acid anhydride or phenol resin. The photoeonduetor layer preferably eomprises an oxadiaæole derivative.
Further object, features and advantages of the present invention will become apparent from the detailed description of preferred embodiments which follows, when eonsidered together with the attached figure.

_ 4 26~
BRIEF DESCRIPTION OF T~IE DRAWING

The figure of drawing illustrates the advantage of the present invention in terms of the significantly reduced discharye of the photoconductive layer.

~ETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Th e p r e s e n t i n v e n t i o n p r o v i d e s a n electrophotographic recording material composed of an electrically conductive layer support, which is particula~ly suitable for the production of printing forms or printed circuits, and of a photoconductive layer comprised of an organic photoconductor, a binder and a sensitizer, wherein the photoconductive layer additionally contains a condensation product of a benzophenone-2-carboxylic acid and a dialkyl aniline. The photoconductive layer preferably contains a condensation product oE ben~ophenone-2-carboxylic acid and diethyl aniline.
In this way, an electrophotographic recording material is made available, which exhibits a good sensitivity to light, i.e., the discharge under light of the photoconductor layer corresponds to that of a layer which does not contain a condensation product, while its conductivity in the dark and sensitivity to pre-exposure are substantially reduced. It has been found that the condensation product of this invention exhibits only a low photoconductivity, and it surprisingly possesses the property of maintaining those charge carriers in the photoconductive layer which do not recombine.
The condensation products can be easily prepared.
Their condensation is performed in an acid medium, preferably in acetic acid anhydride and proceeds smoothly and with a good yield. Apart from benzophenone-2-carboxylic ~L~0~7~

acid, its alkyl-substituted, preferably lower alkyl-substituted derivatives, in particular 4'-methyl-benzophenone-2-carboxylic acid, are suitable.
Dialkyl anilines which can be used with particular advantage for the purposes of the invention are those having l to 4 carbon atoms in the alkyl group. Preferably, dimethyl aniline and diethyl aniline are employed.
Suitable organic photoconductors are those which are described in German Patent No. lO 58 836, and which are oxadiazole derivatives, as mentioned above. Further suitable oxazole derivatives are described in German Patent No. ll 20 875 (equivalent to U.S. Patent No. 3,257,203);
triphenylamine derivatives, triphenylmethane derivatives, more highly condensed aromatic compounds, such as anthracene, benzo-condensed heterocyclic compound, pyrazoline derivatives, hydrazone derivatives, imidazole derivatives or triazole derivatives can also be employed.
Preferably, oxadiazoles, and in particular 2,5-bis(4'-diethylaminophenyl)-1,3,4-oxadiazole, are used.
Varying mixing ratios of the organic photoconductor and the condensation product according to this invention are possible. Preferably, the mixing ratios vary between about 1:1 and 5:l parts by weight.
Suprisingly, it has been found that a portion of the relatively expensive photoconductor, for example, oE the oxadiazole, can be replaced by the relatively inexpensive condensation products of this invention, without the sensitivity to light of the photoconductive layer being adversely a~fected. The degree of substitution or
3~ replacement also depends on the employed sensitizers and can be up to 50 percent. Due to a reduction of the discharge in the dark of the photoconductive layer, the charge contrast between the image areas and the non-image areas, which have been discharged by exposure, is increased, so that the toner 2347~

images obtained by the subsequent application of toner are rich in contrast and possess a high marginal definition.
This is of particular advantage in the production of printing forms or printed circuits, because in this case not only an optically perfect image, but also resistance to developer and etching is required.
Suitable binders for the photoconductive layer include, for example: balsam resins, colophony, shellac, and synthetic resins, such as colophony-modified phenolic resins and other resins containing an increased amount of colophony, coumarone resins, indene resins and the suhstances known under the collective name of "synthetic resins for paints and varnishes". According to the "Kunststofftaschenbuch" (Plastics Paperback) by Saechtling-ZebrowskiO 11th edition (1955), pages 212 et seq., these synthetic resins for paints and varnishes include modified natural substances, such as cellulose ethers, polymers, such as vinylpolymers, for example, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl acetals, polyvinyl ethers, copolymers of vinyl chloride, vinyl aceta~e ~d maleic acid, ~lyacryla~es, pol~ethac-rylates, and also ~olystyrene and copol~ers, pOe., of styrene ~d maleic acid anhydride~ isobutylene, chlorinated rubber, polycondensates, for example, polyesters, such as phthalate resins, alkyd resins, maleate resins, maleic acid-colophony mixed esters of higher alcohols, phenolformaldehyde resins, colophony-modified phenolformaldehyde condensates, urea-formaldehyde resin, melamine-formaldehyde condensates, aldehyde resins, ketonic resins, xylene-formaldehyde resins, polyamides and polyerethanes. Phthalic acid esters, such as terephthalic acid or isophthalic acid ethylene glycol polyesters and polyolefins, such as low-molecular weight polyethylene and propylene, are suit~ble for ~his purpose.

--7~

With regard to their film-forming properties and adhesive strength, the resins are preferably employed as binders. Their selection is determined by their film-forming and electrical properties, their adhesion to the layer support and, in particular, by their solubility properties. For the industrial production of printing forms and printed circuits, those binders are especially suitable which are soluble in aqueous and alcoholic solvent systems, to which acids or alkalis can be added, if appropriate. For physiological and safety reasons, aromatic or aliphatic, easily combustible solvents are not used. Thus, suitable binders are high-molecular substances which carry alkali-solubilizing groups. Examples oE such groups are acid groups, anhydride groups, carboxyl groups, phenol groups, sulfoacid groups, sulfonamide groups or sulfonimide groups. Binders with high acid numbers are preferably employed, for they are particularly readily soluble in alkaline-aqueous-alcohollc ~olvent systems. Copolymers with anhydride groups can also be successfully employed.
Copolymers of styrene and maleic acid anhydride, such as Scripset (R) by Monsanto, USA, are particularly suitable; phenolic resins, such as Alnovol (R) by Hoechst AG, Germany, have also proved to be suitable.
It is known to use a broad variety of dyestuffs of different Gategories of compounds as sensitizers, in order to extend the range of spectral sensitivity up to 650nm.
The following are examples of effective compounds which are listed in the Dyestuff Tables tFarbstofftabellen) by Schultz (7th edition, 1 volume, 1931): Triarylmethane dyestuffs, such as Brillant Green (No. 760, p. 314, C.I. 24040), Victoria Blue B (No. 822, p. 347), Methyl Violet (No. 783, p. 327), Crystal Violet (No. 785, p. 329), ~cid Violet 6B
(No. 831, p. 351); xanthene dyestuffs/ and among these Rhodamines, such as Rhodamine B (No. 864, p. 365), Rhodamine `` ~2C~

6G (No. 866, p. 366), Rhodamine G extra (No. 865, p. 366), Sulforhodamine B (No. 863, p. 3~) and Fast Acid Eosin G
(No. 870, p. 368), and also phthaleins, such as Eosin S (No.
883, p. 375), Eosin A (No. 881, p. 374), Erythrosin (No.
886, p. 376), Phloxin (No. 890, p. 378), Rose Bengale (No.
889, p. 378) and Fluorescein (No. 8~0, p. 373); thiazine dyestuffs, such as ~ethylene Blue (No. 1,038, p. 449);
acridine dyestuffs, such as Acridine Yellow (No. 901, p.
383), Acridine Orange (No. 908, p. 387) and Trypaflavin (No.
906, p. 386); quinoline dyestuffs, such as Pinacyanole (No.
924, p. 396) and Cryptocyanine (No. 927, p. 397); quinone dyestuffs and ketone dyestuffs, such as Alizarine (No.
1,141, p. 449), Alizarine ~ed S (No. 1,145, p. 502) and quinizarine (No. 1,1~8, p. 504). Cyanine dyestuffs, such as Astrazone Yellow 3G (C.I. 48 055), Astrazone Yellow SG (C.I.
48065) or Basic Yellow 52 115 (C.I. 48 060); furthermore Astrazone Orange 3R (C.I. Basic Orange 27), Astrazone Yellow 7GLL (C.I. Basic Yellow 21), Astrazone Yello~ GRL (C.I.
Basic Yellow 29), and Astra Yellow R (C.I. Basic Yellow 44) are also used. Astrazone Orange R (C.I. 48 040~ and Astrazone Orange G (C.I. 48 035) are particularly suitable.
In particular 0.001 to 0~1 part by weight of dyestuff is employed per 1 part by weight of photoconductor. The thickness of the photoconductive layer preferably is from about 2 to 10 ~um.
Suitable supports for the photoconductive layers are, for example, foils of metal, such as aluminum, zinc, copper, sheets of cellulose products, such as paper, cellulose hydrate, cellulose esters, e.g. cellulose acetate, cellulose butyrate, or films of plastics, such as polyolefins, e.g., polyethylene, polypropylene, polyvinyl compounds, e.g., polyvinyl chloride, polyvinylidene chloride, polystyrene, polyacrylic compounds, e.g., polyacrylonitrile, polymethacrylate, polyesters, e.g., g _ ~1 2~8~7~

polyterephthalic acid ester, polyamides and polyurethanes.
If paper is used as the layer suppor-t, an appropriate pretreatment to prevent the penetration of coating liquid is recommended. Films, which are provided with a metal, e.g., aluminum, coating by lamination or vapor deposition, are also suitable layer supports.
In the production of printing forms or printed circuits by electrophotographic means, it is advantageous to use the well-known materials as layer supports, such as plates of aluminum, zinc, magnesium, copper or multimetal plates.
Surface-treated aluminum plates have proved to oe particularly suitable. The surface treatment comprises a mechanical or electrochemical rou~hening which can be optionally followed by an anodic oxidation and treatment with polyvinylphosphonic acid in accordance with German Offenlegungsschrift No. 16 21 478 (equivalent to British Patent No. 1,230,447~. This treatment achieves higher print runs and a reduced tendency to oxidation~
By way of the Examples which ~ollow, the invention is explained in greater detail.

~0~34~

PRODUCTION OF A CONDENSATION PRODUCT
ACCORDING TO T~IE INVENTION

750 g of acetic acid anhydride are first introduced into a ~ liter three-neck flask, then 260 g of benzophenone-2-carboxylic acid are stirred in. By heating to 50 C, a clear solution is obtained.

164 g of diethyl aniline are rapidly stirred into this solution, the mixture is heated to a boil and is refluxed for 5 hours (136 to 140C). Then the reaction mixture is stirred for another hour, during which time its temperature is reduced to about 60 DC. Now the reaction mixture is stirred dropwise, within about 30 minutes, into an open vessel containing 5000 g of ice/water. The product is precipitated in the form of globular granules, which are sucked off, well rinsed with water and groundl if appropriate. Drying is performed at a~out 70 C~ Yield:
342 g of raw product.

Melting point: 112 to 118CC.

~%6;~ 7~

PURIFICATION OF T~E RAW PRODUCT-The raw product is recrystallized in 6 times its volume of ethanol and filtered. A product having the following specifications is obtained: Yield~ 298 g (=
83.5% of theoretical); melting point 120 to 121C; sensual test: colorless powder; analysis: calculated: 3.9~ N, found 4.0% N.

An electrochemically roughened, anodically oxidized aluminum foil is mechanically coated with a solution of 18 g of 2,5-bis(4'-diethylaminophenyl)-1,3,4-oxadiazole and 27 g of a copolymer of styrene and maleic acid anhydride in 130 g of glycol monomethyl ether, 170 g of tetrahydofuran and 50 g of butyl acetate, to which 20 g of a solution, in methanol, of 0.9 g of Astrazone Orange R (C.I. 48 040~ and 0.09 g oE
Rhodamine FB (C.I. 45 170) have been added. The layer is dried in the dark and then charged, by means of a corona~ to -650 V, as is diagrammatically shown in the attached Figure.
After a residence time in the dark of 1 minute, the charge ~ is measured again, and it is found that a discharge down to -284 V, i.e. 44% of the original charge, has taken place (curve 2 of the Figure). When the layer is exposed prior to charging by exposing it to a room illumination of 440 lux for 1 minute and is then charged under the same corona conditions as above, the achieved charge is only -370 V, i.e., 56% of the voltage of not pre-exposed layer. After storage of this charged layer in the dark for 1 minute, a ~2013~

charge of only -105 V, i.e., 28% of the original charge, is measured (curve 4 of the Figure). When 1/4 of the quantity of 2,5-bis(4'-diethylaminophenyl)-1,3,4-oxadiazole employed for the coating solution is replaced by 4.5 9 of a reaction product of 4'-methyl benzophenone-2-carboxylic acid and diethyl aniline and the layer is charged to -650 V by means of a corona after the evaporation of the solvent, it is found that after 1 minute the charge is only reduced to -350 V, i.e., 53% of the initial charge ~curve 1 of the Figure).
When, prior to charging, the layer is exposed to a room illumination of 440 lux for 1 minute and charging is then performed under the same conditions as above, a charge of -500 V, i.e., 75~ of the charge of the not pre exposed layer, is obtained. After one minute, the charge present on the pre-exposed and charged layer is -185 V, i.e., 37~ of the original charge (curve 3 of the Figure).
The differences in the discharge under light of the two layers are low~ so that both layers can be imaged in a process camera at identical exposure times and subsequently be processed to give lithographic printing Eorms. For this purpose, the photoconductive layer is charged to -450 V by means of a corona and imagewise exposed in a process camera for 24 seconds, using four 1,000 W quartæ halogen lamps.
The latent charge image thus produced on the layer is developed with the aid of a maynetic roller and a commercially available electrophotographic developer. The developed image is fixed by heating to 180C for 2 minutes.
Conversion into a printing form is effected by immersing the coa~ed aluminum foil carrying the fixed toner image into a solution o~ 35 g of sodium metasilicate x g H20 in 140 g of glycerol having a water content of 20~, 550 ml of ethylene glycol and 140 ml of ethanol. After 1 minute, the photoconductor layer, which has dissolved in the toner-free areas, is rinsed off with a water jet under slight rubbing.

~20~47~

A comparison of the printing form thus obtained with an analogously prepared printing form, the photoconductive layer of which does not contain the condensation product of this invention comprised of 4' -methylbenzophenone-2-carboxylic acid and diethyl aniline, shows that the resolution and the gradation of screened image portions of the layer according to this invention are much better.

An aluminum foil, the surface o~ which has been mechanically roughened by means of a wire brush, is coated with a solution of 22.5 g of 2,5 bis(4'-diethylaminophenyl)-1,3,4-oxadiazole, 22.5 g of a copolymer of styrene and maleic acid anyhdride, 1.125 g of Astrazone Orange R (C.I.
48 040) an 0.225 g of 3rillant ~reen ~C.I. ~2 040), in 130 g of glycol monomethyl ether, 170 g of tetrahydrofuran and 50 g of butyl acetate, in a way such tha~ after evaporation of the solvents a 5 ,um thick layer is left. This layer is charged in the dark to -650 V by means of a corona. After a residence time in the dark of 1 minute, a charge of -295 V, i.e., 46% of the original charge, is measured. When the layer is first exposed to a room illumination of 440 lux ~or 1 minute and then charged under the same conditions as the not pre-exposed layer, the charge obtained is -570 V, i.e., 89% of the charge obtained without pre-exposure. After a residence time in the dark of 1 minute, the charge is reduced to -205 V, i.e., 36% of the charge of the pre-exposed, charged layer. When 2/5 of the oxadiazole are replaced by 9 g of a condensation product of benzophenone-2-carboxylic acid and diethyl aniline and the layer is charged to -650 V, the charge measured after a residence time of 1 minute in the dark is -405 V, i.e., 61%
of the initial charge. After a pre-exposure under `` ~2~39L7~

conditions as described above, the charge measured on the layer is -575 V, i.e., 91~ of the not pre-exposed layer.
~fter 1 minute, this pre-exposed, charged layer still has a charge of -300 V, i.e., 52% of the original charge.
By substituting a part of the oxadiazole contained in the layer ~reduction from 50% to 30%), the discharge under light of the layer is sliyhtly affected. For this reason, the exposure time has to be increased by 20% for the processing of the layer which has been partly substituted by the condensation product. This is, however, no obstacle to the practical use of the layer. Due to the reduced discharge in the dark, the contrast of the developed image is substantially improved.

Claims (18)

WHAT IS CLAIMED IS:
1. An electrophotographic recording material, comprising:
(a) support layer; and (b) a photoconductive layer applied thereto, wherein the photoconductive layer comprises: an organic photoconductor; a binder; a sensitizer; and a condensation product of a benzophenone-2-carboxylic acid and a dialkyl aniline.
2. A recording material as in Claim 1, wherein the photoconductive layer comprises a condensation product of benzophenone-2-carboxylic acid and diethyl aniline.
3. A recording material as in Claim 1, wherein the photoconductive layer comprises a condensation product of 4'-methylbenzophenone-2-carboxylic acid and diethyl aniline.
4. A recording material as in Claim 1, wherein the photoconductor comprises 2,5-bis(4'-dialkylaminophenyl)-1,3,4-oxadiazole.
5. A recording material as in Claim 1, wherein the mixing ratio of organic photoconductor to condensation product is within a range of from about 1:1 to 5:1 parts by weight.
6. A recording material as in Claim 1, wherein the sensitizer comprises a mixture of Astrazone Orange (R) (C.I.
48 040) and a Rhodamine dyestuff.
7. A recording material as in Claim 1, wherein the sensitizer comprises a mixture of Astrazone Orange (R) (C.I.
48 040) and Brillant Green (C.I. 42 040).
8. A recording material as in Claim 1, wherein the photoconductive layer has a thickness of from about 2 to 10 µm.
9. A recording material as in Claim 1, wherein the photoconductive layer comprises an alkali-soluble binder.
10. A recording material as in Claim 9, wherein the binder comprises a copolymer of styrene and maleic acid anhydride or phenol resin.
11. A recording material as in Claim 1, wherein the dialkyl aniline comprises an alkyl group having from 1 to 4 carbon atoms.
12. A recording material as in Claim 1, wherein the dialkyl aniline comprises dimethyl aniline or diethyl aniline.
13. A recording material as in Claim 1, wherein the organic photoconductor comprises an oxadiazole derivative.
14. A recording material as in Claim 1, wherein the sensitizer is present in a ratio of from about 0.001 to 0.1 parts by weight sensitizer per 1 part by weight photoconductor.
15. A recording material as in Claim 1, wherein the binder is soluble in aqueous and alcoholic solvent systems.
16. A recording material as in Claim 15, wherein the binder comprises a high molecular substance with an alkali-solubilizing group.
17. A recording material as in Claim 1, wherein the condensation product comprises an alkyl-substituted derivative of benzophenone-2-carboxylic acid.
18. A recording material as in Claim 1, wherein the support comprises aluminum foil, and wherein the foil has been mechanically or electrochemically roughened.
CA000451689A 1983-04-15 1984-04-11 Electrophotographic recording material Expired CA1208471A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833313798 DE3313798A1 (en) 1983-04-15 1983-04-15 ELECTROPHOTOGRAPHIC RECORDING MATERIAL
DEP3313798.6 1983-04-15

Publications (1)

Publication Number Publication Date
CA1208471A true CA1208471A (en) 1986-07-29

Family

ID=6196549

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000451689A Expired CA1208471A (en) 1983-04-15 1984-04-11 Electrophotographic recording material

Country Status (7)

Country Link
US (1) US4528256A (en)
EP (1) EP0125481B1 (en)
JP (1) JPS59206840A (en)
AU (1) AU561994B2 (en)
CA (1) CA1208471A (en)
DE (2) DE3313798A1 (en)
ZA (1) ZA842776B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175109A (en) * 1986-09-10 1992-12-29 Toa Medical Electronics Co., Ltd. Reagent for classifying leukocytes by flow cytometry
US5039613A (en) * 1986-11-27 1991-08-13 Toa Medical Electronics Co., Ltd. Reagents used in a method of classifying leukocytes by flow cytometry
US5179026A (en) * 1986-11-27 1993-01-12 Toa Medical Electronics Co., Ltd. Method of classifying leukocytes by flow cytometry and reagents used in the method
DE3800617A1 (en) * 1988-01-12 1989-07-20 Hoechst Ag ELECTROPHOTOGRAPHIC RECORDING MATERIAL
US4957836A (en) * 1989-05-25 1990-09-18 Industrial Technology Research Institute Electrophotoreceptor using hydrazone as the charge transport material
DE19510526A1 (en) * 1995-03-23 1996-09-26 Hoechst Ag Electrophotographic recording material for the production of printing plates
US6376144B1 (en) 2000-08-03 2002-04-23 Kodak Polychrome Graphics, Llc Organic photoconductive composition
US20050203578A1 (en) * 2001-08-15 2005-09-15 Weiner Michael L. Process and apparatus for treating biological organisms

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE558078A (en) * 1956-06-04
NL242505A (en) * 1958-08-20
NL131538C (en) * 1962-01-13
ZA6807938B (en) * 1967-12-04
NL167779C (en) * 1973-02-14 1982-01-18 Oce Van Der Grinten Nv ELECTROPHOTOGRAPHIC REPRODUCTION ELEMENT.
JPS5260138A (en) * 1975-11-12 1977-05-18 Ricoh Co Ltd Sensitizing agent for color pigment type organic photoconductor

Also Published As

Publication number Publication date
JPS59206840A (en) 1984-11-22
DE3313798A1 (en) 1984-10-18
ZA842776B (en) 1984-11-28
US4528256A (en) 1985-07-09
AU561994B2 (en) 1987-05-21
EP0125481B1 (en) 1987-09-09
DE3466092D1 (en) 1987-10-15
JPH0365546B2 (en) 1991-10-14
EP0125481A1 (en) 1984-11-21
AU2681084A (en) 1984-10-18

Similar Documents

Publication Publication Date Title
US3112197A (en) Electrophotographic member
US3240597A (en) Photoconducting polymers for preparing electrophotographic materials
US3066023A (en) Member for electrophotographic reproduction and process therefor
US4327169A (en) Infrared sensitive photoconductive composition, elements and imaging method using trimethine thiopyrylium dye
US4063948A (en) Material for electrophotographic reproduction
CA1064936A (en) Photoconductive polymer and photoconductive compositions and elements containing same
US4391888A (en) Multilayered organic photoconductive element and process using polycarbonate barrier layer and charge generating layer
US3245783A (en) Material for electrophotographic purposes
CA1208471A (en) Electrophotographic recording material
JPS60258169A (en) 2,3-bis(dialkylaminophenyl)quinoxaline and electronic photography recording material
US4533612A (en) Electrophotographic recording materials containing special charge carrier-transporting compounds
US4933248A (en) Electrophotographic recording material
US3542546A (en) Organic photoconductors containing the >n-n< nucleus
JPS58172649A (en) Printing plate or electrophotographic recording material for printed circuit
US3244517A (en) Electrophotographic process
US3163531A (en) Photoconductive layers for electrophotographic purposes
US4559285A (en) Electrophotographic recording materials containing a metal acetylacetonate
US3784376A (en) Photoconductive element containing furans, indoles, or thiophenes
JPH0230502B2 (en)
US3130046A (en) Electrophotographic reproduction material
US4556621A (en) Electrophotographic recording material containing a metal-1,3-diketone complex
US3653887A (en) Novel {60 ,{60 {40 -bis(aminobenzylidene) aryldiacetonitrile photoconductors
JPH0230500B2 (en)
US3373020A (en) Electrophotographic material and process employing metal resinates
US5063129A (en) Electrophotographic printing plate precursor

Legal Events

Date Code Title Description
MKEX Expiry