CA2198117A1 - High temperature stable continuous filament glass ceramic fibers - Google Patents

High temperature stable continuous filament glass ceramic fibers

Info

Publication number
CA2198117A1
CA2198117A1 CA002198117A CA2198117A CA2198117A1 CA 2198117 A1 CA2198117 A1 CA 2198117A1 CA 002198117 A CA002198117 A CA 002198117A CA 2198117 A CA2198117 A CA 2198117A CA 2198117 A1 CA2198117 A1 CA 2198117A1
Authority
CA
Canada
Prior art keywords
mole percent
fibers
high temperature
temperature stable
continuous filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002198117A
Other languages
French (fr)
Inventor
John D. Ten Eyck
Thomas M. Clere
James R. Olson
Steven Waisala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unifrax 1 LLC
Original Assignee
John D. Ten Eyck
Thomas M. Clere
James R. Olson
Steven Waisala
Unifrax Corporation
The Carborundum Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John D. Ten Eyck, Thomas M. Clere, James R. Olson, Steven Waisala, Unifrax Corporation, The Carborundum Company filed Critical John D. Ten Eyck
Publication of CA2198117A1 publication Critical patent/CA2198117A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/006Glass-ceramics fibres
    • C03C13/007Glass-ceramics fibres containing zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/006Glass-ceramics fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres

Abstract

Composition and process for the preparation of high temperature stable continuous glass ceramic fibers with an upper temperature use limit of 2300 ~F, in mole percent, is 62-85 % SiO2, 10-20 % Al2O3, 5-15 % MgO, 0.5-5 % TiOx, and 0-5 % ZrO2. The continuous fibers are prepared by an economical direct melt method, and demonstrate high tensile strength, high Young's modulus, and low linear thermal shrinkage characteristics.

Description

w0 96/06053 ' ~ ~ ~' 19 81 l 7 pCT/US95/10505 HIGFI TEMPERATURE STABLE CONTINUOUS FILAMENT
GLASS CERAMIC FIBERS
'' FTFI .D OF '~. INVE~ON
The present invention relates to a method of producing continuous filament glass ceramic fibers. More particularly, it relates to a relatively low cost method of producing continuous filament glass ceramic fibers with an upper temperature use limit equivalent to refractory ceramic fiber of 2300°F.
Glass fibers are the oldest type of strong fibers used in applications such as composite structural materials. Although the possibility of forming fibers from heat-softened glass was known thousands of years ago, these fibers were discontinuous, and it was not until the 1930's that the production of continuous glass fiber became commercially viable. The first use for substantial quantities of continuous glass fiber was for electrical insulation of fine wires used at elevated temperatures. The continuous glass fibers for this application became known as "E"
glass because of their electrical properties. "E" glass does not have a specifically defined composition, but is a type of glass of defined electrical properties, and is generally a low alkali, calcium aluminum borosilicate. "E" glass has an upper temperature use limit of about 1100°F.
Improvements over the properties of "E" glass have been made through elimination of the alkali and other low melting components. This resulted in the development of "S" glass, known for its strength properties. "S" glass is a magnesium-aluminosilicate composition with considerably higher strength and modulus, and an upper temperature use limit of about 1500°F.
The preparation of glass fiber with higher temperature use limits is desirable, and has bin pursued through post treatment of "S" glass. U.S. Pat.
No.
3,402,055 describes the application of a variety of substances through aqueous or organic solvent base treatments of magnesium-aluminosilicate fibers to enhance temperature resistance of the fibers. U.S. Pat. No. 4,379,111 describes uniformly W096106053 1~ ~ ' PCTfU595lI0505 coating fibers with chromium oxide to enhance heat resistance over uncoated fibers or non-uniformly coated fibers of the same composition. U.S. Pat. No.
4,492,722 describes the deposition of a surface coating consisting essentially of Ti02 from an organic solution to extend the upper use temperature limit to approximately 2000°F.
These post treatments, however, are expensive processes.
Traditional refractory ceramic fiber (RCF) has an upper temperature use limit of 2300°F and is inexpensively produced in several forms, but all of these forms are discontinuous. Continuous filament ceramic fibers are known, but they must be produced through expensive sol-gel routes.
There are many advantages of fiber in continuous form over traditional discontinuous refractory ceramic fiber, including the elimination of shot, the ability to chop filaments to any desired length, the ability to utilize the filaments directly for the manufacture of textile products, product performance characteristics, and the ability to custom manufacture fibers of Irnown diameter.
Shot refers to high density, unfiberized particles which are detrimental to thermal efficiency, act as stress risers in reinforcing applications, and cause excessive wear in friction applications.
The ability to chop continuous filaments to any desired length is particularly advantageous in papermaking and in reinforcing applicafions.
The ability to utilize continuous filaments directly for spinning and weaving for the manufacture of textile products eliminates the cost associated with the organic carriers required with traditional refractory ceramic fibers.
Textile products produced with traditional discontinuous refractory ceramic fibers typically have lower tensile strength when compared to products produced with continuous fibers. The continuous filaments can be woven into cloth for fire protection or other high temperature applications.
Since continuous fiber can be manufactured more reproducibly than discontinuous fiber, the custom manufacture of fibers of known diameter, within narrow tolerances, is more facile using fibers in continuous form. In addition, the ability to control fiber diameter, especially the control of fiber diameters to values greater than those considered respirable, is beneficial from the aspect of physiological considerations as well as for thermal and reinforcement performance.
's i s '.
3 ~ ~ PCT/US95/10505 ,. ._s ~, _:.,,t..; , An object of the present invention is to prepare continuous filament glass ceramic fibers which have an upper temperature use limit higher than that of "S"
glass.
Another object of the present invention is to prepare high temperature stable continuous filament glass ceramic fibers by a direct melt method which is more economical than soI-gel methods or post treatment processes.
A further object of the present invention is to prepare continuous filament glass ceramic fibers with an upper temperature use limit equivalent to refractory ceramic fiber.
These and other objects and advantages of the invention set forth herein are accomplished by the present invention as hereinafter described and claimed.
We have found that continuous filament glass ceramic fibers with strength and thermal stability equivalent to traditional refractory ceramic fibers can be produced by conventional melt drawing techniques in the following compositional ranges expressed in mole percent:
Si02 62 - 85, A1203 10 - 20, Mg0 5 - 15, TiOx 0.5 - 5, (wherein 05 x 52), Zr02 0 - 5.
The present invention therefore provides high temperature stable glass ceramic fibers consisting essentially of about 62 to about 85 mole percent Si02, about 10 to about 20 mole percent A1203, about 5 to about 15 mole percent MgO, about 0.5 to about 5 mole percent TiOx, wherein Os x 52, and 0 to about 5 mole percent Zr~.
The present invention further provides high temperature stable continuous filament glass ceramic fibers comprising about 62 to about 85 mole percent Si02, about 10 to about 20 mole percent A1203, about 5 to about 15 mole percent MgO, about 0.5 to about 5 mole percent TiOx, wherein 0~ x 52, and 0 to about 5 mole percent ZrCY2.

.-2198117 W0 96/06053 PCTfUS9$110505 We have also found that continuous filament fibers with preferred compositions within the above range have physical properties and thermal performance better than traditional refractory ceramic fibers. In particular embodiments of the invention, we have observed that the use of Ti02 at low percentages in a preferred range of about 1 mole ~ to about 2 mole ~Y results particularly in an increase in the upper use temperature limit of produced fibers, namely in beneficial low shrinkage characteristics for the produced fibers.
The present invention provides a process for the production of high temperature stable glass ceramic fibers, comprising melting a ceramic powder feed to form a melt, and forming said melt into filaments, wherein said ceramic powder feed consists essentially of about 62 to about 85 mole percent Si02, about 10 to about 20 mole percent A1203, about 5 to about 15 mole percent MgO, about 0.5 toabout 5 mole percent TiOx, wherein O5 x <_2, and 0 to about 5 mole percent Zr(?2.
The present invention also provides, by virtue of the low shrinkage characteristics and increased fiber diameters of produced filaments having compositions in the range specified above, useful compositions for the manufacture of refractory ceramic fibers by traditional blowing or spinning methods.
The present invention provides a process for producing continuous filament glass ceramic fibers, with an upper use temperature limit equivalent to refractory ceramic fiber of 2300°F, by an economical direct melt method.
The present invention therefore provides a process for the production of high temperature stable continuous filament glass ceramic fibers, comprising melting a ceramic powder feed to form a melt, and drawing said melt into continuous filaments, wherein said ceramic powder feed comprises about 62 to about 85 mole percent Si02, about 10 to about 20 mole percent A1203, about 5 to about 15 mole percent MgO, about 0.5 to about 5 mole percent TiOx, wherein OS x 52, and 0 to about 5 mole percent Zr02.
The present invention further provides continuous filament glass ceramic fibers with increased upper use temperature limits, for use as insulation materials in a variety of forms, including woven textile products, ropes,-braids, boards, papers, blankets, and mats.
;. ;
WO 96/06053 ~ ~ PCTIUS95110505 The present invention also provides continuous filament glass ceramic fibers with increased upper use temperature limits and improved physical properties, for reinforcement of organic matrix materials, to provide increased tensile strength '' and modulus, increased flexural strength and modulus, and increased deflection temperature under load.
The present invention further provides continuous filament glass ceramic fibers with increased upper use temperature limits for usein friction materials; such as phenolics or for reinforcement of matrices of carbonized carbonaceous binders, otherwise known as carbon bodies, for such applications as friction discs for use in PO disc brakes, ranging from automotive to severe duty.
Figure 1 is a molar composition diagram of glass components.
Figure 2 is a block flow diagram of continuous filament production.
Figure 3 is a graphical representation of fiber tensile strength versus temperature.
Figure 4 is a graphical representation of the Youngs' Modulus of fiber versus temperature.
DETAINED DESC TPTTON OF THE IVT"~IVT~OI'T
The present invention is directed to the preparation of improved glass ceramic fibers for applications which include insulation and reinforcement of various matrices, the improvement comprising increased strength properties, improved shrinkage characteristics, and the preparation of these glass ceramic fibers with an upper use temperature limit equivalent to refractory ceramic fiber of 2300°F, but in a continuous form, through an economical direct melt method.
The objects of the invention are accomplished through the use of specific ranges of inorganic components in the preparation of glass ceramic fiber compositions. In particular, we have found that continuous filament glass ceramic fibers with strength and thermal stability equal to traditional refractory ceramic fibers can be produced from the following inorganic compounds in the composition ranges expressed in mole percent:
~1,9;~117 Si02 about 62 - 85, A1203 about 10 - 20, Mg0 about 5 - 15, TiOx about 0.5 - 5 (wherein 0 <_ x _< 2), Zr02 about 0 - 5.
The inorganic feed compounds are commercially available in reagent and technical grade, for example silica, high quality calcined alumina, magnesia and rutile titanic, from a number of domestic supplies.
The continuous filament glass ceramic fibers prepared using inorganic compounds in the above composition ranges can be produced by conventional melt drawing techniques.
We have also found that continuous filament fibers with preferred compositions within the above range have physical properties such as tensile strength, Young's modulus, and thermal shrinkage performance, such as exhibited in testing at 2300°C for 24 hours, which are improved over traditional refractory ceramic fibers.
In particular, we have found that the incorporation into the fiber of TiOx, such as Ti02, at preferred low percentages of about 1 mole ~ to about 2 mole 96, and most preferably 1.25 mole 96 to about 1.5 mole 96 provides an increase in the upper use temperature limit of produced fibers, namely in beneficial low shrinkage characteristics for the produced fibers.
Figure 1 is a molar composition diagram of glass components Si02, A1203 and Mg0 projected on a 096 titanic plane. Figure 1 details drawable glass fiber compositions in the lightly shaded area, and preferred drawable compositions containing 1.596 titanic which particularly yield target properties in terms of improved strength and improved shrinkage characteristics in the dark shaded area.
For the continuous filament glass ceramic fibers of the present invention, target properties with regard to improved strength are generally defined as tensile strength greater than about 250 Ksi and Young's modulus greater than about 12 Msi. The target property with regard to improved shrinkage characteristics is generally defined as less than about 396 shrinkage at 2300°F for24 hours. The lightly shaded area of Figure 1 which lies within the compositional ranges of the glass ceramic components detailed above generally corresponds to the preferred ranges of those components, ~.~198117 and the dark shaded area of Figure 1 generally corresponds to the most preferred ranges of those components.
Compositions of high temperature stable continuous filament glass ceramic fibers of the present invention comprise i) about 62 to 85 mole ~ Si02, preferably about 68 to 829& Si02, most ,.
preferably about 72 to 80~ Si02;
ii) about 10 to 20 mole ~ A1203, preferably about 10 to 18~ A1203, most preferably about 10 to 169b A1203;
iii) about 5 to 15 mole R6 MgO, preferably about 6 to 14~ MgO, most preferably about 7 to 1496 MgO;
iv) about 0.5 to 5 mole 96 TiOX, preferably about 1 to 296 TiOX, most preferably about 1.25 to 1.5 ~ TiOX; and v) 0 to about 5 mole 96 Zr02, preferably 0 to about 396 Zr02, most .
preferably about 0 to 2~O Zr02. In some embodiments, Zr02 has been found useful in obtaining high tensile strength.
While the above compositions are preferred for continuous filament glass ceizmic fibers, such composifions display improved properties when utilized in discontinuous high temperature stable glass ceramic fibers, also.
The present invention provides a method of producing continuous filament glass ceramic fibers, with an upper use temperature limit equivalent to refractory ceramic fiber of 2300°F, by an economical direct melt method. Figure 2 is a block flow diagram of continuous filament production. The major steps in continuous filament production include preparation of a ceramic powder feed, introduction of the powder feed into a melt furnace, melt conditioning (such as fining) and delivery to the fiber-drawing furnaces, called bushings, from which the filaments are drawn, followed by sizing and winding of the fibers.
The manufacture of glass fiber products is generally considered to comprise three stages. The major steps illustrated in Figure 2 describe Stages 1 and 2. Stage 1 consists of the actual glass manufacture, the fusion of selected raw materials in a melt furnace and delivery to the fiber-drawing furnaces. Stage consists of the conversion of the glass into fibers in the fiber-drawing furnace, called the bushing. Continuous glass fibers are prepared through the rapid mechanical ',: ? 1~ 81 17 ,1 WO 96!06053 PCT/US95110505 attenuation of molten drops of glass exuding from a large number of nozzles, usually about 200, located on the underside of the bushing which is usually electrically heated. Molten glass exudes from each nozzle where the glass forms a meniscus during fiber-drawing as a result of the mechanical attenuation. The individual fibers, known as filaments, pass over an applicator which deposits a protecting and lubricating size onto the filaments before they are gathered into bundles of filaments called strands. The strands then pass through a light water spray on their way to the winder, which consists of a slightly expandable rotating cylinder, called a collet, covered during the winding process by a removable plastic or paper tube onto which the strand is wound, and a device which lays successive lengths of strands onto the tube at small angles to one another to facilitate subsequent unwinding. Stage consists of the conversion of the glass fibers into products.
Compositions of the present invention have melting points and drawing temperatures between about 1500°C and about 2000°C depending upon the specific component ranges utilized. Since the melting points and drawing temperatures are in excess of 1500°C, high temperature melting and drawing equipment are utilized in the manufacture of filaments according to the present invention. Other than the use of high temperature materials of construction, the actual melting and drawing of the filaments by the method of the present invention is accomplished following techniques known to those skilled in the art for melting and drawing of conventional fiberglass.
Although conventional direct melt methods are prefelTed due to economy of production, compositions of the present invention demonstrate improved properties over traditional refractory ceramic fibers, when manufactured as continuous refractory ceramic fibers by sol-gel methods, as well as refractory ceramic fibers manufactured by tradifional blowing or spinning methods, or any other method known to those skilled in the art. Manufacture of high temperature stable continuous ceramic glass filaments according to the present invention results in increased fiber diameter, relative to standard aluminosilicate materials, when produced using a blowing fiberization technique. The ability to control fiber diameter, especially the ability to control fiber diameters to larger values, is beneficial from the aspect of physiological concerns as well as for certain thermal and reinforcement performance.

~'2' 7 v9~~ 1 17 Compositions of the present invention demonstrate, within a preferred range of about 1 mole 96 to about 2 mole ~ Ti02 in the overall composition and a most preferred range of about 1.25 to about 1.5 mole % Ti02, a beneficial effect of low shrinkage characteristics for produced filaments. The reason for the improvement in shrinkage characteristics is not completely understood. While not being bound by theory, it is believed that the decreased shrinkage is due to a change in micro-structure within the fiber, from an essentially amorphous structure to a nucleated structure which readily crystallizes when reheated. This theory, however;
has not been confirmed by detailed analysis.
We have found that the desired properties of the continuous filament glass ceramic fibers of the present invention can be enhanced when at least a portion of the titanium utilized in the melt is in a reduced form as compared to Ti02. This can be accomplished by a variety of methods. One method is to utilize a form of titanium oxide other than, or in addition to, an appropriate portion of titanium dioxide (+4 IS oxidation state) in the melt. Such other forms include Ti0 (+2 oxidation state) and Ti,Oj (+3 oxidation state). Another method is to introduce at least a portion of the titanium component into the melt in the form of metallic titanium. A further method is to add other reducing agents into the melt (or furnace), such as carbon or carbon monoxide, or to use a furnace with a reducing environment, such as a graphite furnace.
The high temperature stable continuous filament glass ceramic fibers of the present invention demonstrate many advantages over traditional refractory ceramic fiber in discontinuous form. These advantages include, but are not limited to, the elimination of shot, the ability to chop filaments to any desired length(s), the ability to utilize the filaments directly for the manufacture of textile products, and the ability to custom manufacture fibers of known diameter.
Shot refers to high density, unfibefized particles which are detrimental to thermal efficiency, act as stress risers in reinforcing applications, and cause excessive wear in friction applications. The elimination of shot in the production of the continuous filament glass ceramic fibers of the present invention eliminates the necessity of an additional beneficiation step which is often employed in the X2,1,9,. 8117 WO 96/06053 ~ PCTIUS951I0505 production of other types of glass fibers in order to remove the deleterious shot from the fibers.
The ability to chop continuous filaments to any desired length is particularly advantageous in papermaldng and in reinforcing applications where the performance of the end product is dependent upon the length of the fibers employed in the application as well as on the distribution of the lengths of those fibers. By chopping continuous fibers to preselected length(s), a narrower distribution of fiber lengths is obtained than is otherwise possible using discontinuous fibers.
Since continuous fiber can be manufactured more reproducibly than discontinuous fiber, the custom manufacture of fibers of lrnown diameter, within narrow tolerances, is more facile when producing fibers in continuous form. By controlling fiber diameter, especially the control of fiber diameters to achieve larger values, fibers may be easily produced to match specifications of end-use applications in order to maximize beneficial thermal and reinforcement performance. Higher reproducibility for the production of fibers of this invention will result in a narrower distribution of diameters for produced fibers with concomitant improved performance in targeted applications. The average diameter of fibers produced according to the present invention are controllable within a range of about 5 to about 50 microns, and are preferably used in the range of about 5 to about 15 microns.
The continuous filament glass ceramic fibers of the present invention demonstrate an upper temperature use limit significantly higher than that of "E" glass or "S" glass. The continuous fibers of the present invention, therefore, are suitable for applications which currently use "E" glass or "S" glass while offering greatly improved high temperature stability in those applications.
The present invention demonstrates the preparation of continuous filament glass ceramic fibers with an upper temperature use limit equivalent to refractory ceramic fiber of 2300°F, while utilizing a direct melt method which is more economical than sol-gel methods or post treatment processes. The continuous fibers of the present invention, therefore, are suitable for applications which currently use traditional refractory ceramic fibers, while offering the improvements attributable to the continuous nature of the fiber and improved economy in those applications, as well as improved physical properties described above.

v2~i~9.8117 The continuous filament glass ceramic fibers of the present invention demonstrate high upper use temperature limits and are suitable for use by methods known in the art as insulation materials in a variety of forms, including woven textile products, ropes, braids, boards, papers, blankets, and mats. The ability to utilize the continuous filaments of the present invention directly for such processes as weaving and spinning for the manufacture of textile products provides a distinct advantage over the prior art, by eliminating the organic carriers required with traditional refractory ceramic fiber.
The high temperature stable continuous filament glass ceramic fibers of the present invention are suitable for use in the reinforcement of organic matrix materials. Reinforcement of organic matrices by the fibers of the present invention provide improved properties, including increased tensile strength and modulus, increased flexural strength and modulus, and increased deflection temperature under load. Organic matrices containing continuous fiber reinforcement display exceptional mechanical properties and are generally termed advanced composites to distinguish them from chopped-fiber reinforced materials.
Suitable organic materials for use as matrices in composites reinforced by the fibers of the present invention are generally polymeric materials of two broad classifications, thermoplastics and thermosets. Thermoplasfics are polymeric materials which reversibly pass into a plastic state when heated and into a hardened state when cooled. Thermosets are polymeric materials which pass once through a plastic state and then harden irreversibly due to the formation of crosslinks.
Faamples of thermoplastic polymers suitable for use in fiber-reinforced composite materials include, but are not limited to, polyamides such as nylon-6,6 and nylon-6, polyolefms such as polyethylene and polypropylene, polycarbonates, polyacetaIs, polystyrene, polysulfones, polyphenylene sulfide, and essentially linear polyesters and polyurethanes.
Framples of thermoset polymers suitable for use in fiber-reinforced composite materials include, but are not limited to, alkyd resins, diallyl ortho-phthalate resins, epoxy resins, phenolic resins, melamine resins, urea resins, silicone resins, polyester resins, and urethane resins.

';~ ~2' ~'-9 8117 The high temperature stable continuous filament glass ceramic fibers of the present invention are suitable for use in the reinforcement of matrices of carbonized carbonaceous binders, otherwise known as carbon bodies, produced conventionally. These carbon bodies are useful for a wide variety of applications, wherever strong lightweight bodies are needed, and are especially useful in friction applications. One such application is as friction discs for use in disc brakes, by virtue of the high heat capacity, high strength, high temperature stability, and high coefficient of friction of the glass ceramic fiber-reinforced carbon bodies.
The continuous nature of the high temperature glass ceramic fibers of the present invention allows them to be successively circumferentially wound, axially compressed, and radially overlapped in order to prevent failure mechanisms due to improper orientation of the reinforcing fibers.
The continuous filament glass ceramic fibers of the present invention are useful for other friction applications, ranging from automotive to severe duty, when used with conventional binders such as phenolics, fillers, and friction modifiers, if any.
The specific embodiments described below are intended to illustrate, but not to limit, the present invention.
SPECIF1(' EMBODIMENTS OF THE INVENTION
Continuous filament glass ceramic fibers were prepared according to the general procedure detailed in Figure 2, a block flow diagram which outlines the major steps in continuous filament production. Ceramic powder feeds containing the various amounts of inorganic components detailed in the following numbered examples were prepared and introduced into a melt furnace, followed by melt conditioning and delivery to the bushing, followed by sizing and winding of the filaments. Diameters of samples were measured, and the filaments were tested for physical properties. Shrinkage characteristics for some samples were determined at 1800°F, 2100°F, and 2300°F.
Shrinkage Test _ _ _ _ Shrinkage testing included the analysis of one gram of the tested fiber, ground and pressed into a bar. The linen shrinkage of the bars was measured with WO96106053 ~ ~ ~ ~ PCT/U595110505 vernier calipers cold and then after heating at temperature. This method was w confirmed by conducting the test on control K spun fibers and comparing the shrinkage of the K spun bar to the shrinkage of a blanket consisting of K spun fibers.
Tensile strength was tested at room temperature by a single filament measurement of a one inch gauge length section under strain. Young's modulus was determined from the tensile test data according to the equation Modulus = Tensile stress ~ a ~~ portion of the graph.
Elongation As set forth in Table I, examples 1-30 represent samples wherein the concentration of one or more components falls outside the range of compositions defined by the present invention. In the "Composition" column of the Tables, the designation "RO" stands for metal oxides other than silica and alumina, and this column may alternatively contain designations of the derivation of the particular comparative fibers exemplified.
Examples 1-3 represent "S" glass and "E" glass compositions. The upper use temperature limits for these samples are much lower than those of the glass ceramic fibers of the present invention. Examples 4-5 (K Spun) represent conventional refractory ceramic fibers derived from kaolin which contain higher A1203 percentages and lower Mg0 percentages than the fibers of the present invention. Examples 6-13 each contain Mg0 percentages lower than the fibers of the present invention. Examples 14-20 contain higher percentages of Si02, and lower percentages of A12O3 and Mg0 than the fibers of the present invention.
Examples 21-22 contain lower A12O3 percentages than the fibers of the present invention.
Examples 23-30 contain Si02, A12O3, and Mg0 within the ranges of the fibers of the present invention, but no Ti02 is contained in any of examples 1-30.
Examples 1-30 are comparative examples which demonstrate physical properties which are generally poorer than those of the fibers of the present invention. For example, the fibers described in examples 1-30 demonstrate much larger shrinkage percentages than the fibers of the present invention, except for examples 4 and 5 which are more comparable (although these fibers are discontinuous).

w0 96/06053 ',~ ~ PCT/US95/10505 Examples 31-86 of Table I generally comprise all inventive components within the composition ianges defined by the present invention, except for those examples described as K Spun which are derived from kaolin and which were measured as control samples to monitor test accuracy for standard shrinkage properties, and examples 42, 54, and 55 which contain no Ti02 but are included as additional comparative examples to illustrate the beneficial effect of Ti02 (that is, "TiOx") in the fibers of the present invention.
Examples whose components fall within the inventive range of compositions described herein demonstrate generally improved physical properties and reduced shrinkage as compared to the comparative examples detailed above.
In particular, examples of glass ceramic fibers of the present invention demonstrate increased tensile strength, increased Young's modulus and decreased shrinkage as compared to the comparative examples detailed above.
Examples 72-74, and 83-86 of the continuous filament glass ceramic fibers of the present invention exceed target properties with regard to improved strength, with values for tensile strength generally greater than 250 Ksi and Young's modulus generally greater than 12 Msi. Target properties for improved linear thermal shrinkage characteristics are demonstrated by examples 31-33, 37-39, 48-50, 51-53, 56-58, 62-65, 66-67, 68-70, 77-81, and 83-86 with values of less than shrinkage at 2300°F for 24 hours. These results may be compared to those of the comparative examples 4 and 5, which report standard K Spun refractory ceramic fibers with tensile strengths of 164-174 Ksi, Young's modulus values of 9.2-9.4 Msi, and a thermal shrinkage value of 3.49& at 2300°F for 24 hours.
The beneficial effect of a narrow range of Ti02 concentrations on shrinkage characteristics may be seen by comparing comparative example 24 and example 49. The base glass compositions for these two samples are nearly identical except for a 1.5 mole 96 addition of Ti02 to example 49. The shrinkage of comparative example 24 was 10.996 at 2300°F compared to only 1.8~ for example 49. Example 44 shows that a lower level of Ti02 is not as effective in reducing shrinkage (11.2ro shrinkage) as the higher levels of examples 49 and 57 (1.696 shrinkage). Example 57 also illustrates the beneficial effect of the addition of 2%

WO 96/06053 ~ ~- g 8 ~ ~ 7 pCTlUS95110505 Ti02 when compared to comparative example 54, without Ti02, which demonstrates 18.8 % shrinkage.
As reported in Table II, in Examples 87-91, the high temperature strength of continuous filament glass ceramic fibers (MT' in Figures 3 and 4) made on an experimental mufti-filament bushing according to the invention were tested and Young's modulus determined at various temperatures, from 25°C to 750°C. These were compared to fibers of commercial S glass comprising 68.6 mole '~ Si02, 15.6 mole ~ A1203 and 15.8 mole 36 Mg0 (S2, COM) in examples 92-96, E glass (mb) produced on the multifilament bushing in examples 97-100, and S glass (S2 mb) produced on the multifilament bushing in examples 101-104. All fibers were tested at 3 inch gauge length.
The data for tensile strength tests and Youngs' modulus determinations are graphically represented in Figure 3 and Figure 4 respectively. The benefit of the inventive glass ceramic fiber compositions is demonstrated by the maintenance of tensile strength at high temperatures. As shown in Figure 3, the slope of the strength curve of the inventive fiber decreases the least at high temperatures, and in fact, the inventive fiber has the highest strength at 750°C of any of the fibers tested.
The slopes of the strength curves of the 5 glass fibers were compared to a curve of the experimental data reported by Harris et al in US patent no. 3,402,055 described above, and were found to coincide, thereby validating the test protocol.
As shown in Figure 4, Youngs' modulus was demonstrated to be higher for the inventive glass ceramic fiber than for fibers of the comparative S and E
glasses.
Thus, the objects of the invention are accomplished by the present invention, which is not limited to the specific embodiments described above, but which includes variations, modifications, and equivalent embodiments defined by the following claims.

WO 96!06053 2 ~~ 9 $117 pCT~S95/10505 N rJ~a~a~ a' ~s~a~ ~ s, __ ~~~~~m N VI V~ Y~
~OQuYR° 000 ~mm00~~' ~~~' ~~' wm~~NJN~Nl~NJ~NJdCf bsmLa m Cf ~°t.''Eo~n,~ csc~cs'.E~~m"c~t~~E:F~ F:~~.~~~g,mmmm~~~~~6~~,f~n~n~h~~
m m O O N N N N N N N O en m m m m m m b b O O O ~ ~ ~ ~ '~ . m O C O ~t C O
m m 1~1 1~1 l~f 1~l M m m m m r y~ Y a f P f f t~ t~ CO a0 aC p p P P p a0 m a0 ~p ~ r p ~~O r O O h h h h h h h O T O~ O~ O O O O O O O O O O O O O O
vi r ~ O C O O o O O O O N N N N N N N w1 h ~ ~ ~ ~ y ~ ~ y O O-C O O ~ O
0v Os m of h H h h h h 1~ t~ r ~~0 f f 1~ r m m m m m m M O V~ h of h h h h P P ~ ~ ~ O O O O O ~ ~ ~O O O O
O O
i~°~rnrn~~~o~~o~.~e~o~~o~.&g.&~.8.8.o~o~r~n~rr~ro~e$a$ m em. r ~rr u'b P O b0 fff O Ov O N r r ...
l4 O ~D m ~ h ~ m N vi m 10 r q r ..
N ~
~ m pf N
f m f N ~ ~ = E0 ~. r (.~
m CO h ~0 Q N M f ff F' m m m m b b b YI b b V1 m r m v1 b P Y t~ h f V1 N b r f f h h p f O t~ P r r f m f h m h OOONN~~.~~CI~.OOm..rO~...~fl.~.~.~~~~~.~C~~O O~i..OO~nO.~O
~N
P
m f N b 1~ N ~ N n p m O O
~., ~ h ~ m N f p m N e~ ~ ~O m r P 0 .-n O ~ O V~ ~ ~, ~ O O ~O m ~ O O ~ N O
n f Y t ~ .-n O m ~r p m P p h b m P P P p p r pp p yp ap P ~ ~ ~ ~ r P r r r r P r r 10 A t~ P
CO P
e0 m N ~ P P m f h Ht P m r Y p m p m O m 1~ b m P N P m P ~ m f O p h h ~ b O
O ~
w ~ h h Y ~ ~ ~ r Y ~ r ~ V M ~ H N ~ b ~ h b ~ h ~ ~ ~ h h b n Y h wfl ~ h N O 10 N 1~ en O r m r N Y s0 ~O m t~ fw m .. m I~f b p N m m m Y P 1~ N O P P
m m O m f P f f m t~ t~ P m b N P ~ ~ m ~ P P P ~ b t~ M t~ N f ~ y M ~ ~ H b .1E ~ ~ ~ ... ... .. ... .. ~. ... ~. ...... .. ~ .. m .. .. .~ ~ ~ .. N m N N
N ~ N
r b T ~ m M a b m m~ wb7~ a ~ h b ~ r N Y ~ b 1~ ~ ~ m ~ n_~ m N f f O h ~ r N O C M Y O ~ wl O O O O .. O O O O OO -. O-~ ~ O O ~ ~-O O O G O O-O O ~ ~O O
O O O O
N O N f h m t~ N O ~ t~ O h n f of N b r b ~ = ~ b m m yp v7 0 ~ ~ ~ = ~ yp yp yp O m ~ r h f ~ b f m m m f ~
~ m r r a p p ~ P t~ r m m p b h t~ ~ b b r m b h p P m t z r N m f h b t~ m P O ~ ~ ~ = y b ~ m P N ~ ~ N ~ ~ N N N n M m m M m ~ m M M
~ f Y <

219,117 WO 96/06053 . PCT/U595110505 y s~s~~ a~a~a~s~~s~ a~s' s~a~ss~sa~~ ~ ~ ~= ~ ~. o ~ ~ ~ ~ ~ ~'s~a~a~
~_~_~ ~~~
~~_K~~m~dmmmm~mOOdddmm mmmdeemm~V~~.~p°d°d°°mu ~Y~~T~~p ~d"um ~ ooo~NNN~~'h~~~~~~"~, ~~~~~~o~me~~r~,~~~,~~~e~mo~a~.YO~~
-OOO OOCSC~~~~~~p.OOOO ~,C~,O
P O~ P m m m h h h _ w (~ h h h h h h h h h h h ~o o o m m m o 0 0 0 0 0 o 0 0 0 ~.~ ~ b b b b N ' H~ 1I1 H v1 H H ~, r, H v1 H 1A
..N. ..N. ..N. ~ ~ .N-. ~ 0 0' ~ y 0 0 O G ~ a P P P T 0. _ _ _ .H.. .H-.. ~ ~
.~-. ... ... ... _ P G 0. P
O O O O O O O O O O O O O O O O H H v1 H H v1 O O O ~O vD vD vD O O O O O H H
H H
i71 r r r r r ~ b m e0 hH r r N n m Q P N P O. b b ~D m m m m b b b V b P P O~
h h h h h h h h b b b b h h h h h h ~ h h 4.
0.
N
N O to b Y N b m H h P H m h .w P1 .~ N N O !J N tI N n1 .%
Y b H m H m V Y Y O V m h ~ Y ~ ~t~m h Y H V Y m Y Y H b N N 0v O m VI m O O O O O O O O O-~ O O O ~ O O O O O O O O O G O D O Q ~ O C ~ O .~ O
N m O h O H O b N Y m m m b H m m O. N m b b Y ~ H H N Y

_ OOO~NOrphO~~ O NN~ ~OOO IVInN
w OO
O~~

L. mOVP~~~~__mPP~mw _ ___ .w_........~.r _ __ __ __ ..

~~

t~m.~hO.OY_YOOOOON.~ ofmfN~~_0.0 YAP ONPO hTW
~

m N Y b h a0 V m N m 1 m m b .~
h h b Y t3 ~ m m H ~ ~ m m m h ~ a0 ~ h ~ ~ m N m ~ ~
~ m N H < b b b ~ h N Y
b Y m H m m b H O m h O. O Y H O b O b O m h p m O O H m 0~ Y m N ~ O m p.

~ ~ ~ ~ ~ m ~ ~ N N N m N
~ ~ ~ M ~ ~ N
~ ~ ~

N ~ N N N m N

.~

w1 ~t .p y~
p m ~~~~ n~M ~~~
H nn nimb H N
~b~~MMY~~

. . r N H
. ~. .
.
n O O O O O O O OO O O O O O O O O O O O O O O
O OO O O O O O O O
O O

.

p, _ m b O N ao ' Y b H m m d ~Oh bO~~m Nhn~YO't~ Y.rN~wWOh~_ ~~0 .wYY_ bOH
' ~. O~ VI h T N ~G b O~ !~ P V .. 1~ ~ h b P ~ b ..
N .a b h Q V~ ~ 1~ Y ~.

YY <Yf~HHH~ VhIHUP1 ~Dbb~b~bb$nnnr~r nHrno~m ~om I 1 r, t WO 96106053 ~ ~ PCTlUS95110505 sssss W
a r~~~~~EL6Ea as ~1~000 6~E A A
Vf v1 N V1, of N N N N N ~ ~ ~ ~ ~ H H N
hhhhh~vvvvU~~~_ ..
H ~O ~O ~O b b N O. h O CO ~D ~O oo Vt ~O h V1 e0 h ~D Vt h Ov ("~ r O O r O O O O O O O O O O O O O O
b z O ~ h ~D Y V1 N ~1 ~D ~t ~~ ~"O N N Y P h 0 ~
E' .~ ~~..,.M.,n~..~~.M.n.Nr..N.v~00~~~..N.v.-N~U
vp W Y.~ Y v1 ~O VI hp ~O ~ N O N OV~ ~aps ~vpt ~O r ~~ NM~rOnN~O~~v~f.hnYbN~~
W
z < oo N C- Nt h Y t~ ~O v1 O O: N ~D ? Vt i~ t~ m ~ O h r M .r cj ri Os ... M ~ ~.j 00 y 00 ~ N O. V1 M M V1 ~ N ~ ~ O. d' r M V M M r N N r M N N r h V h ~ ~ ~ a h ~ v~1 ~ ~ Y ~ r ~ N
O O O O O r r O O O O O O G r O r r Ov O Ov Ov O ~ N M 1~ h u1 m h o0 N N O N
r O~ Ov Ov 0v T ~O ~D ~O ~O o0 00 00 00 V
O O O O O O O.O O O O O
~~ ~°$s~°°~s~~~s~~~g~
N N N Vt h N N of h N N Yt WZ mo°°oo°~o~o.~.oM.~.a~~.o'°,~.gos~~

Claims (33)

WE CLAIM:
1. High temperature stable glass fibers consisting essentially of i) about 67.5 to about 85 mole percent SiO2, ii) about 9.5 to about 20 mole percent Al2O3, iii) about 5 to about 15.5 mole percent MgO, iv) about 0.5 to about 5 mole percent TiO x, wherein 0 ~ x ~ 2, and v) 0 to about 5 mole percent ZrO2.
2. The high temperature stable glass fibers of claim 1, wherein said fibers contain about 1 to about 2 mole percent TiO x.
3. High temperature stable continuous filament glass fibers consisting essentially of i) about 67.5 to about 85 mole percent SiO2, ii) about 9.5 to about 20 mole percent Al2O3, iii) about 5 to about 15.5 mole percent MgO, iv) about 0.5 to about 5 mole percent TiO x, wherein 0 ~ x ~ 2, and v) 0 to about 5 mole percent ZrO2.
4. The high temperature stable continuous filament glass fibers of claim 3, wherein said fibers contain about 1 to about 2 mole percent TiO x.
5. The high temperature stable glass fibers of claim 1 or 3 wherein said fibers exhibit thermal shrinkage of less than about 396 at 2300°F for 24 hours.
6. The high temperature stable continuous filament glass fibers of claim 3, wherein said fibers contain 1.25-1.5 mole percent TiO x.
7. The high temperature stable continuous filament glass fibers of claim 3 wherein said fibers exhibit an upper use temperature limit of about 2300°F.
8. The high temperature stable continuous filament glass fibers of claim 3 wherein said fibers exhibit a tensile strength greater than about 250 Ksi.
9. The high temperature stable continuous filament glass fibers of claim 3 wherein said fibers exhibit a Young's modulus greater than about 12 Msi.
10. The high temperature stable continuous filament glass fibers of claim 3, wherein said fibers comprise about 68 to about 82 mole percent SiO2, about 10 to about 18 mole0 percent Al2O3, about 6 to about 14 mole percent MgO, about 1 to about 2 mole percent TiO x, and 0 to about 3 mole percent ZrO2.
11. The high temperature stable continuous filament glass fibers of claim 10, wherein said fibers comprise about 72 to about 80 mole percent SiO2, about 10 to about 16 mole percent Al2O3, about 7 to about 14 mole percent MgO, about 1.25 to about 1.5 mole percent TiO x, and about 0 to about 2 mole percent ZrO2.
12. The high temperature stable continuous filament glass fibers of claim 3 wherein said fibers are substantially free from shot.
13. The high temperature stable continuous filament glass fibers of claim 3 wherein said fibers have an average diameter of about 5 to about 50 microns.
14. The high temperature stable continuous filament glass fibers of claim 3, wherein said fibers are incorporated into a thermally insulating article selected from the group consisting of woven textile, rope, braid, board, paper, blanket, and mat.
15. The high temperature stable continuous filament glass fibers of claim 3, wherein said fibers are incorporated as a reinforcement into a matrix selected from the group consisting of an organic matrix and a carbonized matrix.
16. The high temperature stable continuous filament glass fibers of claim 15, wherein said fiber reinforced matrix forms a friction disc.
17. A process for the production of high temperature stable glass fibers, comprising a) melting a ceramic powder feed to form a melt, and b) forming said melt into filaments, wherein said ceramic powder feed consists essentially of i) about 67.5 to about 85 mole percent SiO2, ii) about 9.5 to about 20 mole percent Al2O3, iii) about 5 to about 15.5 mole percent MgO, iv) about 0.5 to about 5 mole percent TiO x, wherein O ~ x ~2, and v) 0 to about 5 mole percent ZrO2.
18. The process of claim 17, wherein said ceramic powder feed contains about 1 to about 2 mole percent TiO x.
19. The process of claim 17, wherein said forming said melt into filaments comprises blowing said filaments.
20. The process of claim 17, wherein said forming said melt into filaments comprises spinning said filaments.
21. A process for the production of high temperature stable continuous filament glass fibers, comprising i) melting a ceramic powder feed to form a melt, and ii) drawing said melt into continuous filaments, wherein said ceramic powder feed comprises about i) about 67.5 to about 85 mole percent SiO2, ii) about 9.5 to about 20 mole percent Al2O3, iii) about 5 to about 15.5 mole percent MgO, iv) about 0.5 to about 5 mole percent TiO x, wherein O ~ x ~ 2, and v) 0 to about 5 mole percent ZrO2.
22. The process of claim 21, wherein said ceramic powder feed contains about 1 to about 2 mole percent TiO x.
23. The process of claim 21, wherein said ceramic powder feed contains about 1.25 to about 1.5 mole percent TiO x.
24. The process of claim 21, wherein said ceramic powder feed comprises about to about 82 mole percent SiO2, about 10 to about 18 mole percent Al23, about 6 to about 14 mole percent MgO, about 1 to about 2 mole percent TiO x, and 0 to about 3 mole percent ZrO2.
25. The process of claim 21, wherein said ceramic powder feed comprises about about 80 mole percent SiO2, about 10 to about 16 mole percent Al2O3, about 7 to about 14 mole percent MgO, about 1.25 to about 1.5 mole percent TiO x, and about 0 to about 2 mole percent ZrO2.
26. The process of claim 21, including chopping said filaments to at least one size.
27. The process of claim 21 including forming said fibers into an insulation article selected from the group consisting of woven textile, rope, braid, board, paper, blanket and mat.
28. The process of claim 21 including incorporating said fibers as reinforcement into a matrix selected from the group consisting of an organic matrix and a carbonized matrix.
29. The process of claim 21 wherein said TiO x includes TiO2.
30. The process of claim 21 wherein ZrO2 is present in an amount effective to achieve a mean tensile strength of at least 175 Ksi in the fibers.
31. The high temperature stable glass fibers of claim 1 or 3 wherein ZrO2 is present in an amount effective to achieve a mean tensile strength of at least 175 Ksi.
32. The high temperature stable continuous filament glass fibers of claim 13 wherein said fibers have an average diameter of about 5 to about 15 microns.
33. The high temperature stable glass fibers of claim 31 wherein ZrO2 is present in the amount of about 1.8 mole percent.
CA002198117A 1994-08-23 1995-08-18 High temperature stable continuous filament glass ceramic fibers Abandoned CA2198117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29425894A 1994-08-23 1994-08-23
US08/294,258 1994-08-23

Publications (1)

Publication Number Publication Date
CA2198117A1 true CA2198117A1 (en) 1996-02-29

Family

ID=23132592

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002198117A Abandoned CA2198117A1 (en) 1994-08-23 1995-08-18 High temperature stable continuous filament glass ceramic fibers

Country Status (4)

Country Link
US (2) US5569629A (en)
BR (1) BR9508738A (en)
CA (1) CA2198117A1 (en)
WO (1) WO1996006053A1 (en)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE211122T1 (en) 1992-01-17 2002-01-15 Morgan Crucible Co USE OF INORGANIC FIBERS, SOLUBLE IN A SALT SOLUTION, AS INSULATING MATERIAL
US5767022A (en) * 1994-08-23 1998-06-16 Unifrax Corporation Friction pad containing high temperature stable continuous filament glass fibers
KR100469776B1 (en) * 1995-10-30 2005-09-16 유니프랙스 코포레이션 High temperature resistant glass fiber
US6030910A (en) * 1995-10-30 2000-02-29 Unifrax Corporation High temperature resistant glass fiber
ZA989387B (en) * 1998-08-13 1999-04-15 Unifrax Corp High temperature resistant glass fiber
ES2237962T3 (en) * 1998-12-08 2005-08-01 Unifrax Corporation ESTERA OF INORGANIC NON-INTUMISCENT FIBERS AMORFA FOR LOW TEMPERATURE EXHAUST GAS TREATMENT DEVICES.
DE19935677B4 (en) * 1999-07-29 2005-07-07 Robert Bosch Gmbh Paste for the screen printing of electrical structures on carrier substrates
JP2002020730A (en) * 2000-07-12 2002-01-23 Akebono Brake Ind Co Ltd Non-asbestos friction material
JP4126151B2 (en) * 2000-08-28 2008-07-30 ニチアス株式会社 Inorganic fiber and method for producing the same
US6809050B1 (en) 2000-10-31 2004-10-26 Owens Corning Fiberglas Technology, Inc. High temperature glass fibers
US7914011B1 (en) * 2000-11-28 2011-03-29 Nick Bromer Dorsiflexion skate brake
AU2002322719A1 (en) * 2001-07-26 2003-02-17 Avantec Vascular Corporation Delivery of therapeutic capable agents
BR0212680B1 (en) * 2001-10-09 2011-07-26 composition of mycaceous binder and biosoluble inorganic fibers, pollution control device, method of preparation of the pollution control device, and method of preparation of a leaf material.
GB2383793B (en) 2002-01-04 2003-11-19 Morgan Crucible Co Saline soluble inorganic fibres
CN1639267B (en) * 2002-01-10 2011-01-12 尤尼弗瑞克斯I有限责任公司 High temperature resistant vitreous inorganic fiber
MXPA05003402A (en) * 2002-09-30 2005-06-22 Unifrax Corp Exhaust gas treatment device and method for making the same.
CN100585138C (en) * 2003-01-31 2010-01-27 3M创新有限公司 System for pollution control equipment
ATE317942T1 (en) * 2003-06-10 2006-03-15 3M Innovative Properties Co STORAGE MAT FOR CATALYTIC CONVERTER
US7854904B2 (en) * 2003-06-10 2010-12-21 3M Innovative Properties Company Mounting mat for a catalytic converter
CA2530274C (en) * 2003-06-27 2012-08-14 Unifrax Corporation High temperature resistant vitreous inorganic fiber
RU2385846C2 (en) * 2003-06-27 2010-04-10 Юнифрэкс Корпорейшн Vitreous inorganic fibre resistant to high temperature effects
US20050057037A1 (en) * 2003-09-17 2005-03-17 Shockley Theodore B. Tickets
US8043475B2 (en) * 2003-09-17 2011-10-25 Indiana Ticket Company High opacity tickets
US7550118B2 (en) * 2004-04-14 2009-06-23 3M Innovative Properties Company Multilayer mats for use in pollution control devices
US7645426B2 (en) * 2004-04-14 2010-01-12 3M Innovative Properties Company Sandwich hybrid mounting mat
AR054074A1 (en) 2004-06-29 2007-06-06 Unifrax Corp DEVICE FOR TREATMENT OF EXHAUST GASES AND METHOD TO PREPARE IT
US7875566B2 (en) 2004-11-01 2011-01-25 The Morgan Crucible Company Plc Modification of alkaline earth silicate fibres
KR101352705B1 (en) * 2004-12-13 2014-02-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Mounting mats and pollution control devices using same
FR2879591B1 (en) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS
US7989368B2 (en) * 2005-08-26 2011-08-02 Voith Patent Gmbh Polymer particles mixed with fibers and products such as press fabrics made therefrom
ATE502191T1 (en) * 2005-10-13 2011-04-15 3M Innovative Properties Co MULTI-LAYER FIXING MATS AND DEVICES CONTAINING SAME FOR REDUCING ENVIRONMENTAL POLLUTION
KR20080058484A (en) * 2005-10-19 2008-06-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Multilayer mounting mats and pollution control devices containing same
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US8338319B2 (en) * 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US7799713B2 (en) * 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US9656903B2 (en) 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US7823417B2 (en) * 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US20100071119A1 (en) 2006-03-29 2010-03-25 Chapman Therman Products, Inc. Yarns and fabrics that shed liquids, gels, sparks and molten metals and methods of manufacture and use
EP2363582B1 (en) 2006-06-01 2019-11-13 3M Innovative Properties Company Multilayer mounting mat
US9399000B2 (en) 2006-06-20 2016-07-26 Momentive Performance Materials, Inc. Fused quartz tubing for pharmaceutical packaging
CN101626894B (en) * 2007-01-08 2013-09-11 尤尼弗瑞克斯I有限责任公司 Fire-barrier film laminate
WO2009032191A1 (en) 2007-08-31 2009-03-12 Unifrax I Llc Exhaust gas treatment device
WO2009048857A1 (en) * 2007-10-09 2009-04-16 3M Innovative Properties Company Mounting mats including inorganic nanoparticles and method for making the same
WO2009048854A1 (en) * 2007-10-09 2009-04-16 3M Innovative Properties Company Mat for mounting a pollution control element for the treatment of exhaust gas
WO2009048859A1 (en) * 2007-10-09 2009-04-16 3M Innovative Properties Company Method of making mounting mats for mounting pollution control element
US8517083B2 (en) * 2007-12-14 2013-08-27 Refractory Specialties, Incorporated System, apparatus and method for manufacturing metal ingots
EP2329255A4 (en) 2008-08-27 2014-04-09 Edwards Lifesciences Corp Analyte sensor
CN102196855B (en) 2008-08-29 2015-08-12 尤尼弗瑞克斯I有限责任公司 There is the mounting mat of flexible edge's protection and be combined with the exhaust gas treatment device of this mounting mat
USD615218S1 (en) 2009-02-10 2010-05-04 Owens Corning Intellectual Capital, Llc Shingle ridge vent
USD628718S1 (en) 2008-10-31 2010-12-07 Owens Corning Intellectual Capital, Llc Shingle ridge vent
EP2352870B1 (en) * 2008-11-03 2016-04-20 3M Innovative Properties Company Mounting mat and pollution control device with the same
US9290866B2 (en) 2008-11-03 2016-03-22 3M Innovative Properties Company Mounting mat and pollution control device with the same
KR101784013B1 (en) 2008-12-15 2017-10-10 유니프랙스 아이 엘엘씨 Ceramic honeycomb structure skin coating
US8252707B2 (en) * 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
CN102459834B (en) 2009-04-17 2017-02-08 尤尼弗瑞克斯 I 有限责任公司 exhaust gas treatment device
EP2464840A4 (en) 2009-08-10 2013-10-30 Unifrax I Llc Variable basis weight mounting mat or pre-form and exhaust gas treatment device
US9174169B2 (en) 2009-08-14 2015-11-03 Unifrax I Llc Mounting mat for exhaust gas treatment device
CN102686843B (en) 2009-08-14 2015-04-01 尤尼弗瑞克斯I有限责任公司 Multiple layer substrate support and exhaust gas treatment device
CN102695683A (en) * 2009-08-21 2012-09-26 迈图高新材料公司 Fused quartz tubing for pharmaceutical packaging
US8071040B2 (en) 2009-09-23 2011-12-06 Unifax I LLC Low shear mounting mat for pollution control devices
JP5963053B2 (en) 2009-09-24 2016-08-03 ユニフラックス ワン リミテッド ライアビリティ カンパニー Multilayer mat and exhaust gas treatment device
BR112012009368A2 (en) * 2009-10-02 2016-06-07 Unifrax I Llc ultra low weight insulation board
KR20120103589A (en) 2009-11-13 2012-09-19 유니프랙스 아이 엘엘씨 Multi-layer fire protection material
CA2780131A1 (en) 2009-11-16 2011-05-19 Unifrax I Llc Intumescent fire protection material
EP2513444B1 (en) 2009-12-17 2017-05-03 Unifrax I LLC Multilayer mounting mat for pollution control devices
US8926911B2 (en) 2009-12-17 2015-01-06 Unifax I LLC Use of microspheres in an exhaust gas treatment device mounting mat
US20110150717A1 (en) 2009-12-17 2011-06-23 Unifrax I Llc Mounting mat for exhaust gas treatment device
EP2546305B1 (en) * 2010-03-08 2020-06-10 Ube Industries, Ltd. Polyamide resin composition
CN102869822A (en) 2010-04-13 2013-01-09 3M创新有限公司 Inorganic fiber webs and methods of making and using
CN102844484B (en) 2010-04-13 2015-06-17 3M创新有限公司 Methods of making inorganic fiber webs
ES2569370T3 (en) 2010-08-13 2016-05-10 Unifrax I Llc Mounting mat with flexible edge protection and exhaust gas treatment device with built-in mounting mat
US9924564B2 (en) 2010-11-11 2018-03-20 Unifrax I Llc Heated mat and exhaust gas treatment device
US9676168B2 (en) 2010-11-19 2017-06-13 Lamart Corporation Fire barrier layer and fire barrier film laminate
AU2011329711B2 (en) 2010-11-19 2016-02-11 Lamart Corporation Fire barrier layer and fire barrier film laminate
JP5015336B1 (en) * 2011-03-31 2012-08-29 ニチアス株式会社 INORGANIC FIBER PAPER AND METHOD FOR PRODUCING THE SAME
US8940134B2 (en) * 2011-04-05 2015-01-27 Nichias Corporation Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
US20130129963A1 (en) 2011-11-18 2013-05-23 Unifrax I Llc Fire barrier layer and fire barrier film laminate
US10370855B2 (en) 2012-10-10 2019-08-06 Owens Corning Intellectual Capital, Llc Roof deck intake vent
USD710985S1 (en) 2012-10-10 2014-08-12 Owens Corning Intellectual Capital, Llc Roof vent
BR112015009822A2 (en) 2012-11-02 2017-07-11 Unifrax I Llc treatment of resistant inorganic fibers and their use in a mounting mat for exhaust gas treatment device
ES2733363T3 (en) 2013-03-15 2019-11-28 Unifrax I Llc Inorganic fiber
CA2955350C (en) 2014-07-16 2022-10-25 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
WO2016010579A1 (en) 2014-07-17 2016-01-21 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
ES2650971T3 (en) 2014-12-18 2018-01-23 3M Innovative Properties Company Mounting mat for an exhaust gas treatment device
CA2955655A1 (en) 2015-02-24 2016-09-01 Digvijay Singh Chauhan High temperature resistant insulation mat
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
US20170320013A1 (en) 2016-05-09 2017-11-09 Unifrax I Llc Catalyzed filtration media with high surface area material and method for making the same
US20170341004A1 (en) 2016-05-25 2017-11-30 Unifrax I Llc Filter element and method for making the same
JP6955519B2 (en) 2016-06-06 2021-10-27 ユニフラックス ワン リミテッド ライアビリティ カンパニー Refractory coating material containing low in vivo durable fiber and its manufacturing method
CN112423980A (en) 2018-05-18 2021-02-26 尤尼弗瑞克斯 I 有限责任公司 Fire-retardant compositions and related methods
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber
US11766662B2 (en) 2020-09-21 2023-09-26 Unifrax I Llc Homogeneous catalytic fiber coatings and methods of preparing same
US20230024423A1 (en) * 2021-07-23 2023-01-26 Lydall Thermal/Acoustical, Inc. Multi-Layer Insulator for Thermal Run-Away Containment in Lithium-Ion Batteries
CN113912384A (en) * 2021-12-01 2022-01-11 泉州市龙亘耐火保温材料有限公司 Superfine ceramic fiber cotton and production method thereof
CN117587573A (en) * 2024-01-19 2024-02-23 淄博华源科技创新发展有限公司 Soluble ceramic fiber textile and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402055A (en) * 1962-05-25 1968-09-17 Owens Corning Fiberglass Corp Glass composition
US3380818A (en) * 1964-03-18 1968-04-30 Owens Illinois Inc Glass composition and method and product
US3459568A (en) * 1965-06-22 1969-08-05 Ppg Industries Inc High strength fiber glass
US3597179A (en) * 1967-03-30 1971-08-03 Owens Illinois Inc Glass treatment and glass-ceramic article therefrom
US3759353A (en) * 1970-06-22 1973-09-18 Carborundum Co Disc brake containing reinforced carbon bodies
GB1374605A (en) * 1971-05-24 1974-11-20 Pilkington Brothers Ltd Method of manufacturing glass ceramic material
US4036654A (en) * 1972-12-19 1977-07-19 Pilkington Brothers Limited Alkali-resistant glass compositions
US3871934A (en) * 1973-06-28 1975-03-18 Carborundum Co Resurfacing brake discs
DE2528916B2 (en) * 1975-06-28 1978-06-01 Bayer Ag, 5090 Leverkusen Glass fibers of the ZnO-MgO-Al2 O3 glass system
DE2532842A1 (en) * 1975-07-23 1977-02-10 Bayer Ag GLASSES OF THE MGO-CAO-ZNO- AL TIEF 2 O TIEF 3 -SIO TIEF 2 -TIO TIEF 2 SYSTEM FOR THE MANUFACTURING OF GLASS FIBERS
JPS584096B2 (en) * 1976-07-23 1983-01-25 東芝モノフラツクス株式会社 Method for producing oxide polycrystalline fiber
US4140506A (en) * 1977-04-06 1979-02-20 Owens-Corning Fiberglas Corporation Method for processing glass in forming fibers
US4379111A (en) * 1979-05-21 1983-04-05 Kennecott Corporation Method for producing chromium oxide coated refractory fibers
US4277269A (en) * 1979-12-19 1981-07-07 Kennecott Corporation Process for the manufacture of ceramic oxide fibers from solvent solution
JPS5864243A (en) * 1981-10-13 1983-04-16 Asahi Glass Co Ltd Glass composition with high elasticity and heat resistance
US4558015A (en) * 1983-04-22 1985-12-10 Manville Service Corporation Chemically resistant refractory fiber
US4492722A (en) * 1983-07-25 1985-01-08 Owens-Corning Fiberglas Corporation Preparation of glass-ceramic fibers
US4582748A (en) * 1984-01-26 1986-04-15 Owens-Corning Fiberglas Corporation Glass compositions having low expansion and dielectric constants
US4868142A (en) * 1987-12-16 1989-09-19 Stemcor Corporation Method of manufacturing a molten metal-resistant ceramic fiber composition
JPH0764593B2 (en) * 1989-08-23 1995-07-12 日本電気硝子株式会社 Alkali resistant glass fiber composition

Also Published As

Publication number Publication date
BR9508738A (en) 1997-10-28
US5585312A (en) 1996-12-17
US5569629A (en) 1996-10-29
WO1996006053A1 (en) 1996-02-29

Similar Documents

Publication Publication Date Title
CA2198117A1 (en) High temperature stable continuous filament glass ceramic fibers
US6030910A (en) High temperature resistant glass fiber
US6025288A (en) High temperature resistant glass fiber
US5874375A (en) High temperature resistant glass fiber
AU2003235668B2 (en) High temperature resistant vitreous inorganic fiber
EP2173676A1 (en) High-temperature-resistant inorganic fibre based on silica and process for producing the same
US5994247A (en) Saline soluble inorganic fibres
EP0246104A1 (en) Reinforcing fibers and composite materials reinforced with said fibers
MXPA97004933A (en) Glass fiber that resists high temperature
JPS62199818A (en) Interior modified ceramic fiber
US10487007B2 (en) Glass compositions and fibers made therefrom
US5418194A (en) Coated inorganic fiber reinforcement materials and ceramic composites comprising the same
JPH04224174A (en) Coated fiber-reinforced material, ceramic composite containing it and method for preparation thereof
EP0768988A1 (en) Glass compositions and fibers therefrom
RU2660687C2 (en) Glass compositions and fibre manufactured therefrom
US5422319A (en) Fiber reinforced ceramic matrix composites exhibiting improved high-temperature strength
US5767022A (en) Friction pad containing high temperature stable continuous filament glass fibers
Wallenberger et al. Calcium aluminate glass fibers: drawing from supercooled melts versus inviscid melt spinning
EP0833804B1 (en) Method for coating a fiber with a mullite-contaning coating and process for making a composite article containing the fiber
US5605868A (en) Oxidative stable ceramic composites
AU622246B2 (en) Refractory fibers of amorphous alumina and organic residue
AU727752B2 (en) High temperature resistant glass fiber
Young Properties, applications and manufacture of man-made mineral fibers

Legal Events

Date Code Title Description
FZDE Discontinued