CA2192013C - Nonelastomeric sealing element - Google Patents

Nonelastomeric sealing element Download PDF

Info

Publication number
CA2192013C
CA2192013C CA002192013A CA2192013A CA2192013C CA 2192013 C CA2192013 C CA 2192013C CA 002192013 A CA002192013 A CA 002192013A CA 2192013 A CA2192013 A CA 2192013A CA 2192013 C CA2192013 C CA 2192013C
Authority
CA
Canada
Prior art keywords
openings
biasing member
sealing element
longitudinal axis
compressing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002192013A
Other languages
French (fr)
Other versions
CA2192013A1 (en
Inventor
Jeffrey J. Lembcke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CA2192013A1 publication Critical patent/CA2192013A1/en
Application granted granted Critical
Publication of CA2192013C publication Critical patent/CA2192013C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • E21B33/1216Anti-extrusion means, e.g. means to prevent cold flow of rubber packing
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/128Packers; Plugs with a member expanded radially by axial pressure

Abstract

A sealing system, particularly useful for packers and anchors, is disclosed.
The sealing element or elements are of a nonelastomeric material and are configured with a feature that can add a biasing force on one or both sides of the non-elastomeric sealing element(s) to allow the sealing element(s) to maintain the seal despite temperature or pressure fluctuations in the wellbore. The apparatus allows a packer with a nonelastomeric seal to be set at a broad range of downhole temperatures.

Description

~iy201~
TITLE: NONELASTOMERIC SEALING ELEMENT
The field of this invention relates to nonelastomeric sealing elements for use in downhole tools such as packers or plugs.
BACKGROUND OF THE INVENTION
Downhole tools such as packers have in the past used elastomeric sealing elements such as rubber. Elastomeric sealing elements have several advantages.
One of the advantages of elastomeric sealing elements is that they have memory or elasticity. As a result, they tend to hold the seal against the casing, despite temperature fluctuations that can occur in the wellbore. Some of the disadvantages of elastomeric sealing elements for such downhole tools as packers are that their tolerance to certain environmental conditions in the wellbore is lower than many nonelastomeric materials. Additionally, elastomeric materials have temperature limits below those that can normally be expected in some applications.
Resilient components have been used in downhole tools in a variety of different applications, either as seals or cushions for other movable components, as illustrated in U.S.
Patents 5,350,016; 4,711,326; 3,052,943; and 2,184,231.
In some applications where higher temperatures in the order of 350°-450°F
are encountered, prior designs have attempted to use nonelastomeric seals without any degree of commercial success. The nonelastomeric materials that have been employed, such as polytetrafluoroethylene, and commonly sold under the trademark Teflon~, while able to withstand the temperature limits, presented other disadvan-tages which made them unreliable. When even moderate temperature fluctuations _ 2192013 occurred, loss of sealing contact with casing resulted. Furthermore, since the nonelastomeric materials had no memory, once the sealing element was misshapen under load, it was difficult, if not impossible, in prior designs to gefthe sealing element to reseal at a later time. Typically, in downhole operations, pressure shifts could occur where loading can reverse from coming below the sealing element to coming from above. Without the resilience and/or memory of the elastomeric materials, the nonelastomeric materials exhibited a tendency to lose their sealing grip upon such reversals of loading. This was because the elastomeric materials function akin to a combination of a spring and damper while the nonelastomeric materials function more akin to a damper acting alone. The nonelastomeric mate-rials don't have the resilience to spring back after a change in loading and, due to loading changes induced by pressure or temperature effects, experienced leakage problems in prior designs.
Even in prior attempts to use nonelastomeric seals, service limits were placed on such packers in an effort to avoid application of nonelastomeric seals in downhole conditions where the seal could be lost due primarily to moderate tem-perature changes. Prior designs using nonelastomeric seals were limited to set temperatures downhole in the range of 350°-450°F and maximum temperature fluctuations between hottest and coldest of approximately 100°F. Since downhole conditions in some cases were unpredictable and in most cases not controllable, application of nonelastomeric seals in prior packer designs led to unacceptable losses of sealing due to these temperature effects.
One of the objects of this invention is to allow a construction using nonelas-tomeric seals in downhole tools such as packers, but at the same time providing a solution to the difficulties encountered in past designs that have led to seal failures.
Accordingly, a compensation system, in conjunction with nonelastomeric seals, is presented to address the shortcomings of the prior designs.
Prior designs using nonelastomeric seals with gauge rings on either side and slips that are located above and below the sealing element were configured to allow the uphole or downhole forces that could be exerted during the life of the packer to apply a boost force to the nonelastomeric sealing element. However, despite the configuration just described, ~ the service limitations of such designs to avoid loss of seal were narrowly tailored to temperature fluctuations of no greater than 100°F and setting temperatures at a range of about 350°-450°F. Thus, another object of the present invention is to provide a configuration where these service limits can be dramatically expanded without sacrificing the sealing reliability of the packer.
SUMMARY OF THE INVENTION
A sealing system, particularly useful for packers and anchors, is disclosed. The sealing element or elements are of a nonelastomeric material and are configured with a feature that can add a biasing force on one or both sides of the nonelastomeric sealing elements) to allow the sealing elements) to maintain the seal despite temperature or pressure fluctuations in the wellbore. The apparatus allows a packer with a nonelastomeric seal to be set at a broad range of downhole temperatures.
Accordingly, in one aspect of the present invention there is provided a sealing system for a downhole tool, comprising:
a body;
a nonelastomeric sealing element on said body;
compressing means on said body to longitudinally compress said sealing element downhole; and at least one biasing member mounted to said body such that after actuation of said compressing means, a biasing force is exerted on said nonelastomeric sealing element which varies in response to varying thermal or fluid pressure loads acting on said nonelastomeric element.
According to another aspect of the present invention there is provided a sealing system for a downhole tool, comprising:
a body having a longitudinal axis;
a nonelastomeric sealing element on said body;
compressing means on said body to longitudinally compress said sealing element downhole; and at least one biasing member, said biasing member capable of storing a potential energy force, said biasing member mounted to said body such that after actuation of said compressing means, a substantially longitudinal biasing force is exerted on said nonelastomeric sealing element which varies in response to varying thermal or fluid pressure loads acting on said nonelastomeric element;
said biasing member further comprising a cylindrically shaped element having a plurality of circumferential openings and a longitudinal axis;
said openings being elongated and substantially transverse to said longitudinal axis; and said openings comprising narrow width openings and wider width openings.
BRIEF DESCRIPTION OF THE DRAWINGS
An embodiment of the present invention will now be described more fully with reference to the accompanying drawings in which:
Figure 1 is a sectional elevational view of the sealing system for a typical packer, illustrating the nonelastomeric seal in the run-in position.
Figure 2 is the view of Figure 1, with the nonelastomeric seal in the set position.
3a Figure 3 is a sectional elevational view of the biasing member acting on the nonelastomeric seal.
Figure 4 is a, section view along lines 4-4 of Figure 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The apparatus A of the present invention is illustrated in Figure 1. The apparatus A is useful in packers and other downhole tools. As illustrated in Figure 1, the general arrangement of components of a known packer design, apart from the apparatus A, is illustrated. The basic components for actuating the apparatus A are illustrated for a type DB Baker Oil Tools packer. In essence, there is an upper slip 10 and a lower slip 12 which, when the packer P is actuated, are mov-able toward each other. Slips 10 and 12 ride on inner mandrel 14. The nature and mechanisms used in the past to reduce the space between slips 10 and 12 are well-known and do not constitute a portion of the invention. Situated between the upper slip 10 and lower slip 12 are spring cones 16 and 18. Spring cone 18 has a taper which is driven by taper 22 of upper slip 10. Similarly, taper 24 ultimately abuts taper 26 of lower slip- 12. The spring cone 16 is illustrated in detail in Figures 3 and 4. Spring cone 18 is functionally identical in the preferred embodi-ment. It has a gradual taper 24 on one end, while at the same time having a 20 steeper taper 28 at its opposite end. It has a generally cylindrical shape, as seen in Figure 4, with alternating cut-throughs 30 spaced between solid segments 32.
The cut-throughs 30 have narrow gaps of approximately 0.050", in effect making the design as shown in Figure 3 act as a spring. Since the aggregate movement to flatten the spring cones 16 and 18 is preferably in the order of about 0.200"-0.250", the gaps 30 are very small so that the aggregate movement of either of the spring cones 16 or 18 to the point where the gaps 30 are fully closed falls within the range described. Since the narrow gaps 30 are staggered longitudinally as well as circumferentially at preferably 90°, the overall working of the structure revealed in Figure 3 is that of a helical spring with a spring rate of approxima'~ely 20,000 lbs/in. and a very small overall travel range before full compression. In a given transverse section the narrow gaps are spanned by wider gaps which are generally in longitudinal alignment. The narrow gaps are offset when viewed longitudinally in adjacent transverse sections.
In the preferred embodiment, a V-shaped antiextrusion ring 34 abuts the tapered surface 28. The antiextrusion ring 34 is made up of two segments 36 and 38, keyed together by key 40. On the opposite side from taper 28, antiextrusion ring 34 is abutted by a ring 42, with a pin or other retainer 44 extending there-through to engage the nonelastomeric sealing element 46. The nonelastomeric sealing element 46 is preferably made from a material having the chemical name polytetrafluoroethylene. Other materials, known by chemical names polyether-etherketone, polyetherketone, polyamide, ethylenetetrafluoroethylene, or chlorotri-fluoroethylene, can also be used without departing from the spirit of the invention.
Ring 42 has a taper 48 which abuts the antiextrusion ring 34. When the slips and 12 are brought together through actuation of the packer P and longitudinal forces in opposite directions are transmitted into spring cones 16 and 18, the antiextrusion ring 34 moves radially outwardly, as can be seen by comparing Figures 1 and 2.
Tapers 48 and 50 redirect the element 46 so that it moves outwardly until it contacts the casing 52. The spring cones 16 and 18 exert opposed forces on the element 46 in the set position shown in Figure 2. There still remains, however, additional flexibility in the spring cones 16 and 18 when element 46 is in the set position against casing 52. The remaining range of movement before the cut-_. 219213 throughs or gaps 30 are fully compressed allows the spring cones 16 and 18 to flex responsive to growth or shrinkage of the element 46 responsive to temperature fluctuations. In the preferred embodiment, the rings 34 and 54 are identical.
The scope of this invention includes the use of a single spring cone, either 16 or 18, or a combination, as shown in Figure 1.
In the configuration illustrated in Figures 1 and 2, the packer P may be set at downhole temperatures from about 70°F to about 450°F and can withstand temperature fluctuations anywhere within that range without jeopardizing the sealing grip of the element 46 against the casing 52. This is to be contrasted with prior attempts at using nonelastomeric seals which, due to their lack of resilient biasing members such as spring cones 16 or 18, were limited in function to tem-perature swings of no greater than 100°F and had to be set in the temperature range of 350°F-450°F in order to remain serviceable. Since nonelastomeric materials of the type described above have high coefficients of thermal expansion, the spring cones 16 and 18 easily compensate for growth of the element 46 on increasing temperature and in the reverse direction as well upon decreasing temperature.
Pressure shifts, such as when the net differential pressure on the element 46 sud-denly shifts from below element 46 to above, are also tolerated without loss of seal by the packer P of the present invention. The available opposed forces created by the preferred embodiment using spring cones 16 and 18 act to compensate against momentary fluctuations of pressure to retain a net force on the sealing element 46 during such transition periods so that sealing contact is maintained against the casing 52 even when the service temperatures exceed about 450°F or the tempera-tore fluctuations are about 100°F or more.
While the biasing member, such as spring cones 16 and 18, have been illustrated, different shapes or forms for such members can be employed without 9~01:~
departing from the spirit of the invention. For example, coil springs with cylindri-cal rings on either end can be employed, or other mechanical or hydraulic means for flexibly retaining pressure on the sealing element 46, which has the capacity to compensate for growth or shrinkage of the element 46, are all considered to be equivalents within the scope of the invention. The sealing element 46 may be unitary as illustrated in Figures 1 and 2, or it may be in segments. Biasing ele-ments, such as spring cones 16 or I8 or their equivalents as described above, can be deployed on either side of one or more segmented sections of seals such as seal 46.
Other types of aids to resist extrusion at the ends are also within the purview of the invention. The rings 34 and 54 can also optionally be eliminated and the spring cones 16 and 18 configured in such a way so that they can bear directly on element 46 while at the same time retaining features that would resist end extrusion of sealing element 46.
The specific design of the spring cones 16 and 18 illustrated in Figure 3 has greater structural rigidity than an open coil spring and further allows for control of how much total motion can occur before the assembly is compressed so that it begins to function as a solid cylinder. Since the cut-through sections 30 are small, as are the windows 56 adjacent thereto, the resulting construction is strong in resisting torsional forces which may be imparted to it through the spring cones 16 and 18. The spring cone 16 is keyed at key 58 to a groove 60 to reduce any ten-dency to apply a torque to the sealing element 46 duiing operation of the packer P.
The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape and materials, as well as in the details of the illustrated construction, may be made without departing from the spirit of the invention.

Claims (38)

1. A sealing system for a downhole tool, comprising:
a body;
a nonelastomeric sealing element on said body;
compressing means on said body to longitudinally compress said sealing element downhole; and at least one biasing member mounted to said body such that after actuation of said compressing means, a biasing force is exerted on said nonelasto-meric sealing element which varies in response to varying thermal or fluid pressure loads acting on said nonelastomeric element.
2. The system of claim 1, wherein:
said biasing member further comprises a cylindrically shaped element having a plurality of circumferential openings and a longitudinal axis.
3. The system of claim 2, wherein:
said openings are elongated and substantially transverse to said longitudinal axis.
4. The system of claim 3, wherein:
said openings comprise narrow width openings and wider width openings.
5. The system of claim 4, wherein:
said openings alternate between narrow and wide on any plane transverse to said longitudinal axis where said openings are found.
6. The system of claim 4, wherein:
said narrow openings staggered circumferentially as between adjacent planes transverse to said longitudinal axis to define a generally spiral pattern around said cylindrically shaped element.
7. The system of claim 6, wherein:
said cylindrically shaped element is formed with no other openings between pairs of narrow openings when viewed in a direction parallel to said longitudinal axis.
8. The system of claim 7, wherein:
said wider openings are substantially in alignment when viewed in a direction parallel to said longitudinal axis.
9. The system of claim 3, wherein:
said cylindrically shaped element capable of longitudinally flexing wherein one limit of said flexing occurs when said narrow width circumferential openings close up.
10. The system of claim 1, wherein:
said biasing member is movable longitudinally and is locked to said body against rotation.
11. The system of claim 1, further comprising:
at least one antiextrusion ring disposed between said sealing element and said biasing member.
12. The system of claim 11, wherein:
said antiextrusion ring moves outwardly away from said body with said element which is growing radially in response to an applied longitudinal force initiated by said compressing means.
13. The system of claim 12, wherein:
said antiextrusion ring comprises at least one taper which interacts with a mating taper on said element to redirect said element outwardly away from said body responsive to activation of said compressing means.
14. The system of claim 13, wherein:
said antiextrusion ring comprises at least two tapers, with one of said tapers contacting a mating taper on said biasing member, whereupon when said compressing means is actuated, said biasing member cams said antiextrusion ring outwardly away from said body as said element expands in the same direction.
15. The system of claim 14, wherein:
said antiextrusion ring comprises, when viewed in section, two triangular shapes keyed together.
16. The system of claim 6, wherein:
said cylindrically shaped element capable of longitudinally flexing wherein one limit of said flexing occurs when said narrow width circumferential openings close up.
17. The system of claim 16, further comprising:

at least one antiextrusion ring disposed between said sealing element and said biasing member.
18. The system of claim 17, wherein:
said antiextrusion ring moves outwardly away from said body with said element which is growing radially in response to an applied longitudinal force initiated by said compressing means.
19. The system of claim 18, wherein:
said antiextrusion ring comprises at least one taper which interacts with a mating taper on said element to redirect said element outwardly away from said body responsive to activation of said compressing means.
20. The system of claim 19, wherein:
said antiextrusion ring comprises at least two tapers, with one of said tapers contacting a mating taper on said biasing member, whereupon when said compressing means is actuated, said biasing member cams said antiextrusion ring outwardly away from said body as said element expands in the same direction.
21. The system of claim 20, wherein:
said biasing member is movable longitudinally and is locked to said body against rotation.
22. The system of claim 1, wherein:
said sealing element is constructed from a material that can seal in the wellbore at temperatures at least 450°F and temperature variations of at least 100°F.
23. The system of claim 6, wherein:
said sealing element is constructed from a material that can seal in the wellbore at temperatures at least 450°F and temperature variations of at least 100°F.
24. The system of claim 17, wherein:
said sealing element is constructed from a material that can seal in the wellbore at temperatures at least 450°F and temperature variations of at least 100°F.
25. A sealing system for a downhole tool, comprising:
a body having a longitudinal axis;
a nonelastomeric sealing element on said body;
compressing means on said body to longitudinally compress said sealing element downhole; and at least one biasing member, said biasing member capable of storing a potential energy force, said biasing member mounted to said body such that after actuation of said compressing means, a substantially longitudinal biasing force is exerted on said nonelastomeric sealing element which varies in response to varying thermal or fluid pressure loads acting on said nonelastomeric element;
said biasing member further comprising a cylindrically shaped element having a plurality of circumferential openings and a longitudinal axis;
said openings being elongated and substantially transverse to said longitudinal axis; and said openings comprising narrow width openings and wider width openings.
26. The system of claim 25, wherein:
said openings alternate between narrow and wide on any plane transverse to said longitudinal axis where said openings are found.
27. The system of claim 25, wherein:
said narrow openings are staggered circumferentially as between adjacent planes transverse to said longitudinal axis to define a generally spiral pattern around said cylindrically shaped element.
28. The system of claim 27, wherein:
said cylindrically shaped element is formed with no other openings between pairs of narrow openings when viewed in a direction parallel to said longitudinal axis.
29. The system of claim 28, wherein:
said wider openings are substantially in alignment when viewed in a direction parallel to said longitudinal axis.
30. The system of claim 27, wherein:
said cylindrically shaped element is capable of longitudinally flexing wherein one limit of said flexing occurs when said narrow width circumferential openings close up.
31. The system of any one of claims 25 to 30, further comprising:
at least one antiextrusion ring disposed between said sealing element and said biasing member.
32. The system of claim 31, wherein:
said antiextrusion ring moves outwardly away from said body with said sending element which grows radially in response to an applied longitudinal force initiated by said compressing means.
33. The system of claim 32, wherein:
said antiextrusion ring comprises at least one taper which interacts with a mating taper on said sealing element to redirect said sealing element outwardly away from said body responsive to activation of said compressing means.
34. The system of claim 33, wherein:
said antiextrusion ring comprises at least two tapers, with one of said tapers contacting a mating taper on said biasing member, whereupon when said compressing means is actuated, said biasing member cams said antiextrusion ring outwardly away from said body as said sealing element expands in the same direction.
35. The system of claim 34, wherein:
said antiextrusion ring comprises, when viewed in section, two triangular shapes keyed together.
36. The system of any one of claims 25 to 35, wherein:
said biasing member is movable longitudinally and is locked to said body against rotation.
37. The system of any one of claims 25 to 36, wherein:
said sealing element is constructed from a material that can seal in the wellbore at temperatures at least 450°F and temperature variations of at least 100°F.
38. The sealing system of claim 25, wherein:
said cylindrically shaped element capable of longitudinally flexing wherein one limit of said flexing occurs when said openings close up.
CA002192013A 1995-12-18 1996-12-04 Nonelastomeric sealing element Expired - Fee Related CA2192013C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/573,824 US5749585A (en) 1995-12-18 1995-12-18 Downhole tool sealing system with cylindrical biasing member with narrow width and wider width openings
US08/573,824 1995-12-18

Publications (2)

Publication Number Publication Date
CA2192013A1 CA2192013A1 (en) 1997-06-19
CA2192013C true CA2192013C (en) 2005-02-15

Family

ID=24293533

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002192013A Expired - Fee Related CA2192013C (en) 1995-12-18 1996-12-04 Nonelastomeric sealing element

Country Status (5)

Country Link
US (1) US5749585A (en)
AU (1) AU723203B2 (en)
CA (1) CA2192013C (en)
GB (1) GB2308395B (en)
NO (1) NO313303B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995111B2 (en) 2012-12-21 2018-06-12 Resource Well Completion Technologies Inc. Multi-stage well isolation

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823937B1 (en) * 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
CA2407983C (en) * 1998-11-16 2010-01-12 Robert Lance Cook Radial expansion of tubular members
GB2344606B (en) * 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
US7195064B2 (en) * 1998-12-07 2007-03-27 Enventure Global Technology Mono-diameter wellbore casing
JP3461750B2 (en) * 1999-03-04 2003-10-27 パナソニック コミュニケーションズ株式会社 Communication apparatus, communication method, and caller information registration method
US6446717B1 (en) * 2000-06-01 2002-09-10 Weatherford/Lamb, Inc. Core-containing sealing assembly
CA2419806A1 (en) * 2000-10-02 2002-04-11 Robert Lance Cook Method and apparatus for casing expansion
US6612372B1 (en) 2000-10-31 2003-09-02 Weatherford/Lamb, Inc. Two-stage downhole packer
US20020070503A1 (en) * 2000-12-08 2002-06-13 Zimmerman Patrick J. High temperature and pressure element system
US7258168B2 (en) * 2001-07-27 2007-08-21 Enventure Global Technology L.L.C. Liner hanger with slip joint sealing members and method of use
WO2004081346A2 (en) 2003-03-11 2004-09-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
CA2449518C (en) * 2001-12-12 2007-01-30 Weatherford/Lamb, Inc. Bi-directional and internal pressure trapping packing element system
CA2482743C (en) 2002-04-12 2011-05-24 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
EP1501645A4 (en) 2002-04-15 2006-04-26 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
US6769491B2 (en) 2002-06-07 2004-08-03 Weatherford/Lamb, Inc. Anchoring and sealing system for a downhole tool
AU2003265452A1 (en) 2002-09-20 2004-04-08 Enventure Global Technology Pipe formability evaluation for expandable tubulars
US6840325B2 (en) 2002-09-26 2005-01-11 Weatherford/Lamb, Inc. Expandable connection for use with a swelling elastomer
US6827150B2 (en) * 2002-10-09 2004-12-07 Weatherford/Lamb, Inc. High expansion packer
US6834725B2 (en) * 2002-12-12 2004-12-28 Weatherford/Lamb, Inc. Reinforced swelling elastomer seal element on expandable tubular
US6907937B2 (en) 2002-12-23 2005-06-21 Weatherford/Lamb, Inc. Expandable sealing apparatus
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US6988557B2 (en) * 2003-05-22 2006-01-24 Weatherford/Lamb, Inc. Self sealing expandable inflatable packers
GB0303152D0 (en) * 2003-02-12 2003-03-19 Weatherford Lamb Seal
WO2004083591A2 (en) * 2003-03-17 2004-09-30 Enventure Global Technology Apparatus and method for radially expanding a wellbore casing using an adaptive expansion system
US6896063B2 (en) 2003-04-07 2005-05-24 Shell Oil Company Methods of using downhole polymer plug
GB2415988B (en) 2003-04-17 2007-10-17 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US20050073196A1 (en) * 2003-09-29 2005-04-07 Yamaha Motor Co. Ltd. Theft prevention system, theft prevention apparatus and power source controller for the system, transport vehicle including theft prevention system, and theft prevention method
WO2006020960A2 (en) 2004-08-13 2006-02-23 Enventure Global Technology, Llc Expandable tubular
CA2578897A1 (en) * 2006-02-21 2007-08-21 Stanley F. Gouldson Variable length coordinate set hanger
US7445050B2 (en) * 2006-04-25 2008-11-04 Canrig Drilling Technology Ltd. Tubular running tool
US7552764B2 (en) * 2007-01-04 2009-06-30 Nabors Global Holdings, Ltd. Tubular handling device
US8881836B2 (en) * 2007-09-01 2014-11-11 Weatherford/Lamb, Inc. Packing element booster
US8720541B2 (en) 2008-06-26 2014-05-13 Canrig Drilling Technology Ltd. Tubular handling device and methods
US8074711B2 (en) * 2008-06-26 2011-12-13 Canrig Drilling Technology Ltd. Tubular handling device and methods
US8641113B1 (en) * 2008-09-22 2014-02-04 Larry Rayner Russell Gripping device for tubular objects
US8631878B2 (en) * 2010-01-21 2014-01-21 Vetco Gray Inc. Wellhead annulus seal assembly and method of using same
EP2678523A2 (en) 2011-02-22 2014-01-01 Weatherford/Lamb, Inc. Subsea conductor anchor
CN104533344B (en) * 2014-11-06 2017-08-25 长江大学 A kind of fluid pressure type sliding sleeve switch instrument
US11873691B2 (en) 2019-06-14 2024-01-16 Schlumberger Technology Corporation Load anchor with sealing
WO2021003089A1 (en) * 2019-07-01 2021-01-07 Schlumberger Technology Corporation Bi-directional spring cone in liner hanger system
WO2023182985A1 (en) * 2022-03-23 2023-09-28 Halliburton Energy Services, Inc. Packer system with a spring and ratchet mechanism for wellbore operations

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564699A (en) * 1922-03-11 1925-12-08 Layne & Bowler Company Packer for wells and the like
US2888258A (en) * 1956-05-11 1959-05-26 Hoffstrom Bo Nilsson Springs
US2977980A (en) * 1958-04-22 1961-04-04 Axel R Scholin Unidirectional valve for metering pumps and the like
US3109493A (en) * 1962-04-30 1963-11-05 Baker Oil Tools Inc Subsurface well apparatus with packing structures
US3371936A (en) * 1965-03-31 1968-03-05 Harwood Engineering Co High pressure packing
US3358766A (en) * 1965-10-11 1967-12-19 Schlumberger Technology Corp Anti-extrusion device for a well tool packing element
US3389917A (en) * 1966-06-22 1968-06-25 Schlumberger Technology Corp Effective seal forming device
GB1505504A (en) * 1975-01-16 1978-03-30 Brown Tractors Ltd Compression spring
US4573537A (en) * 1981-05-07 1986-03-04 L'garde, Inc. Casing packer
US4441721A (en) * 1982-05-06 1984-04-10 Halliburton Company High temperature packer with low temperature setting capabilities
US4438933A (en) * 1982-05-06 1984-03-27 Halliburton Company Hydraulic set high temperature isolation packer
US4515213A (en) * 1983-02-09 1985-05-07 Memory Metals, Inc. Packing tool apparatus for sealing well bores
US4548265A (en) * 1983-07-15 1985-10-22 Baker Oil Tools, Inc. Downhole steam packing
US4611658A (en) * 1984-09-26 1986-09-16 Baker Oil Tools, Inc. High pressure retrievable gravel packing apparatus
US4697640A (en) * 1986-01-16 1987-10-06 Halliburton Company Apparatus for setting a high temperature packer
US4730835A (en) * 1986-09-29 1988-03-15 Baker Oil Tools, Inc. Anti-extrusion seal element
US4745972A (en) * 1987-06-10 1988-05-24 Hughes Tool Company Well packer having extrusion preventing rings
US4858897A (en) * 1987-11-16 1989-08-22 Hideki Irifune Spring
GB9017173D0 (en) * 1990-08-06 1990-09-19 Specialist Sealing Ltd Static seal
GB2295171B (en) * 1994-11-18 1998-09-02 Petroline Wireline Services Bore sealing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995111B2 (en) 2012-12-21 2018-06-12 Resource Well Completion Technologies Inc. Multi-stage well isolation
US10584562B2 (en) 2012-12-21 2020-03-10 The Wellboss Company, Inc. Multi-stage well isolation

Also Published As

Publication number Publication date
NO313303B1 (en) 2002-09-09
US5749585A (en) 1998-05-12
AU7419596A (en) 1997-06-26
CA2192013A1 (en) 1997-06-19
AU723203B2 (en) 2000-08-17
GB9625694D0 (en) 1997-01-29
NO965432D0 (en) 1996-12-17
GB2308395A (en) 1997-06-25
GB2308395B (en) 1999-10-06
NO965432L (en) 1997-06-19

Similar Documents

Publication Publication Date Title
CA2192013C (en) Nonelastomeric sealing element
US4588029A (en) Expandable metal seal for a well tool
US7401788B2 (en) High pressure and temperature seal for downhole use
CA1151536A (en) High temperature packer element for well bores
CA2254390C (en) Compact retrievable well packer
US8622398B2 (en) Annular seal
US8016295B2 (en) Helical backup element
US4411435A (en) Seal assembly with energizing mechanism
CA1195243A (en) Hydraulic set high temperature isolation packer
US9341039B2 (en) Damage tolerant casing hanger seal
US20070200299A1 (en) Spring/seal element
US4720113A (en) Multilayer, multihardness seal
CA2300622C (en) Steep pitch helix packer
GB2417271A (en) Well packer having an energized sealing element and associated method
EP0831257A1 (en) Mechanically energized sealing assembly
AU2003243264B2 (en) High pressure and temperature seal for downhole use
GB2145192A (en) Dynamic seal for well tools
AU2007349006B2 (en) Well tool having enhanced packing element assembly
WO2020251940A1 (en) Load anchor with sealing
US6305477B1 (en) Apparatus and method for maintaining relatively uniform fluid pressure within an expandable well tool subjected to thermal variants
EP3253944B1 (en) Well tool device comprising force distribution device
WO2003095872A2 (en) Metal end cap seal with o-rings
WO2008116034A1 (en) Packing element and method
GB2413347A (en) High pressure and temperature seal for downhole use

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20131204