CA2233136A1 - Method and apparatus for controlling force feedback interface systems utilizing a host computer - Google Patents

Method and apparatus for controlling force feedback interface systems utilizing a host computer

Info

Publication number
CA2233136A1
CA2233136A1 CA002233136A CA2233136A CA2233136A1 CA 2233136 A1 CA2233136 A1 CA 2233136A1 CA 002233136 A CA002233136 A CA 002233136A CA 2233136 A CA2233136 A CA 2233136A CA 2233136 A1 CA2233136 A1 CA 2233136A1
Authority
CA
Canada
Prior art keywords
force
recited
user
command
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002233136A
Other languages
French (fr)
Other versions
CA2233136C (en
Inventor
Louis B. Rosenberg
Adam C. Braun
Mike D. Levin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immersion Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/534,791 external-priority patent/US5739811A/en
Application filed by Individual filed Critical Individual
Publication of CA2233136A1 publication Critical patent/CA2233136A1/en
Application granted granted Critical
Publication of CA2233136C publication Critical patent/CA2233136C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/23Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/28Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
    • A63F13/285Generating tactile feedback signals via the game input device, e.g. force feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/55Controlling game characters or game objects based on the game progress
    • A63F13/57Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • G05B19/4207Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/80Special adaptations for executing a specific game genre or game mode
    • A63F13/803Driving vehicles or craft, e.g. cars, airplanes, ships, robots or tanks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1006Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals having additional degrees of freedom
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1025Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals details of the interface with the game device, e.g. USB version detection
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1037Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted for converting control signals received from the game device into a haptic signal, e.g. using force feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1043Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being characterized by constructional details
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/64Methods for processing data by generating or executing the game program for computing dynamical parameters of game objects, e.g. motion determination or computation of frictional forces for a virtual car
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/80Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
    • A63F2300/8017Driving on land or water; Flying
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/80Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
    • A63F2300/8082Virtual reality
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04766Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks providing feel, e.g. indexing means, means to create counterforce
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04777Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks with additional push or pull action on the handle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/014Force feedback applied to GUI
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/015Force feedback applied to a joystick
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H2003/008Mechanisms for operating contacts with a haptic or a tactile feedback controlled by electrical means, e.g. a motor or magnetofriction

Abstract

An apparatus (14) for controlling and providing force feedback using an interface device manipulated by a user and connected to a host computer system (12). A microprocessor (26) is provided local to the interface device and reads sensor data from sensors that describes the positioning of a user object moved by the user, such as a joystick. The microprocessor controls actuators (30) to provide forces on the user object. The host computer sends high level host commands to the local microprocessor and the microprocessor independently implements a local reflex process based on the high level command to provide force values to actuators using sensor data and other parameters. A host command protocol includes a variety of different types of host commands and associated command parameters. By providing a relatively small set of high level host commands, the protocol further shifts the computational burden from the host computer to the local microprocessor.

Claims (127)

1. An interface device for use with a host computer displaying a graphical environment, said host computer updating said graphical environment in response to user manipulation of said interface device and commanding force feedback sensations utilizing said interface device in response to said manipulation and in coordination with events within said graphical environment, said interface device comprising:
a user manipulatable object grasped by a user;
a support mechanism which supports said user manipulatable object with respect to an origin while allowing a plurality of degrees of freedom in the motion of said user manipulatable object with respect to said origin;
an actuator coupled to said user manipulatable object for providing a force resistance to motion of said user manipulatable object along at least one of said degrees of freedom with respect to said origin, said resistance to motion generated in response to commands from said host computer and in coordination with said graphical environment;
a sensor outputting a locative signal responsive to and corresponding with manipulation of said user manipulable object along at least said degree of freedom in which said resistance is provided;
a user adjustable switch apparatus outputting a state signal representing the state of said switch apparatus;
a local microprocessor separate from said host computer, coupled to said host computer by a communication interface and coupled to said actuator, said sensor, and to said user adjustable switch, said local microprocessor executing a local process in parallel with host execution of said graphical environment, said local process involving the execution of a plurality of local routines, wherein said local process executed by said local microprocessor is stored in local memory coupled to said local microprocessor, wherein said local process enables communication between said interface device and said host computer, decodes commands sent by said host computer to said interface device over said communication interface, controls said actuator in response to at least one decoded command received fromsaid host computer, wherein said control of said actuator is coordinated with an event occurring in said parallel host computer execution of said graphical environment, thereby locally creating a feel sensation that corresponds with a relevant displayed event within said graphical environment, reports a representation of said locative signal to said host computer, wherein said host computer updates said parallel execution of said graphical environment in response to said representation of said locative signal, and reports a representation of said state signal to said host computer, wherein said host computer updates said parallel execution of said graphical environment in response to said switch state, and wherein a plurality of host commands are received by said local microprocessor over said communication interface, wherein said host commands are transferred to said local microprocessor using a force feedback command protocol, said force feedback command protocol being comprised of a plurality of discrete host commands, each of which includes a command identifier and at least one of which includes at least one command parameter; and a plurality of command routines stored in memory local to said microprocessor, wherein particular ones of said command routines are executed in response to particular ones of said received host commands, wherein at least one of said host commands causes execution of a command routine for reporting data from said local microprocessor to said host computer, at least one of said host commands causes the execution of one of a plurality of force routines selected in accordance with said command identifier and said command parameters of a received host command, said force routine being a command routine that causes said actuator to produce a resistance to motion of said user object along at least one of said degrees of freedom in accordance with said force routine, wherein said control of said actuator is independent of further commands from said host computer during a period of time, thereby freeing said host computer to perform other tasks.
2. An interface device as recited in claim 1 wherein at least one of said host commands causes the execution of a force routine that causes said actuator to remove a resistance to motion of said user object along at least one of said degrees of freedom.
3. An interface device as recited in claim 1 wherein said at least one command parameter includes a magnitude parameter determining a magnitude of said force to be output by said actuator.
4. An interface device as recited in claim 1 wherein said control of said actuator is performed in accordance said locative signal.
5. An interface device as recited in claim 4 wherein said at least one command parameter includes a duration parameter determining how long said force output by said actuator is in effect.
6. An interface device as recited in claim 1 wherein said at least one command parameter includes a direction parameter determining the direction and degrees of freedom of said force output by said actuator.
7. An interface device as recited in claim 4 wherein said at least one command parameter includes button parameters which designate a button coupled to said processor and determine a magnitude, direction, and duration of a force output by said actuators when said button is pressed by said user.
8. An interface device as recited in claim 1 wherein said host computer and said processor are coupled together by a serial interface.
9. An interface device as recited in claim 8 wherein said serial interface includes a Universal Serial Bus interface.
10. An interface device as recited in claim 1 further including a local clock accessible to said microprocessor for providing said microprocessor with a timing signal used in said local process, wherein said control of said actuator is performed in accordance with timing data derived from said local clock.
11. An interface device as recited in claim 1 wherein at least one command parameter defines a dead-band region within range of motion of said user object, wherein forces resulting from execution of a particular force routine are to be reduced to approximately zero when said user object is within said dead-band region.
12. An interface device as recited in claim 10 wherein at least one command parameter defines the frequency of a periodic signal used to modulate forces output by said actuator in accordance with a particular force routine.
13. An interface device as recited in claim 1 wherein at least one of said command parameters defines at least one degree of freedom in which a particular force routine is to be applied.
14. An interface device as recited in claim 1 wherein multiple force routines are executed simultaneously in response to multiple host commands using multi-tasking on saidmicroprocessor.
15. An interface device as recited in claim 9 wherein at least a portion of power used to operate said interface device is drawn from said Universal Serial Bus.
16. An interface device as recited in claim 17 wherein all power drawn to control said actuator is drawn from said Universal Serial Bus.
17. An interface device as recited in claim 3 wherein said magnitude parameter is represented as a percentage of the maximum force capability of the interface device.
18. An interface device as recited in claim 5 wherein a duration parameter value that is zero or negative is used as a flag to indicate that microprocessor should perform said force routine for an indefinite period of time until told to stop by a subsequent host command.
19. An interface device as recited in claim 1 wherein at least one of said command parameters define if a given force sensation should be output uni-directionally or bi-directionally in said degree of freedom.
20. An interface device as recited in claim 1 wherein said host commands are provided in at least two groups of commands including background conditions and overlaid effects, wherein said conditions are associated with one class of force sensations generated by said interface device and said effects are associated with a different class of force sensations generated by said interface device.
21. An interface device as recited in claim 20 wherein background conditions dictate physical force characteristics of said interface device including stiffness and damping forces output when said user moves said user manipulatable object.
22. An interface device as recited in claim 21 wherein said overlaid effects dictate time varying sensations, said time varying sensations including vibrations.
23. An interface device as recited in claim 1 wherein said force routines are provided in at least two groups of force routines including background condition routines and overlaid effect routines, wherein said background condition routines control said actuator as a function of said locative signal and said effect routines control said actuator as a function of time.
24. An interface device as recited in claim 1 wherein at least one command parameter defines a stiffness of a simulated spring resistance felt by said user when said user manipulatable object is moved in a first direction along a specified degree of freedom and another command parameter defines the stiffness of a simulated spring resistance felt by said user when said user manipulatable object is moved in a second direction, opposite to said first direction, along said specified degree of freedom.
25. An interface device as recited in claim 1 wherein at least one command parameter defines a damping of a drag resistance output by said actuator when said user manipulatable object is moved with a positive velocity along a degree of freedom and another command parameter defines a damping of a drag resistance output by said actuator when said user manipulatable object is moved with a negative velocity along said degree of freedom.
26. An interface device as recited in claim 25 where said damping parameter is represented as a percentage of a maximum damping capability of said interface device.
27. An interface device as recited in claim 26 wherein said stiffness parameter is represented as a percentage of a maximum stiffness capability of said interface device.
28. An interface device as recited in claim 1 wherein a host command includes associated command parameters for positive damping, negative damping, positive stiffness, and negative stiffness.
29. An interface device as recited in claim 28 wherein said host command includes at least one associated command parameter defining a dead-band region.
30. An interface device as recited in claim 29 wherein said host command includes at least one associated command parameter defining a saturation level for said host command.
31. An interface device as recited in claim 30 wherein said single host command includes at least one associated command parameter defining an offset for an origin location defined by said host command.
32. An interface device as recited in claim 9 wherein said actuator is a first actuator and further comprising a second actuator, each of said actuators providing force in a separate degree of freedom, and wherein said direction parameter represents an angle in a two dimensional plane defined by said two degrees of freedom.
33. An interface device as recited in claim 32 wherein said microprocessor distributes a commanded force among said two actuators based on said angle.
34. An interface device as recited in claim 12 wherein at least one command parameter defines a shape of said periodic signal.
35. An interface device as recited in claim 34 wherein said shape is selected from one of the following wave types: square wave, sine wave, and triangle wave.
36. An interface device as recited in claim 1 wherein said command protocol includes a host command for clearing parameters used by said microprocessor.
37. An interface device as recited in claim 1 wherein a sequence of command parameters is provided to said microprocessor, said command parameters collectively representing a digitized force profile, wherein each value in said sequence of command parameters represents a force level to be applied to said actuator for a given time interval.
38. An interface device as recited in claim 37 wherein said force profile is stored in said memory local to said microprocessor and applied to said actuator by said microprocessor in response to said state signal provided by said switch.
39. A method for interfacing a force feedback interface device manipulated by a user with a host computer system, the method comprising:
providing a user manipulable object included in said force feedback interface device, said object having a degree of freedom;
sensing positions of said user manipulable object along said degree of freedom with a sensor and producing electrical sensor signals therefrom;
updating game or simulation software implemented by said host computer system inaccordance with said position signals;
utilizing a microprocessor local to said user manipulable object to communicate with said host computer system to provide said electrical sensor signals to said host command system and to receive a host command from said host computer system, said host command including a button parameter instructing said microprocessor to read input from a designated button and generate a force in response to said designated button being activated by said user;
creating a force on said object along said degree of freedom independently utilizing said microprocessor and said host command to control an actuator coupled to said user manipulable object, including:
selecting a routine by said microprocessor in accordance with said host command;and outputting processor force commands from said microprocessor to said actuator utilizing said routine and said electrical sensor signals.
40. A method as recited in claim 39 wherein said command parameter is a magnitude parameter for controlling a magnitude of said force output by said actuator.
41. A method as recited in claim 43 wherein said command parameter is a durationparameter for controlling the time duration of said force applied to said user manipulable object.
42. A method as recited in claim 44 wherein said host command further includes acommand parameter that is a deadband parameter for indicating the size of a deadband region about an origin position of said user object, wherein said force is not applies to said user object in said deadband region.
43. An interface device for use with a host computer displaying a graphical environment and updating said graphical environment in response to user manipulation of said interface device, said host computer commanding force feedback sensations in response to said manipulations and in coordination with events within said graphical environment, said interface device comprising:
a user manipulatable object grasped by a user and supported by a support mechanism which supports said user manipulatable object with respect to an origin while allowing a plurality of degrees of freedom in the motion of said user manipulatable object with respect to said origin;
an actuator coupled to said user manipulatable object for providing a force on said user manipulatable physical object in at least one of said degrees of freedom with respect to said origin, said force generated in response to commands from said host computer and in coordination with interaction among displayed objects within said graphical environment;
a sensor providing a locative signal responsive to and corresponding with manipulation of said user manipulatable object along said degree of freedom in which said force is provided;
a user adjustable switch apparatus providing a state signal representing a state of said switch apparatus;
a device microprocessor separate from said host computer, coupled to said host computer by a communication interface and coupled to said actuator, said sensor, and to said user adjustable switch, said device microprocessor executing a local process in parallel with host generation of said graphical environment, wherein said local process executed by said local microprocessor is stored in a local memory accessible by said local microprocessor, wherein said local process enables bi-directional communication between said interface device and said hostcomputer using a force feedback command protocol, said force feedback command protocol including a plurality of discrete host commands, receives commands sent by said host computer to said interface device over said communication interface, controls said actuator in response to at least one command received from said host computer, wherein said control of said actuator is coordinated with an event occurring in the simultaneous host computer generation of said graphical environment, thereby locally creating a feel sensation that corresponds perceptually with a relevant displayed event within said graphical environment, reports a representation of said locative signal to said host computer, wherein said host computer updates said parallel execution of said graphical environment in response to said representation of said locative signal, and reports a representation of said state signal to said host computer, wherein said host computer updates said parallel execution of graphical environment in response to said switch state.
44. A device as recited in claim 43 wherein each of said plurality of discrete host commands includes a command identifier, and wherein at least one of said discrete host commands includes at least one command parameter.
45. A device as recited in claim 44 wherein said local process includes a button reflex process wherein said device microprocessor controls said force output from said actuator in response to said user manually changing said state of said user adjustable switch as indicated by a change in said state signal.
46. A device as recited in claim 45 wherein said button reflex process causes said actuator to apply a force on said user object for an interval of time after said state of said switch is changed, said interval of time specified by at least one of said received host commands.
47. A device as recited in claim 46 wherein said force is a periodic force of a magnitude and period specified by at least one of said received host commands.
48. A device as recited in claim 46 wherein said force having a magnitude that varies with time, said force derived from a digitized force profile stored in memory accessible to said device microprocessor.
49. A device as recited in claim 45 wherein said button reflex process is established in response to a host command associated with said button reflex process, said host command including at least one command parameter indicating which of a plurality of buttons coupled to said interface device should be used to trigger said force associated with said button reflex process.
50. A device as recited in claim 45 wherein said graphical environment is a video game and wherein said change in said state of said switch causes said host computer to cause a simulated weapon within said video game to fire.
51. A device as recited in claim 50 wherein said force generated by said button reflex process is used to output a recoil force sensation associated with said firing of said weapon within said video game.
52. A device as recited in claim 45 further comprising at least one additional user adjustable switch, wherein said local process includes multiple button reflex processes such that said microprocessor controls force output from said actuator according to a first process in response to a user adjusting a first switch, and wherein said microprocessor controls force output from said actuator according to a different process in response to said user adjusting a second switch.
53. A device as recited in claim 52 wherein predetermined relationships between each of said switches and associated microprocessor control processes are derived from said host commands and stored in memory local to said microprocessor.
54. A device as recited in claim 45 wherein when said switch is held in a particular state by said user for a specified time interval after outputting said force, said force is triggered again.
55. A device as recited in claim 54 wherein said time interval is an auto-fire rate intended to correlate with a firing rate of a simulated automatic weapon within a video game implemented by said host computer.
56. A device as recited in claim 43 wherein said local process computes positioncoordinates of said user manipulatable object from said locative signal, wherein said position coordinates are reported to said host computer over said communication interface.
57. A device as recited in claim 44 wherein said local process includes a groove process wherein actuators are controlled by said local microprocessor so that said user object is positioned within a simulated groove, said groove process causing said force output by said actuators to oppose user manipulations that cause said user object to move outside of boundaries of said groove.
58. A device as recited in claim 57 wherein said groove process is associated with a host command that includes a command parameter specifying a dimension of said simulated groove.
59. A device as recited in claim 57 wherein said groove process is associated with a host command that includes a command parameter for a snap-out distance, wherein said snap-out distance represents a distance of penetration into a boundary of said groove such that, when said snap-out distance is exceeded by said user object, said groove process causes said force output by said actuators to be reduced, thereby allowing said user object to move with less resistance past said boundary and creating a feel sensation for said user of moving out of said simulated groove.
60. A device as recited in claim 57 wherein said groove process is coordinated with host computer generation of said graphical environment said graphical environment including a cursor interacting with a graphical environment, wherein a location of said cursor within said graphical environment is controlled by said user manipulation of said user manipulatable object, said coordination between said local groove process and said host graphical display being such that a restriction of motion of said user manipulatable object resulting from said groove process prevents user from freely moving said cursor outside of a displayed graphical region.
61. A device as recited in claim 44 wherein said local process includes a barrier process wherein said actuators are controlled by said device microprocessor to output a force opposing user manipulations of said user object that cause said user object to move past a defined location of said barrier.
62. A device as recited in claim 61 wherein said barrier process is associated with a host command that includes command parameters specifying a magnitude of hardness of said barrier and a location of said barrier within said graphical environment.
63. A device as recited in claim 61 wherein said barrier process is associated with a host command that includes a command parameter specifying a penetration distance wherein said penetration distance represents a distance past said location of said barrier, such that when said distance is exceeded by said user object, said barrier process reduces force output by said actuators, thereby allowing said user object to move past said barrier with less resistance and creating a feel sensation for said user of breaking through said simulated barrier.
64. A device as recited in claim 61 wherein said barrier process is coordinated with host computer generation of said graphical environment, said graphical environment including a cursor interacting with a graphical user interface, wherein the location of said cursor within said graphical user interface is controlled by said user manipulation of said user manipulatable object, said coordination between said barrier process and said host graphical display being such that restriction of motion of said user manipulatable object results from said barrier process and prevents said user from freely moving said cursor outside of a displayed graphical region.
65. A device as recited in claim 44 wherein said local process includes a texture process wherein said actuator is controlled by said local microprocessor to create a spatially varying feel sensation as said user manipulatable object is moved in space.
66. A device as recited in claim 65 wherein said texture process is associated with a host command that includes command parameters specifying a magnitude of force said texture and spatial frequency of said texture.
67. A device as recited in claim 44 wherein said local process includes a repulsive field process wherein said actuator is controlled by said local microprocessor to output a force repelling motion of said user manipulatable object toward a designated field origin located in said graphical environment.
68. A device as recited in claim 67 wherein said repulsive field process is associated with a host command that includes at least one command parameter specifying at least one of magnitude of said repelling force and a location of said field origin.
69. A device as recited in claim 44 wherein said local process includes an attractive field process wherein said actuator is controlled by said local microprocessor to output a force attracting motion of said user manipulatable towards a designated field origin located in said graphical environment.
70. A device as recited in claim 69 wherein said attractive field process is associated with a host command that includes at least one command parameter specifying a magnitude of said field and a location of the field origin.
71. A device as recited in claim 41 wherein said local process includes an object collision process wherein said actuator is controlled by said local microprocessor to simulate a feel of a collision between an incident object and a compliant object having a location controlled by motion of said user manipulatable object.
72. A device as recited in claim 71 wherein said object collision process is associated with a host command that includes a command parameter representing at least one of a mass of said incident object and an incident velocity of said incident object.
73. A device as recited in claim 71 wherein said collision process is a paddle process, said incident object is a ball object, and said compliant object is a flexible paddle object, wherein said actuator is controlled by said local microprocessor to simulate the feel of a dynamic interaction between said incident ball object and said user-controlled flexible paddle object.
74. A device as recited in claim 73 wherein said paddle process is associated with a host command that includes at least one command parameter representing at least one of compliance of said flexible paddle object and a mass of said ball object.
75. A device as recited in claim 71 wherein, at completion of said collision process, said local process reports final values to said host computer representing a velocity of said incident object resulting from said collision.
76. A device as recited in claim 43 wherein said local memory includes non volatile memory, and wherein data is stored in said non volatile memory that identifies at least one of the model and capabilities of said interface device and a number of degrees of freedom in which said user object can be moved.
77. A device as recited in claim 43 wherein said communication interface is a bus shared by multiple devices and wherein data sent from said host to said local microprocessor across said bus is encrypted in data packets.
78. A device as recited in claim 77 wherein said interface device may request and receive a unique identifier from said host and store said identifier in said local memory, such that when a data packet is received from said host, said local process can check if said packet includes said identifier and thereby ensure that said data packet is intended for said device and not a different device sharing said bus.
79. An interface device as recited in claim 46 wherein said device further includes a dead-man safety switch that disconnects available power from said actuator when said user manipulatable object is not being manually engaged by said user, said safety disconnect being performed in hardware and not being dependent upon any execution of software by said local microprocessor.
80. A force feedback interface device as recited in claim 43 wherein said host command instructs said microprocessor to select a restoring force reflex process to provide restoring forces on said user object in a direction toward an origin position of said user object.
81. A force feedback interface device as recited in claim 80 wherein said restoring forces are constant in magnitude when said user object is positioned outside a region near an origin position of said user object, and wherein said restoring forces are near to zero within said region near said origin position.
82. A force feedback interface device as recited in claim 43 wherein said host command instructs said microprocessor to select a vibration reflex process to provide vibration forces on said user object, wherein said host command includes command parameters to control a frequency and a magnitude of said vibration forces.
83. An interface device for use with a host computer displaying a graphical simulation, said host computer updating said graphical simulation in response to user manipulation of said interface device and commanding force feedback sensations in response to said manipulations and in coordination with events within said graphical simulation, said interface device comprising:
a user manipulatable object grasped by a user;
a support mechanism which supports said user manipulatable object with respect to an origin while allowing a plurality of degrees of freedom in the motion of said user manipulatable object with respect to said origin;
an actuator coupled to said user manipulatable object for providing resistance to motion of said user manipulatable physical object in at least one of said degrees of freedom with respect to said origin, said resistance to motion generated in response to host commands from said host computer and in coordination with displayed graphical simulation;
a local microprocessor separate from said host computer, said local microprocessor executing a local process in parallel with host execution of said graphical simulation, said local process involving the execution of a plurality of local routines;
a communication interface coupling said local microprocessor to said host computer, wherein a PC game port included as part of said communication interface between said host computer and said local microprocessor;
a sensor apparatus coupled to said device microprocessor, said sensor apparatus providing said device microprocessor with a locative signal responsive to and corresponding with manipulation of said user manipulatable object in at least said degree of freedom in which said resistance is provided; and a user adjustable switch apparatus electrically coupled to said device microprocessor, said switch apparatus providing a state signal to said device microprocessor representing the state of said switch;

wherein said local process is executed by said device microprocessor stored in local memory coupled to said local microprocessor, said local process for enabling communication between said interface device and said host computer, receiving host commands sent by said host computer to said interface device over said communication interface, said host commands being transferred to said local microprocessor using a force feedback command protocol, said force feedback command protocol being comprised of a plurality of discrete host commands, each of which includes a command identifier and at least one of which includes one or more command parameters;
controlling said actuator in response to at least one of said decoded commands received from said host computer, wherein said control of said actuator is coordinated with an event occurring in parallel host computer execution of said graphical simulation, reporting a representation of said locative signal to said host computer, and reporting a representation of said state signal to said host computer.
84. An interface device as recited in claim 83 wherein said microprocessor implements one of a plurality of force routines selected in accordance with said command identifier and said command parameters associated with a received host command, wherein said microprocessor locally produces a force feedback sensation in accordance with said force routine by modulating said actuator, said local modulation of said actuator being initiated in response to said received host command and performed by said microprocessor independently of further interaction from said host computer during a period of time, thereby freeing said host to perform other tasks.
85. An interface device as recited in claim 83 wherein said interface communication interface includes a Universal Serial Bus interface.
86. An interface device as recited in claim 85 wherein power used to operate said interface device is drawn from said Universal Serial Bus.
87. An interface device as recited in claim 83 wherein at least one of said command parameters defines a stiffness of a simulated spring resistance felt by said user when said user manipulatable object is moved with respect to an origin position of said user manipulatable object.
88. A device as recited in claim 83 wherein said local process includes a button reflex process wherein said microprocessor controls output force of said actuator in response to said user manually changing said state of said user adjustable switch.
89. A device as recited in claim 88 wherein said button reflex process causes said actuator to apply a force on said user object for an interval of time, said interval of time specified by one of said host commands.
90. A device as recited in claim 89 wherein said button reflex process is established in response to a host command associated with said button reflex process, said command including at least one command parameter indicating which of a plurality of buttons should be used to trigger said force associated with said button reflex process.
91. A system for controlling an electromechanical interface apparatus manipulated by a user, the system comprising:
a host computer system for receiving an input control signal and for providing a host output control signal, wherein said host computer system updates a displayed graphical environment in response to said input control signal;
a microprocessor local to said interface apparatus and separate from said host computer system for receiving said host output control signal from said host computer system, determining a force, and providing a processor output control signal describing said force;
an actuator for receiving said processor output control signal and providing said force along a degree of freedom to a user manipulable object coupled to said actuator in accordance with said processor output control signal, said object being grasped and moved by said user, wherein said force is provided in parallel with said updating of said displayed graphical environment by said host computer system;
a clock coupled to said microprocessor, wherein said microprocessor accesses said clock to determine, at least in part, said force provided by said actuator;
a sensor for detecting motion of said manipulable object along said degree of freedom and outputting said input control signal including information representative of the position and motion of said object.
92. A system as recited in claim 91 wherein said sensor outputs said input control signal to said microprocessor, and wherein said microprocessor provides said input control signal to said host computer.
93. A system as recited in claim 92 wherein said microprocessor is operative in a reflex process to provide said microprocessor output control signal to said actuator in response to said position and motion of said object independently of said host output control signal.
94. A system as recited in claim 93 wherein said host output signal is a high level command from said host computer system, and wherein said microprocessor implements one of a plurality of local processes selected in accordance with said high level command to implement said reflex process.
95. A system as recited in claim 94 wherein said host computer can override said reflex process such that said host output signal includes a force command that is relayed directly to said actuator by said microprocessor.
96. A system as recited in claim 92 wherein said object includes a joystick.
97. A system as recited in claim 95 further comprising a serial interface for outputting said host output control signal from said host computer system and for receiving said input control signal to said host computer system
98. A system as recited in claim 97 further comprising an additional interface for providing said input signal to said host computer system through a game port of said host computer system.
99. A system as recited in claim 92 wherein said actuator is a servo motor or a voice coil.
100. A system as recited in claim 92 wherein said process updated by said host computer system includes game software, wherein said host computer system includes a display device for displaying a view of a video game implemented by said game software to said user, wherein said user can interact with said video game by manipulating said object.
101. A method for controlling a force feedback interface device manipulated by a user, the method comprising the steps of:
outputting a high level host command from a host computer system to a microprocessor local to said force feedback interface device and separate from said host computer system, said high level host command instructing said processor to select one of a plurality of force sensation processes available to said microprocessor;

inputting a position signal to said microprocessor from a sensor included in said force feedback interface device, said position signal including information representative of the position and motion of an object of said interface device grasped by said user, wherein said position signal is read from said sensor by said microprocessor according to said force sensation process independently of said host computer system and is sent to said host computer system from said microprocessor;
outputting a microprocessor force command from said microprocessor to an actuator, said microprocessor force command being output according to said force sensation process independently of said host computer system;
providing a force from said actuator to said object grasped by said user, wherein a direction and a magnitude of said force is in accordance with said microprocessor force command and wherein said force sensation process determines a magnitude of said force to be provided by said actuator;
updating host software implemented by said host computer system in accordance with said position signal and displaying images on a visual output device and manipulating said images in accordance with said position signal and in conjunction with force output by said actuator; and overriding, when appropriate, said force sensation process by outputting a high level host command from said host computer system that includes a force command relayed directly to said actuator by said microprocessor.
102. A method as recited in claim 101 wherein a high level host force command is output by said host computer system when a change in a type of said force on said object is required, said change being based on, at least in part, a software process implemented by said host computer system.
103. A method as recited in claim 102 wherein said change is additionally based on said electrical sensor signals and timing information provided by a clock coupled to said microprocessor.
104. A method as recited in claim 103 wherein said type of said force includes one of the group consisting of spring force, damping force, and inertia force.
105. A method as recited in claim 101 further comprising a step of said host computer system outputting audio feedback to said user when an audio event occurs in a host application program, said audio feedback being output in synchronization with said output of said force within a tolerance of about 30 milliseconds when said force is desired to correspond to said audio event.
106. A method as recited in claim 105 wherein said onset of said audio feedback occurs within about 30 milliseconds of an onset of said corresponding force, and wherein said audio feedback has an amplitude in direct proportion to a magnitude of said force.
107. A method as recited in claim 101 wherein said host computer system outputs visual images on a display screen according to visual events in a host application program, said visual events being synchronized with said output of said force within a tolerance of about 30 milliseconds when said force is desired to correspond to said visual event.
108. A method as recited in claim 101 wherein said object includes a joystick that can be moved by said user in at least two degrees of freedom.
109. A method as recited in claim 101 wherein said host computer receives said position signal and outputs said host force command signal using a serial interface.
110. A method as recited in claim 109 wherein said serial interface is a Universal Serial Bus (USB) interface.
111. A method as recited in claim 101 wherein said magnitude of said force is determined, at least in part, from a position of said object along said degree of freedom.
112. A method as recited in claim 101 wherein said magnitude of said force is determined, in part, from a position and a velocity of said object moving along said degree of freedom.
113. A method as recited in claim 101 wherein said magnitude of said force is determined, in part, from an acceleration of said object along said degree of freedom.
114. A method as recited in claim 101 wherein said magnitude of said force is determined, in part, from a clock providing timing information for said force commands.
115. A method as recited in claim 101 wherein said magnitude of said force is determined, in part, from input data provided by a button input device included in said force feedback interface device.
116. A method as recited in claim 109 further comprising a step of using calibration parameters stored in a memory device for adjusting said force consistently with output forces of a plurality of other force feedback interface devices having variations in physical properties resulting from a manufacturing process.
117. A force feedback interface device manipulated by a user and communicating with a host computer system implementing and displaying a graphical environment, said host computer system updating said graphical environment in response to input signals provided in response to said manipulation of said interface device, said interface device also allowing said host computer to command force feedback sensations in response to said manipulation and in coordination with events within said graphical environment, said force feedback interface device comprising:
a user object movable in a degree of freedom by a user and being physically contacted by said user;
a support mechanism which supports said user object on a fixed surface while allowing a said degree of freedom in the motion of said user object with respect to said fixed surface;
an actuator for providing a resistance along said degree of freedom to motion of said user object in said degree of freedom in response to and in accordance with a force command from said host computer system, said force command being received by said force feedback interface device via a first serial interface; and a sensor for detecting a position of said user object along said degree of freedom and outputting said input signals to said host computer system via a second serial interface separate from said first serial interface and coupled to a game port of said host computer system, said input signals including information representative of said position of said user object, wherein said first serial interface and said second serial interface function in parallel such that force commands are transmitted from said host computer and input signals are received by said host computer simultaneously.
118. A force feedback interface device as recited in claim 117 further comprising a microprocessor, separate from said host computer system, for communicating with said host computer system via said first and second serial interfaces by receiving said force command from said host computer system, wherein said actuator is coupled to said microprocessor for applying a force along a degree of freedom to said user object in accordance with a microprocessor force command from said microprocessor, said microprocessor force command being derived from said host force command, and wherein said sensor is electrically coupled to said microprocessor, to output said input signals to said microprocessor, and wherein said microprocessor sends said input signals to said host computer system.
119 A force feedback interface device as recited in claim 118 wherein said force command is a high level command instructing said microprocessor to select one of a plurality of force subroutines available to said microprocessor, wherein each of said force subroutines instructs said microprocessor to output force commands to said actuator and input position signals from said sensor independently of said host computer system.
120. A force feedback interface device as recited in claim 118 further comprising a gimbal mechanism coupled to said user object to provide said degree of freedom, wherein said gimbal mechanism includes a closed loop five member linkage.
121. A method for interfacing motion of an object with a host computer system, the method comprising the steps of:
providing an object having a degree of freedom:
sensing positions of said object along said degree of freedom with a sensor and producing electrical sensor signals therefrom;
creating a force on said object along said degree of freedom by controlling an actuator coupled to said object, including retrieving force profile including a plurality of stored digital force values from a memory device and outputting said retrieved force values to said actuator to output corresponding forces on said object, wherein said stored digital force values are output to said actuator according to a time parameter that defines a time interval between each of said forces corresponding to said force values.
122. A method as recited in claim 121 wherein said step of creating a force on said object further includes utilizing a microprocessor separate from said host computer system to communicate with said host computer system to provide said electrical sensor signals to said host computer system, receive host force commands from said host computer system, and output force commands to said actuator.
123. A method as recited in claim 122 wherein said microprocessor retrieves said force profile and outputs said retrieved force values to said actuator.
124. A method as recited in claim 121 wherein said host computer retrieves said plurality of stored digital force values and outputs said retrieved force values to said actuator.
125. A method as recited in claim 121 wherein said time interval of said time parameter is implemented using timing information provided by a system clock.
126. A method as recited in claim 121 wherein said stored digital force values are also output to said actuator based on said electrical sensor signals describing a position of said object.
127. A method as recited in claim 121 wherein said time parameter is variable such that a length of said time interval between said forces can be varied to provide different force sensations to a user physically contacting said object.
CA2233136A 1995-09-27 1996-09-25 Method and apparatus for controlling force feedback interface systems utilizing a host computer Expired - Lifetime CA2233136C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/534,791 US5739811A (en) 1993-07-16 1995-09-27 Method and apparatus for controlling human-computer interface systems providing force feedback
US08/534,791 1995-09-27
US08/566,282 1995-12-01
US08/566,282 US5734373A (en) 1993-07-16 1995-12-01 Method and apparatus for controlling force feedback interface systems utilizing a host computer
PCT/US1996/015373 WO1997012357A1 (en) 1995-09-27 1996-09-25 Method and apparatus for controlling force feedback interface systems utilizing a host computer

Publications (2)

Publication Number Publication Date
CA2233136A1 true CA2233136A1 (en) 1997-04-03
CA2233136C CA2233136C (en) 2012-01-31

Family

ID=27064587

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2233136A Expired - Lifetime CA2233136C (en) 1995-09-27 1996-09-25 Method and apparatus for controlling force feedback interface systems utilizing a host computer

Country Status (6)

Country Link
US (5) US5734373A (en)
EP (1) EP0852789B1 (en)
JP (3) JPH11514469A (en)
CA (1) CA2233136C (en)
DE (1) DE69636703T2 (en)
WO (1) WO1997012357A1 (en)

Families Citing this family (541)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889670A (en) * 1991-10-24 1999-03-30 Immersion Corporation Method and apparatus for tactilely responsive user interface
US6801008B1 (en) 1992-12-02 2004-10-05 Immersion Corporation Force feedback system and actuator power management
US6131097A (en) * 1992-12-02 2000-10-10 Immersion Corporation Haptic authoring
US5629594A (en) 1992-12-02 1997-05-13 Cybernet Systems Corporation Force feedback system
US7345672B2 (en) * 1992-12-02 2008-03-18 Immersion Corporation Force feedback system and actuator power management
US6433771B1 (en) * 1992-12-02 2002-08-13 Cybernet Haptic Systems Corporation Haptic device attribute control
US5739811A (en) 1993-07-16 1998-04-14 Immersion Human Interface Corporation Method and apparatus for controlling human-computer interface systems providing force feedback
US5701140A (en) 1993-07-16 1997-12-23 Immersion Human Interface Corp. Method and apparatus for providing a cursor control interface with force feedback
US5734373A (en) 1993-07-16 1998-03-31 Immersion Human Interface Corporation Method and apparatus for controlling force feedback interface systems utilizing a host computer
US6437771B1 (en) 1995-01-18 2002-08-20 Immersion Corporation Force feedback device including flexure member between actuator and user object
US5721566A (en) 1995-01-18 1998-02-24 Immersion Human Interface Corp. Method and apparatus for providing damping force feedback
US5731804A (en) * 1995-01-18 1998-03-24 Immersion Human Interface Corp. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems
US5805140A (en) * 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
US6057828A (en) * 1993-07-16 2000-05-02 Immersion Corporation Method and apparatus for providing force sensations in virtual environments in accordance with host software
US5625576A (en) 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
EP0775961B1 (en) * 1994-07-19 2001-10-17 Asahi Kasei Kabushiki Kaisha Virtual reality and remote reality system
ATE189539T1 (en) * 1994-08-18 2000-02-15 Interval Research Corp INPUT DEVICE FOR VIDEO WITH TACTILE FEEDBACK DEPENDING ON THE CONTENT OF THE VIDEO
US6422941B1 (en) * 1994-09-21 2002-07-23 Craig Thorner Universal tactile feedback system for computer video games and simulations
US20030040361A1 (en) * 1994-09-21 2003-02-27 Craig Thorner Method and apparatus for generating tactile feedback via relatively low-burden and/or zero burden telemetry
US5642469A (en) * 1994-11-03 1997-06-24 University Of Washington Direct-drive manipulator for pen-based force display
US5666138A (en) 1994-11-22 1997-09-09 Culver; Craig F. Interface control
US6241611B1 (en) 1995-05-10 2001-06-05 Nintendo Co., Ltd. Function expansion device and operating device using the function expansion device
DE69623903T2 (en) * 1995-05-10 2003-05-15 Nintendo Co Ltd ACTUATING DEVICE WITH ANALOG STICK COVER
CA2194782C (en) * 1995-05-10 2004-07-20 Satoshi Nishiumi Image processing system using analog joystick
US5691897A (en) 1995-05-30 1997-11-25 Roy-G-Biv Corporation Motion control systems
US6941543B1 (en) 1995-05-30 2005-09-06 Roy-G-Biv Corporation Motion control system and method
US20060206219A1 (en) * 1995-05-30 2006-09-14 Brown David W Motion control systems and methods
US20100131081A1 (en) * 1995-05-30 2010-05-27 Brown David W Systems and methods for motion control
US7139843B1 (en) 1995-05-30 2006-11-21 Roy-G-Biv Corporation System and methods for generating and communicating motion data through a distributed network
US6859671B1 (en) 1995-05-30 2005-02-22 Roy-G-Biv Corporation Application programs for motion control devices including access limitations
US7024666B1 (en) 2002-01-28 2006-04-04 Roy-G-Biv Corporation Motion control systems and methods
US7137107B1 (en) 2003-04-29 2006-11-14 Roy-G-Biv Corporation Motion control systems and methods
US5691898A (en) 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US6166723A (en) * 1995-11-17 2000-12-26 Immersion Corporation Mouse interface device providing force feedback
US6940486B2 (en) * 1995-08-03 2005-09-06 Vulcan Patents Llc Computerized interactor systems and methods for providing same
TW273519B (en) * 1995-09-12 1996-04-01 Konami Co Ltd Driving game machine
US5959613A (en) * 1995-12-01 1999-09-28 Immersion Corporation Method and apparatus for shaping force signals for a force feedback device
US5999168A (en) 1995-09-27 1999-12-07 Immersion Corporation Haptic accelerator for force feedback computer peripherals
US6283857B1 (en) 1996-09-24 2001-09-04 Nintendo Co., Ltd. Three-dimensional image processing apparatus with enhanced automatic and user point of view control
JP3524247B2 (en) 1995-10-09 2004-05-10 任天堂株式会社 Game machine and game machine system using the same
MX9704155A (en) 1995-10-09 1997-09-30 Nintendo Co Ltd Three-dimensional image processing system.
JP3544268B2 (en) 1995-10-09 2004-07-21 任天堂株式会社 Three-dimensional image processing apparatus and image processing method using the same
US6007428A (en) 1995-10-09 1999-12-28 Nintendo Co., Ltd. Operation controlling device and video processing system used therewith
US5754023A (en) 1995-10-26 1998-05-19 Cybernet Systems Corporation Gyro-stabilized platforms for force-feedback applications
WO1997017651A1 (en) * 1995-11-10 1997-05-15 Nintendo Co., Ltd. Joystick apparatus
US6100874A (en) * 1995-11-17 2000-08-08 Immersion Corporation Force feedback mouse interface
US6704001B1 (en) 1995-11-17 2004-03-09 Immersion Corporation Force feedback device including actuator with moving magnet
US6639581B1 (en) 1995-11-17 2003-10-28 Immersion Corporation Flexure mechanism for interface device
US5825308A (en) * 1996-11-26 1998-10-20 Immersion Human Interface Corporation Force feedback interface having isotonic and isometric functionality
US6267673B1 (en) 1996-09-20 2001-07-31 Nintendo Co., Ltd. Video game system with state of next world dependent upon manner of entry from previous world via a portal
US6155926A (en) 1995-11-22 2000-12-05 Nintendo Co., Ltd. Video game system and method with enhanced three-dimensional character and background control
US6022274A (en) * 1995-11-22 2000-02-08 Nintendo Co., Ltd. Video game system using memory module
US6139433A (en) 1995-11-22 2000-10-31 Nintendo Co., Ltd. Video game system and method with enhanced three-dimensional character and background control due to environmental conditions
US6061004A (en) * 1995-11-26 2000-05-09 Immersion Corporation Providing force feedback using an interface device including an indexing function
WO1997020305A1 (en) 1995-11-30 1997-06-05 Virtual Technologies, Inc. Tactile feedback man-machine interface device
US7027032B2 (en) * 1995-12-01 2006-04-11 Immersion Corporation Designing force sensations for force feedback computer applications
US5956484A (en) * 1995-12-13 1999-09-21 Immersion Corporation Method and apparatus for providing force feedback over a computer network
US6028593A (en) * 1995-12-01 2000-02-22 Immersion Corporation Method and apparatus for providing simulated physical interactions within computer generated environments
US6169540B1 (en) 1995-12-01 2001-01-02 Immersion Corporation Method and apparatus for designing force sensations in force feedback applications
US8508469B1 (en) 1995-12-01 2013-08-13 Immersion Corporation Networked applications including haptic feedback
US6219032B1 (en) 1995-12-01 2001-04-17 Immersion Corporation Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
US6147674A (en) 1995-12-01 2000-11-14 Immersion Corporation Method and apparatus for designing force sensations in force feedback computer applications
US6300936B1 (en) * 1997-11-14 2001-10-09 Immersion Corporation Force feedback system including multi-tasking graphical host environment and interface device
US6161126A (en) * 1995-12-13 2000-12-12 Immersion Corporation Implementing force feedback over the World Wide Web and other computer networks
US6078308A (en) * 1995-12-13 2000-06-20 Immersion Corporation Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object
SE519661C2 (en) * 1996-02-23 2003-03-25 Immersion Corp Pointing devices and method for marking graphic details on a display with sensory feedback upon finding said detail
US6050718A (en) * 1996-03-28 2000-04-18 Immersion Corporation Method and apparatus for providing high bandwidth force feedback with improved actuator feel
US7225404B1 (en) 1996-04-04 2007-05-29 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US6111577A (en) * 1996-04-04 2000-08-29 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US6374255B1 (en) * 1996-05-21 2002-04-16 Immersion Corporation Haptic authoring
JP2828953B2 (en) * 1996-05-31 1998-11-25 コナミ株式会社 Gaming machine manual operation device
US5921780A (en) * 1996-06-28 1999-07-13 Myers; Nicole J. Racecar simulator and driver training system and method
US6125385A (en) * 1996-08-01 2000-09-26 Immersion Corporation Force feedback implementation in web pages
US6084587A (en) * 1996-08-02 2000-07-04 Sensable Technologies, Inc. Method and apparatus for generating and interfacing with a haptic virtual reality environment
AU734153B2 (en) * 1996-08-09 2001-06-07 Konami Digital Entertainment Co., Ltd. A driving game machine and a storage medium for storing a driving game program
US6929481B1 (en) 1996-09-04 2005-08-16 Immersion Medical, Inc. Interface device and method for interfacing instruments to medical procedure simulation systems
US7815436B2 (en) 1996-09-04 2010-10-19 Immersion Corporation Surgical simulation interface device and method
US6106301A (en) * 1996-09-04 2000-08-22 Ht Medical Systems, Inc. Interventional radiology interface apparatus and method
US6024576A (en) * 1996-09-06 2000-02-15 Immersion Corporation Hemispherical, high bandwidth mechanical interface for computer systems
US6241610B1 (en) 1996-09-20 2001-06-05 Nintendo Co., Ltd. Three-dimensional image processing system having dynamically changing character polygon number
US6244959B1 (en) 1996-09-24 2001-06-12 Nintendo Co., Ltd. Three-dimensional image processing system with enhanced character control
US6139434A (en) * 1996-09-24 2000-10-31 Nintendo Co., Ltd. Three-dimensional image processing apparatus with enhanced automatic and user point of view control
KR100629818B1 (en) 1996-10-11 2007-07-13 소니 컴퓨터 엔터테인먼트 인코포레이티드 Operating Device for Game Machines
US6411276B1 (en) * 1996-11-13 2002-06-25 Immersion Corporation Hybrid control of haptic feedback for host computer and interface device
US8235821B2 (en) 1996-11-14 2012-08-07 Bally Gaming, Inc. Progressive controller and TCP/IP in gaming system
US8944909B2 (en) * 1996-11-14 2015-02-03 Bally Gaming, Inc. Gaming system having a plurality of players and randomly incremented progressive prize
US6758755B2 (en) 1996-11-14 2004-07-06 Arcade Planet, Inc. Prize redemption system for games executed over a wide area network
US7489309B2 (en) * 1996-11-26 2009-02-10 Immersion Corporation Control knob with multiple degrees of freedom and force feedback
US6686911B1 (en) 1996-11-26 2004-02-03 Immersion Corporation Control knob with control modes and force feedback
US6128006A (en) * 1998-03-26 2000-10-03 Immersion Corporation Force feedback mouse wheel and other control wheels
US6154201A (en) * 1996-11-26 2000-11-28 Immersion Corporation Control knob with multiple degrees of freedom and force feedback
WO1998033136A1 (en) * 1997-01-27 1998-07-30 Immersion Human Interface Corporation Method and apparatus for providing high bandwidth, realistic force feedback including an improved actuator
US6996096B2 (en) * 1997-02-14 2006-02-07 Canon Kabushiki Kaisha Communication apparatus and a method of controlling a communication apparatus
US6954899B1 (en) 1997-04-14 2005-10-11 Novint Technologies, Inc. Human-computer interface including haptically controlled interactions
US20060053371A1 (en) * 1997-04-14 2006-03-09 Anderson Thomas G Navigation and viewing in a multidimensional space
US6020876A (en) 1997-04-14 2000-02-01 Immersion Corporation Force feedback interface with selective disturbance filter
US6262712B1 (en) * 1997-04-24 2001-07-17 Microsoft Corporation Handle sensor with fade-in
US6641479B1 (en) * 1997-04-24 2003-11-04 Sony Computer Entertainment, Inc. Control unit and system utilizing the control unit
JPH10295937A (en) * 1997-04-24 1998-11-10 Sony Computer Entertainment:Kk Operation device for game machine
US6285351B1 (en) 1997-04-25 2001-09-04 Immersion Corporation Designing force sensations for computer applications including sounds
US6005551A (en) * 1997-04-25 1999-12-21 Microsoft Corporation Offline force effect rendering
US6292170B1 (en) 1997-04-25 2001-09-18 Immersion Corporation Designing compound force sensations for computer applications
EP0916985A1 (en) * 1997-05-30 1999-05-19 Ngk Insulators, Ltd. Display
US6256047B1 (en) * 1997-06-04 2001-07-03 Konami Co., Ltd. Method of judging hits and computer-readable storage medium storing game data
JP3167963B2 (en) * 1997-07-07 2001-05-21 コナミ株式会社 Manual operation device and game device
JP3655438B2 (en) * 1997-07-17 2005-06-02 任天堂株式会社 Video game system
GB2363584B (en) * 1997-07-17 2002-02-20 Nintendo Co Ltd Video game system
US5958027A (en) * 1997-08-05 1999-09-28 Advanced Micro Devices, Inc. Method and system for optimizing the flow of isochronous data and clock rate information
US6292174B1 (en) 1997-08-23 2001-09-18 Immersion Corporation Enhanced cursor control using limited-workspace force feedback devices
US6252579B1 (en) 1997-08-23 2001-06-26 Immersion Corporation Interface device and method for providing enhanced cursor control with force feedback
TW389918B (en) * 1997-08-24 2000-05-11 Sony Computer Entertainment Inc Game apparatus, game machine manipulation device, game system and interactive communication method for game apparatus
US20010032278A1 (en) * 1997-10-07 2001-10-18 Brown Stephen J. Remote generation and distribution of command programs for programmable devices
US6104382A (en) * 1997-10-31 2000-08-15 Immersion Corporation Force feedback transmission mechanisms
US6020875A (en) * 1997-10-31 2000-02-01 Immersion Corporation High fidelity mechanical transmission system and interface device
US6281651B1 (en) 1997-11-03 2001-08-28 Immersion Corporation Haptic pointing devices
US6252583B1 (en) * 1997-11-14 2001-06-26 Immersion Corporation Memory and force output management for a force feedback system
US6448977B1 (en) 1997-11-14 2002-09-10 Immersion Corporation Textures and other spatial sensations for a relative haptic interface device
US6211861B1 (en) * 1998-06-23 2001-04-03 Immersion Corporation Tactile mouse device
US8020095B2 (en) 1997-11-14 2011-09-13 Immersion Corporation Force feedback system including multi-tasking graphical host environment
US6088019A (en) * 1998-06-23 2000-07-11 Immersion Corporation Low cost force feedback device with actuator for non-primary axis
US6243078B1 (en) * 1998-06-23 2001-06-05 Immersion Corporation Pointing device with forced feedback button
US6256011B1 (en) 1997-12-03 2001-07-03 Immersion Corporation Multi-function control device with force feedback
US6191796B1 (en) 1998-01-21 2001-02-20 Sensable Technologies, Inc. Method and apparatus for generating and interfacing with rigid and deformable surfaces in a haptic virtual reality environment
US6437770B1 (en) 1998-01-26 2002-08-20 University Of Washington Flat-coil actuator having coil embedded in linkage
IL123073A0 (en) 1998-01-26 1998-09-24 Simbionix Ltd Endoscopic tutorial system
JP2002502058A (en) * 1998-01-28 2002-01-22 エイチティー メディカル システムズ,インコーポレイティド Interface device and method for connection of an instrument to a vascular access simulation system
GB2349730B (en) * 1998-01-28 2003-04-09 Ht Medical Systems Inc Interface device and method for interfacing instruments to medical procedure simulation system
US6304091B1 (en) 1998-02-10 2001-10-16 Immersion Corporation Absolute position sensing by phase shift detection using a variable capacitor
US6878066B2 (en) * 1998-02-13 2005-04-12 Freedom Wave Llc Wireless game control units
JPH11239674A (en) * 1998-02-26 1999-09-07 Namco Ltd Controller for game machine
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US8075570B2 (en) * 2001-11-28 2011-12-13 Aptus Endosystems, Inc. Intraluminal prosthesis attachment systems and methods
US20080055241A1 (en) * 1998-03-26 2008-03-06 Immersion Corporation Systems and Methods for Haptic Feedback Effects for Control Knobs
US6067077A (en) 1998-04-10 2000-05-23 Immersion Corporation Position sensing for force feedback devices
US6300938B1 (en) 1998-04-13 2001-10-09 Immersion Corporation Multiple-cylinder control device for computers and other electronic apparatus
GB2336433B (en) * 1998-04-14 2002-02-06 Mitutoyo Corp Touch signal probe
US6704683B1 (en) 1998-04-28 2004-03-09 Immersion Corporation Direct velocity estimation for encoders using nonlinear period measurement
US6697043B1 (en) 1999-12-21 2004-02-24 Immersion Corporation Haptic interface device and actuator assembly providing linear haptic sensations
US6707443B2 (en) 1998-06-23 2004-03-16 Immersion Corporation Haptic trackball device
AU4707499A (en) * 1998-06-23 2000-01-10 Immersion Corporation Low cost force feedback devices
US6184868B1 (en) 1998-09-17 2001-02-06 Immersion Corp. Haptic feedback control devices
US6429846B2 (en) * 1998-06-23 2002-08-06 Immersion Corporation Haptic feedback for touchpads and other touch controls
US6552722B1 (en) 1998-07-17 2003-04-22 Sensable Technologies, Inc. Systems and methods for sculpting virtual objects in a haptic virtual reality environment
US6417638B1 (en) * 1998-07-17 2002-07-09 Sensable Technologies, Inc. Force reflecting haptic interface
US6985133B1 (en) 1998-07-17 2006-01-10 Sensable Technologies, Inc. Force reflecting haptic interface
US6421048B1 (en) * 1998-07-17 2002-07-16 Sensable Technologies, Inc. Systems and methods for interacting with virtual objects in a haptic virtual reality environment
US7038667B1 (en) * 1998-10-26 2006-05-02 Immersion Corporation Mechanisms for control knobs and other interface devices
WO2000026891A1 (en) * 1998-11-04 2000-05-11 Immersion Corporation Force feedback device including actuator with moving magnet
US6339419B1 (en) * 1998-11-10 2002-01-15 Lord Corporation Magnetically-controllable, semi-active haptic interface system and apparatus
US6317119B1 (en) * 1998-11-13 2001-11-13 Creative Technology Ltd Speed-compensated joystick
US6650338B1 (en) 1998-11-24 2003-11-18 Interval Research Corporation Haptic interaction with video and image data
US6320284B1 (en) 1998-12-23 2001-11-20 Engineering Matters, Inc. Motor assembly allowing output in multiple degrees of freedom
US6664666B2 (en) * 1998-12-23 2003-12-16 Engineering Matters, Inc. Motor assembly allowing output in multiple degrees of freedom
WO2000040940A1 (en) * 1999-01-08 2000-07-13 Meritor Light Vehicle Systems (Uk) Limited A method of determining whether a movable component of an apparatus meets predetermined movement characteristics
US6781569B1 (en) 1999-06-11 2004-08-24 Immersion Corporation Hand controller
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
US6404417B1 (en) * 1999-03-22 2002-06-11 Logitech Europe S.A. Direct drive rotational sensor adapted to withstand off-axis loading
US6999955B1 (en) * 1999-04-20 2006-02-14 Microsoft Corporation Systems and methods for estimating and integrating measures of human cognitive load into the behavior of computational applications and services
US7046229B1 (en) 1999-04-20 2006-05-16 Microsoft Corporation Computer input device providing absolute and relative positional information
US6424356B2 (en) * 1999-05-05 2002-07-23 Immersion Corporation Command of force sensations in a forceback system using force effect suites
US6762745B1 (en) * 1999-05-10 2004-07-13 Immersion Corporation Actuator control providing linear and continuous force output
US6903721B2 (en) * 1999-05-11 2005-06-07 Immersion Corporation Method and apparatus for compensating for position slip in interface devices
US7456820B1 (en) * 1999-05-25 2008-11-25 Silverbrook Research Pty Ltd Hand drawing capture via interface surface
US8169402B2 (en) * 1999-07-01 2012-05-01 Immersion Corporation Vibrotactile haptic feedback devices
US7561142B2 (en) * 1999-07-01 2009-07-14 Immersion Corporation Vibrotactile haptic feedback devices
US6693622B1 (en) 1999-07-01 2004-02-17 Immersion Corporation Vibrotactile haptic feedback devices
DE20022244U1 (en) * 1999-07-01 2001-11-08 Immersion Corp Control of vibrotactile sensations for haptic feedback devices
US6337678B1 (en) 1999-07-21 2002-01-08 Tactiva Incorporated Force feedback computer input and output device with coordinated haptic elements
US6564168B1 (en) * 1999-09-14 2003-05-13 Immersion Corporation High-resolution optical encoder with phased-array photodetectors
DE20080209U1 (en) * 1999-09-28 2001-08-09 Immersion Corp Control of haptic sensations for interface devices with vibrotactile feedback
US6375572B1 (en) 1999-10-04 2002-04-23 Nintendo Co., Ltd. Portable game apparatus with acceleration sensor and information storage medium storing a game progam
JP3847058B2 (en) * 1999-10-04 2006-11-15 任天堂株式会社 GAME SYSTEM AND GAME INFORMATION STORAGE MEDIUM USED FOR THE SAME
US8032605B2 (en) * 1999-10-27 2011-10-04 Roy-G-Biv Corporation Generation and distribution of motion commands over a distributed network
US20100131078A1 (en) * 1999-10-27 2010-05-27 Brown David W Event driven motion systems
US6885898B1 (en) 2001-05-18 2005-04-26 Roy-G-Biv Corporation Event driven motion systems
US6743104B1 (en) 1999-11-18 2004-06-01 Nintendo Co., Ltd. Portable game machine
US6693626B1 (en) 1999-12-07 2004-02-17 Immersion Corporation Haptic feedback using a keyboard device
US6822635B2 (en) * 2000-01-19 2004-11-23 Immersion Corporation Haptic interface for laptop computers and other portable devices
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7965276B1 (en) * 2000-03-09 2011-06-21 Immersion Corporation Force output adjustment in force feedback devices based on user contact
US6616613B1 (en) * 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
DE10021369B4 (en) * 2000-05-02 2005-03-31 Mitterauer, Bernhard, Prof. Dr. Computer system, in particular for the simulation of human perception by sensory organs
US6833826B1 (en) 2000-05-06 2004-12-21 Novint Technologies, Inc. Human-computer interface
US6724400B1 (en) 2000-05-06 2004-04-20 Novint Technologies, Inc. Human-computer interface incorporating personal and application domains
US6710764B1 (en) 2000-05-09 2004-03-23 Logitech Europe S.A. Method and system for processing force feedback effects generated at a host for playback at a physical interaction device
JP2003534620A (en) 2000-05-24 2003-11-18 イマージョン コーポレイション Haptic device and method using electroactive polymer
US7159008B1 (en) 2000-06-30 2007-01-02 Immersion Corporation Chat interface with haptic feedback functionality
US6906697B2 (en) 2000-08-11 2005-06-14 Immersion Corporation Haptic sensations for tactile feedback interface devices
US7117136B1 (en) * 2000-08-18 2006-10-03 Linden Research, Inc. Input and feedback system
CN100375993C (en) * 2000-09-28 2008-03-19 伊默逊股份有限公司 Directional haptic feedback for haptic feedback interface devices
US7182691B1 (en) 2000-09-28 2007-02-27 Immersion Corporation Directional inertial tactile feedback using rotating masses
US6995744B1 (en) 2000-09-28 2006-02-07 Immersion Corporation Device and assembly for providing linear tactile sensations
US7084854B1 (en) * 2000-09-28 2006-08-01 Immersion Corporation Actuator for providing tactile sensations and device for directional tactile sensations
US6727924B1 (en) 2000-10-17 2004-04-27 Novint Technologies, Inc. Human-computer interface including efficient three-dimensional controls
US7066781B2 (en) 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
WO2002035457A2 (en) * 2000-10-27 2002-05-02 Makex Limited Haptic input device
US6867770B2 (en) * 2000-12-14 2005-03-15 Sensable Technologies, Inc. Systems and methods for voxel warping
AU2002251731A1 (en) * 2001-01-04 2002-07-16 Roy-G-Biv Corporation Systems and methods for transmitting motion control data
US6958752B2 (en) * 2001-01-08 2005-10-25 Sensable Technologies, Inc. Systems and methods for three-dimensional modeling
US6641480B2 (en) * 2001-01-29 2003-11-04 Microsoft Corporation Force feedback mechanism for gamepad device
WO2002071241A1 (en) * 2001-02-09 2002-09-12 Roy-G-Biv Corporation Event management systems and methods for the distribution of motion control commands
US7904194B2 (en) 2001-02-09 2011-03-08 Roy-G-Biv Corporation Event management systems and methods for motion control systems
US9625905B2 (en) * 2001-03-30 2017-04-18 Immersion Corporation Haptic remote control for toys
US7202851B2 (en) * 2001-05-04 2007-04-10 Immersion Medical Inc. Haptic interface for palpation simulation
US20020171675A1 (en) * 2001-05-15 2002-11-21 International Business Machines Corporation Method and system for graphical user interface (GUI) widget having user-selectable mass
US6937033B2 (en) * 2001-06-27 2005-08-30 Immersion Corporation Position sensor with resistive element
US7056123B2 (en) * 2001-07-16 2006-06-06 Immersion Corporation Interface apparatus with cable-driven force feedback and grounded actuators
JP3958944B2 (en) * 2001-07-17 2007-08-15 アルプス電気株式会社 Multi-function input device
US6728601B2 (en) * 2001-07-19 2004-04-27 International Business Machines Corporation Multiple host power control system and method
US8364342B2 (en) * 2001-07-31 2013-01-29 Immersion Corporation Control wheel with haptic feedback
DE10138537B4 (en) * 2001-08-06 2006-07-06 Siemens Ag Tactile feedback to visualize tissue elasticity
US20030069998A1 (en) * 2001-08-31 2003-04-10 Brown David W. Motion services protocol accessible through uniform resource locator (URL)
FR2829338B1 (en) * 2001-09-03 2003-10-31 Schneider Automation AUTOMATION EQUIPMENT EQUIPPED WITH A USB TYPE LINK
EP1293950A1 (en) * 2001-09-18 2003-03-19 BRITISH TELECOMMUNICATIONS public limited company Haptic interface
US7225115B2 (en) * 2001-10-04 2007-05-29 Novint Technologies, Inc. Coordinating haptics with visual images in a human-computer interface
JP3920618B2 (en) * 2001-10-18 2007-05-30 アルプス電気株式会社 Force sense input device
CN100474216C (en) * 2001-10-30 2009-04-01 英默森公司 Methods and apparatus for providing haptic feedback in interacting with virtual pets
EP1456830A1 (en) * 2001-11-14 2004-09-15 The Henry M. Jackson Foundation Multi-tactile display haptic interface device
US7162306B2 (en) * 2001-11-19 2007-01-09 Medtronic Physio - Control Corp. Internal medical device communication bus
US20030095151A1 (en) * 2001-11-20 2003-05-22 Shackleford J. Barry Real-time interactive adjustment of control parameters for a genetic algorithm computer
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US20110087320A1 (en) * 2001-11-28 2011-04-14 Aptus Endosystems, Inc. Devices, Systems, and Methods for Prosthesis Delivery and Implantation, Including a Prosthesis Assembly
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
US8231639B2 (en) 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
CA2464048C (en) 2001-11-28 2010-06-15 Lee Bolduc Endovascular aneurysm repair system
JP4785320B2 (en) * 2002-01-31 2011-10-05 キヤノン株式会社 Storage device
US6876248B2 (en) * 2002-02-14 2005-04-05 Rambus Inc. Signaling accommodation
US7333785B1 (en) * 2002-02-20 2008-02-19 Logitech Europe S.A. Power management for wireless peripheral device with force feedback
JP4263870B2 (en) * 2002-03-11 2009-05-13 アルプス電気株式会社 Haptic controller
JP4061105B2 (en) * 2002-03-29 2008-03-12 アルプス電気株式会社 Haptic device
US6904823B2 (en) 2002-04-03 2005-06-14 Immersion Corporation Haptic shifting devices
US20070066396A1 (en) 2002-04-05 2007-03-22 Denise Chapman Weston Retail methods for providing an interactive product to a consumer
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
US7369115B2 (en) * 2002-04-25 2008-05-06 Immersion Corporation Haptic devices having multiple operational modes including at least one resonant mode
US7161580B2 (en) * 2002-04-25 2007-01-09 Immersion Corporation Haptic feedback using rotary harmonic moving mass
US6671651B2 (en) * 2002-04-26 2003-12-30 Sensable Technologies, Inc. 3-D selection and manipulation with a multiple dimension haptic interface
US7028415B2 (en) * 2002-04-30 2006-04-18 Alan Heinzen Canted manually loaded produce dryer
JP2003325972A (en) 2002-05-17 2003-11-18 Nintendo Co Ltd Game device changing sound and image in association with tilt operation, and game program therefor
EP1376316A1 (en) * 2002-06-26 2004-01-02 BRITISH TELECOMMUNICATIONS public limited company Haptic communications
US6948948B2 (en) * 2002-07-30 2005-09-27 D&C Technology Co., Ltd. PC cartridge having enhanced front connecting structure
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US6990435B2 (en) * 2002-10-10 2006-01-24 Harmonic Drive Systems Inc. Tactile sensing method and system
JP2004139845A (en) 2002-10-17 2004-05-13 Alps Electric Co Ltd Inner force sense applying type input device
JP4314810B2 (en) * 2002-11-18 2009-08-19 富士ゼロックス株式会社 Tactile interface device
US20040113931A1 (en) * 2002-12-05 2004-06-17 Anderson Thomas G. Human-computer interfaces incorporating haptics and path-based interaction
US7779166B2 (en) * 2002-12-08 2010-08-17 Immersion Corporation Using haptic effects to enhance information content in communications
US20060136631A1 (en) * 2002-12-08 2006-06-22 Immersion Corporation, A Delaware Corporation Methods and systems for providing haptic messaging to handheld communication devices
AU2003296334A1 (en) * 2002-12-08 2004-06-30 Immersion Corporation Haptic communication devices
US8059088B2 (en) * 2002-12-08 2011-11-15 Immersion Corporation Methods and systems for providing haptic messaging to handheld communication devices
US20060136630A1 (en) * 2002-12-08 2006-06-22 Immersion Corporation, A Delaware Corporation Methods and systems for providing haptic messaging to handheld communication devices
US8830161B2 (en) * 2002-12-08 2014-09-09 Immersion Corporation Methods and systems for providing a virtual touch haptic effect to handheld communication devices
DE20300185U1 (en) * 2003-01-08 2003-04-10 Encer Inc Massage device
US7522155B2 (en) 2003-01-16 2009-04-21 Panasonic Corporation Trackball device and vehicle incorporating the same
JP3579041B2 (en) * 2003-03-13 2004-10-20 コナミ株式会社 GAME SYSTEM, GAME DEVICE, GAME CONTROL METHOD, AND PROGRAM
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
FR2855282B1 (en) * 2003-05-22 2006-01-27 Univ Lille Sciences Tech DEVICE AND METHOD FOR CONTROLLING A FORCE RETURN TO BE APPLIED TO AT LEAST ONE HANDLE OF A MOTORIZED INTERFACE
US20050001823A1 (en) * 2003-06-04 2005-01-06 Dort David Bogart Real motion detection sampling and recording for writing instruments and small tracking instruments using electrically active material with viscosity
US8992322B2 (en) * 2003-06-09 2015-03-31 Immersion Corporation Interactive gaming systems with haptic feedback
WO2004110854A1 (en) * 2003-06-12 2004-12-23 Sony Corporation Coaxial motorcycle
AU2004281370A1 (en) 2003-08-29 2005-04-28 Engineered Support Systems, Inc. Electronically programmable actively damped sensor mount
US8027349B2 (en) 2003-09-25 2011-09-27 Roy-G-Biv Corporation Database event driven motion systems
GB0322489D0 (en) * 2003-09-25 2003-10-29 British Telecomm Haptics transmission systems
US20070022194A1 (en) * 2003-09-25 2007-01-25 Brown David W Database event driven motion systems
US20060064503A1 (en) * 2003-09-25 2006-03-23 Brown David W Data routing systems and methods
GB0322875D0 (en) * 2003-09-30 2003-10-29 British Telecomm Haptics transmission systems
US7132928B2 (en) * 2003-10-01 2006-11-07 Perricone Nicholas V Threat detection system interface
JP4446712B2 (en) * 2003-10-23 2010-04-07 アルプス電気株式会社 Haptic input device
US7095418B2 (en) * 2003-10-30 2006-08-22 Sensable Technologies, Inc. Apparatus and methods for texture mapping
US7096852B2 (en) 2003-10-30 2006-08-29 Immersion Corporation Haptic throttle devices and methods
US7411576B2 (en) * 2003-10-30 2008-08-12 Sensable Technologies, Inc. Force reflecting haptic interface
US7382378B2 (en) 2003-10-30 2008-06-03 Sensable Technologies, Inc. Apparatus and methods for stenciling an image
DE10350903A1 (en) * 2003-10-31 2005-06-09 Siemens Ag Intuitive and secure control of operator input in software components
WO2005048086A2 (en) * 2003-11-17 2005-05-26 Roy-G-Biv Corporation Command processing systems and methods
FR2862942B1 (en) * 2003-12-01 2006-03-03 Messier Bugatti METHOD FOR MANAGING A BRAKING SYSTEM ARCHITECTURE FOR AN AIRCRAFT EQUIPPED WITH ELECTROMECHANICAL ACTUATOR BRAKES, AND ARCHITECTURE APPLYING
US7348968B2 (en) * 2003-12-02 2008-03-25 Sony Corporation Wireless force feedback input device
FI118149B (en) * 2003-12-05 2007-07-31 Elisa Oyj A method, system, measuring device, and receiving device for providing feedback
KR20050054731A (en) * 2003-12-05 2005-06-10 한국전자통신연구원 Haptic simulation system and method for providing real-time haptic interaction in virtual simulation
US20060066569A1 (en) * 2003-12-08 2006-03-30 Immersion Corporation, A Delaware Corporation Methods and systems for providing haptic messaging to handheld communication devices
US7626589B2 (en) * 2003-12-10 2009-12-01 Sensable Technologies, Inc. Haptic graphical user interface for adjusting mapped texture
US7889209B2 (en) * 2003-12-10 2011-02-15 Sensable Technologies, Inc. Apparatus and methods for wrapping texture onto the surface of a virtual object
US7742036B2 (en) * 2003-12-22 2010-06-22 Immersion Corporation System and method for controlling haptic devices having multiple operational modes
US7149596B2 (en) * 2004-01-13 2006-12-12 Sensable Technologies, Inc. Apparatus and methods for modifying a model of an object to enforce compliance with a manufacturing constraint
US7283120B2 (en) 2004-01-16 2007-10-16 Immersion Corporation Method and apparatus for providing haptic feedback having a position-based component and a predetermined time-based component
US20050162402A1 (en) * 2004-01-27 2005-07-28 Watanachote Susornpol J. Methods of interacting with a computer using a finger(s) touch sensing input device with visual feedback
US20050174337A1 (en) * 2004-02-11 2005-08-11 Nielsen Paul S. Electronic handheld drawing and gaming system using television monitor
JP4408045B2 (en) * 2004-02-17 2010-02-03 富士通コンポーネント株式会社 Actuator
EP1618844B1 (en) * 2004-07-21 2011-04-27 Panasonic Electric Works Co., Ltd. Physical activity measuring system
JP4473685B2 (en) 2004-09-01 2010-06-02 任天堂株式会社 GAME DEVICE AND GAME PROGRAM
US20060073455A1 (en) * 2004-09-30 2006-04-06 Cardiac Pacemakers, Inc. Virtual reality based prototyping system for medical devices
EP1805585B1 (en) * 2004-10-08 2017-08-16 Immersion Corporation Haptic feedback for button and scrolling action simulation in touch input devices
US7139621B2 (en) * 2004-12-16 2006-11-21 Caterpillar Inc Floating deadband control
US7557796B2 (en) * 2004-12-22 2009-07-07 Delphi Technologies, Inc. Joystick sensor with two-dimensional image sensing
US7978173B2 (en) * 2005-01-14 2011-07-12 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Pointing device including a moveable puck with mechanical detents
US20060161621A1 (en) * 2005-01-15 2006-07-20 Outland Research, Llc System, method and computer program product for collaboration and synchronization of media content on a plurality of media players
US20060229058A1 (en) * 2005-10-29 2006-10-12 Outland Research Real-time person-to-person communication using geospatial addressing
US20070156676A1 (en) * 2005-09-09 2007-07-05 Outland Research, Llc System, Method and Computer Program Product for Intelligent Groupwise Media Selection
US7542816B2 (en) * 2005-01-27 2009-06-02 Outland Research, Llc System, method and computer program product for automatically selecting, suggesting and playing music media files
US20070189544A1 (en) 2005-01-15 2007-08-16 Outland Research, Llc Ambient sound responsive media player
US20060184800A1 (en) * 2005-02-16 2006-08-17 Outland Research, Llc Method and apparatus for using age and/or gender recognition techniques to customize a user interface
US20070276870A1 (en) * 2005-01-27 2007-11-29 Outland Research, Llc Method and apparatus for intelligent media selection using age and/or gender
US20070061314A1 (en) * 2005-02-01 2007-03-15 Outland Research, Llc Verbal web search with improved organization of documents based upon vocal gender analysis
US20080007517A9 (en) * 2005-02-23 2008-01-10 Northwestern University Electrical damping system
US20060206379A1 (en) * 2005-03-14 2006-09-14 Outland Research, Llc Methods and apparatus for improving the matching of relevant advertisements with particular users over the internet
US20060223637A1 (en) * 2005-03-31 2006-10-05 Outland Research, Llc Video game system combining gaming simulation with remote robot control and remote robot feedback
US20060223635A1 (en) * 2005-04-04 2006-10-05 Outland Research method and apparatus for an on-screen/off-screen first person gaming experience
US20060256008A1 (en) * 2005-05-13 2006-11-16 Outland Research, Llc Pointing interface for person-to-person information exchange
US20060236121A1 (en) * 2005-04-14 2006-10-19 Ibm Corporation Method and apparatus for highly secure communication
US20060236120A1 (en) * 2005-04-14 2006-10-19 Ibm Corporation Method and apparatus employing stress detection for highly secure communication
US20060241864A1 (en) * 2005-04-22 2006-10-26 Outland Research, Llc Method and apparatus for point-and-send data transfer within an ubiquitous computing environment
US20060277466A1 (en) * 2005-05-13 2006-12-07 Anderson Thomas G Bimodal user interaction with a simulated object
US20070150188A1 (en) * 2005-05-27 2007-06-28 Outland Research, Llc First-person video-based travel planning system
US7618413B2 (en) * 2005-06-22 2009-11-17 Boston Scientific Scimed, Inc. Medical device control system
US20070027668A1 (en) * 2005-07-18 2007-02-01 Kenny Chen Signal simulator for generating a string of user input signals to stimulate redundant operation of a user input device of a computerized apparatus
US8313379B2 (en) * 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP4805633B2 (en) 2005-08-22 2011-11-02 任天堂株式会社 Game operation device
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8870655B2 (en) * 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
JP4262726B2 (en) 2005-08-24 2009-05-13 任天堂株式会社 Game controller and game system
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
JP4899685B2 (en) * 2005-09-02 2012-03-21 株式会社デンソー Manual operation system
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
EP1924900A1 (en) * 2005-09-15 2008-05-28 Apple Inc. System and method for processing raw data of track pad device
US7917148B2 (en) * 2005-09-23 2011-03-29 Outland Research, Llc Social musical media rating system and method for localized establishments
US8176101B2 (en) 2006-02-07 2012-05-08 Google Inc. Collaborative rejection of media for physical establishments
US7518745B2 (en) * 2005-09-28 2009-04-14 Xerox Corporation Imaging system with haptic interface
US7577522B2 (en) 2005-12-05 2009-08-18 Outland Research, Llc Spatially associated personal reminder system and method
CN101466316B (en) 2005-10-20 2012-06-27 阿普特斯内系统公司 Devices systems and methods for prosthesis delivery and implantation including the use of a fastener tool
US8187883B2 (en) * 2005-10-21 2012-05-29 Wisconsin Alumni Research Foundation Method and system for delivering nucleic acid into a target cell
US20070103437A1 (en) * 2005-10-26 2007-05-10 Outland Research, Llc Haptic metering for minimally invasive medical procedures
US20070135264A1 (en) * 2005-12-09 2007-06-14 Outland Research, Llc Portable exercise scripting and monitoring device
US20070145680A1 (en) * 2005-12-15 2007-06-28 Outland Research, Llc Shake Responsive Portable Computing Device for Simulating a Randomization Object Used In a Game Of Chance
US20070075127A1 (en) * 2005-12-21 2007-04-05 Outland Research, Llc Orientation-based power conservation for portable media devices
JP5204381B2 (en) 2006-05-01 2013-06-05 任天堂株式会社 GAME PROGRAM, GAME DEVICE, GAME SYSTEM, AND GAME PROCESSING METHOD
US20070188453A1 (en) * 2006-02-15 2007-08-16 Logitech Europe S.A. Input device roller with hybrid magnetic ratchet system
US20070188454A1 (en) * 2006-02-15 2007-08-16 Logitech Europe S.A. Magnetic ratchet for input device roller
EP1984240A4 (en) * 2006-02-17 2013-03-13 Oceaneering Int Inc A multi-mode manipulator arm and drive system
JP4151982B2 (en) 2006-03-10 2008-09-17 任天堂株式会社 Motion discrimination device and motion discrimination program
US8780053B2 (en) * 2007-03-21 2014-07-15 Northwestern University Vibrating substrate for haptic interface
WO2007111909A2 (en) 2006-03-24 2007-10-04 Northwestern University Haptic device with indirect haptic feedback
US8525778B2 (en) * 2007-03-21 2013-09-03 Northwestern University Haptic device with controlled traction forces
US7760184B2 (en) * 2006-04-03 2010-07-20 Nokia Corporation Dual mode input device
US7603228B2 (en) * 2006-05-25 2009-10-13 Ford Global Technologies, Llc Haptic apparatus and coaching method for improving vehicle fuel economy
FI120133B (en) * 2006-05-29 2009-07-15 Polar Electro Oy A wrist unit and a method for determining motion information
DE102007016083A1 (en) * 2006-05-31 2007-12-06 Mizukawa, Suehiro, Settsu Method and device for bending a knife element
JP5030482B2 (en) 2006-06-20 2012-09-19 任天堂株式会社 GAME PROGRAM AND GAME DEVICE
KR100827150B1 (en) 2006-07-10 2008-05-02 삼성전자주식회사 Apparatus for driving in portable terminal having a touch pad
US20080027694A1 (en) * 2006-07-12 2008-01-31 Yury Michael Gitman Heartbeat Simulation Method And Apparatus
US20080032870A1 (en) * 2006-08-02 2008-02-07 Shen Yi Wu Method and apparatus of counting steps for treadmill
GB2440753A (en) * 2006-08-04 2008-02-13 Univ Sussex Force sensor and programmable spring emulator
ATE515724T1 (en) * 2006-09-06 2011-07-15 Rotzler Gmbh & Co Kg CONTROL DEVICE WITH A BUS FOR OPERATING A MACHINE
US7759894B2 (en) * 2006-10-26 2010-07-20 Honeywell International Inc. Cogless motor driven active user interface haptic feedback system
US7750593B2 (en) * 2006-10-26 2010-07-06 Honeywell International Inc. Active human-machine interface system without a force sensor
US7624836B2 (en) * 2006-10-30 2009-12-01 Caterpillar Inc. Steering system having multiple strategies and variable deadzone
EP1930800A1 (en) * 2006-12-05 2008-06-11 Electronics and Telecommunications Research Institute Tactile and visual display device
US20080146416A1 (en) * 2006-12-13 2008-06-19 Motorola, Inc. Generation of user activity feedback
JP4690299B2 (en) * 2006-12-14 2011-06-01 株式会社東海理化電機製作所 Remote control input device
US8141424B2 (en) * 2008-09-12 2012-03-27 Invensense, Inc. Low inertia frame for detecting coriolis acceleration
US7934423B2 (en) * 2007-12-10 2011-05-03 Invensense, Inc. Vertically integrated 3-axis MEMS angular accelerometer with integrated electronics
US8250921B2 (en) 2007-07-06 2012-08-28 Invensense, Inc. Integrated motion processing unit (MPU) with MEMS inertial sensing and embedded digital electronics
US7796872B2 (en) * 2007-01-05 2010-09-14 Invensense, Inc. Method and apparatus for producing a sharp image from a handheld device containing a gyroscope
US8508039B1 (en) 2008-05-08 2013-08-13 Invensense, Inc. Wafer scale chip scale packaging of vertically integrated MEMS sensors with electronics
US8020441B2 (en) * 2008-02-05 2011-09-20 Invensense, Inc. Dual mode sensing for vibratory gyroscope
US8952832B2 (en) 2008-01-18 2015-02-10 Invensense, Inc. Interfacing application programs and motion sensors of a device
US20090262074A1 (en) * 2007-01-05 2009-10-22 Invensense Inc. Controlling and accessing content using motion processing on mobile devices
US20090265671A1 (en) * 2008-04-21 2009-10-22 Invensense Mobile devices with motion gesture recognition
US8047075B2 (en) 2007-06-21 2011-11-01 Invensense, Inc. Vertically integrated 3-axis MEMS accelerometer with electronics
US20100071467A1 (en) * 2008-09-24 2010-03-25 Invensense Integrated multiaxis motion sensor
US8462109B2 (en) 2007-01-05 2013-06-11 Invensense, Inc. Controlling and accessing content using motion processing on mobile devices
JP5127242B2 (en) 2007-01-19 2013-01-23 任天堂株式会社 Acceleration data processing program and game program
US8144036B2 (en) 2007-02-08 2012-03-27 Lear Corporation Switch system
US20080215975A1 (en) * 2007-03-01 2008-09-04 Phil Harrison Virtual world user opinion & response monitoring
EP2132650A4 (en) * 2007-03-01 2010-10-27 Sony Comp Entertainment Us System and method for communicating with a virtual world
US8315652B2 (en) * 2007-05-18 2012-11-20 Immersion Corporation Haptically enabled messaging
US8108136B2 (en) * 2007-08-09 2012-01-31 Ford Global Technologies, Llc. Driver advisory system for fuel economy improvement of a hybrid electric vehicle
US20110153160A1 (en) * 2007-09-06 2011-06-23 Takata-Petri Ag Steering wheel assembly for a motor vehicle
US9726088B2 (en) * 2007-10-30 2017-08-08 Ford Global Technologies, Llc System and method for obtaining an adjustable accelerator pedal response in a vehicle powertrain
JP2011515114A (en) * 2007-11-13 2011-05-19 トロッター ホセ・ニコラス・ムザード Video game control device with blower
US7486273B1 (en) * 2008-02-12 2009-02-03 Novint Technologies, Inc. Communications in a system comprising a computer and a haptic interface device
TW200937260A (en) * 2008-02-25 2009-09-01 J Touch Corp Capacitive stylus pen
US20090221196A1 (en) * 2008-02-29 2009-09-03 Blair Charles S Torsional control boat throttle system
CN101518690A (en) * 2008-02-29 2009-09-02 鸿富锦精密工业(深圳)有限公司 Force feedback device
US9274601B2 (en) * 2008-04-24 2016-03-01 Blackberry Limited System and method for generating a feedback signal in response to an input signal provided to an electronic device
EP2112576B1 (en) 2008-04-24 2011-02-23 Research In Motion Limited System and method for generating a feedback signal in response to an input signal provided to an electronic device
US20090295739A1 (en) * 2008-05-27 2009-12-03 Wes Albert Nagara Haptic tactile precision selection
US20100013613A1 (en) * 2008-07-08 2010-01-21 Jonathan Samuel Weston Haptic feedback projection system
US8159455B2 (en) * 2008-07-18 2012-04-17 Apple Inc. Methods and apparatus for processing combinations of kinematical inputs
KR101625360B1 (en) * 2008-08-12 2016-05-30 코닌클리케 필립스 엔.브이. Motion detection system
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
CA2740867C (en) 2008-10-16 2018-06-12 Aptus Endosystems, Inc. Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US20100146395A1 (en) * 2008-12-08 2010-06-10 Gustavo De Los Reyes Method and System for Exploiting Interactions Via A Virtual Environment
US20100167820A1 (en) * 2008-12-29 2010-07-01 Houssam Barakat Human interface device
GB0900878D0 (en) 2009-01-20 2009-03-04 Renishaw Plc Method for optimising a measurement cycle
US8976045B2 (en) * 2009-02-17 2015-03-10 Nec Corporation Tactile force sense presenting device, electronic device terminal applied with tactile force sense presenting device, and tactile force sense presenting method
US10564721B2 (en) * 2009-03-12 2020-02-18 Immersion Corporation Systems and methods for using multiple actuators to realize textures
US9927873B2 (en) 2009-03-12 2018-03-27 Immersion Corporation Systems and methods for using textures in graphical user interface widgets
US9746923B2 (en) * 2009-03-12 2017-08-29 Immersion Corporation Systems and methods for providing features in a friction display wherein a haptic effect is configured to vary the coefficient of friction
US9874935B2 (en) * 2009-03-12 2018-01-23 Immersion Corporation Systems and methods for a texture engine
US9696803B2 (en) 2009-03-12 2017-07-04 Immersion Corporation Systems and methods for friction displays and additional haptic effects
US10007340B2 (en) * 2009-03-12 2018-06-26 Immersion Corporation Systems and methods for interfaces featuring surface-based haptic effects
US8698736B2 (en) * 2009-03-24 2014-04-15 Immersion Corporation Handheld computer interface with haptic feedback
US20100306825A1 (en) * 2009-05-27 2010-12-02 Lucid Ventures, Inc. System and method for facilitating user interaction with a simulated object associated with a physical location
US20100302017A1 (en) * 2009-06-01 2010-12-02 Econtrols, Inc. Tactile Feedback for Joystick Position/Speed Controls
US9568939B2 (en) 2009-06-01 2017-02-14 Enovation Controls, Llc Tactile feedback for joystick position/speed controls
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US20110006047A1 (en) * 2009-07-08 2011-01-13 Victor Matthew Penrod Method and system for monitoring and characterizing the creation of a manual weld
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
FR2950187B1 (en) * 2009-09-17 2011-11-18 Centre Nat Rech Scient METHOD OF SIMULATION OF CLEAN MOVEMENTS BY HAPTIC RETURN AND DEVICE IMPLEMENTING THE METHOD
US8487759B2 (en) 2009-09-30 2013-07-16 Apple Inc. Self adapting haptic device
US8279052B2 (en) 2009-11-04 2012-10-02 Immersion Corporation Systems and methods for haptic confirmation of commands
JP5668076B2 (en) * 2009-11-17 2015-02-12 イマージョン コーポレーションImmersion Corporation System and method for increasing haptic bandwidth in electronic devices
JP5587596B2 (en) * 2009-12-14 2014-09-10 京セラ株式会社 Tactile presentation device
US20120194553A1 (en) * 2010-02-28 2012-08-02 Osterhout Group, Inc. Ar glasses with sensor and user action based control of external devices with feedback
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
CN102906623A (en) 2010-02-28 2013-01-30 奥斯特豪特集团有限公司 Local advertising content on an interactive head-mounted eyepiece
US20150309316A1 (en) 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
KR101640043B1 (en) * 2010-04-14 2016-07-15 삼성전자주식회사 Method and Apparatus for Processing Virtual World
US9132352B1 (en) 2010-06-24 2015-09-15 Gregory S. Rabin Interactive system and method for rendering an object
JP5841713B2 (en) * 2010-07-27 2016-01-13 京セラ株式会社 Tactile sensation presentation apparatus and control method for tactile sensation presentation apparatus
JP5841714B2 (en) * 2010-07-27 2016-01-13 京セラ株式会社 Tactile sensation presentation apparatus and control method for tactile sensation presentation apparatus
JP5032716B2 (en) 2010-08-31 2012-09-26 パナソニック株式会社 Master-slave robot control device, control method, and control program
US10013058B2 (en) 2010-09-21 2018-07-03 Apple Inc. Touch-based user interface with haptic feedback
EP2453428A1 (en) * 2010-11-12 2012-05-16 EADS Construcciones Aeronauticas, S.A. Simulation methods and systems for the control panels of complex systems
US10120446B2 (en) * 2010-11-19 2018-11-06 Apple Inc. Haptic input device
EP2652726B1 (en) 2010-12-13 2019-11-20 Lincoln Global, Inc. Welding training system
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US9921712B2 (en) 2010-12-29 2018-03-20 Mako Surgical Corp. System and method for providing substantially stable control of a surgical tool
JP5281194B2 (en) 2011-03-24 2013-09-04 アイシン高丘株式会社 Collision reinforcement for vehicles
US8892162B2 (en) 2011-04-25 2014-11-18 Apple Inc. Vibration sensing system and method for categorizing portable device context and modifying device operation
US8850261B2 (en) * 2011-06-01 2014-09-30 Microsoft Corporation Replaying jobs at a secondary location of a service
US10585766B2 (en) 2011-06-06 2020-03-10 Microsoft Technology Licensing, Llc Automatic configuration of a recovery service
US8811720B2 (en) 2011-07-12 2014-08-19 Raytheon Company 3D visualization of light detection and ranging data
CN103782502B (en) * 2011-07-26 2017-11-17 莫戈公司 motor clamping system
US9802364B2 (en) 2011-10-18 2017-10-31 3D Systems, Inc. Systems and methods for construction of an instruction set for three-dimensional printing of a user-customizableimage of a three-dimensional structure
US9582178B2 (en) 2011-11-07 2017-02-28 Immersion Corporation Systems and methods for multi-pressure interaction on touch-sensitive surfaces
US8894491B2 (en) * 2011-12-09 2014-11-25 Microsoft Corporation Multi-stage variable resistance trigger
US9389681B2 (en) 2011-12-19 2016-07-12 Microsoft Technology Licensing, Llc Sensor fusion interface for multiple sensor input
JP2013222399A (en) * 2012-04-18 2013-10-28 Sony Corp Operation method, control device and program
US10108265B2 (en) * 2012-05-09 2018-10-23 Apple Inc. Calibration of haptic feedback systems for input devices
CN203324713U (en) * 2012-05-09 2013-12-04 布里斯托尔D/B/A远程自动化解决方案公司 Device for displaying information via process control equipment
US20150109223A1 (en) 2012-06-12 2015-04-23 Apple Inc. Haptic electromagnetic actuator
US20160093233A1 (en) 2012-07-06 2016-03-31 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
US9245428B2 (en) 2012-08-02 2016-01-26 Immersion Corporation Systems and methods for haptic remote control gaming
US9820818B2 (en) 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
AU2013296278B2 (en) 2012-08-03 2018-06-14 Stryker Corporation Systems and methods for robotic surgery
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
US9056244B2 (en) 2012-09-12 2015-06-16 Wms Gaming Inc. Gaming apparatus incorporating targeted haptic feedback
US20160164976A1 (en) * 2012-09-24 2016-06-09 Suitable Technologies, Inc. Systems and methods for remote presence
US9178509B2 (en) 2012-09-28 2015-11-03 Apple Inc. Ultra low travel keyboard
TWI467467B (en) * 2012-10-29 2015-01-01 Pixart Imaging Inc Method and apparatus for controlling object movement on screen
US9330544B2 (en) * 2012-11-20 2016-05-03 Immersion Corporation System and method for simulated physical interactions with haptic effects
DE102012223007A1 (en) * 2012-12-13 2014-06-18 Hilti Aktiengesellschaft Hand-held or semi-stationary tool device and method for operating such a tool device
WO2014120984A2 (en) 2013-01-30 2014-08-07 David Paul Smith Operator controlled electrical output signal device with variable feel and hold feedback and automated calibration and learnable performance optimization
KR20140115648A (en) 2013-03-21 2014-10-01 삼성전자주식회사 Terminal apparatus providing haptic effect using haptic engine and control method thereof
ITMI20130495A1 (en) * 2013-03-29 2014-09-30 Atlas Copco Blm Srl ELECTRONIC CONTROL AND CONTROL DEVICE FOR SENSORS
US10168766B2 (en) * 2013-04-17 2019-01-01 Nokia Technologies Oy Method and apparatus for a textural representation of a guidance
WO2014190293A2 (en) * 2013-05-24 2014-11-27 New York University Haptic force-feedback for computing interfaces
US10120447B2 (en) 2013-06-24 2018-11-06 Northwestern University Haptic display with simultaneous sensing and actuation
US9652040B2 (en) 2013-08-08 2017-05-16 Apple Inc. Sculpted waveforms with no or reduced unforced response
CN103433921B (en) * 2013-09-11 2015-07-08 北京邮电大学 Three-degree-of-freedom translation force feedback hand controller
US20150072323A1 (en) 2013-09-11 2015-03-12 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US9779592B1 (en) 2013-09-26 2017-10-03 Apple Inc. Geared haptic feedback element
US9928950B2 (en) 2013-09-27 2018-03-27 Apple Inc. Polarized magnetic actuators for haptic response
WO2015047356A1 (en) 2013-09-27 2015-04-02 Bodhi Technology Ventures Llc Band with haptic actuators
WO2015047364A1 (en) 2013-09-29 2015-04-02 Pearl Capital Developments Llc Devices and methods for creating haptic effects
CN105683865B (en) 2013-09-30 2018-11-09 苹果公司 Magnetic actuator for haptic response
US9317118B2 (en) 2013-10-22 2016-04-19 Apple Inc. Touch surface for simulating materials
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
CN105814510B (en) 2013-12-10 2019-06-07 苹果公司 Band body attachment mechanism with haptic response
US20150242037A1 (en) 2014-01-13 2015-08-27 Apple Inc. Transparent force sensor with strain relief
US9501912B1 (en) 2014-01-27 2016-11-22 Apple Inc. Haptic feedback device with a rotating mass of variable eccentricity
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
JP6201824B2 (en) * 2014-03-05 2017-09-27 株式会社デンソー Operating device
CN111966210A (en) 2014-03-31 2020-11-20 索尼公司 Haptic reproduction apparatus, haptic reproduction system, and haptic reproduction method
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
CN106233358A (en) 2014-06-02 2016-12-14 林肯环球股份有限公司 System and method for artificial welders training
DE102015209639A1 (en) 2014-06-03 2015-12-03 Apple Inc. Linear actuator
US10316492B2 (en) * 2014-07-31 2019-06-11 Cnh Industrial America Llc Active force/vibration feedback control method and apparatus for a movable machine
US9838009B2 (en) 2014-08-27 2017-12-05 Continental Automotive Systems, Inc. Switch with user feedback
WO2016036671A2 (en) 2014-09-02 2016-03-10 Apple Inc. Haptic notifications
US10297119B1 (en) 2014-09-02 2019-05-21 Apple Inc. Feedback device in an electronic device
CA2965710C (en) 2014-10-27 2023-10-24 Jesse Goodman System and method for monitoring aortic pulse wave velocity and blood pressure
US9798409B1 (en) 2015-03-04 2017-10-24 Apple Inc. Multi-force input device
US10353467B2 (en) * 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US10613629B2 (en) 2015-03-27 2020-04-07 Chad Laurendeau System and method for force feedback interface devices
DE102015104927A1 (en) * 2015-03-31 2016-10-06 Inventus Engineering Gmbh Damper for damping a relative movement
AU2016100399B4 (en) 2015-04-17 2017-02-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US9535501B1 (en) * 2015-06-29 2017-01-03 Apple Inc. Input with haptic feedback
US9921652B2 (en) * 2015-06-29 2018-03-20 Apple Inc. Input with haptic feedback
CN107925333B (en) 2015-09-08 2020-10-23 苹果公司 Linear actuator for use in an electronic device
EP3352951B1 (en) * 2015-09-23 2019-12-25 Université catholique de Louvain Rehabilitation system and method
US9971407B2 (en) 2015-09-30 2018-05-15 Apple Inc. Haptic feedback for rotary inputs
US10324530B2 (en) * 2015-12-14 2019-06-18 Facebook Technologies, Llc Haptic devices that simulate rigidity of virtual objects
WO2017152139A1 (en) 2016-03-04 2017-09-08 Apple Inc. Input with haptic feedback
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
WO2017150128A1 (en) 2016-03-04 2017-09-08 株式会社ソニー・インタラクティブエンタテインメント Control device and control program
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
JP6626576B2 (en) 2016-07-21 2019-12-25 株式会社ソニー・インタラクティブエンタテインメント Operation device and control system
EP3493029B1 (en) * 2016-07-26 2020-07-22 Sony Interactive Entertainment Inc. Information processing system, operation device, and method for controlling operation device
EP3851175A1 (en) 2016-07-26 2021-07-21 Sony Interactive Entertainment Inc. Operating device and method for controlling the same
EP3319066A1 (en) 2016-11-04 2018-05-09 Lincoln Global, Inc. Magnetic frequency selection for electromagnetic position tracking
WO2018112025A1 (en) 2016-12-16 2018-06-21 Mako Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
US10275032B2 (en) 2016-12-22 2019-04-30 Immersion Corporation Pressure-sensitive suspension system for a haptic device
JP6613267B2 (en) * 2017-06-02 2019-11-27 任天堂株式会社 Information processing system, information processing program, information processing apparatus, and information processing method
JP6837921B2 (en) 2017-06-02 2021-03-03 任天堂株式会社 Game programs, information processing devices, information processing systems, and information processing methods
JP6653293B2 (en) 2017-06-05 2020-02-26 任天堂株式会社 Information processing system, information processing program, information processing apparatus, and information processing method
JP6701132B2 (en) * 2017-07-12 2020-05-27 任天堂株式会社 Game system, game program, game device, and game processing method
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
JP6959349B2 (en) 2017-09-29 2021-11-02 株式会社ソニー・インタラクティブエンタテインメント Operating device and its control device
JP6949982B2 (en) 2017-10-27 2021-10-13 株式会社ソニー・インタラクティブエンタテインメント Operation device
US11314332B2 (en) 2017-11-30 2022-04-26 Sony Interactive Entertainment Inc. Information processing apparatus, information processing method, and program
US10583359B2 (en) 2017-12-28 2020-03-10 Immersion Corporation Systems and methods for providing haptic effects related to touching and grasping a virtual object
US11523839B2 (en) 2018-04-03 2022-12-13 Intuitive Surgical Operations, Inc. Systems and methods for grasp adjustment based on grasp properties
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
US20190324536A1 (en) 2018-04-20 2019-10-24 Immersion Corporation Haptic ring
US10579146B2 (en) * 2018-06-15 2020-03-03 Immersion Corporation Systems and methods for multi-level closed loop control of haptic effects
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US11755056B2 (en) * 2019-07-11 2023-09-12 Bae Systems Plc Force compensation method and device
JP2021018546A (en) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 Communication device for vehicle and communication system for vehicle
JP7360281B2 (en) * 2019-09-10 2023-10-12 株式会社東海理化電機製作所 Control device, control method, and program
JP7360282B2 (en) * 2019-09-10 2023-10-12 株式会社東海理化電機製作所 Control device, control method, and program
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
WO2021090102A1 (en) * 2019-11-04 2021-05-14 Indian Institute Of Science System for operating joystick
US20210326594A1 (en) * 2020-04-17 2021-10-21 James Patrick COSTELLO Computer-generated supplemental content for video
CN113760107B (en) * 2020-06-04 2023-10-13 宏碁股份有限公司 Touch pen, touch electronic device and touch system
US11482002B1 (en) * 2020-10-16 2022-10-25 Splunk Inc. Codeless anchor detection for detectable features in an environment
FR3117224B1 (en) * 2020-12-04 2023-05-05 Safran Electronics & Defense Method for controlling an engine of an aircraft control, control device and aircraft
CN112757273A (en) * 2020-12-28 2021-05-07 广州一康医疗设备实业有限公司 Method, system and device for editing and visualizing track of mechanical arm and storage medium
US11738265B2 (en) * 2021-02-15 2023-08-29 Nintendo Co., Ltd. Non-transitory computer-readable storage medium having stored therein information processing program, information processing apparatus, information processing system, and information processing method
US11814947B2 (en) 2021-07-01 2023-11-14 Halliburton Energy Services, Inc. Distributed diagnostics and control of a multi-unit pumping operation
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
WO2023114427A1 (en) * 2021-12-17 2023-06-22 Intuitive Surgical Operations, Inc. Force-based control of a virtual object being displayed by a computer-assisted medical system
WO2023233624A1 (en) * 2022-06-02 2023-12-07 株式会社ソニー・インタラクティブエンタテインメント Information processing apparatus for driving operation member
WO2023242962A1 (en) * 2022-06-14 2023-12-21 株式会社ソニー・インタラクティブエンタテインメント Operation device, control method therefor, information processing apparatus, and program

Family Cites Families (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906179A (en) * 1957-01-28 1959-09-29 North American Aviation Inc Vector gage
US3157853A (en) 1957-12-06 1964-11-17 Hirsch Joseph Tactile communication system
GB958325A (en) 1962-07-08 1964-05-21 Communications Patents Ltd Improvements in or relating to ground-based flight training or simulating apparatus
US3157553A (en) 1962-10-31 1964-11-17 Bartmann & Bixer Inc Apparatus for cutting lengths of heatfusible fabric and sealing the cut edges thereof
US3490059A (en) * 1966-06-06 1970-01-13 Martin Marietta Corp Three axis mounting and torque sensing apparatus
US3497668A (en) 1966-08-25 1970-02-24 Joseph Hirsch Tactile control system
US3517446A (en) 1967-04-19 1970-06-30 Singer General Precision Vehicle trainer controls and control loading
US3531868A (en) * 1968-04-18 1970-10-06 Ford Motor Co Surface scanner for measuring the coordinates of points on a three-dimensional surface
US3903614A (en) 1970-03-27 1975-09-09 Singer Co Apparatus for simulating aircraft control loading
US3919691A (en) 1971-05-26 1975-11-11 Bell Telephone Labor Inc Tactile man-machine communication system
US3875488A (en) * 1973-02-15 1975-04-01 Raytheon Co Inertially stabilized gimbal platform
US3902687A (en) 1973-06-25 1975-09-02 Robert E Hightower Aircraft indicator system
US3890958A (en) * 1974-04-08 1975-06-24 Moog Automotive Inc Physiological diagnostic apparatus
US3944798A (en) * 1974-04-18 1976-03-16 Eaton-Leonard Corporation Method and apparatus for measuring direction
US4034894A (en) * 1975-02-28 1977-07-12 Agfa-Gevaert Aktiengesellschaft Film-sheet cassette
US4125800A (en) * 1975-09-02 1978-11-14 Contraves Gorez Corporation Power controller with a modular power output
US4131033A (en) 1977-02-18 1978-12-26 Rockwell International Corporation Push-pull and rotating knob
US4148014A (en) * 1977-04-06 1979-04-03 Texas Instruments Incorporated System with joystick to control velocity vector of a display cursor
US4160508A (en) 1977-08-19 1979-07-10 Nasa Controller arm for a remotely related slave arm
US4216467A (en) * 1977-12-22 1980-08-05 Westinghouse Electric Corp. Hand controller
US4236325A (en) 1978-12-26 1980-12-02 The Singer Company Simulator control loading inertia compensator
US4638798A (en) * 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
NL8006091A (en) * 1980-11-07 1982-06-01 Fokker Bv FLIGHTMATTER.
JPS57169643A (en) * 1981-04-13 1982-10-19 Yamato Scale Co Ltd Load cell for multiple components of force
US4599070A (en) 1981-07-29 1986-07-08 Control Interface Company Limited Aircraft simulator and simulated control system therefor
EP0085518B1 (en) 1982-01-22 1989-08-16 British Aerospace Public Limited Company Control apparatus
US4593470A (en) * 1982-07-14 1986-06-10 Micro Control Systems, Inc. Portable three dimensional graphics tablet
US4477973A (en) * 1982-07-14 1984-10-23 Micro Control Systems, Inc. Three dimensional graphics tablet
US4560983A (en) 1982-09-17 1985-12-24 Ampex Corporation Dynamically interactive responsive control device and system
US4477043A (en) * 1982-12-15 1984-10-16 The United States Of America As Represented By The Secretary Of The Air Force Biodynamic resistant control stick
US4538035A (en) 1983-02-11 1985-08-27 Pool Danny J Joystick occlusion gate control for video games
FR2545606B1 (en) * 1983-05-06 1985-09-13 Hispano Suiza Sa FORCE TENSIONER SENSOR
US4604016A (en) 1983-08-03 1986-08-05 Joyce Stephen A Multi-dimensional force-torque hand controller having force feedback
GB2146776B (en) * 1983-09-16 1986-07-30 Ferranti Plc Accelerometer systems
US4550221A (en) * 1983-10-07 1985-10-29 Scott Mabusth Touch sensitive control device
JPS60170709A (en) * 1984-02-16 1985-09-04 Toshiba Corp Measuring insturment for shape
US4571834A (en) * 1984-02-17 1986-02-25 Orthotronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
US4581491A (en) 1984-05-04 1986-04-08 Research Corporation Wearable tactile sensory aid providing information on voice pitch and intonation patterns
US4688983A (en) * 1984-05-21 1987-08-25 Unimation Inc. Low cost robot
US4603284A (en) 1984-06-05 1986-07-29 Unimation, Inc. Control system for manipulator apparatus with resolved compliant motion control
US4676002A (en) * 1984-06-25 1987-06-30 Slocum Alexander H Mechanisms to determine position and orientation in space
JPS61105411A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Measuring method of multidimensional measuring machine
US4654648A (en) * 1984-12-17 1987-03-31 Herrington Richard A Wireless cursor control system
US4782327A (en) 1985-01-02 1988-11-01 Victor B. Kley Computer control
US4632341A (en) * 1985-02-06 1986-12-30 The United States Of America As Represented By The Secretary Of The Air Force Stabilizing force feedback in bio-actuated control systems
JPH0537531Y2 (en) 1985-06-11 1993-09-22
US5078152A (en) 1985-06-23 1992-01-07 Loredan Biomedical, Inc. Method for diagnosis and/or training of proprioceptor feedback capabilities in a muscle and joint system of a human patient
DE3523188A1 (en) * 1985-06-28 1987-01-08 Zeiss Carl Fa CONTROL FOR COORDINATE MEASURING DEVICES
US4704909A (en) * 1985-07-22 1987-11-10 Grahn Allen R Multicomponent force-torque sensor
US4679331A (en) * 1985-08-26 1987-07-14 Ppg Industries, Inc. Apparatus and method for determining contour characteristics of a contoured article
US4713007A (en) 1985-10-11 1987-12-15 Alban Eugene P Aircraft controls simulator
US5275174B1 (en) 1985-10-30 1998-08-04 Jonathan A Cook Repetitive strain injury assessment
NL8503096A (en) 1985-11-11 1987-06-01 Fokker Bv SIMULATOR OF MECHANICAL PROPERTIES OF OPERATING SYSTEM.
US4891764A (en) 1985-12-06 1990-01-02 Tensor Development Inc. Program controlled force measurement and control system
US4934694A (en) 1985-12-06 1990-06-19 Mcintosh James L Computer controlled exercise system
US5103404A (en) * 1985-12-06 1992-04-07 Tensor Development, Inc. Feedback for a manipulator
US4811608A (en) * 1985-12-18 1989-03-14 Spatial Systems Pty Limited Force and torque converter
US5591924A (en) 1985-12-18 1997-01-07 Spacetec Imc Corporation Force and torque converter
JPH085018B2 (en) 1986-02-26 1996-01-24 株式会社日立製作所 Remote manipulation method and apparatus
US4787051A (en) * 1986-05-16 1988-11-22 Tektronix, Inc. Inertial mouse system
JPS62194389U (en) 1986-05-31 1987-12-10
US4803413A (en) * 1986-07-15 1989-02-07 Honeywell Inc. Magnetic isolating and pointing gimbal apparatus
US4791934A (en) * 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4945305A (en) * 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4849692A (en) * 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
NL8602624A (en) 1986-10-20 1988-05-16 Oce Nederland Bv INPUT DEVICE WITH TAKTILE FEEDBACK.
NL8602697A (en) * 1986-10-27 1988-05-16 Huka Bv Developments JOYSTICK.
US4795296A (en) 1986-11-17 1989-01-03 California Institute Of Technology Hand-held robot end effector controller having movement and force control
US4750487A (en) * 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
CA1299362C (en) * 1986-12-10 1992-04-28 Gregory James Mcdonald Coordinate measuring system
JPH0829509B2 (en) 1986-12-12 1996-03-27 株式会社日立製作所 Control device for manipulator
US4945501A (en) * 1987-01-20 1990-07-31 The Warner & Swasey Company Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor
US4819195A (en) * 1987-01-20 1989-04-04 The Warner & Swasey Company Method for calibrating a coordinate measuring machine and the like and system therefor
US4800721A (en) * 1987-02-13 1989-01-31 Caterpillar Inc. Force feedback lever
US4839838A (en) * 1987-03-30 1989-06-13 Labiche Mitchell Spatial input apparatus
GB2204131B (en) * 1987-04-28 1991-04-17 Ibm Graphics input tablet
US4961138A (en) * 1987-05-01 1990-10-02 General Datacomm, Inc. System and apparatus for providing three dimensions of input into a host processor
IT1214292B (en) * 1987-05-05 1990-01-10 Garda Impianti Srl EQUIPMENT FOR MEASUREMENT AND / OR CONTROL OF THE POSITION AND ORIENTATION OF POINTS OR AREAS CHARACTERISTIC OF STRUCTURES, IN PARTICULAR OF VEHICLE BODIES.
US4868549A (en) 1987-05-18 1989-09-19 International Business Machines Corporation Feedback mouse
DE3717459A1 (en) * 1987-05-23 1988-12-01 Zeiss Carl Fa HAND-HELD COORDINATE MEASURING DEVICE
US4896554A (en) 1987-11-03 1990-01-30 Culver Craig F Multifunction tactile manipulatable control
DE3740070A1 (en) * 1987-11-26 1989-06-08 Zeiss Carl Fa TURN SLEWING DEVICE FOR TEST COOKING OF COORDINATE MEASURING DEVICES
GB8729638D0 (en) * 1987-12-19 1988-02-03 Renishaw Plc Mounting for surface sensing device
US4891784A (en) * 1988-01-08 1990-01-02 Hewlett-Packard Company High capacity tape drive transparently writes and reads large packets of blocked data between interblock gaps
JP2720970B2 (en) * 1988-01-29 1998-03-04 日本ヒューレット・パッカード株式会社 Measuring instrument
US5251127A (en) * 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
GB8803847D0 (en) * 1988-02-18 1988-03-16 Renishaw Plc Mounting for surface-sensing device
SE461548B (en) * 1988-02-18 1990-02-26 Johansson Ab C E PROCEDURE AND DEVICE FOR DETERMINING AND CORRECTING IN CASE OF LOCATION ERROR IN SEATING A POINT OF A POINT OR POSITIONING TO A POINT WITH A PARTICULAR LOCATION
US4925312A (en) 1988-03-21 1990-05-15 Staubli International Ag Robot control system having adaptive feedforward torque control for improved accuracy
US5038089A (en) 1988-03-23 1991-08-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Synchronized computational architecture for generalized bilateral control of robot arms
US4907970A (en) * 1988-03-30 1990-03-13 Grumman Aerospace Corporation Sidestick-type thrust control simulator
US4942545A (en) * 1988-06-06 1990-07-17 Combustion Engineering, Inc. Calibration of eddy current profilometry
NL8801653A (en) 1988-06-29 1990-01-16 Stork Kwant Bv OPERATING SYSTEM.
US5050608A (en) * 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US5116180A (en) 1988-07-18 1992-05-26 Spar Aerospace Limited Human-in-the-loop machine control loop
US4962448A (en) 1988-09-30 1990-10-09 Demaio Joseph Virtual pivot handcontroller
DE58903515D1 (en) * 1988-10-03 1993-03-25 Zeiss Carl Fa TEST BODY FOR COORDINATE MEASURING DEVICES.
FR2638010B1 (en) 1988-10-13 1991-01-18 Acroe MODULAR RETROACTIVE KEYBOARD AND FLAT MODULAR ACTUATOR
US5007085A (en) * 1988-10-28 1991-04-09 International Business Machines Corporation Remotely sensed personal stylus
US4907973A (en) * 1988-11-14 1990-03-13 Hon David C Expert system simulator for modeling realistic internal environments and performance
US4930770A (en) 1988-12-01 1990-06-05 Baker Norman A Eccentrically loaded computerized positive/negative exercise machine
US5189806A (en) * 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
US5116051A (en) * 1989-01-12 1992-05-26 Atari Games Corporation Strain gauge pressure-sensitive video game control
US5044956A (en) * 1989-01-12 1991-09-03 Atari Games Corporation Control device such as a steering wheel for video vehicle simulator with realistic feedback forces
US4949119A (en) 1989-01-12 1990-08-14 Atari Games Corporation Gearshift for a vehicle simulator using computer controlled realistic real world forces
US5186695A (en) 1989-02-03 1993-02-16 Loredan Biomedical, Inc. Apparatus for controlled exercise and diagnosis of human performance
US5019761A (en) 1989-02-21 1991-05-28 Kraft Brett W Force feedback control for backhoe
JPH02220106A (en) * 1989-02-22 1990-09-03 Okuma Mach Works Ltd Digitization controller containing measuring function
GB8904955D0 (en) * 1989-03-03 1989-04-12 Atomic Energy Authority Uk Multi-axis hand controller
US4983901A (en) 1989-04-21 1991-01-08 Allergan, Inc. Digital electronic foot control for medical apparatus and the like
JPH02290506A (en) * 1989-04-28 1990-11-30 Mitsutoyo Corp Three-dimensional measuring instrument
US5184306A (en) * 1989-06-09 1993-02-02 Regents Of The University Of Minnesota Automated high-precision fabrication of objects of complex and unique geometry
US5076517A (en) 1989-08-14 1991-12-31 United Technologies Corporation Programmable, linear collective control system for a helicopter
JPH07104146B2 (en) * 1989-08-29 1995-11-13 株式会社ミツトヨ Rotation table scanning control method for coordinate measuring probe
US5139261A (en) * 1989-09-15 1992-08-18 Openiano Renato M Foot-actuated computer game controller serving as a joystick
US5182557A (en) * 1989-09-20 1993-01-26 Semborg Recrob, Corp. Motorized joystick
US4961038A (en) 1989-10-16 1990-10-02 General Electric Company Torque estimator for switched reluctance machines
US5209131A (en) * 1989-11-03 1993-05-11 Rank Taylor Hobson Metrology
US5126948A (en) * 1989-11-08 1992-06-30 Ltv Aerospace And Defense Company Digital position encoder and data optimizer
US5107080A (en) * 1989-12-01 1992-04-21 Massachusetts Institute Of Technology Multiple degree of freedom damped hand controls
US4983786A (en) * 1990-01-17 1991-01-08 The University Of British Columbia XY velocity controller
US5022407A (en) 1990-01-24 1991-06-11 Topical Testing, Inc. Apparatus for automated tactile testing
US5259894A (en) * 1990-01-26 1993-11-09 Sampson Richard K Method for solvent bonding non-porous materials to automatically create variable bond characteristics
US5072361A (en) * 1990-02-01 1991-12-10 Sarcos Group Force-reflective teleoperation control system
US5184319A (en) * 1990-02-02 1993-02-02 Kramer James F Force feedback and textures simulating interface device
US5113179A (en) 1990-03-16 1992-05-12 Advanced Gravis Computer Technology Ltd. Switch joystick
US5132672A (en) * 1990-03-27 1992-07-21 Apple Computer, Inc. Three degree of freedom graphic object controller
US5095303A (en) * 1990-03-27 1992-03-10 Apple Computer, Inc. Six degree of freedom graphic object controller
US5128671A (en) * 1990-04-12 1992-07-07 Ltv Aerospace And Defense Company Control device having multiple degrees of freedom
US5035242A (en) 1990-04-16 1991-07-30 David Franklin Method and apparatus for sound responsive tactile stimulation of deaf individuals
JPH0438507A (en) * 1990-06-05 1992-02-07 Mitsui Eng & Shipbuild Co Ltd Joystick controller
US5547382A (en) 1990-06-28 1996-08-20 Honda Giken Kogyo Kabushiki Kaisha Riding simulation system for motorcycles
US5197003A (en) 1990-08-01 1993-03-23 Atari Games Corporation Gearshift for a vehicle simulator having a solenoid for imposing a resistance force
US5251156A (en) * 1990-08-25 1993-10-05 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and apparatus for non-contact measurement of object surfaces
US5181181A (en) * 1990-09-27 1993-01-19 Triton Technologies, Inc. Computer apparatus input device for three-dimensional information
WO1992007350A1 (en) * 1990-10-15 1992-04-30 National Biomedical Research Foundation Three-dimensional cursor control device
US5142506A (en) * 1990-10-22 1992-08-25 Logitech, Inc. Ultrasonic position locating method and apparatus therefor
US5209661A (en) 1990-10-29 1993-05-11 Systems Control Technology, Inc. Motor control desired dynamic load of a simulating system and method
US5193963A (en) 1990-10-31 1993-03-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Force reflecting hand controller
JPH04195322A (en) * 1990-11-28 1992-07-15 Mitsubishi Electric Corp Mouse input device
NL194053C (en) 1990-12-05 2001-05-03 Koninkl Philips Electronics Nv Device with a rotationally symmetrical body.
US5223776A (en) * 1990-12-31 1993-06-29 Honeywell Inc. Six-degree virtual pivot controller
US5204600A (en) 1991-02-06 1993-04-20 Hewlett-Packard Company Mechanical detent simulating system
US5098437A (en) 1991-02-13 1992-03-24 Pfizer Hospital Products Group, Inc. Acetabular cup positioning insert
US5142931A (en) * 1991-02-14 1992-09-01 Honeywell Inc. 3 degree of freedom hand controller
US5212473A (en) 1991-02-21 1993-05-18 Typeright Keyboard Corp. Membrane keyboard and method of using same
US5334027A (en) 1991-02-25 1994-08-02 Terry Wherlock Big game fish training and exercise device and method
US5143505A (en) * 1991-02-26 1992-09-01 Rutgers University Actuator system for providing force feedback to a dextrous master glove
US5354162A (en) * 1991-02-26 1994-10-11 Rutgers University Actuator system for providing force feedback to portable master support
US5240417A (en) 1991-03-14 1993-08-31 Atari Games Corporation System and method for bicycle riding simulation
US5203563A (en) 1991-03-21 1993-04-20 Atari Games Corporation Shaker control device
DE69212149D1 (en) 1991-03-21 1996-08-14 Atari Games Corp DRIVING SIMULATOR WITH CROSS-CROSS NETWORK FEEDBACK
US5131844A (en) * 1991-04-08 1992-07-21 Foster-Miller, Inc. Contact digitizer, particularly for dental applications
GB9108497D0 (en) 1991-04-20 1991-06-05 Ind Limited W Human/computer interface
JPH06508222A (en) * 1991-05-23 1994-09-14 アタリ ゲームズ コーポレーション modular display simulator
US5146566A (en) 1991-05-29 1992-09-08 Ibm Corporation Input/output system for computer user interface using magnetic levitation
US5178012A (en) * 1991-05-31 1993-01-12 Rockwell International Corporation Twisting actuator accelerometer
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5388992A (en) 1991-06-19 1995-02-14 Audiological Engineering Corporation Method and apparatus for tactile transduction of acoustic signals from television receivers
JP2514490B2 (en) * 1991-07-05 1996-07-10 株式会社ダイヘン Teaching control method by interlocking manual operation of industrial robot
US5185561A (en) * 1991-07-23 1993-02-09 Digital Equipment Corporation Torque motor as a tactile feedback device in a computer system
EP0526056B1 (en) * 1991-07-27 1996-01-31 Renishaw Transducer Systems Limited Calibration and measurement device
US5186629A (en) * 1991-08-22 1993-02-16 International Business Machines Corporation Virtual graphics display capable of presenting icons and windows to the blind computer user and method
US5235868A (en) 1991-10-02 1993-08-17 Culver Craig F Mechanism for generating control signals
US5262777A (en) * 1991-11-16 1993-11-16 Sri International Device for generating multidimensional input signals to a computer
US5220260A (en) * 1991-10-24 1993-06-15 Lex Computer And Management Corporation Actuator having electronically controllable tactile responsiveness
US5889670A (en) 1991-10-24 1999-03-30 Immersion Corporation Method and apparatus for tactilely responsive user interface
US5271290A (en) 1991-10-29 1993-12-21 United Kingdom Atomic Energy Authority Actuator assembly
JPH08504050A (en) * 1991-11-21 1996-04-30 チェリー・ミクロシャルター・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Flat key switch
US5228356A (en) * 1991-11-25 1993-07-20 Chuang Keh Shih K Variable effort joystick
US5309140A (en) 1991-11-26 1994-05-03 The United States Of America As Represented By The Secretary Of The Navy Feedback system for remotely operated vehicles
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
GB9201214D0 (en) 1992-01-21 1992-03-11 Mcmahon Michael J Surgical retractors
DE4205875A1 (en) 1992-02-26 1993-09-02 Vdo Schindling Rotary selector e.g. for manual input of data in to electronic equipment - has movement of rotary input knob controlled by motor and generator with positions defined by load data in memory
US5559432A (en) 1992-02-27 1996-09-24 Logue; Delmar L. Joystick generating a polar coordinates signal utilizing a rotating magnetic field within a hollow toroid core
CA2062147C (en) * 1992-03-02 1995-07-25 Kenji Hara Multi-axial joy stick device
US5589828A (en) 1992-03-05 1996-12-31 Armstrong; Brad A. 6 Degrees of freedom controller with capability of tactile feedback
JP3199130B2 (en) 1992-03-31 2001-08-13 パイオニア株式会社 3D coordinate input device
US5189355A (en) 1992-04-10 1993-02-23 Ampex Corporation Interactive rotary controller system with tactile feedback
JP2677315B2 (en) 1992-04-27 1997-11-17 株式会社トミー Driving toys
US5273418A (en) * 1992-04-29 1993-12-28 Nok Corporation Molding machine
US5368484A (en) 1992-05-22 1994-11-29 Atari Games Corp. Vehicle simulator with realistic operating feedback
US5366376A (en) 1992-05-22 1994-11-22 Atari Games Corporation Driver training system and method with performance data feedback
US5245320A (en) 1992-07-09 1993-09-14 Thrustmaster, Inc. Multiport game card with configurable address
US5551701A (en) 1992-08-19 1996-09-03 Thrustmaster, Inc. Reconfigurable video game controller with graphical reconfiguration display
US5296871A (en) 1992-07-27 1994-03-22 Paley W Bradford Three-dimensional mouse with tactile feedback
US5428748A (en) 1992-09-24 1995-06-27 National Semiconductor Corporation Method and apparatus for automatically configuring a computer peripheral
US5264768A (en) * 1992-10-06 1993-11-23 Honeywell, Inc. Active hand controller feedback loop
US5286203A (en) 1992-10-07 1994-02-15 Aai Microflite Simulation International Simulating horizontal stabilizer trimming in an aircraft
US5666473A (en) 1992-10-08 1997-09-09 Science & Technology Corporation & Unm Tactile computer aided sculpting device
US5790108A (en) * 1992-10-23 1998-08-04 University Of British Columbia Controller
US5397323A (en) 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
US5769640A (en) 1992-12-02 1998-06-23 Cybernet Systems Corporation Method and system for simulating medical procedures including virtual reality and control method and system for use therein
US5629594A (en) 1992-12-02 1997-05-13 Cybernet Systems Corporation Force feedback system
US5389865A (en) 1992-12-02 1995-02-14 Cybernet Systems Corporation Method and system for providing a tactile virtual reality and manipulator defining an interface device therefor
US5550562A (en) 1993-01-12 1996-08-27 Fujitsu Limited Data processing device that enables mouse-operated application programs to be operated from an operation pad, and an operation pad for use with the same
US5451924A (en) 1993-01-14 1995-09-19 Massachusetts Institute Of Technology Apparatus for providing sensory substitution of force feedback
EP0607580A1 (en) 1993-01-21 1994-07-27 International Business Machines Corporation Tactile feedback mechanism for cursor control
US5785630A (en) 1993-02-02 1998-07-28 Tectrix Fitness Equipment, Inc. Interactive exercise apparatus
US5402582A (en) 1993-02-23 1995-04-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
US5412880A (en) 1993-02-23 1995-05-09 Faro Technologies Inc. Method of constructing a 3-dimensional map of a measurable quantity using three dimensional coordinate measuring apparatus
JP3259425B2 (en) * 1993-04-09 2002-02-25 ヤマハ株式会社 Parameter indicating device
JP3686686B2 (en) * 1993-05-11 2005-08-24 松下電器産業株式会社 Haptic device, data input device, and data input device device
US5429140A (en) 1993-06-04 1995-07-04 Greenleaf Medical Systems, Inc. Integrated virtual reality rehabilitation system
US5396266A (en) 1993-06-08 1995-03-07 Technical Research Associates, Inc. Kinesthetic feedback apparatus and method
US5405152A (en) 1993-06-08 1995-04-11 The Walt Disney Company Method and apparatus for an interactive video game with physical feedback
US5351692A (en) * 1993-06-09 1994-10-04 Capistrano Labs Inc. Laparoscopic ultrasonic probe
US5513100A (en) 1993-06-10 1996-04-30 The University Of British Columbia Velocity controller with force feedback stiffness control
US5466213A (en) 1993-07-06 1995-11-14 Massachusetts Institute Of Technology Interactive robotic therapist
US5721566A (en) 1995-01-18 1998-02-24 Immersion Human Interface Corp. Method and apparatus for providing damping force feedback
US5734373A (en) 1993-07-16 1998-03-31 Immersion Human Interface Corporation Method and apparatus for controlling force feedback interface systems utilizing a host computer
US6057828A (en) 1993-07-16 2000-05-02 Immersion Corporation Method and apparatus for providing force sensations in virtual environments in accordance with host software
US5767839A (en) 1995-01-18 1998-06-16 Immersion Human Interface Corporation Method and apparatus for providing passive force feedback to human-computer interface systems
US5739811A (en) 1993-07-16 1998-04-14 Immersion Human Interface Corporation Method and apparatus for controlling human-computer interface systems providing force feedback
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
US5701140A (en) 1993-07-16 1997-12-23 Immersion Human Interface Corp. Method and apparatus for providing a cursor control interface with force feedback
US5625576A (en) 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
US5436640A (en) 1993-10-29 1995-07-25 Thrustmaster, Inc. Video game and simulator joystick controller with geared potentiometer actuation
US5384460A (en) 1993-11-03 1995-01-24 Silitek Corporation Encoder with a light emitting editing wheel
DE69423313T2 (en) 1993-12-20 2000-07-13 Seiko Epson Corp Electronic notification system
JPH07111663B2 (en) 1993-12-28 1995-11-29 コナミ株式会社 Foot pedal for operation
US5577981A (en) 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system
WO1995020788A1 (en) 1994-01-27 1995-08-03 Exos, Inc. Intelligent remote multimode sense and display system utilizing haptic information compression
WO1995020787A1 (en) 1994-01-27 1995-08-03 Exos, Inc. Multimode feedback display technology
US5436542A (en) 1994-01-28 1995-07-25 Surgix, Inc. Telescopic camera mount with remotely controlled positioning
JPH07230356A (en) * 1994-02-16 1995-08-29 Kokusai Electric Co Ltd Mouse erroneous movement preventing circuit
US5482051A (en) 1994-03-10 1996-01-09 The University Of Akron Electromyographic virtual reality system
JP2665313B2 (en) 1994-04-22 1997-10-22 国際電業株式会社 Reaction force generator
US6004134A (en) 1994-05-19 1999-12-21 Exos, Inc. Interactive simulation including force feedback
JPH0880100A (en) 1994-06-30 1996-03-22 Mitsubishi Electric Corp Controller of induction motor and its control method
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
JPH0843872A (en) * 1994-08-03 1996-02-16 Minolta Co Ltd Lens driving device using electro/mechanical conversion element
EP0727065B1 (en) 1994-09-07 2002-02-06 Koninklijke Philips Electronics N.V. Virtual workspace with user-programmable tactile feedback
US5669818A (en) 1995-03-23 1997-09-23 Thorner; Craig Seat-based tactile sensation generator
US6422941B1 (en) 1994-09-21 2002-07-23 Craig Thorner Universal tactile feedback system for computer video games and simulations
US5570111A (en) 1994-10-03 1996-10-29 International Business Machines Corporation Graphical user interface cursor positioning device having a negative inertia transfer function
US5642469A (en) 1994-11-03 1997-06-24 University Of Washington Direct-drive manipulator for pen-based force display
US5766016A (en) 1994-11-14 1998-06-16 Georgia Tech Research Corporation Surgical simulator and method for simulating surgical procedure
US5666138A (en) 1994-11-22 1997-09-09 Culver; Craig F. Interface control
JP3236180B2 (en) 1994-12-05 2001-12-10 日本電気株式会社 Coordinate pointing device
US5882206A (en) 1995-03-29 1999-03-16 Gillio; Robert G. Virtual surgery system
US5736978A (en) 1995-05-26 1998-04-07 The United States Of America As Represented By The Secretary Of The Air Force Tactile graphics display
US5589854A (en) 1995-06-22 1996-12-31 Tsai; Ming-Chang Touching feedback device
US5771037A (en) 1995-07-24 1998-06-23 Altra Computer display cursor controller
DE19528457C2 (en) 1995-08-03 2001-03-08 Mannesmann Vdo Ag Control device
US5724068A (en) 1995-09-07 1998-03-03 Microsoft Corporation Joystick with uniform center return force
MX9704155A (en) 1995-10-09 1997-09-30 Nintendo Co Ltd Three-dimensional image processing system.
US5754023A (en) 1995-10-26 1998-05-19 Cybernet Systems Corporation Gyro-stabilized platforms for force-feedback applications
WO1997020305A1 (en) 1995-11-30 1997-06-05 Virtual Technologies, Inc. Tactile feedback man-machine interface device
US6219032B1 (en) 1995-12-01 2001-04-17 Immersion Corporation Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
US5857986A (en) 1996-05-24 1999-01-12 Moriyasu; Hiro Interactive vibrator for multimedia
US6128006A (en) 1998-03-26 2000-10-03 Immersion Corporation Force feedback mouse wheel and other control wheels
US6422041B1 (en) * 1999-08-16 2002-07-23 The Boc Group, Inc. Method of boosting a glass melting furnace using a roof mounted oxygen-fuel burner

Also Published As

Publication number Publication date
US8077145B2 (en) 2011-12-13
US20060007184A1 (en) 2006-01-12
DE69636703T2 (en) 2007-09-13
EP0852789B1 (en) 2006-11-15
US20030193475A1 (en) 2003-10-16
US6219033B1 (en) 2001-04-17
WO1997012357A1 (en) 1997-04-03
JP4689747B2 (en) 2011-05-25
JP4929394B2 (en) 2012-05-09
JP2011065678A (en) 2011-03-31
JPH11514469A (en) 1999-12-07
US20010030658A1 (en) 2001-10-18
EP0852789A1 (en) 1998-07-15
DE69636703D1 (en) 2006-12-28
US6580417B2 (en) 2003-06-17
CA2233136C (en) 2012-01-31
US5734373A (en) 1998-03-31
US6982700B2 (en) 2006-01-03
JP2010061667A (en) 2010-03-18
EP0852789A4 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
CA2233136A1 (en) Method and apparatus for controlling force feedback interface systems utilizing a host computer
WO1997012357B1 (en) Method and apparatus for controlling force feedback interface systems utilizing a host computer
CA2271129C (en) Method and apparatus for shaping force signals for a force feedback device
US6433771B1 (en) Haptic device attribute control
US7843424B2 (en) Method and apparatus for designing force sensations in force feedback computer applications
US6169540B1 (en) Method and apparatus for designing force sensations in force feedback applications
US7636080B2 (en) Networked applications including haptic feedback
US7119789B1 (en) Haptic interface including clutch control
US7091948B2 (en) Design of force sensations for haptic feedback computer interfaces
WO1997021160B1 (en) Method and apparatus for providing force feedback for a graphical user interface
WO1997012357A9 (en) Method and apparatus for controlling force feedback interface systems utilizing a host computer
US8508469B1 (en) Networked applications including haptic feedback

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20160926