CA2206659C - Electromagnetic resonant filter - Google Patents

Electromagnetic resonant filter Download PDF

Info

Publication number
CA2206659C
CA2206659C CA002206659A CA2206659A CA2206659C CA 2206659 C CA2206659 C CA 2206659C CA 002206659 A CA002206659 A CA 002206659A CA 2206659 A CA2206659 A CA 2206659A CA 2206659 C CA2206659 C CA 2206659C
Authority
CA
Canada
Prior art keywords
resonator
housing
filter
cavity
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002206659A
Other languages
French (fr)
Other versions
CA2206659A1 (en
Inventor
Robert D. Lithgow
James Michael Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Llinois Superconductor Corp
Original Assignee
Llinois Superconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Llinois Superconductor Corp filed Critical Llinois Superconductor Corp
Publication of CA2206659A1 publication Critical patent/CA2206659A1/en
Application granted granted Critical
Publication of CA2206659C publication Critical patent/CA2206659C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/866Wave transmission line, network, waveguide, or microwave storage device

Abstract

A filter for processing electromagnetic signals has a housing with resonators located inside the cavity of that housing. The resonators, which may be made in part from superconducting material, have rounded exterior surfaces without corners to provide a more desirable coating surface and uniform electric field around the resonators. The filter housing may be composed of a plurality of housing cells, each containing a resonator. These cells can be removably attached to other cells so that resonators may be added to or removed from the filter as may be required for a particular application.

Description

, . WO 96117398 PGTlITS95I15594 BACKGROUND OF THE INVENTION
Field of Invention This invention relates generally to resonant cavity filters and more particularly to modular housings for filters having resonators as well as to the shape of those resonators.
Background Art Conventional resonant cavity electromagnetic filters consist of an outer housing made of an electrically conductive material. One or more resonators is mounted inside the housing by use of a dielectric material. Electromagnetic energy is coupled through a first coupling in the housing to a first resonator, to any additional resonators in the housing and then out of the housing through a second coupling. The particular design, shape, materials and spacing of the housing and resonator will determine the signal frequencies passed through the filter, as well as the insertion loss or quality ("Q") of the filter. Many filter housings are designed with solid walls and are therefore suitable 1 . ~. 1"
y 1 ~ 1 1 ~ ~ ' 1 ~ ~ ~ 1 ~ ~ ~ ~ 1 1 1 only for a preset number of resonators. If a particular application requires greater or fewer resonators than the preset number, an entirely new housing must be constructed to accommodate the desired number of resonators.
A type of resonator that may be used in filters is the split ring, consisting of a rectangular plate bent to form a hollow cylinder with a~gap running from the top to the bottom of!the cylinder at the ends of the bent plate. See Mehdizadeh et al., "Loop Gap Resonator: A Lumped ,w Mode Microwave Resonant Structure," IEEE
Transactions on Microwave Theory and Techniques, Vol. 3, No. 12 (Dec. 1983). Thus while the sides of the cylinder or ring will~be curved, the top and bottom will be flat and meet the cylinder sides at a right angle. Right angles or corners on the cylinder are undesirable for two reasons. First, the corners create discontinuities in the electric field around the resonator in the area of those corners. Second, resonators are generally made of a conductive material, (See Dick et al., "The Superconducting Split Ring Resonator as an Accelerating Structure," Nuclear Instruments and Methods, Vol. 138, No. 2 (Oct. 1976)) but also may be coated with a high-temperature superconducting material. Coating the corners of a resonator is AMENDED SHEFrt ' CA 02206659 1997-06-02 r . , ; - ~ ", . ~ ~ ..; .
." ., ..a ..e ~
difficult and may lead to non-uniform coating and additional discontinuities in the electric field around the resonator.
When the resonator contains superconducting material, additional problems are encountered because of the need to cool that material to cryogenic temperatures to achieve superconducting properties. The filter housing, resonator and dielectric material used to mount the resonator may all have differing coefficients of thermal expansion and are exposed to a very wide temperature range during cool down and warm up. Provision for expansion and contraction of the materials of such filters should therefore be made to ensure that all elements of the filter are properly situated when immersed in liquid nitrogen,~or other super-cooling fluid or when attached to a cryogenic cooler. It is also important to ensure that the resonator is cooled sufficiently by the liquid nitrogen or other cryogenic cooling methods which will be located outside of the housing.
SUMMARY OF THE INVENTION
There is provided in accordance with the present invention a filter having a housing with a cavity in the housing containing a cylindrically curved split ring resonator. Means are provided for AMEi~DEfl SHEET

' CA 02206659 1997-06-02 ~ ~ -; ,: ' ~-,, _-, -."
~ ~" . . , ,. ... ...
- 3a -coupling electromagnetic energy through the housing to the resonator. The resonator has an outer surface and a first face and a second face where the resonator has a cross-section generally perpendicular to the curve of the resonator, the cross-section is defined by a planar figure closed by the outer surface of the resonator, the planar figure is free of corners and the first and second faces oppose each other to define a gap.
The resonator may have a circular cross-section or may have an oblong cross-section. The resonator may be made from a superconducting material, including a film of YBazCu30.,.
At~EPy~~D SidtET
The filter may have a substrate for holding the resonator and there may be a groove on the inner surface of the housing for insertion of the substrate. A pin may be,placed at a first end of the groove for locating the substrate and a spring may be placed at the other end of the groove for retaining the substrate while allowing for movement of the substrate with respect to the groove due to expansion or contraction of the housing and substrate.
A thermally conductive gas can be placed in the cavity to transmit heat from the resonator to the housing to aid in cooling of the resonator when the housing is placed in a cryogenic environment. A
substrate made of a dielectric material for holding the resonator may be placed in the housing and the housing may be made of aluminum coated with silver.
The filter may have a plurality of housing cells with each cell containing a resonator and the filter may have means for coupling electromagnetic energy from each resonator to an adjacent resonator.
Each cell may have a cell wall having an upper surface and a lower surface and include means adjacent the upper surface and lower surface for releasably attaching the cell to adjacent cells or to end plates.
";.:_ WO 96!17398 PCT/LTS95/15594 A first end cell and a second end cell may be provided with a first end plate fastened to the upper surface of the first end cell and a second end plate fastened to the lower surface of the second end cell. The first end cell may contain means for coupling electromagnetic energy through the housing to a resonator and the second end cell may contain means for coupling electromagnetic energy from a resonator to the housing.
The means for coupling electromagnetic energy from each resonator to an adjacent resonator may comprise plates having apertures in the plates. The surfaces of the housing cells may have alignment pins and the plate may have alignment holes where the alignment pins engage alignment holes to fix plates in a desired position on the cells.
In accordance with another embodiment of the present invention, a modular filter may have a plurality of housing cells, each cell having means at an upper surface and a lower surface for connection to other cells. Each cell has a cavity therein and a plurality of resonators are located in the cavities of the cells. Means are provided for transmitting an electromagnetic signal through a cell wall to a resonator in that cell, for transmitting electromagnetic energy from the resonator in the first cell to a resonator in a WO 96!17398 PCT/US95/15594 second cell and for transmitting electromagnetic energy from the resonator in the second cell through a cell wall.
In accordance with another embodiment of the present invention, a filter has a filter housing with a wall defining a cavity. A resonator is formed from superconducting material and mounted on a substrate. A groove on an inner surface of the housing wall is provided for insertion of the substrate, with means at a first end of the groove locating the substrate in the groove. A spring means at the other end of the groove is provided for locating the substrate while allowing for movement of the substrate with respect to the groove due to thermal expansion or contraction. The housing may be cooled by a cryorefrigerator.
Other features and advantages are inherent in the filter claimed and disclosed or will become apparent to those skilled in the art from the following detailed description in conjunction with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING , Fig. 1 is a perspective view of a resonator and substrate used in one embodiment the filter of the present invention;

WO 96!17398 PCT/US95/15594 Fig. 2 is a perspective view of the resonator and substrate of Fig.
1 shown between two aperture plates;

Fig. 3 is a top view of a housing cell of a filter of the present invention;

Fig. 4 is a side elevational view of the housing ell of Fig. 3;
c Fig. 5 is an elevational view of a groove on the inter ior of the housing cell of Fig. 3;

Fig. 6 is a bottom view of the housing cell of Fig. 3 co ntaining a resonator and substrate;

Fig. 7 is a side elevational view of a housing end cell of a filter of the present invention;

Fig. 8 is a bottom view of the housing cell of Fig. 7;

Fig. 9 is a top view of a housing end plate of an embodiment of a filter of the present invention;

Fig. 10 is an embodiment of a resonator and substrate used in a filter of the present invention;

Fig. 11 is an exploded view of a filter of the present nvention;
i Fig. 12 is a cross-sectional view taken along -the lines 12--12 of Fig. 1; and Fig. 13 is a cross-sectional view taken along the lines 13--13 of Fig. 10.
- g -DETAILED DESCRIPTION
Referring initially to Figs. 1, 2 and 12, a split ring resonator 200 is mounted on a substrate 202 and may have a small amount of adhesive (not depicted) where the resonator 200 contacts the substrate 202. The resonator 200 has a circular cross section (Fig. 12) and is formed from a cylindrical piece of metal which has been bent into a ring so that an end face 204 and an end face 206 are located adjacent but not in contact with each other to form a gap indicated generally at 207.
Because of the circular cross-section of the resonator 200, its outer surface 208, consisting of all surfaces of the resonator 200 with the exception of the end face 204 and the end face 206, has no angles or corners. The resonator may be made in whole or in part of metal (e. g., copper, silver-plated brass, or aluminum) or may be formed in total or in part of a dielectric material (e. g., polymer material or ceramic such as zirconia, titanate or alumina) and conductive material (e. g., copper, silver or aluminum). The resonator 200 may be formed of or coated with a superconductive material, preferably YBa2Cu30~. The superconducting material may be in bulk or a thin film, but will preferably be in the form of a thick film ( .025-.100 mm thick) and applied in accordance with the teachings of U.S.

. wo 96nr~9s rcrnrsmss94 _ g Patent No. 5,340,797.
The absence of corners or angles on the outer surface 208 of the resonator 200 allows for easy coating of the resonator 200 with a film of superconducting material. In addition, the lack of corners provides a more uniform electric field around the resonator, thus leading to superior characteristics of a filter containing such a resonator.
When placed in a filter, the resonator 200 and the substrate 202 will generally be located between coupling plates 210. Each coupling plate 210 has an aperture 212 which may be generally aligned with the substrate 202. The coupling plates 210 have alignment holes 213 which fit into pins (described below) on the housing of a filter. The coupling plates 210 are used to control the electromagnetic energy transmitted from one resonator to an adjacent resonator. Therefore, the size, shape and location of the aperture 212 are critical in providing the desired coupling between adjacent resonators. No one design of a coupling plate will be appropriate for all applications, as each filter application may require different filtering characteristics.
Referring now to Figs. 3 and 4, an interior housing cell indicated generally at 214 has a circular wall indicated generally at 215 defined by WO 96!17398 PGT/US95115594 an upper surface 216, a lower surface 218, an inner surface 220 and an outer surface 222. The inner surface 220 of the wall 215 defines a cavity 223 in the interior of the cell 214. Formed in the upper surface 216 are several bolt openings 224 and alignment openings 228. Located on the bottom surface 218 are several bolts 226 and alignment posts 230. A reduced diameter portion 232 is formed in the cell wall 215 to define an annular rim 234 adjacent the upper surface 216. The bolts 226 and the alignment posts 230 of a cell are inserted through the bolt openings 224 and the pin openings 228, respectively, of an adjacent cell. The bolts 226 then protrude through the annular rim 234 and into the portion 232 of an adjacent cell and are secured with nuts (not depicted in Figs. 3-6) to fasten the cells together. In order to ensure a hermetic seal between cells at cryogenic temperatures, indium solder or other gasketing material may be applied between cells on the upper surface 216 and the lower surface 218.
Formed in interior surface 220 are two rectangular grooves 235 located 180° opposite each .
other. At one end of each groove 235 is a semi-circular detent 236. Located in each detent 236 is a ring 238 which partially contains a spring 240 (Fig. 5). Adjacent the other end of the groove 235 WO 96!17398 PCT/LTS95/15594 is a pin 242. The substrate 202 is placed into each groove 235 between pin 242 and spring 240 so that the substrate 202 cannot move past the pin 242 or the spring 240. The spring 240 allows for expansion and contraction of materials in each cell so that the substrate 202 and thus the resonator 200 are kept in the desired position while undergoing the change from room temperature to cryogenic or superconducting temperatures. The thickness of the substrate 202 and the width of the groove 235 should be nearly identical to minimize any movement of the substrate 202 and thus the resonator 200 in a direction perpendicular to the length of the groove 235. A small amount of nylon tape or other flexible material placed around the ends to the substrate 202 prior to insertion into groove 235 may also minimize movement of the substrate 202 and maintain its desired alignment.
Also located on interior surface 220 is a tuning disk 244. The tuning disk 244 is situated adjacent the gap 207 of the resonator 200 and can be moved closer to or farther from the gap 207 by rotation of a screw (not depicted) located in the wall 215 of the cell 214 to adjust the capacitance of the resonator. Tuning discs may be made from a disc formed of brass plated with silver and the WO 96/17398 PCTlUS95/15594 adjustment mechanism may consist of a post and threads and may be made of brass.
On the outer surface 222 is a cap 245 having , two bolts 246. The cap 245 is used to seal the cell 214 in the area where an opening has been drilled to allow placement of the tuning disk 244 and its attendant adjustment mechanism. Also located on the outer surface 222 are two pin caps 248 located outside of the pins 242. The pin caps 248 hold the pins 242 in place and cover the holes, which have been drilled through the cell wall 215 to allow insertion of the pins 242, to seal the inside of the cell from the outside. Both the cap 245 and the pin caps 248 may be sealed to the outer surface 222 with indium solder.
In the area where the lower surface 218 meets the inner surface 220, a circular shelf 250 is formed. The outer diameter of the circular shelf 250 is approximately equal to the outer diameter of the coupling plate 210 (Fig. 2), and the distance from the top of the shelf 250 to the upper surface 216 is approximately equal to the thickness of the coupling plate 210. When a coupling plate 210 is placed onto the shelf 250, the top of the plate will be flush with the upper surface 218, and will be held onto the shelf 250 by the upper surface 216 of an adjacent cell. Alignment pins 252 are located on WO 9611?398 PCT/US95/15594 the shelf 250 and fit into the alignment holes 213 on the aperture plates 210. The alignment holes ensure that the aperture 212 is aligned with the substrate 202 when the substrate and the resonator 200 are inserted into the groove 234 of a housing cell 214.
Referring now to Figs. 7 and 8, a housing end cell indicated generally at 254 is adapted to be used as the first or last cell of a filter housing.
The end cell 254 is similar to the interior cell 214 but has a number of modifications described below to adapt it for use on either end of a filter housing.
Each element of the end cell 254 which is identical to an element of the interior cell 214 has been given the reference numeral of that interior cell element.
The end cell 254 has a bushing 256, made of a conductive material, preferably copper, secured by bolts 258 to the end cell. On the exterior of the bushing 256 is a coaxial tubular connector 260 which carries an electromagnetic signal to or from the filter. The exterior of the connector 260 is in electric contact with the bushing 256 while an interior lead 262 of the connector 260 is insulated from and passages through the bushing 260. After passing through the bushing 256, the interior lead 262 contacts a loop 263 near one end of the loop.

WO 96/1398 PC"T/US95I15594 The other end of the loop 263 is connected to the inside of the bushing 256. The signal passing through the loop 263 is thereby coupled to the resonator 200. By withdrawing the bolts 258, the bushing 256 can be removed to provide easy adjustment of the loop 263.
In addition to the cap 245, the end cell 254 has caps 264 attached to the outer surface 222 by the bolts 246 and indium solder. The caps 264 are used to cover openings which have been placed in cell wall 215 so that other devices may be connected to or pass through the end cell 254. For instance, it may be desirable to pressurize the interior of the filter housing with helium to increase thermal conductivity to the resonator while preventing the cooling fluid, such as liquid nitrogen, from entering the cavity 223 of the filter housing and interfering with the electrical properties of the resonators 200. A helium coupling might therefore pass through the cell wall 215 in the area of the caps 264. A variety of monitoring devices may also be inserted into the cell through the openings covered by the caps 264 to measure filter performance or operating characteristics.
One side of the end cell 254 will be attached to another cell in the manner described above for the interior cell 214. The upper surface 216 of the WO 96117398 PCTlUS95/15594 end cell 254 is attached to the lower surface 218 of another cell (Fig. 7) by the bolts 226 which pass through the rim 234 and are fastened with nuts 266.
The lower surface 218 of the end cell 254 in Fig. 7 is not attached to another cell but rather to an end plate indicated generally at 268 (Fig. 9). The end plate 268 has an outer rim 270 which surrounds an interior section 272. Openings 274 are spaced around the outer rim 270 so that the bolts 226 may pass through those openings for attachment by nuts (not depicted). The interior section 272 of the end plate 268 is offset from the outer rim 270 so that the edge of the interior section 272 will contact the shelf 250 of the end cell 254 while the outer rim 270 contacts the lower surface 218. At the other end of the filter housing, a second end plate 268 attaches to the upper surface 216 of an end cell located at the end of the filter housing in a manner similar to the attachment of the end plate 268 to the lower surface 218. Similarly, the second end cell will attach at its lower surface 218 to the upper surface 216 of an adjacent cell. Either end _ plate may be sealed to the end cell using indium solder.
Referring now to Fig. 11, a modular filter 276 has a housing made of three cells: the interior cell 214 and two end cells 254. The interior cell 214 and each end cell 254 contains a resonator 200 secured to the cell by a substrate 202. When the modular filter is assembled, an electromagnetic signal is transmitted through the coaxial connector 260 into the bushing 256 for coupling to a resonator contained in one of the end cells 254. The signal then passes through the coupling plate 210 to the resonator 200 in the interior cell 214. The signal continues through the second coupling plate 210 to the resonator 200 in the end cell 254 and out through the other coaxial connector 260. Once the filter 276 has been assembled, the tuning disks 244 are adjusted to tune the resonators to the desired filtering characteristics as is well known in the art. If the resonators 200 contain superconducting material, the filter 276 must be immersed in a super-cooling fluid such as liquid nitrogen after all adjustments have been made. Instead of using a super-cooling fluid, the filter may be placed in a cryorefrigerator such as the CryoTiger manufactured by APD Cryogenics of Allentown, Pennsylvania. The filter 276 is designed to be easily sealed so that no super-cooling fluid enters the interior of the .
filter while still permitting detachment of the cells for service or addition of cells. The cells, coupling plates and end plates of the filter 276 may be made of a variety of electrically conducting materials, but preferably are made of silver-plated aluminum.
Although only three cells are shown for modular filter 276, more cells may be added to modify the filter characteristics as desired, as is well known in the art. Adding cells is accomplished by inserting additional interior cells 214 having resonators 200-into the middle of the filter once cells have been separated from each other.
l0 Superconducting resonators which may be used in the modular filter 276 have very low insertion loss and therefore a number of resonators can be used in a given filter without unacceptably weakening the output signal. One significant advantage of the modular housing 276 is the ease with which additional resonators can be added to obtain the desired filter characteristics.
The filter characteristics of filters constructed in accordance with the principles of the present invention can be designed by procedures well known to those skilled in the art. See, for example, A.I. Azverev, "Handbook of Filter - Synthesis," J. Wiley and Sons, Inc., New York, 1967.
Briefly, the designer selects the desired filter response and filter type, and then determines the required number of resonators with the aid of known nomographs. Using known tables for the (normalized) WO 96!17398 PCT/US9S/15594 conventional parameters k and q, the required values of quality factor Q and coupling coefficient K can be determined. Using a known de-tuning and adjusting procedure, the,end resonators are set to 5, the required Qs. From data listing K as a function of distance between resonators, the spacing between the resonators that will yield the required K is determined.
Referring to Fig. 10, another resonator 278 has a generally cylindrical shape with an outer surface 280, an inner surface 282, an upper surface 284 and a lower surface 286, which together form the exterior surface of the resonator 278. An end face 288 and an end face 290 oppose each other to form a gap 292. The resonator is attached to a substrate 294 similar to the substrate 202 used with the resonator 200. Like the resonator 200, the resonator 278 has a rounded exterior surface without any corners, and therefore has an oblong shaped cross-section as shown in Fig. 13. The resonator 278 will also have many of the coating and uniform electric field advantages of the resonator 200. The resonator 278 is larger than the resonator 200 so that the housing for the resonator 278 must be larger than the housing for the resonator 200, but may be identical in all other respects.

WO 96!17398 PGT/US95/15594 The foregoing detailed description has been given for clearness of understanding only, and no unnecessary limitations should be understood therefrom, as modifications would be obvious to those skilled in the art.
>;ti~C! 'a ~- -I ~"~ = ~r: .,

Claims (29)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A filter comprising:
a house having a cavity therein;
a cylindrically curved split ring resonator located in the cavity of the housing, the resonator having an outer surface, a first face and a second face, wherein the resonator has a cross-section generally perpendicular to the curve of the resonator, the cross-section is defined by a planar figure closed by the outer surface of the resonator, the planar figure is free of corners and the first and second faces oppose each other to define a gap therebetween; and means for coupling electromagnetic energy through the housing to the resonator wherein the resonator comprises a high-temperature superconducting material.
2. A filter as recited in claim 1 wherein the cross-section is circular.
3. A filter as recited in claim 1 wherein the cross-section is oblong.
4. A filter as recited in claim 1 wherein the superconducting material comprises a film of YBa2Cu3O7.
5. A filter as recited in claim 1 further comprising:
a substrate which holds the resonator;
a groove on an inner surface of the housing which receives the substrate therein;

a pin at a first end of the groove for locating the substrate; and a spring at a second end of the groove for retaining the substrate while allowing for movement of the substrate with respect to the groove due to expansion or contraction of the housing and substrate due to temperature changes;
wherein the substrate secures the resonator to the housing.
6. A filter as recited in claim 1 further comprising a thermally conductive gas disposed within the cavity.
7. A filter as recited in claim 1 further comprising a substrate comprised of a dielectric material which holds the resonator in the housing.
8. A filter as recited in claim 1 wherein the housing includes aluminum with a silver coating.
9. A filter comprising:
a housing comprising a plurality of housing cells; and a plurality of cylindrically curved split ring resonators, wherein at least one resonator is located in each of the housing cells, each resonator has an outer surface, a first face and a second face, each respective resonator has a cross-section generally perpendicular to the curve of the resonator, each cross-section is defined by a planar figure closed by the outer surface of the respective resonator, each respective planar figure is free of corners, the respective first and second faces oppose each other to define a respective gap therebetween and each resonator comprises a high-temperature superconducting material;

means for coupling electromagnetic energy through the housing to at least one resonator; and means for coupling electromagnetic energy from each resonator to an adjacent resonator.
10. A filter as recited in claim 9 wherein each cell comprises a respective cell wall, having an upper surface and a lower surface, and includes respective means adjacent the upper surface and lower surface for releasably attaching the corresponding cell to adjacent cells or to end plates.
11. A filter as recited in claim 10 wherein the plurality of cells comprises a first end cell and a second end cell, a first end plate being fastened to the upper surface of the first end cell, and a second end plate being fastened to the lower surface of the second end cell.
12. A filter comprising:
a housing having a cavity therein;
a resonator comprised of superconducting material located in the housing; and a thermally conductive gas disposed within the cavity.
13. A filter as recited in claim 12 wherein the housing is located in a super-cooling fluid, and the gas disposed within the cavity is pressurized to prevent the super-cooling fluid from entering the cavity.
14. A filter as recited in claim 13 wherein the thermally conductive gas is helium.
15. A filter as recited in claim 12 wherein the housing is cooled by a cryorefrigerator.
16. A resonant element comprising:
a split ring having an outer surface and end faces wherein the element has the shape of a cylinder having said end faces located at opposing ends thereof, and where the cylinder is curved upon itself to define a ring where the end faces oppose each other to define a gap therebetween;
wherein the resonator has a cross-section generally perpendicular to the curve of the cylinder, the cross-section is defined by a planar figure closed by the outer surface of the resonator and the planar figure is free of corners; and wherein the ring comprises a high temperature superconducting material.
17. The resonant element of claim 16 wherein the cross-section is a circle.
18. The resonant element of claim 16 wherein the cross-section is oblong.
19. The resonant element of claim 16 wherein the superconductive material is YBa2Cu3O7.
20. A device employing superconductivity comprising:
a housing defining a cavity in the housing;
a superconducting element disposed within the cavity; and a thermally conductive gas disposed within the cavity in thermal contact with the element;
wherein the gas conducts heat away from the element.
21. The device of claim 20 wherein the housing is cooled and the gas conducts heat from the element to the housing.
22. The device of claim 21 wherein the housing is located in a super-cooled liquid and the gas in the cavity is pressurized to inhibit flow of the liquid into the cavity.
23. An electromagnetic filter comprising:
a housing having a cavity therein;
a resonator located in the cavity, wherein the resonator has a first end and a second end, the resonator is curved such that the first end and the second end are adjacent each other, the resonator has an outer surface, the resonator has a cross-section generally perpendicular to the curve of the resonator, the cross-section is defined by a planar figure closed by the outer surface of the resonator, the planar figure is free of corners, the resonator is comprised of a high-temperature superconductor material, and the freedom from corners minimizes electromagnetic discontinuities; and means for coupling electromagnetic energy through the housing to the resonator.
24. The electromagnetic filter of claim 23 wherein the resonator is cylindrically curved.
25. The electromagnetic filter of claim 24 wherein the resonator is a split ring resonator.
26. The electromagnetic filter of claim 23 wherein the first end is a first face and the second end is a second face.
27. The electromagnetic filter of claim 26 wherein the faces oppose each other to define a gap therebetween.
28. The electromagnetic filter of claim 23 wherein the cross-section is circular.
29. The electromagnetic filter of claim 23 wherein the cross-section is oblong.
CA002206659A 1994-12-02 1995-11-30 Electromagnetic resonant filter Expired - Fee Related CA2206659C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/349,060 1994-12-02
US08/349,060 US5616540A (en) 1994-12-02 1994-12-02 Electromagnetic resonant filter comprising cylindrically curved split ring resonators
PCT/US1995/015594 WO1996017398A1 (en) 1994-12-02 1995-11-30 Electromagnetic resonant filter

Publications (2)

Publication Number Publication Date
CA2206659A1 CA2206659A1 (en) 1996-06-06
CA2206659C true CA2206659C (en) 2000-09-26

Family

ID=23370753

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002206659A Expired - Fee Related CA2206659C (en) 1994-12-02 1995-11-30 Electromagnetic resonant filter

Country Status (9)

Country Link
US (2) US5616540A (en)
EP (1) EP0795208B1 (en)
JP (1) JPH11511918A (en)
CN (1) CN1173243A (en)
AT (1) ATE205966T1 (en)
AU (1) AU698130B2 (en)
CA (1) CA2206659C (en)
DE (1) DE69522823T2 (en)
WO (1) WO1996017398A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616540A (en) * 1994-12-02 1997-04-01 Illinois Superconductor Corporation Electromagnetic resonant filter comprising cylindrically curved split ring resonators
US5843871A (en) * 1995-11-13 1998-12-01 Illinois Superconductor Corporation Electromagnetic filter having a transmission line disposed in a cover of the filter housing
US5838213A (en) * 1996-09-16 1998-11-17 Illinois Superconductor Corporation Electromagnetic filter having side-coupled resonators each located in a plane
US5909159A (en) * 1996-09-19 1999-06-01 Illinois Superconductor Corp. Aperture for coupling in an electromagnetic filter
US6711394B2 (en) 1998-08-06 2004-03-23 Isco International, Inc. RF receiver having cascaded filters and an intermediate amplifier stage
US6046658A (en) * 1998-09-15 2000-04-04 Hughes Electronics Corporation Microwave filter having cascaded subfilters with preset electrical responses
US6314309B1 (en) 1998-09-22 2001-11-06 Illinois Superconductor Corp. Dual operation mode all temperature filter using superconducting resonators
JP3424594B2 (en) * 1999-04-20 2003-07-07 日本電気株式会社 Superconducting filter device, manufacturing method thereof, and filtering adjustment method
US6777377B2 (en) * 2001-12-03 2004-08-17 Wyo-Ben, Inc. Composition for use in sealing a porous subterranean formation, and methods of making and using
US6894584B2 (en) 2002-08-12 2005-05-17 Isco International, Inc. Thin film resonators
US7061220B1 (en) 2004-06-24 2006-06-13 The United States Of America As Represented By The Secretary Of The Army Passive radio frequency power spectrum analyzer
ES2261028B1 (en) * 2004-08-20 2007-11-16 Universidad Publica De Navarra FREQUENCY FILTER AND SELECTIVE SURFACES.
US20060075916A1 (en) * 2004-10-08 2006-04-13 Edwards Paul A System and method for ink jet printing of water-based inks using aesthetically pleasing ink-receptive coatings
US20060077243A1 (en) * 2004-10-08 2006-04-13 Edwards Paul A System and method for ink jet printing of solvent/oil based inks using ink-receptive coatings
US20060075917A1 (en) * 2004-10-08 2006-04-13 Edwards Paul A Smooth finish UV ink system and method
US20060077244A1 (en) * 2004-10-08 2006-04-13 Edwards Paul A System and method for ink jet printing of water-based inks using ink-receptive coating
US7828412B2 (en) * 2006-09-08 2010-11-09 Electronics For Imaging, Inc. Ink jet printer
US8100507B2 (en) * 2006-09-27 2012-01-24 Electronics For Imaging, Inc. Industrial ink jet printer
WO2008039532A2 (en) * 2006-09-27 2008-04-03 Electronics For Imaging, Inc. Sonic leak testing on ink delivery stystems and ink jet heads
CN103187605A (en) * 2011-12-30 2013-07-03 北京有色金属研究总院 Low loss microwave cavity filter with high temperature superconducting block and manufacturing method thereof
CN105792562A (en) * 2014-12-23 2016-07-20 中国电子科技集团公司第十八研究所 RHU shell with thermal expansion matching performance

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446429A (en) * 1981-10-09 1984-05-01 Medical College Of Wisconsin Microwave resonator
US4504788A (en) * 1982-09-03 1985-03-12 The Medical College Of Wisconsin, Inc. Enclosed loop-gap resonator
US4725779A (en) * 1985-05-08 1988-02-16 Mcw Research Foundation, Inc. NMR local coil with improved decoupling
US4728779A (en) * 1985-09-27 1988-03-01 Tdk Corporation PTC heating device
US4841249A (en) * 1986-10-28 1989-06-20 Siemens Aktiengesellschaft Truncated cone shaped surface resonator for nuclear magnetic resonance tomography
US5272132A (en) * 1987-03-16 1993-12-21 At&T Bell Laboratories Apparatus comprising a ceramic superconductive body and method for producing such a body
JPS63269605A (en) * 1987-04-27 1988-11-07 Yokogawa Medical Syst Ltd One-turn loop resonance circuit
US5157017A (en) * 1987-06-12 1992-10-20 At&T Bell Laboratories Method of fabricating a superconductive body
US5011823A (en) * 1987-06-12 1991-04-30 At&T Bell Laboratories Fabrication of oxide superconductors by melt growth method
US5051704A (en) * 1990-02-06 1991-09-24 Motorola, Inc. Feedforward distortion cancellation circuit
US5051714A (en) * 1990-03-08 1991-09-24 Alcatel Na, Inc. Modular resonant cavity, modular dielectric notch resonator and modular dielectric notch filter
US5179074A (en) * 1991-01-24 1993-01-12 Space Systems/Loral, Inc. Hybrid dielectric resonator/high temperature superconductor filter
US5324713A (en) * 1991-11-05 1994-06-28 E. I. Du Pont De Nemours And Company High temperature superconductor support structures for dielectric resonator
US5340797A (en) * 1993-01-29 1994-08-23 Illinois Superconductor Corporation Superconducting 123YBaCu-oxide produced at low temperatures
US5616540A (en) * 1994-12-02 1997-04-01 Illinois Superconductor Corporation Electromagnetic resonant filter comprising cylindrically curved split ring resonators

Also Published As

Publication number Publication date
EP0795208B1 (en) 2001-09-19
WO1996017398A1 (en) 1996-06-06
JPH11511918A (en) 1999-10-12
US5616540A (en) 1997-04-01
CA2206659A1 (en) 1996-06-06
EP0795208A1 (en) 1997-09-17
AU698130B2 (en) 1998-10-22
DE69522823T2 (en) 2002-04-11
CN1173243A (en) 1998-02-11
AU4412996A (en) 1996-06-19
DE69522823D1 (en) 2001-10-25
ATE205966T1 (en) 2001-10-15
US5919736A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
CA2206659C (en) Electromagnetic resonant filter
US7174197B2 (en) Superconductive filter module, superconductive filter assembly and heat insulating type coaxial cable
US6154103A (en) Push on connector for cryocable and mating weldable hermetic feedthrough
US4996188A (en) Superconducting microwave filter
CA2136894C (en) Miniaturized superconducting dielectric resonator filters and method of operation thereof
US6208227B1 (en) Electromagnetic resonator
US4810984A (en) Dielectric resonator electromagnetic wave filter
CA2142827C (en) Apparatus for characterizing high temperature superconducting thin film
US5856768A (en) Transition and interconnect structure for a cryocable
US5847627A (en) Bandstop filter coupling tuner
EP0154984A2 (en) Multiple cavity square prism filter transmitter combiner with shared square walls and tuning controls mounted on rectangular end walls
US5309129A (en) Apparatus and method for providing temperature compensation in Te101 mode and Tm010 mode cavity resonators
US5843871A (en) Electromagnetic filter having a transmission line disposed in a cover of the filter housing
EP0766871B1 (en) Cryocable
US5498771A (en) Miniaturized dielectric resonator filters and method of operation thereof at cryogenic temperatures
JP4059467B2 (en) Dielectric coaxial filter
US20020196099A1 (en) Closed-slot resonator
Fiedziuszko et al. High Temperature Superconductivity Space Experiment (HTSSE). Hybrid HTS/Dielectric Resonator Bandpass Filter
Phillips et al. An integrated 11GHz cryogenic downconverter
Button et al. An Integrated llGHz Cryogenic Downconverter
AU4895102A (en) Electromagnetic resonator

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20031201