CA2313118C - Smart recognition apparatus and method - Google Patents

Smart recognition apparatus and method Download PDF

Info

Publication number
CA2313118C
CA2313118C CA002313118A CA2313118A CA2313118C CA 2313118 C CA2313118 C CA 2313118C CA 002313118 A CA002313118 A CA 002313118A CA 2313118 A CA2313118 A CA 2313118A CA 2313118 C CA2313118 C CA 2313118C
Authority
CA
Canada
Prior art keywords
instrument
connection
light
source
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002313118A
Other languages
French (fr)
Other versions
CA2313118A1 (en
Inventor
James Henry Orszulak
Gary Lee Dobbins Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien AG
Original Assignee
Sherwood Service AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sherwood Service AG filed Critical Sherwood Service AG
Publication of CA2313118A1 publication Critical patent/CA2313118A1/en
Application granted granted Critical
Publication of CA2313118C publication Critical patent/CA2313118C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3895Dismountable connectors, i.e. comprising plugs identification of connection, e.g. right plug to the right socket or full engagement of the mating parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00482Coupling with a code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • A61B2018/00178Electrical connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00988Means for storing information, e.g. calibration constants, or for preventing excessive use, e.g. usage, service life counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • G02B2006/4297Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources having protection means, e.g. protecting humans against accidental exposure to harmful laser radiation

Abstract

The present invention is a qualifying connection (10) for an instrument (11) attached to a source of electrosurgery energy (12), and to the instrument that has first (15) and second (16) parts coupled to the instrument, and the source respectively. Optical couplings (17, 18) on the connection transmit invisible energy to identify the instrument, are proximate on the first, and second parts. A light modifier (24) on the first parts is proximal to the second part for modification of radiation in the infrared wavelengths so infrared transmitters encode signals, and non-contact coded proximity detectors (26) on the second part are the coupled detectors. Non-contact coded proximity detectors respond to modified infrared light establishing and nth bit identification code. An infrared light (19) supplied in the source passes from the transmitters accross the communicating couplings (17, 18) for encoding signals by modification of the infrared light with a light modifier. Mechanical attachments (20, 21) include conjugating male, andfemale portions physically extending between the parts for mating engagement.

Description

SMART RECOGNTTION AEPARATUS ANI) METHOD
s 1. Field of the Invention This relates to a smart recognition system for electrosurgery and a quaiifying connection with non contact, coded proximity detection, using diffuse surface, infrared reflective coupling as an instrument identification process. More particularly, the system identifies, qualifies or verifies the correct connection between a source of high frequency energy and an instrument.
2. Background of the Disclosure Electrosurgery requires controlled appGcation, with an instrument, of radio frequency energy to an operative tissue site. To achieve successful clinical results during surgery, the electrosurgical generator, as the source of the high frequency or radio frequency energy, should be mated correctly with an .appropriate instrument for a speciSc surgery. Due to the variety of operative electrosurgical procedures requiring various levels of radio frequency energy delivery from an attached instrument, problems arise with mismatching an electrosurgical generator and the instrument. The operating rooms with a variety of instruments and generators available for surgery create a potential for mismatch problems and thus may increase the patient risk.
United States patent 5,400,267 discloses a system with a non volatile memory with an EEPROM in the instrument or its attached cable. The memory identifies the instrument. A
problem arises when the memory is located external to the power supply requiring hardwire connections. The communicated data transmission from the memory to the control may have an error due to radiated emissions from radio frequency energy wires located closely when delivered by the electrosurgical generator during surgery. Radio frequency exposure will interfere with the identification information being transmitted so it becomes difficult to deternune that the correct medical instrument is attached to the power source.
In addition a further problem is presented because the memory means must be located in the reusable part of the medical instrument. For purposes of instrument identification, this patent restricts application to reusable medical instruments and prohibits an instrument identification for low cost disposables.
United States patent 5,413,573 describes identification of surgical instruments by incorporating a unique interface between two components such that their engagement by two surfaces defines the identity of an instrument if properly mated. In this system, a switch is provided on a component first surface called the orientation means. A second surface incorporates a contact on an intermediate component. Upon engagement of these two components the appropriate switch and contact mating establish the given identity. A problem arises with this approach, as the integrity of the identity depends on the engagement with the mating of components. A degradation of this identification occurs, with repeated engagements causing deterioration of the mating switch to contact interface between components. A secondary problem also occurs from the multiple engagement process as this approach requires a specific orientation alignment between mating surfaces. As the numbers of switch to contact interfaces increase, a tighter tolerance must be maintained between mating surfaces to retrieve the identity information. Repeated component engagements wiU also deteriorate this orientation alignment and thus degrade the accuracy in maintaining the identity.
United States patent 5,434,398 uses a magnetic encoding process to establish the identity with a card based system. Modulated magnetic fields embedded in a smart card require the use of a ferromagnetic element to retain the unique identity code.
A magnetic reader decodes the card information allowing system activation. Exposure of this system to radio frequency energy used in electrosurgery, could effect the integrity of the magnetic smart card and degrade the ability of the magnetic based card reader to accurately decode its proper identity. Radio frequency energy would remagnetize both the smart card and reader by induced magnetic coupling to the ferromagnetic elements. Clearly this system would require magnetic shielding to retain identity data. Indeterminate magnetic sources present in the operating room also creates additional major problems for this system and would make its use in electrosurgery suspect.

United States patent 5,396,062 describes a power source receptacle system with detection of the presence of a mated plug, by using an optical coupling technique, established by beam passage through the receptacle. This approach uses a Gght emitter to generate a beam, that passes through openings in the receptacle contacts, to a receiver aligned on a dedicated optical axis. A powered instrument having a bladed plug for insertion in a receptacle breaks the beam transmission path sending a corresponding signal to a controller that detects the plug engagement. The '062 patent is [imited in use, in that, it provides for detection when a mating plug is either inserted or removed from the receptacle. Power can only be activated or deactivated in the receptacle, based on whether the mating plug is engaged or disengaged. Numerous problems are presented by this system. First, the identity is not recognized or associated to a given instrument plugged into the receptacle. Second, the power applied to the receptacle cannot be differentiated between specific pluggable instruments. Also, additional problems are presented, because a specific optical axial alignment is required for beam passage, through the openings in the power receptacle contacts, thereby requiring a specific mechanical alignment integrity.
United States Patent 5,625,370 has an electromagnetic device and method in an identification system apparatus. An electricaUy conductive material is disposed to pass through a magnetic flux loop of the electromagnetic device. The coupling established between those components is the means by which identificatlon information is transferred. An antenna may also be electrically connected to the conductive material to augment the apparatus for receiving transmitted identification information. Multiple identification problems exist with radio frequency based equipment due to radiation coupling with the electromagnetic conductive strip and antenna which will deteriorate the identity signals. Error borne signals lose their identity and become inaccurate with decoding. The radio frequency energy may also electromagnetically couple to distort the magnetic flux loop of the electromagnetic device.
This will reduce the signal to noise ratio during information transfer and lower the accuracy of the identity information recovered.
International Patent W09608794 has a security code identification circuit that uses a radio frequency based card reader and decoder method to recover a digital security code. The card reader includes a receiving antenna sensitive to a signal generated to an access card. A
receiver circuit is coupled to the receiving antenna to detect and process an analog signal that is then converted to a digital security code. A problem with this type of recognition system makes it error borne and unacceptable for code identification in radio frequency systems.
Radio frequency energy contains components that will be picked up and coupled by the reader receiving antenna as it is sensitive to those frequencies. This will confuse the card reader antenna and detector electronics. Erroneous signal components will be processed along with the identification signal; thus, generating errors in the detected signal. The recognition system digital security code could not be a true representation of the signal information and thus 1o identification is inaccurate for use with radio frequency based equipment.
United States patent 5,660,567 has a smart connector for a sensor with removable encoding medical device. The smart identification method is accomplished within the connector module pin interconnect wherein a dedicated group of removable pins from a multiple pin connector are used to attach an encoding device read by the sourcing equipment.
The sensor, attached to this connector with encoding device, identifies the medical device.
The smart connector distinguishes either a resistor, an electronic device, a memory device or a modulating device to identify the medical device. Insertion and removal of an encoder requires assembly, thereby making the accuracy and repeatability of the identification process suspect and prone to error. Recovery of the smart signal interface is dependent on the reliability of the electrical and mechanical connections required as mechanical misregistration and intenmittent electrical contacts will degrade accuracy. In applications where radio frequency energy exists proximate to the encoding, the corruption of electronic signals used for identity recognition will result. Radio frequency energy will radiate and conductively couple with electronic or memory devices to reduce the accuracy of decoded signals.
United States patent 5,651,780 has an identification and monitoring method for recognizing the physical and or functional characteristics of medical devices.
Identification means located within the medical instrument uses an electronic memory such as a non-volatile RAM, ROM, EEPROM or EPROM. Information is stored about the medical device attributes in look-up tables within a power source include an acceptable device list or perfonnance characteristic to compare to the attached instrument to determine application use. The identification teachings of this patent are similar to the one identified in United States Patent 5,400,267. The problems with '780 are similar to those mentioned for the '267 patent.
A solution to the above problems is disclosed and claimed herein and it addresses the noted limitations of the patents discussed. A smart recognition system for electrosurgery includes a smart connector sensing topology. In addition to uniquely recognizing the correct mating of electrosurgical power sources with the attached pluggable medical instruments the smart connector sensing approach herein provides a solution that has inherent immunity to the problems discussed. The present system has the smart identification code integral to the connector assembly to avoid assembly errors. Use of a non-contact, optical method smart signal recovery eliminates electrical contact degradation and mechanical misalignment problems. An infrared diffuse reflectance code identification recovery method which has inherent accuracy and reliability in harsh, high power radio frequency electrosurgical environments and application in fields outside electrosurgery.
SUMMARY OF T'HE INVENTION
The preferred embodiment of the smart connector sensing approach has a non-contact, coded proximity detector that uses a diffuse surface, infrared reflective coupling. Delineation of this smart sense topology yields benefits providing the invnunity referenced as an intrinsic property of the means used. A non contact technique avoids problems associated with mechanical alignment, component engagement and part mating orientation.
Physical contact for sensing between mating components is not required for identity recognition. Coded proximity detection provides a unique identity association between plugged medical instruments and Rf energy sources. Multiple integrated optical paths, each containing both emitting and receiving components, proximally detect a unique Nth bit code identification for each medical instrument, plugged into an Rf energy source. Identification problems, associated with memory communication and data storage and registration and fatigue problems caused by component engagement alignment problems of multiple sensors for code identity, are avoided.

A light coupled, non-magnetic approach, avoids instrument identity problems with electromagnetic (EMI) interference. Light coupled identity sensing is immune to this noise.
A light coupled technique, also avoids problems caused by electrical discontinuity, due to a mechanical disconnection of wire contacts between hardwire connections, or switches. A
diffuse surface reflective coupling, avoids problems associated with optical axial alignment and focused optics. Unfocused optical components are preferred to proximally detect plugged instruments with diffuse surface reflection. Optimal smart sense recognition is obtained from non-planer, diffuse surface, including medical instrument plugs located within a proximal range from the smart sense components. As a result, tight optical and mechanical registration tolerances, along with high polished optical surfaces are not required to maximize instrument recognition and signal recovery.
Infrared reflective coupling is preferred as it provides high accuracy sensing and signal recovery for smart recognition, medical instrument detection. Unlike the visible light sensors, that encompass a broad spectrum of light wavelengths, infrared light exists at a narrow band width wavelength. This provides a high accuracy, sensory signal recognition apparatus and method. Infrared offers a high discriminating signal to noise ratio between the smart sense light source and the ambient background light of the operating room. A smart connector sensing approach has maximum flexibility for medical instruments. Disposable and reusable medical instruments, may be uniquely identified and attached to an electrosurgical Rf generator source, for clinical use. A smart recognition system for electrosurgery is herein presented. The benefits described are unique medical applications for electrosurgery. In addition, the approaches for applications outside electrosurgery are possible as example:
lasers, microwaves, ultrasonics and fluid based energy delivered systems.
The smart recognition system for electrosurgery provides an accurate medical instrument identification, for instruments attached to an electrosurgical generator source of high frequency electrosurgical energy. A control of the application of Rf energy during surgical procedures is also disclosed. Specific Rf power levels developed in the electrosurgical generator may be uniquely activated and coupled to individually recognized medical instruments for perfornung electrosdrgery. Activation and surgical use of the Rf energy source are only allowed with an appropriate validation from the smart recognition system.
This occurs when the proper medical instrument has been attached to the electrosurgical generator. Using this approach to control the power source for a particular tissue and to achieve the desired clinical effect prevents misapplication of Rf energy to the patient. As a result, the risk of patient injury is minimized and safety increased.
BRIEF DESCWPTION OF THE DRAWINGS

Figure 1 is a perspective view of the smart recognition system with a source of medical treatment, a qualifying connection and attached instrument.
Figure 2 is a side view of the connector of Figure 1 enlarged and in cross section for showing the relative relationships of the optical coupGngs and the mechanical attachments of first and second parts of the qualifying connection.

DETArLED DESCRIPTION OF THE INVENTION
A qualifying connection 10 is disposed between an instrument 11 and a source of medical 12 treatment for passage of treatment energy from the source of medical treatment 12 through the qualifying connection 10 to the instrument 11 and to a patient.
The qualifying connection 10 selectively permits passage of information from the instrument 11 to the source of medical treatment 12 in Figures 1 and 2. The qualifying connection 10 includes the instrument 11 having a distal end 13 for treatment of the patient and a proximal end 14 for manipulation by a surgeon. The instrument 11 is connected to the qualifying connection 10.
The source of medical treatment 12 provides energy deGvery to the instrument 11. The source of medical treatment 12 is attached to the qualifying connection 10. A first part 15 of the qualifying connection 10 connects to the instrument 11 in Figure 2. A second part 16 of the qualifying connection 10 is carried on and connected to the source of medical treatment 12.
Optical couplings 17 and 18 on the qualifying connection 10 extend between the first and second parts 15 and 16 respectively to pass optical energy thus communicating information in the form of the identity of the instrument 11 to the source of medical treatment 12.
A light supply 19 is in the source of medical treatment 12 is part of the qualifying connection 10 for transmitting across the communicating optical couplings 17 and 18 shown in Figure 2. The light supply 19 operates within a predetemined wavelength.
Mechanical attachments 20 and 21 across the qualifying connection 10 juxtaposition the first and second parts 15 and 16 thereof. The mechanical attachments 20 and 21 have geometric mechanical conjugations for delivering medical treatment through the qualifying connection 10 from the source of medical treatment 12 to the instrument 11. The mechanical attachments 20 and 21 position geographically the optical couplings 17 and 18 in proximity to conununicate between the first part 15 on the instrument 11 and the second part 16 on the source of medical treatment 12 when the mechanical attachments 20 and 21 conjugate so the optical couplings 17 and 18 may communicate the information as an indication of the identity of the instrument 11 connected to the source of medical treatment 12.
An identifying circuit 22, a circuit board in the source of medical treatment 12 and on the second part 16 responds to the information as the indication of light optically conununicated through the optical couplings 17 and 18 thereby differentiating the type of instrument 11 connected by the mechanical attachments 20 and 21 through the qualifying connection 10 to the source of medical treatment 12. The identifying circuit 22 in Figure 2 signals verification to the source of medical treatment 12. A switch 23, preferrably a comparator integrated circuit, is connected to the identifying circuit 22 in the source of medical treatment 12. The switch 23 responds to the signaling of the identifying circuit 22.
The switch further connects within the source of medical treatment 12 for enabling the passage of medical treatment 12 from the source of medical treatment 12 through at least one of the mechanical attachments 20 or 21 and to the instrument 11.
Conjugating male and female portions may be one form of the mechanical attachment 20 and 21 as shown in Figure 2. The male and female portions physically extend between the first and second parts 15 and 16 across the qualifying connection 10 for mating engagement.
The optical couplings 17 and 18 positioned on the first and second parts 15 and 16 are preferrably aligned in proximate relation for communication therebetween upon the mating engagement of the mechanical attachments. The optical coupling 17 on the first part 15 includes a light modifier 24. The light modifier 24 includes either a diffuse surface, a coating, a matrix of holes or a preselected light responsive material to modify the wavelength of radiation affected by the light modifier 24 for thereafter receipt by the optical coupling 18 on the second part 16 for signaling the source of medical treatment 12, see Figure 2.
The mechanical attachments 20 and 21 include one or more male portions on the first part 15 for conjugation. The mechanical attachments 20 and 21 include one or more female portions on the second part 16 for conjugation. Of course the male and female portions could be reversed or alternated. The first part 15 of the optical couplings 17 and 18 includes the light modifier 24 indicative of the type of instrument 11 connected to the first part 15.
Infrared transmitters as a preferred light supply 19 are positioned on the second part 16 proximal the light modifier 24 for optical communication of the light therethrough. The source of medical treatment 12 is preferrably a source of high frequency energy, but could be a laser, hydro disector, aspiration or other medical or surgical deGvery system.
A memory 25 with the source of medical treatment receives the information as the indication in the form of modified light energy from the optical couplings 17 and 18 best shown in Figure 1. The memory 25 compares the light transmitted through the optical couplings 17 and 18 modified thereby with information. The memory 25 receives the infonnation and controls the activation or deactivation of the energy source 12. The optical couplings 17 and 18 preferrably include a diffuse surface infrared reflector as the preferred light modifier 24 on the first part 15 and non contact coded proximity detectors 26 as part of the light supply 19 on the second part 16 responsive to the light retumed from the diffuse surface infrared reflector 24 communicated as information indicative of the instrument 11 identification for the identifying circuit 22.
A method of using the qualifying connection 10 for the instrument 11 attached to source of high frequency energy 12 for electrosurgery and for delivering surgical signals from the source of high frequency energy 12 through the qualifying connection 10 to and from the instrument 11 has first and second parts 15 and 16. The method has steps including juxtapositioning the first and second parts 15 and 16 across the qualifying connection 10 with mechanical attachments 20 and 21 and optical couplings 17 and 18 therebetween.
Conjugating the first and second parts 15 and 16 on the qualifying connection 10 with geometric mechanical attachments 20 and 21 and transmitting invisible optical energy across optical couplings 17 and 18 juxtaposed by first and second parts 15 and 16 of the qualifying connection 10 for communicating instrument 11 identity with invisible light supplied from the source of high frequency energy 12 are steps of the method. The method has the step of modifying the invisible optical energy with geographically disposed proximate optical couplings 17 and 18 of the first and second parts 15 and 16 when the mechanical attachments 20 and 21 engage so the optical couptings 17 and 18 are proximate.
Communicating the type of instrument 11 connected by a cable 27 between the first part and the instrument 11, by passing a signal of the modified invisible optical energy through the qualifying connection 10 and to identifying circuit 22 in the source of high frequency 12 is a method step. A step of the method is assessing the modified invisible optical energy from the optical couplings 17 and 18 with the identifying circuit 22 for use as verification for controlling the source of high frequency energy 12. A method step is enabling the flow of high frequency energy 12 from the source of high frequency energy 12 through at least one of the mechanical attachments 20 or 21, the cable 27 and to the instrument l 1 with switch 23 in the source of high frequency energy 12 responsive to control from the identifying circuit 22. Carrying high frequency energy through the mechanical attachments 20 and 21 from the source of high frequency energy 12 to the instrument 11 and through cable 27 between the first part 15 of the qualifying connection 10 and the instrument 1 l is a step.
The method has a step of conjugating male and female portions that form the mechanical attachments 20 and 21 by physically extending the mechanical attachments 20 and 21 between the first and second parts 15 and 16 across the qualifying connection 10 during mating engagement. The method includes the step of communicating between the optical couplings 17 and 18 by transmitting optical energy as signals from the second part 16 as encoded in modified invisible optical energy by light modifier 24 on the first part 15 sensed by detectors 26 on the second part 16 positioned proximate by the mating engagement of the mechanical attachments 20 and 21. The method has the step of modifying invisible light radiation in the infrared wavelengths by a diffuse surface as the light modifier 24. The method includes the step of modifying the invisible light radiation with a matrix 28 on the first part and infrared emitters on the second part positioned proximate to the matrix 28 for coding signals.
The matrix 28 is preferrably a combination of diffuse reflectors and holes in coupling 17 of first part 15 as in Figure 2. The method has the step of receiving the coded signals before activating or deactivating the source of high frequency energy 12 with switch 23 coupled to memory 25 in the identifying circuit 22 wherein the memory 25 compares the coded signals to predetermined instrument 11 identification therein. The method has the step of communicating through optical couplings 17 and 18 by non contact, coded proximity detectors responsive to diffuse surface invisible infrared optical energy for instrument 11 identification.
The qualifying connection 10 for instrument i l in a preferred embodiment attaches to source of high frequency energy 12 for electrosurgery. Surgical signals from the source of high frequency energy 12 are delivered through qualifying connection 10 to and from instrument 11. First part 15 couples to instrument 11 and second part 16 is in the source of high frequency energy 12. Mechanical attachments 20 and 21 on first and second parts 15 and 16 geometrically conjugate. The mechanical attachments 20 and 21 extend across the qualifying connection 10 for juxtapositioning first and second parts 15 and 16. Mechanical attachments 21 on second part 16 connect to source of high frequency energy 12. Mechanical attachment 20 on first part 15 couples to instrument 11 for delivery of high frequency energy 12 and therefore are electrical conductors. Optical couplings 17 and 18 on first and second parts 15 and 16 pass invisible optical energy thereacross to communicate instrument 11 identity. Optical couplings 17 and 18 geographically orient proximate relative to the juxtaposed first and second parts 15 and 16 for convnunicating when the mechanical attachments 20 and 21 conjugate. Inffirared light supply 19 in source of high frequency energy 12, connects through optical couplings 17 and 18 in the transmission across the communicating optical couplings 17 and 18. Infrared light modifier 24 on optical coupling 17 is positioned proximal for coding of the transmitted infrared light communicated there across.
Cable 27 fitted between first part 15 and instrument 11 carries high frequency energy from mechanical attachments 20 and 21 to instrument 11. Cable 27 allows movement of instrument 11 relative to source of high frequency energy 12. Identifying circuit 22 in source of high frequency energy 12 connects to respond to infrared light optically coded by infrared light modifier 24. Identifying circuit 22 verifies the type of instrument 11 connected by cable 27 through qualifying connection 10 to source of high frequency 12 electrosurgical energy.
Identifying circuit 22 connects for signaling the verification to source of high frequency energy 12.

Switch 23 in source of high frequency energy 12 couples to identifying circuit 22 for responding to the signals of identifying circuit 22. Switch 23 connected within source of high frequency energy 12 for enabling and disabling the flow of high frequency energy 12 therefrom and through at least one of mechanical attachments 20 and 21, cable 27 and to the instrument 11.

One form qualifying connection 10 includes first part 15 thereof connected to instrument 11 and second part 16 thereof carried in and connected to source of medical treatment 12. A transmitter such as light supply 19 on source of medical treatment 12 delivers informational energy to first part 15 on instrument 11 and modifier 24 on first part 15 is proximately positioned relative to transmitter 19. Modifier 24 changes the energy from the transmitter 19. One or more receivers such as detectors 26 on second part 16 are located for receipt of the changed energy from modifier 24. Mechanical attachments 20 and 21 across qualifying connection 10 juxtaposition first and second parts 15 and 16 thereof. Mechanical attachments 20 and 21 having geometric conjugations deliver medical treatment through qualifying connection 10 from source of medical treatment 12 to instrument 11.
Mechanical attachments 20 and 21 position proximally and geographically first part 15 on instrument 11 and second part 16 on source of medical treatment 12 when mechanical attachments 20 and 21 conjugate so that first and second parts 15 and 16 may conununicate across qualifying connection 10 between first and second parts 15 and 16 for transmitting and receiving information and modified energy thereacross thus communicating the identity of instrument 11 to and medical treatment from source of medical treatment 12.
Identifying circuit 22 connects to second part 161ocated in source of medical treatment 12 for receiving communicated information from receiver 26.
Identifying circuit 22 responds to conununicated information for differentiating the type of instrument 11 connected by mechanical attachments 20 and 21 through qualifying connection 10 to source of medical treatment 12. Identifying circuit 22 generates a signal of verification to source of medical treatment 12. Switch 23 in source of medical treatment 12 responds to the signaling of identifying circuit 22. Switch 23 connects to identifying circuit 22 within source of medical treatment 12. Switch 23 connects within source of medical treatment 12 for controlling the passage of medical treatment from source of medical treatment 12 through at least one of the mechanical attachments 20 or 21 and to instrument 11.
Switch 23 is connected to an energy provider such as an electrosurgical generator in source of medical treatment 12. Switch 23 within identifier circuit 22 conununicates identification information to allow setting the nature of the energy conveyed in accord with instrument 11 identified and for differentiating instrument 11 attached through qualifying connection 10 from other unqualified instruments 11. Transmitter 19 delivers light in the infrared wavelengths and the modifier 24 is preferrably a surface on first part 15 positioned proximal to transmitter 19 on second part 16. The surface is configured to modify the delivered light by absorption, diffraction, reflection or a combination thereof. Mechanical attachments 20 and 21 preferrable include one or more electrical conductors and the energy provider includes the electrosurgical generator for delivery of modes of radio frequency electrosurgery across the mechanical attachments 20 and 21. Mechanical attachments 20 and 21 include alternatively one or more wave guides when the energy provider is a laser for delivery of light energy through mechanical attachments 20 and 21. Mechanical attachments 20 and 21 include alternatively one or more fluid passages when the energy provider is a fluid movement apparatus for delivery of suction or irrigation through the mechanical attachments 20 and 21. Mechanical attachments 20 and 21 include alternatively one or more energy couplings when the energy provider is a microwave generator for delivery of microwaves through the mechanical attachments 20 and 21. The mechanical attachment 20 and 21 include alternatively male and female portions.
Modifier 24 is located in first part 15 sandwiched between the transmitter 19 and receiver 26 on second part 16. The surface includes matrix 28 for modifying the light in the infrared wavelengths. The receivers 26 may include fiber optics extending between second part 16 and the source of medical treatment 12, detectors located in source of medical treatment 12 connected to the fiber optics so that the space required for the detectors is uninhibited by second part 16. The receivers may include fiber optics extending between second part 16 and source of medical treatment 12. The fiber optics have several groups of multiple redundant fibers for simultaneously passage of the information from modifier 24 in the form of modified light. A plurality of cells such as optical coupling are within source of medical treatment 12 so each group of the multiple redundant fibers may extend to a particular cell and deliver thereto modified light as coded identity information.
The preferred embodiment of the smart recognition system has a smart qualifying connector 10 bipolar jack, smart sense processor, an illuminating display indicator that validates instrument 11 recognition, and a medical instrument. There is a mating plug and surgical instrument 11, attached by a connective cable. The medical instrument plug may establish an Nth bit code identity. The smart connector bipolar jack is preferably located on the front panel of the electrosurgical generator. The bipolar jack is preferably the power receptacle through which the electrosurgical generator outputs the Rf energy to an attached medical instrument. Rf energy output can only occur after the smart recognition identity of the medical instrument has been correctly established. Physical configuration of the connector is preferably asymmetric to allow a unidirectional attachment of the medical instrument. This conditional mating, automatically facilitates the proper orientation of the medical instrument plug, so that the infrared proximity detectors can properly decode the medical instrument identity. The bipolar jack is most preferably manufactured from a machined piece of black polymer. This creates a shrouded, dark adaptive, light environment for the infrared sensory components, to recover the maximum signal. The black polymer absorbs the unwanted infrared light, if any, in the operating room and is opaque to visible light preventing reflection, transmission and pickup by the smart sense components.
A rectangular cutout, present in the bipolar jack, may allow the infrared components, mounted on the smart sense processor a viewing aperture window for inspection of the mated medical instrument plug. The identification and verification of compatibility for electrosurgical use results. The smart sense processor mounted on top of the bipolar jack performs the function of coded proximity detection using diffuse surface infrared reflective coupling to the attached medical instrument plug. An Nth bit signal code unique to the instrument 1 l attached is recovered. Upon retrieving the medical instrument identity, the information is hardware and software processed to discriminate if the identity code is correct.
Discrimination is made to determine if the attached instrument 11 should be supplied Rf energy from the electrosurgical generator. Considering a valid recognition, Rf energy is delivered to a tissue site for surgical use. The smart sensing performs hardware code processing.
The smart processor either locally controls the activation of the Rf energy of the generator or transmits the code information to a microcontroller wherein a comparative decision is made relative to lo the instrument 11 identity.
A display indicator provides visual illumination of a positive bit code recognition, that the correct medical instrument 11 is attached to the electrosurgical generator. The display is located on the front panel of the electrosurgical generator. Display illumination continues as long as the identity of the attached medical instrument is recognized. Removal of the medical instrument plug deactivates the display indicator and prevents any further keyed activation of Rf energy, from the generator output.
The medical instrument has a mating connection and instrument with a connective cable. The plug is preferably an overmolded assembly with pin contacts that mate with a bipolar jack receptacle on the generator for transferring the Rf energy. A
matrix of holes and plugs is established between the molded plug and receptacle. The holes and plugs perrnit infrared light therethrough or reflected to establish the Nth bit identity code unique to the medical instrument. Exposure of the plug to liquids should not ordinarily alter the identity code of the instrument 11. Fluids entering this matrix of holes will pass by gravity due to the vertical orientation of the preferred embodiment of the holes. Fluids present on the plug surface, in the area occupied by the plug insert, should not alter the retrieval process of the identity code, due to the proximity detection by infrared sensors. The unfocused infrared optical sensor responds to the presence of objects with irregular surfaces.
Diffraction of Gght energy due to surface granularity or discontinuities should not contribute significantly to the loss of signal recovered by the infrared sensor. The proximity of the infrared sensor does not obviate the recovery of code information due to adjacent bit cell sites. A
rapid faU off the diffractive Gght energy prevents the corruption of the unique identity code.
The accuracy and integrity of the smart recognition system for electrosurgery are preserved.
The medical instrument plug inserts are used to establish the Nth bit code identity for the instrument 11 and are located in the overmolded plug. These plug inserts are constructed of compatible materials to the plug and are fitted and arranged consistent with the identity code selected. The arrangement permits retrieval by the proximity detection method described.
While a particular preferred embodiment has been illustrated and described, the scope of protection sought in the claims that follow covers any connection that uses non environmental radiation across an optical coupling to verify or identify the instrument 11 connected before energy is permitted to pass through the connection from the high frequency generator to the instrument 11.
In addition to the preferred embodiment, which uses non contact, coded proximity identity detection with diffuse surface reflection optical coupling, the scope of claims delineated herein covers enhancements to optical couplings and coding methods with alternate light modifiers and light conduits. This includes as example alternate light modification technology methods using light modulation or matrix encoding methods to generate unique coding algorithms. The use of fiber optics as a Gght conduit may enhance code identity 2o detection methods with multiple redundant fibers used in specific cell structure orientations so information transmitted provides a unique light discriminator to the diffuse reflection light in the infrared wavelengths. Alternate configurations which strategically reposition the transmitters, receivers and light modifiers to further enhance the coded proximity detection means are in the claims for optimal optical coupling.

Claims (91)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A qualifying connection between an instrument and a source of medical treatment for passage of treatment energy from the source of medical treatment through the qualifying connection to the instrument and to a patient, the qualifying connection for selectively permitting passage of information from the instrument to the source of medical treatment, the qualifying connection comprising:
an instrument having a distal end for treatment of the patient and a proximal end for manipulation by a surgeon, the instrument connected to the qualifying connection;
a source of medical treatment for providing energy delivery to the instrument, the source of medical treatment attached to the qualifying connection;
a first part of the qualifying connection connected to the instrument;
a second part of the qualifying connection carried on and connected to the source of medical treatment;
optical couplings on the qualifying connection and on the first and second parts for passing optical energy communicating the information in the form of the identity of the instrument to the source of medical treatment;
a light supply in the source of medical treatment, the light supply connected to the qualifying connection for transmitting across the communicating optical couplings, the light supply within a predetermined wavelength;
mechanical attachments across the qualifying connection for juxtapositioning the first and second parts thereof, the mechanical attachments having geometric mechanical conjugations for delivering medical treatment through the qualifying connection from the source of medical treatment to the instrument, the mechanical attachments for positioning geographically the optical couplings in proximity to communicate between the first part on the instrument and the second part on the source of medical treatment when the mechanical attachments conjugate so the optical couplings may communicate the information as an indication of the identity of the instrument connected to the source of medical treatment;
an identifying circuit in the source of medical treatment, the identifying circuit connected to the second part and responsive to the information as the indication of light optically communicated through the optical couplings thereby differentiating the type of instrument connected by the mechanical attachments through the qualifying connection to the source of medical treatment, the identifying circuit for signaling verification to the source of medical treatment, and a switch connected to the identifying circuit in the source of medical treatment, the switch responsive to the signaling of the identifying circuit, the switch further connected within the source of medical treatment for enabling the passage of medical treatment from the source of medical treatment through at least one of the mechanical attachments and to the instrument.
2. The qualifying connection of claim 1 wherein conjugating male and female portions form the mechanical attachments, the male and female portions physically extend between the first and second parts across the qualifying connection for mating engagement.
3. The qualifying connection of claim 1 wherein the optical couplings positioned on the first and second parts are aligned in proximate relation for communication therebetween upon the mating engagement of the mechanical attachments, the optical coupling on the first part including a light modifier.
4. The qualifying connection of claim 3 wherein the light modifier includes a diffuse surface, a coating, a matrix of holes or a preselected light responsive material to modify the wavelength of radiation passing through the light modifier for thereafter receipt by the optical coupling on the second part for signaling the source of medical treatment.
5. The qualifying connection of claim 2 wherein the mechanical attachments include one or more one male portions on the first part for conjugation.
6. The qualifying connection of claim 2 wherein the mechanical attachments include one or more female portions on the second part for conjugation.
7. The qualifying connection of claim 4 wherein the first part optical couplings include the light modifier indicative of the type of instrument connected to the first part.
8. The qualifying connection of claim 7 wherein infrared transmitters are positioned on the second part proximal the light modifier for optical communication of the light therethrough.
9. The qualifying connection of claim 8 wherein the source of medical treatment is a source of high frequency energy, the identifying circuit including a memory to receive the information as the indication in the form of modified light energy from the optical couplings, the memory for comparing the light transmitted through the optical couplings and modified thereby with information, the memory for receiving the information and controlling the activation or deactivation the source of high frequency energy.
10. The qualifying connection of claim 1 wherein the optical couplings include a diffuse surface infrared reflector on the first part and non contact coded proximity detectors on the second part responsive to the light returned from the diffuse surface infrared reflector communicated as information indicative of the instrument identification for the identifying circuit.
11. A qualifying connection for an instrument attached to a source of high frequency energy for electrosurgery and surgical signals from the source of high frequency energy delivered through the qualifying connection to and from the instrument, the qualifying connection having a first part coupled to the instrument and a second part connected to the source of high frequency energy, the qualifying connection comprising:
optical couplings on the qualifying connection for transmitting invisible optical energy thereacross for communicating instrument identity to the source of high frequency energy, the optical couplings positioned on the first and second parts in proximate relation for communication thereacross;
a light modifier on the first part of the optical couplings, the light modifier positioned proximally to the second part for modification of radiation in the infrared wavelengths;
transmitters of infrared wavelength encoded signals and non contact coded proximity detectors as the optical couplings positioned on the second part, the non contact coded proximity detectors responsive to infrared modification from the light modifier for providing information indicative of instrument identification;
an invisible light supply in the source of high frequency energy for delivery from the transmitters and across the communicating optical couplings of the infrared wavelength encoded signal for modification by the light modifier to communicate coded signals thereacross;
mechanical attachments including conjugating male and female portions physically extending between the first and second parts across the qualifying connection for mating engagement, the mechanical attachments across the qualifying connection for juxtapositioning the first and .second parts, the mechanical attachments geometrically conjugating thereby geographically positioning the optical couplings proximate for communicating, the mechanical attachments including one or more conductors for delivery of high frequency energy from the source of high frequency to the instrument;
a cable fitted between the first part of the qualifying connection and the instrument, the cable including electrical conductors for carrying high frequency energy passing through the first part of the qualifying connection from the source of high frequency energy to the cable and the instrument;
an identifying circuit in the source of high frequency energy, the identifying circuit coupled to the second part, the identifying circuit responsive to invisible light optically communicated across the optical couplings for verifying the type of instrument connected by the cable, through the qualifying connection to the source of high frequency energy, the identifying circuit for signaling the verification to the source of high frequency energy;
a memory coupled within the identifying circuit, the memory for receiving and comparing verification signals to predetermined instrument identification therewithin, and a switch in the source of high frequency energy and connected to the memory, the switch connected within the source of high frequency energy for controlling activation and deactivation of the flow of high frequency energy therefrom through at least one of the mechanical attachments, the cable and to the instrument, the switch responsive to the signals of the identifying circuit thereby activating or deactivating the source of high frequency energy.
12. A qualifying connection for an instrument attached to a source of high frequency energy for electrosurgery and surgical signals from the source of high frequency energy delivered through the qualifying connection to and from the instrument, the connection having a first part coupled to the instrument and a second part on the source of high frequency energy, the qualifying connect comprising:
mechanical attachments on the first and second parts for geometrically conjugating, the mechanical attachments extending across the qualifying connection for juxtapositioning the first and second parts thereof, the mechanical attachments on the second part connected to the source of high frequency energy, the mechanical attachments on the first part coupled to the instrument for delivery of high frequency energy;

optical couplings on the first and second parts for passing invisible optical energy thereacross to communicate instrument identity, the optical couplings geographically oriented proximate relative to the juxtaposed first and second parts for communicating when the mechanical attachments conjugate;
an infrared light supply in the source of high frequency energy, the infrared light supply connected to the optical couplings in the second part for transmission across the communicating optical couplings;
an infrared light modifier on the optical couplings on the first part, the infrared light modifier positioned proximal for coding of the transmitted infrared light communicated across the optical couplings;
a cable fitted between the first part and the instrument, the cable for carrying high frequency energy from the mechanical attachments to the instrument, the cable for allowing movement of the instrument relative to the source of high frequency energy;
an identifying circuit in the source of high frequency energy second part and connected to respond to infrared light optically coded by the infrared light modifier, the identifying circuit for verifying the type of instrument connected by the cable through the qualifying connection to the source of high frequency electrosurgical energy, the identifying circuit connected for signaling the verification to the source of high frequency energy, and a switch in the source of high frequency energy coupled to the identifying circuit for responding to the signals of the identifying circuit, the switch connected within the source of high frequency energy for enabling and disabling the flow of high frequency energy from the source of high frequency energy through at least one of the mechanical attachments, the cable and to the instrument.
13. A qualifying connection between an instrument and a source of medical treatment, the qualifying connection for passage of treatment from the source of medical treatment through the qualifying connection to the instrument, the qualifying connection for selectively permitting passage of information from the instrument to the source of medical treatment, the qualifying connection comprising:
a first part of the qualifying connection connected to the instrument;
a second part of the qualifying connection carried on and connected to the source of medical treatment;
a transmitter on the source of medical treatment second part for delivery of informational energy to the first part on the instrument;
a modifier on the first part proximately positioned relative to the transmitter, the modifier able to change the energy from the transmitter;
one or more receivers on the second part located for receipt of the changed energy from the modifier;
mechanical attachments across the qualifying connection for juxtapositioning the first and second parts thereof, the mechanical attachments having geometric conjugations for delivering medical treatment through the qualifying connection from the source of medical treatment to the instrument, the mechanical attachments for positioning proximally and geographically the first part on the instrument and the second part on the source of medical treatment when the mechanical attachments conjugate so that the first and second parts may communicate across the qualifying connection between the first and second parts for transmitting and receiving information and changed energy thereacross thus communicating the identity of the instrument to and medical treatment from the source of medical treatment;
an identifying circuit connected to the second part thus located in the source of medical treatment for receiving communicated information from the receiver, the identifying circuit responsive to communicated information for differentiating the type of instrument connected by the mechanical attachments through the qualifying connection to the source of medical treatment, the identifying circuit for generating a signal of verification to the source of medical treatment, and a switch in the source of medical treatment responsive to the signaling of the identifying circuit, the switch connected to the identifying circuit within the source of medical treatment, the switch connected within the source of medical treatment for controlling the passage of medical treatment from the source of medical treatment through at least one of the mechanical attachments and to the instrument.
14. The qualifying connection of claim 13 wherein the switch in the source of medical treatment is connected to an energy provider in the source of medical treatment responsive to the automatic activation of the source of high frequency energy by the identifier circuit for setting the nature of the energy conveyed in accord with the instrument identified and for differentiating the instrument attached through the qualifying connection from other unqualified instruments.
15. The qualifying connection of claim 14 wherein the transmitter delivers light in the infrared wavelengths and the modifier is a surface on the first part positioned proximal the transmitter on the second part, the surface configured to modify the delivered light by absorption, diffraction, reflection or a combination thereof.
16. The qualifying connection of claim 15 wherein the mechanical attachments include one or more electrical conductors and the energy provider includes an electrosurgical generator for delivery of modes of radio frequency electrosurgery across the mechanical attachments.
17. The qualifying connection of claim 15 wherein the mechanical attachments include one or more wave guides and the energy provider is a laser for delivery of light energy through the mechanical attachments.
18. The qualifying connection of claim 15 wherein the mechanical attachments include one or more fluid passages and the energy provider is a fluid movement apparatus for delivery of suction or irrigation through the mechanical attachments.
19. The qualifying connection of claim 15 wherein the mechanical attachments include one or more energy couplings and the energy provider is a microwave generator for delivery of microwaves through the mechanical attachments.
20. The qualifying connection of claim 15 wherein the mechanical attachment include male and female portions.
21. The qualifying connection of claim 15 wherein the modifier is located in the first part sandwiched between the transmitter and receiver on the second part.
22. The qualifying connection of claim 15 wherein the surface includes a matrix for modifying the light in the infrared wavelengths.
23. The qualifying connection of claim 13 wherein the receivers include fiber optics extending between the second part and the source of medical treatment, and detectors located in the source of medical treatment are connected to the fiber optics so that the space required for the detectors is uninhibited by the second part.
24. The qualifying connection of claim 13 wherein the receivers include fiber optics extending between the second part and the source of medical treatment, the fiber optics have several groups of multiple redundant fibers for simultaneously passage of the information from the modifier in the form of modified light, a plurality of cells within the source of medical treatment so each group of the multiple redundant fibers may extend to a particular cell and deliver thereto modified light as coded identity information.
25. A non-contact recognition system for identifying a connection between a surgical instrument and a generator for applying energy to the surgical instrument, the system comprising:

a first connection part connected to the surgical instrument;

a second connection part connected to the generator;

the first connection part including a first optical coupling, the first optical coupling including a light modifier in the form of a diffuse surface, the diffuse surface including a light responsive medium having an identification code indicative of the surgical instrument, the first connection part insertable into the second connection part;

the second connection part including a light supply and a light receptor, the light supply transmitting a non-focused light beam to the diffuse surface of the first connection part and the diffuse surface modifying the light received from the second part, the light receptor receiving the non-focused light beam modified by the diffuse surface; and an identifying circuit in the generator responsive to the modified light communicating through the first and second connection parts to identify the surgical instrument connected to the generator.
26. The system according to claim 25, wherein the light responsive medium includes a coating for modifying the light energy.
27. The system according to claim 25, wherein the light responsive medium includes a matrix of holes for modifying the light energy.
28. The system according to claim 25, wherein the light supply includes a plurality of infrared transmitters and the light modifier changes the energy transmitted from the transmitters.
29. The system according to claim 25, wherein the light includes a plurality of non-contact detectors.
30. The system according to claim 29, further comprising a memory in the generator for receiving and processing the modified light reflected by the diffuse surface controlling the activation and deactivation of the generator.
31. The system according to claim 30, wherein the memory compares the coded signals of the diffuse surface to a predetermined instrument identification therein.
32. The system according to claim 25, wherein the generator provides high frequency energy to the surgical instrument.
33. The system according to claim 25, wherein the first connection part further includes a male mechanical attachment for reception in a female portion on the second connection part to position the first optical coupling of the first connection part and a second optical coupling of the second connection part in proximity.
34. The system according to claim 33, further comprising a switch electrically connected to the identifying circuit in the generator, the switch enabling the passage of energy from the generator through the mechanical attachment and to the surgical instrument.
35. The system according to claim 25, wherein the optical energy is invisible infrared optical energy.
36. The system according to claim 35, wherein the identifying circuit responds to infrared light optically coded by the infrared light modifier.
37. The system according to claim 36, wherein the second connection part includes a plurality of transmitters and the light modifier changes the light energy from the transmitters.
38. The system according to claim 34, wherein the switch allows setting the nature of the energy conveyed to the surgical instrument.
39. The system according to claim 25, further comprising a plurality of receivers on the second connection part and the light supply includes a plurality of transmitters, the light modifier being located proximate the transmitters and receiver.
40. The system according to claim 39, wherein the receivers include a plurality of optical fibers.
41. A system according to claim 25, further comprising a display to provide a visual indication that the correct instrument is attached to the generator.
42. The system according to claim 25, wherein the identification code of the first connection part has Nth bit code identification unique to the type of surgical instrument.
43. The system according to claim 42, wherein upon receiving the surgical instrument identity the information is hardware and software processed to determine if the identity code is correct and whether the electrosurgical energy should be supplied.
44. The system according to claim 43, wherein the first connection portion is in the form of a plug and Nth bit code identity is located on the plug.
45. A surgical instrument having a first connection part for connection to a second connection part of a generator, the generator adapted to apply energy to the surgical instrument and having an identifying circuit associated therewith responsive to modified light communicating through the first and second connection parts to identify the surgical instrument connected to the generator, the second connection part including a light supply and a light receptor wherein the light supply transmits a non-focused light beam to the first connection part and the light receptor receives the modified non-focused light beam from the first connection part, the surgical instrument comprising:

a first optical coupling on the first connection part, the first optical coupling including a light modifier in the form of a diffuse surface which modifies the non-focused light beam received from the light supply of the second connection part, the diffuse surface including responsive medium having an identification code indicative of the surgical instrument, the first connection part insertable into the second connection part so that the surgical instrument can be identified in a non-contact manner by the identifying circuit associated with the generator.
46. The instrument according to claim 45, wherein the light responsive medium includes a coating for modifying the light energy.
47. The instrument according to claim 45, wherein the light responsive medium includes a matrix of holes for modifying the light energy.
48. The instrument according to claim 45, wherein the light modifier changes the energy transmitted from a plurality of infrared transmitters of the second connection part.
49. The instrument according to claim 45, wherein the light modifier includes a plurality of non-contact detectors.
50. The instrument according to claim 45, wherein the first connection part further includes a male mechanical attachment for reception in a female portion on the second connection part to position the first optical coupling of the first connection part and a second optical coupling of the second connection part in proximity.
51. The instrument according to claim 45, wherein the optical energy is invisible infrared optical energy.
52. The instrument according to claim 45, wherein when the first connection part is connected to the second connection part the light modifier is located proximate the light supply and light receptor of the second connection part.
53. The instrument according to claim 52, wherein the light modifier changes the energy transmitted from a plurality of infrared transmitters of the second connection part.
54. The instrument according to claim 53, wherein the light modifier includes a plurality of non-contact detectors.
55. The instrument according to claim 45, wherein the identification code of the first connection part has an Nth bit code identification unique to the type of surgical instrument.
56. The instrument according to claim 54, wherein the identification code of the first connection part has an Nth bit code identification unique to the type of surgical instrument.
57. The instrument according to claim 45, wherein the first connection portion is in the form of a plug and an Nth bit code identity is located on the plug.
58. The Instrument according to claim 55, wherein the first connection portion is in the form of a plug and the Nth bit code identity is located on the plug.
59. A qualifying connection for a smart recognition apparatus for identifying a type of surgical instrument attached to a surgical generator, said qualifying connection comprising: first and second parts, said first part adapted to be attached to the surgical instrument and said second part adapted to be attached to the surgical generator, said first part having at least one mechanical interface disposed thereon for selectively engaging at least one corresponding mechanical interface disposed on the second part; first and second optical couplings disposed between said first and second parts, respectively, said first and second optical couplings optically aligning when said mechanical interfaces of said first and second parts are mechanically engaged, said first and second optical couplings when optically aligned communicating identifying information to an identifying circuit which verifies the type of surgical instrument attached to the generator.
60. The qualifying connection according to claim 59, wherein said identifying circuit communicates with the generator to regulate the electrosurgical energy to the surgical instrument based upon the type of surgical instrument identified by the identifying circuit.
61. The qualifying connection according to claim 60, further comprising a switch for controlling the electrosurgical energy to the surgical instrument in response to signals from the identifying circuit.
62. The qualifying connection according to claim 59, wherein the optical coupling on the first part includes a light modifier which modifies the radiation of the light for thereafter receipt by the optical coupling on the second part, the modified radiation of light being indicative of the type of surgical instrument connected to the first part.
63. The qualifying connection according to claim 62, wherein infrared transmitters are positioned on the second part proximal the light modifier for optical communication of the light therethrough.
64. The qualifying connection according to claim 62, wherein the light modifier of the optical coupling on the first part includes one of a diffuse surface, a coating, a matrix of apertures and a pre-selective light responsive material.
65. The qualifying connection according to claim 62, wherein the optical coupling of the second part includes at least one light transmitter and the light modifier on the first part alters the optical energy transmitted from the at least one transmitter.
66. The qualifying connection according to any one of claims 59 to 65, wherein the identifying circuit includes a memory for controlling the activation or deactivation of electrosurgical energy according a predetermined criteria for the type of instrument identified.
67. The qualifying connection according to any one of claims 59 to 66, further comprising a display indicator which provides visual feedback as to the type and mechanical mating integrity of the surgical instrument attached to the generator.
68. The qualifying connection according to any one of claims 59 to 67, wherein at least one of the mechanical interfaces of the first part and the corresponding mechanical interface on the second part include fluid passages for delivering one of suction and irrigation to the surgical instrument.
69. The qualifying connection according to any one of claims 59 to 68, wherein the qualifying connection communicates treatment information from the surgical instrument through at least one of the optical couplings regarding the status of tissue being treated.
70. The qualifying connection according to any one of claims 59 to 69, wherein the qualifying connection communicates parametric information from the surgical instrument through at least one of the optical couplings regarding at least one of tissue temperature, thermal spread, tissue eschar and tissue desiccation.
71. A qualifying connection for a recognition apparatus for identifying a type of surgical instrument attached to a surgical generator, the qualifying connection comprising: a plug having at least one mechanical interface which matingly engages a corresponding mechanical interface disposed on an electrosurgical generator which is configured to selectively supply electrosurgical energy, at least one of the mechanical interfaces of the plug and the corresponding mechanical interface on the generator including fluid passages for delivering one of suction and irrigation to the surgical instrument; a first optical coupling disposed on the plug and a second optical coupling disposed on the generator, the first and second optical couplings optically communicating upon mating engagement of the plug and the generator, the first and second optical couplings, when arranged for optical communication, communicating identifying information to the generator relating to the type of surgical instrument.
72. The qualifying connection according to claim 71, further comprising: an identifying circuit disposed in the generator and in electrical communication with at least one optical coupling which differentiates the type of surgical instrument attached to the generator and which provides a signal to the generator upon verification of the type of surgical instrument attached thereto.
73. The qualifying connection according to claim 72, further comprising: a switch in electrical communication with the identifying circuit which regulates electrosurgical energy from the generator to the instrument in accordance with the type of surgical instrument attached to the generator.
74. The qualifying connection according to claim 71, 72 or 73, wherein the optical coupling on the plug includes a light modifier which modifies the radiation of the light for thereafter receipt by the optical coupling on the generator, the modified radiation of light being indicative of the type of surgical instrument connected to the generator.
75. The qualifying connection according to claim 74, wherein infrared transmitters are positioned on the surgical generator proximal the light modifier for optical communication of the light therethrough.
76. The qualifying connection according to claim 74, wherein the light modifier of the optical coupling on the plug includes one of a diffuse surface, a coating, a matrix of apertures and a pre-selective light responsive material.
77. The qualifying connection according to claim 76, wherein the optical coupling of the generator includes at least one light transmitter and the light modifier on the plug alters the optical energy transmitted from the at least one transmitter.
78. The qualifying connection according to claim 72, wherein the identifying circuit includes a memory for controlling the activation or deactivation of electrosurgical energy according a predetermined criteria for the type of instrument identified.
79. The qualifying connection according to any one of claims 71 to 78, further comprising a display indicator which provides visual feedback as to the type and mechanical mating integrity of the surgical instrument attached to the generator.
80. The qualifying connection according to any one of claims 71 to 79, wherein the qualifying connection communicates treatment information from the surgical instrument through at least one of the optical couplings regarding the status of tissue being treated.
81. The qualifying connection according to any one of claims 71 to 80, wherein the qualifying connection communicates parametric information from the surgical instrument through at least one of the optical couplings regarding at least one of tissue temperature, thermal spread, tissue eschar and tissue desiccation.
82. A qualifying connection for a recognition apparatus for identifying a type of surgical instrument attached to a surgical generator, the qualifying connection comprising: a plug having at least one mechanical interface which matingly engages a corresponding mechanical interface disposed on an electrosurgical generator which is configured to selectively supply electrosurgical energy; a first optical coupling disposed on the plug and a second optical coupling disposed on the generator, the first and second optical couplings optically communicating upon mating engagement of the plug and the generator, the first and second optical couplings, when arranged for optical communication, communicating identifying information to the generator relating to the type of surgical instrument, wherein the qualifying connection communicates treatment information from the surgical instrument through at least one of the optical couplings regarding the status of tissue being treated.
83. A qualifying connection for a recognition apparatus for identifying a type of surgical instrument attached to a surgical generator, the qualifying connection comprising: a plug having at least one mechanical interface which matingly engages a corresponding mechanical interface disposed on an electrosurgical generator which is configured to selectively supply electrosurgical energy; a first optical coupling disposed on the plug and a second optical coupling disposed on the generator, the first and second optical couplings optically communicating upon mating engagement of the plug and the generator, the first and second optical couplings, when arranged for optical communication, communicating identifying information to the generator relating to the type of surgical instrument, wherein the qualifying connection communicates parametric information from the surgical instrument through at least one of the optical couplings regarding at least one of tissue temperature, thermal spread, tissue eschar and tissue desiccation.
84. A method of identifying a surgical instrument for determination of application of energy comprising:
providing a first connection part having a light modifier in the form of a diffuse surface corresponding to a predetermined code particular to the type of instrument;

providing a generator having a second connection part having a plurality of transmitters for transmitting an unfocused beam of light to the diff-use surface;

inserting the first connection part into the second connection part so the diffuse surface and the transmitters are in proximity;

transmitting optical energy from the transmitters of the second part to the diff-use surface of the first part;

processing the modified light in the generator to determine the type of surgical instrument connected to the generator; and controlling the activation and deactivation of the generator in response to the determination of the type of surgical instrument.
85. The system according to claim 84, further comprising the step of providing a visual indication that the correct instrument is attached to the generator.
86. The system according to claim 84, wherein the step of transmitting optical energy includes transmitting optical energy to a coating on the diffuse surface.
87. The system according to claim 84, wherein the step of transmitting optical energy includes transmitting optical energy to a matrix of holes.
88. A method of identifying a surgical instrument for determination of application of energy comprising:

providing a first connection part having a light modifier in the form of a diffuse surface corresponding to a predetermined code particular to the type of instrument;

inserting the first connection part into a second connection part of a generator, the second connection part having a plurality of transmitters for transmitting an unfocused beam of light to the diffuse surface, and the first connection part being inserted so the diffuse surface and the transmitters are in proximity;

transmitting optical energy from the transmitters of the second connection part to the diffuse surface of the first connection part;

processing the modified light in the generator to determine the type of surgical instrument connected to the generator; and controlling the activation and deactivation of the generator in response to the determination of the type of surgical instrument.
89. The method according to claim 88, wherein the step of transmitting optical energy includes transmitting optical energy to a coating on the diffuse surface.
90. The method according to claim 88, wherein the step of transmitting optical energy includes transmitting optical energy to a matrix of holes.
91. The method according to claim 88, wherein the step of inserting the first connection part includes inserting a male mechanical attachment of the first connection part into a female portion on the second connection part.
CA002313118A 1997-12-10 1998-12-10 Smart recognition apparatus and method Expired - Fee Related CA2313118C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/988,362 US6068627A (en) 1997-12-10 1997-12-10 Smart recognition apparatus and method
US08/988,362 1997-12-10
PCT/US1998/026272 WO1999029244A1 (en) 1997-12-10 1998-12-10 Smart recognition apparatus and method

Publications (2)

Publication Number Publication Date
CA2313118A1 CA2313118A1 (en) 1999-06-17
CA2313118C true CA2313118C (en) 2007-06-19

Family

ID=25534067

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002313118A Expired - Fee Related CA2313118C (en) 1997-12-10 1998-12-10 Smart recognition apparatus and method

Country Status (6)

Country Link
US (4) US6068627A (en)
EP (1) EP1037561A4 (en)
JP (1) JP4108930B2 (en)
AU (1) AU746576B2 (en)
CA (1) CA2313118C (en)
WO (1) WO1999029244A1 (en)

Families Citing this family (935)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068627A (en) 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
DE19828677A1 (en) * 1998-05-20 2000-04-20 Hans Reinhard Koch Operating system, in particular ophthalmic operating system
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US20040167508A1 (en) * 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US20100042093A9 (en) * 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US6981941B2 (en) * 1999-06-02 2006-01-03 Power Medical Interventions Electro-mechanical surgical device
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US8229549B2 (en) * 2004-07-09 2012-07-24 Tyco Healthcare Group Lp Surgical imaging device
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US7951071B2 (en) 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
GB2352029A (en) * 1999-07-08 2001-01-17 Ford Motor Co Removable electronic security bezel for an electronic device
US8016855B2 (en) 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
US6689131B2 (en) 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
WO2001066026A2 (en) 2000-03-06 2001-09-13 Tissuelink Medical, Inc. Fluid delivery system and controller for electrosurgical devices
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8048070B2 (en) * 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6932517B2 (en) 2000-10-27 2005-08-23 Ethicon Endo-Surgery, Inc. Connector incorporating a contact pad surface on a plane parallel to a longitudinal axis
DE60227162D1 (en) 2001-04-20 2008-07-31 Power Med Interventions Inc ILLUSTRATION DEVICE
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
CN1554061A (en) * 2001-06-20 2004-12-08 ͨ��ҽ�ƹ�˾ A method and system for integrated medical tracking
JP4215162B2 (en) 2001-08-08 2009-01-28 ストライカー・コーポレーション Surgical cutting accessory with internal memory
US20100324550A1 (en) * 2009-06-17 2010-12-23 Nuortho Surgical Inc. Active conversion of a monopolar circuit to a bipolar circuit using impedance feedback balancing
US8734441B2 (en) * 2001-08-15 2014-05-27 Nuortho Surgical, Inc. Interfacing media manipulation with non-ablation radiofrequency energy system and method
DE10146210B4 (en) * 2001-09-19 2008-03-27 Siemens Ag Method for adjusting a medical device and medical device
US9113878B2 (en) 2002-01-08 2015-08-25 Covidien Lp Pinion clip for right angle linear cutter
CN100443061C (en) 2002-01-30 2008-12-17 能量医学介入公司 Surgical imaging device
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
DE60315970T2 (en) 2002-05-06 2008-05-21 Covidien Ag BLOOD DETECTOR FOR CHECKING AN ELECTROSURGICAL UNIT
WO2003105702A2 (en) 2002-06-14 2003-12-24 Power Medical Interventions, Inc. Surgical device
JP3905482B2 (en) * 2002-07-09 2007-04-18 オリンパス株式会社 Surgery system
WO2004010883A1 (en) 2002-07-25 2004-02-05 Sherwood Services Ag Electrosurgical pencil with drag sensing capability
GB0217273D0 (en) * 2002-07-25 2002-09-04 Diomed Ltd Laser system
US7887559B2 (en) 2002-08-08 2011-02-15 Stryker Corporation Surgical cutting accessory with encapsulated RFID chip
GB0221707D0 (en) * 2002-09-18 2002-10-30 Gyrus Medical Ltd Electrical system
US6860881B2 (en) * 2002-09-25 2005-03-01 Sherwood Services Ag Multiple RF return pad contact detection system
EP1545289B1 (en) * 2002-09-30 2010-04-28 Power Medical Interventions, LLC Self-contained sterilizable surgical system
USD477408S1 (en) 2002-10-04 2003-07-15 Conmed Corporation Electrosurgical generator
AU2003288945A1 (en) 2002-10-29 2004-05-25 Tissuelink Medical, Inc. Fluid-assisted electrosurgical scissors and methods
US7244257B2 (en) 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
US20040097912A1 (en) * 2002-11-18 2004-05-20 Gonnering Wayne J. Electrosurgical generator and method with removable front panel having replaceable electrical connection sockets and illuminated receptacles
US6835082B2 (en) * 2002-11-18 2004-12-28 Conmed Corporation Monopolar electrosurgical multi-plug connector device and method which accepts multiple different connector plugs
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7255694B2 (en) * 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US20040122419A1 (en) * 2002-12-18 2004-06-24 Ceramoptec Industries, Inc. Medical device recognition system with write-back feature
JP2004208922A (en) * 2002-12-27 2004-07-29 Olympus Corp Medical apparatus, medical manipulator and control process for medical apparatus
GB2397234A (en) * 2003-01-20 2004-07-21 Armstrong Healthcare Ltd A tool holder arrangement
JP4829100B2 (en) * 2003-02-20 2011-11-30 コヴィディエン・アクチェンゲゼルシャフト System and method for connecting an electrosurgical instrument to a generator
DE602004012972T2 (en) 2003-02-20 2009-06-10 Covidien Ag MOTION DETECTOR FOR CHECKING THE ELECTROSURGICAL OUTPUT
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US20050021020A1 (en) * 2003-05-15 2005-01-27 Blaha Derek M. System for activating an electrosurgical instrument
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7588369B2 (en) * 2003-06-16 2009-09-15 Palodex Group Oy Identification of detector units in X-ray imaging
WO2005050151A1 (en) 2003-10-23 2005-06-02 Sherwood Services Ag Thermocouple measurement circuit
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7241294B2 (en) * 2003-11-19 2007-07-10 Sherwood Services Ag Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
US7156842B2 (en) 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7131860B2 (en) * 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7503917B2 (en) 2003-11-20 2009-03-17 Covidien Ag Electrosurgical pencil with improved controls
US7300435B2 (en) * 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7604602B2 (en) * 2004-07-08 2009-10-20 Edwards Lifesciences Corporation Disposable blood pressure transducer and monitor interface
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8929688B2 (en) 2004-10-01 2015-01-06 University Of Washington Remapping methods to reduce distortions in images
US7298938B2 (en) * 2004-10-01 2007-11-20 University Of Washington Configuration memory for a scanning beam device
BRPI0518171B8 (en) 2004-10-08 2021-06-22 Ethicon Endo Surgery Inc ultrasonic forceps coagulator apparatus
US20060079872A1 (en) * 2004-10-08 2006-04-13 Eggleston Jeffrey L Devices for detecting heating under a patient return electrode
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7159782B2 (en) * 2004-12-23 2007-01-09 University Of Washington Methods of driving a scanning beam device to achieve high frame rates
US7784697B2 (en) 2004-12-23 2010-08-31 University Of Washington Methods of driving a scanning beam device to achieve high frame rates
US20060161148A1 (en) * 2005-01-13 2006-07-20 Robert Behnke Circuit and method for controlling an electrosurgical generator using a full bridge topology
US7828795B2 (en) * 2005-01-18 2010-11-09 Atricure, Inc. Surgical ablation and pacing device
US7189961B2 (en) 2005-02-23 2007-03-13 University Of Washington Scanning beam device with detector assembly
US20060226231A1 (en) * 2005-03-29 2006-10-12 University Of Washington Methods and systems for creating sequential color images
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US7500974B2 (en) 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath
DE102005044918A1 (en) 2005-07-21 2007-02-01 Bowa-Electronic Gmbh & Co. Kg Identification/communication between a high frequency generator and surgical instruments, without contact, uses antennae and random access memories at the instrument plug and socket connections
US7395967B2 (en) * 2005-07-21 2008-07-08 University Of Washington Methods and systems for counterbalancing a scanning beam device
US7312879B2 (en) 2005-08-23 2007-12-25 University Of Washington Distance determination in a scanned beam image capture device
US7828794B2 (en) * 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US20070049914A1 (en) * 2005-09-01 2007-03-01 Sherwood Services Ag Return electrode pad with conductive element grid and method
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20070173813A1 (en) * 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US20070173802A1 (en) * 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
DE102006010145A1 (en) * 2006-01-27 2007-08-09 Erbe Elektromedizin Gmbh Optocoupler device and method for manufacturing the same
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
WO2007115655A1 (en) * 2006-04-05 2007-10-18 Erbe Elektromedizin Gmbh Connection cable
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US7762735B2 (en) * 2006-04-27 2010-07-27 Cedar Mesa Design Company, Llc Self-locking, quick-releasing, and self-releasing ball-and-socket latch system
US20070260240A1 (en) * 2006-05-05 2007-11-08 Sherwood Services Ag Soft tissue RF transection and resection device
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US20070285239A1 (en) * 2006-06-12 2007-12-13 Easton Martyn N Centralized optical-fiber-based RFID systems and methods
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
CN101166060A (en) * 2006-10-17 2008-04-23 鸿富锦精密工业(深圳)有限公司 Infrared receiving/transmission module
US7782202B2 (en) * 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US7772975B2 (en) 2006-10-31 2010-08-10 Corning Cable Systems, Llc System for mapping connections using RFID function
US8083735B2 (en) 2006-11-17 2011-12-27 Genii, Inc. Compact electrosurgery apparatuses
US8264355B2 (en) * 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US7760094B1 (en) 2006-12-14 2010-07-20 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8600478B2 (en) 2007-02-19 2013-12-03 Medtronic Navigation, Inc. Automatic identification of instruments used with a surgical navigation system
US7965186B2 (en) 2007-03-09 2011-06-21 Corning Cable Systems, Llc Passive RFID elements having visual indicators
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US20080249523A1 (en) * 2007-04-03 2008-10-09 Tyco Healthcare Group Lp Controller for flexible tissue ablation procedures
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
DE102007056974B4 (en) * 2007-05-14 2013-01-17 Erbe Elektromedizin Gmbh An RF surgical inspection device and method for identifying a patient-applied RF neutral electrode
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US7828586B2 (en) * 2007-06-14 2010-11-09 Illinois Tool Works Inc. High voltage power supply connector system
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9861424B2 (en) 2007-07-11 2018-01-09 Covidien Lp Measurement and control systems and methods for electrosurgical procedures
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US7645142B2 (en) * 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8747398B2 (en) 2007-09-13 2014-06-10 Covidien Lp Frequency tuning in a microwave electrosurgical system
AU2008302039B2 (en) 2007-09-21 2013-07-18 Covidien Lp Surgical device
EP3097869B1 (en) 2007-09-21 2020-03-11 Covidien LP Surgical device
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
EP2796102B1 (en) 2007-10-05 2018-03-14 Ethicon LLC Ergonomic surgical instruments
DE102007057286A1 (en) * 2007-11-28 2009-06-10 Siemens Aktiengesellschaft Identification mechanism for a component attached to a medical device
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
DE102007061483A1 (en) * 2007-12-20 2009-07-02 Erbe Elektromedizin Gmbh Surgery Equipment connector system
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US20090206139A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Buttress material for a surgical instrument
ES2442241T3 (en) 2008-03-31 2014-02-10 Applied Medical Resources Corporation Electrosurgical system with a switching mechanism
US8591509B2 (en) 2008-03-31 2013-11-26 Covidien Lp Electrosurgical pencil including improved controls
US8636733B2 (en) 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US20090259220A1 (en) * 2008-04-09 2009-10-15 Angiodynamics, Inc. Treatment Devices and Methods
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8162937B2 (en) 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US8248208B2 (en) 2008-07-15 2012-08-21 Corning Cable Systems, Llc. RFID-based active labeling system for telecommunication systems
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8242782B2 (en) 2008-09-30 2012-08-14 Vivant Medical, Inc. Microwave ablation generator control system
US8174267B2 (en) * 2008-09-30 2012-05-08 Vivant Medical, Inc. Intermittent microwave energy delivery system
US8287527B2 (en) * 2008-09-30 2012-10-16 Vivant Medical, Inc. Microwave system calibration apparatus and method of use
US8248075B2 (en) * 2008-09-30 2012-08-21 Vivant Medical, Inc. System, apparatus and method for dissipating standing wave in a microwave delivery system
US8180433B2 (en) * 2008-09-30 2012-05-15 Vivant Medical, Inc. Microwave system calibration apparatus, system and method of use
US20100082083A1 (en) * 2008-09-30 2010-04-01 Brannan Joseph D Microwave system tuner
US8346370B2 (en) * 2008-09-30 2013-01-01 Vivant Medical, Inc. Delivered energy generator for microwave ablation
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8231620B2 (en) 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US10045819B2 (en) 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9532827B2 (en) 2009-06-17 2017-01-03 Nuortho Surgical Inc. Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US8334635B2 (en) 2009-06-24 2012-12-18 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
DE102009042438A1 (en) * 2009-09-22 2011-03-31 Erbe Elektromedizin Gmbh surgical device
US8568400B2 (en) * 2009-09-23 2013-10-29 Covidien Lp Methods and apparatus for smart handset design in surgical instruments
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
JP5836964B2 (en) 2009-11-05 2015-12-24 ニンバス・コンセプツ・エルエルシー Method and system for spinal radiofrequency nerve cutting
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
EP2571439B1 (en) 2010-05-21 2020-06-24 Stratus Medical, LLC Systems for tissue ablation
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
AU2011308701B2 (en) 2010-09-30 2013-11-14 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9044228B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of fastener cartridges
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
ES2664081T3 (en) 2010-10-01 2018-04-18 Applied Medical Resources Corporation Electrosurgical system with a radio frequency amplifier and with means for adapting to the separation between electrodes
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US9144453B2 (en) 2010-11-08 2015-09-29 Bovie Medical Corporation Multi-mode electrosurgical apparatus
US9060765B2 (en) 2010-11-08 2015-06-23 Bovie Medical Corporation Electrosurgical apparatus with retractable blade
US8998899B2 (en) 2010-11-08 2015-04-07 Bovie Medical Corporation Multi-button electrosurgical apparatus
US9095333B2 (en) 2012-07-02 2015-08-04 Bovie Medical Corporation Systems and methods of discriminating between argon and helium gases for enhanced safety of medical devices
US9770285B2 (en) 2010-11-08 2017-09-26 Bovie Medical Corporation System and method for identifying and controlling an electrosurgical apparatus
PL2486885T3 (en) * 2011-02-09 2013-09-30 Erbe Elektromedizin Universal slide-on
US9408658B2 (en) 2011-02-24 2016-08-09 Nuortho Surgical, Inc. System and method for a physiochemical scalpel to eliminate biologic tissue over-resection and induce tissue healing
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
WO2013106036A2 (en) 2011-04-08 2013-07-18 Preston Manwaring Impedance matching circuit
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
WO2012158722A2 (en) 2011-05-16 2012-11-22 Mcnally, David, J. Surgical instrument guide
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9198661B2 (en) 2011-09-06 2015-12-01 Ethicon Endo-Surgery, Inc. Stapling instrument comprising a plurality of staple cartridges stored therein
WO2013040255A2 (en) 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
CA2857180A1 (en) 2011-12-06 2013-06-13 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9486271B2 (en) 2012-03-05 2016-11-08 Covidien Lp Method and apparatus for identification using capacitive elements
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9579142B1 (en) 2012-12-13 2017-02-28 Nuortho Surgical Inc. Multi-function RF-probe with dual electrode positioning
DE102013101158A1 (en) * 2013-02-06 2014-08-07 Karl Storz Gmbh & Co. Kg Medical device e.g. endoscope, for forming medical system to perform diagnostic or therapeutic surgeries for patient, has signaling device producing viewable, audible or instruction signal to medical elements with coupling mode
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9301723B2 (en) 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9119650B2 (en) 2013-03-15 2015-09-01 Covidien Lp Microwave energy-delivery device and system
US9161814B2 (en) 2013-03-15 2015-10-20 Covidien Lp Microwave energy-delivery device and system
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
USD742013S1 (en) * 2013-06-18 2015-10-27 Electromed, Inc. Air pulsating generator
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US20140171986A1 (en) 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
WO2015134749A2 (en) * 2014-03-06 2015-09-11 Stryker Corporation Medical/surgical waste collection unit with a light assembly separate from the primary display, the light assembly presenting informatin about the operation of the system by selectively outputting light
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
USD737449S1 (en) * 2014-03-24 2015-08-25 Covidien Lp Generator for medical treatment devices
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272571A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10130382B2 (en) 2014-03-27 2018-11-20 Medtronic Xomed, Inc. Powered surgical handpiece having a surgical tool with an RFID tag
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US20150317899A1 (en) 2014-05-01 2015-11-05 Covidien Lp System and method for using rfid tags to determine sterilization of devices
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
KR102537276B1 (en) 2014-05-16 2023-05-26 어플라이드 메디컬 리소시스 코포레이션 Electrosurgical system
AU2015266619B2 (en) 2014-05-30 2020-02-06 Applied Medical Resources Corporation Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
USD748803S1 (en) * 2014-06-26 2016-02-02 Covidien Lp Electrosurgical generator
CN105193500B (en) * 2014-07-02 2017-06-16 上海旭旦实业有限公司 Electric knife with electromagnetic radiation protection function
USD736933S1 (en) * 2014-07-25 2015-08-18 Covidien Lp Generator for medical treatment devices
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
PL2982324T3 (en) * 2014-08-06 2020-07-27 Erbe Elektromedizin Gmbh Socket module, electrosurgical device and set with a socket module
KR20170041887A (en) * 2014-08-12 2017-04-17 인뷰이티 인코퍼레이티드 Illuminated electrosurgical system and method of use
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10420603B2 (en) 2014-12-23 2019-09-24 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
EP3250141B1 (en) 2015-01-28 2023-10-11 Apyx Medical Corporation Cold plasma electrosurgical apparatus with bent tip applicator
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
USD775734S1 (en) * 2015-06-18 2017-01-03 Covidien Lp Electrosurgical generator
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
GB2539494A (en) 2015-06-19 2016-12-21 Creo Medical Ltd Electrosurgical Instrument
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
CN108348233B (en) 2015-08-26 2021-05-07 伊西康有限责任公司 Surgical staple strip for allowing changing staple characteristics and achieving easy cartridge loading
MX2022006191A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
GB2547451B (en) 2016-02-18 2019-06-26 Elekta ltd Device identification
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US20180168647A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments having end effectors with positive opening features
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
AU2018212000B2 (en) 2017-01-30 2023-06-29 Apyx Medical Corporation Electrosurgical apparatus with flexible shaft
US11877788B2 (en) 2017-05-30 2024-01-23 Apyx Medical Corporation Electrosurgical apparatus with robotic tip
US10331877B2 (en) 2017-06-05 2019-06-25 Karl Storz Imaging, Inc. Connector-based optical identification apparatus and method
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US20190125320A1 (en) 2017-10-30 2019-05-02 Ethicon Llc Control system arrangements for a modular surgical instrument
US11123070B2 (en) 2017-10-30 2021-09-21 Cilag Gmbh International Clip applier comprising a rotatable clip magazine
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11534196B2 (en) 2018-03-08 2022-12-27 Cilag Gmbh International Using spectroscopy to determine device use state in combo instrument
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
DE102018114482A1 (en) * 2018-06-16 2019-12-19 Olympus Winter & Ibe Gmbh Electrosurgical device
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
JP2021536299A (en) 2018-09-05 2021-12-27 アプライド メディカル リソーシーズ コーポレイション Electrosurgery generator control system
US11471206B2 (en) 2018-09-07 2022-10-18 Cilag Gmbh International Method for controlling a modular energy system user interface
US20200078071A1 (en) * 2018-09-07 2020-03-12 Ethicon Llc Instrument tracking arrangement based on real time clock information
US11923084B2 (en) 2018-09-07 2024-03-05 Cilag Gmbh International First and second communication protocol arrangement for driving primary and secondary devices through a single port
US11804679B2 (en) 2018-09-07 2023-10-31 Cilag Gmbh International Flexible hand-switch circuit
CA3120182A1 (en) 2018-11-16 2020-05-22 Applied Medical Resources Corporation Electrosurgical system
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11218822B2 (en) 2019-03-29 2022-01-04 Cilag Gmbh International Audio tone construction for an energy module of a modular energy system
US11471212B2 (en) 2019-04-04 2022-10-18 Cilag Gmbh International Electrosurgical devices with monopolar and bipolar functionality
US11241269B2 (en) 2019-04-04 2022-02-08 Cilag Gmbh International Surgical devices switchable between monopolar functionality and bipolar functionality
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
USD928726S1 (en) 2019-09-05 2021-08-24 Cilag Gmbh International Energy module monopolar port
USD928725S1 (en) 2019-09-05 2021-08-24 Cilag Gmbh International Energy module
USD939545S1 (en) 2019-09-05 2021-12-28 Cilag Gmbh International Display panel or portion thereof with graphical user interface for energy module
USD924139S1 (en) 2019-09-05 2021-07-06 Ethicon Llc Energy module with a backplane connector
US11564732B2 (en) 2019-12-05 2023-01-31 Covidien Lp Tensioning mechanism for bipolar pencil
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US20210196359A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instruments with electrodes having energy focusing features
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11857252B2 (en) 2021-03-30 2024-01-02 Cilag Gmbh International Bezel with light blocking features for modular energy system
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157603A (en) * 1986-11-06 1992-10-20 Storz Instrument Company Control system for ophthalmic surgical instruments
DE3805179A1 (en) * 1988-02-19 1989-08-31 Wolf Gmbh Richard DEVICE WITH A ROTATING DRIVEN SURGICAL INSTRUMENT
JPH0341943A (en) * 1989-07-10 1991-02-22 Topcon Corp Laser surgical operation device
DE4026452C2 (en) * 1990-08-21 1993-12-02 Schott Glaswerke Device for recognizing and distinguishing medical disposable applicators that can be connected to a laser under a plug connection
FI93607C (en) * 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
US5209235A (en) * 1991-09-13 1993-05-11 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter assembly and method for identification of the same
US5383874A (en) * 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5342356A (en) * 1992-12-02 1994-08-30 Ellman Alan G Electrical coupling unit for electrosurgery
US5400267A (en) * 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5396062A (en) * 1993-05-27 1995-03-07 The Whitaker Corporation Receptacle having an internal switch with an emitter and a receiver
DE4339049C2 (en) * 1993-11-16 2001-06-28 Erbe Elektromedizin Surgical system configuration facility
US5645059A (en) * 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
US5434398A (en) * 1994-02-22 1995-07-18 Haim Labenski Magnetic smartcard
US5529235A (en) * 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5625370A (en) * 1994-07-25 1997-04-29 Texas Instruments Incorporated Identification system antenna with impedance transformer
WO1996008794A1 (en) * 1994-09-12 1996-03-21 Westinghouse Electric Corporation Security code identification circuit
US5681307A (en) * 1994-10-26 1997-10-28 Mcmahan; William H. Fiber-optic plug and receptacle providing automatic appliance recognition
US5605150A (en) * 1994-11-04 1997-02-25 Physio-Control Corporation Electrical interface for a portable electronic physiological instrument having separable components
US5660567A (en) * 1995-11-14 1997-08-26 Nellcor Puritan Bennett Incorporated Medical sensor connector with removable encoding device
US6053871A (en) * 1997-01-21 2000-04-25 William Cook Australia Pty. Ltd Calibrated hollow probe for use with ultrasound imaging
US6068627A (en) * 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method

Also Published As

Publication number Publication date
US6685701B2 (en) 2004-02-03
AU746576B2 (en) 2002-05-02
JP2002500053A (en) 2002-01-08
WO1999029244A1 (en) 1999-06-17
US20040243120A1 (en) 2004-12-02
US7044949B2 (en) 2006-05-16
US6402743B1 (en) 2002-06-11
JP4108930B2 (en) 2008-06-25
EP1037561A1 (en) 2000-09-27
CA2313118A1 (en) 1999-06-17
AU1815199A (en) 1999-06-28
US6068627A (en) 2000-05-30
US20030014043A1 (en) 2003-01-16
EP1037561A4 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
CA2313118C (en) Smart recognition apparatus and method
EP0462107A1 (en) Fiberoptic coupler.
US7331977B2 (en) Adaptive tourniquet cuff system
US7292323B2 (en) Optical fiber detection method and system
US6560470B1 (en) Electrical lockout photoplethysmographic measurement system
CA2291204C (en) Fingerprint identification device equipped with a touch sensor for detecting a human finger
US6753781B2 (en) Infant and parent matching and security system and method of matching infant and parent
US8866592B2 (en) Method for detecting and communicating with RFID memory devices
US8763895B2 (en) Tube verifier
US5345230A (en) Method and apparatus for optical transceiver testing
US20060111699A1 (en) Medical device recognition system with write-back feature
US7907643B2 (en) Laser system
EP0951921A2 (en) Human tissue energy application system
US5113467A (en) Laser transmitter interlock
JP2002521167A (en) Identification and communication system for inflatable devices
CA1268253A (en) Portable handheld terminal including optical bar code reader and electromagnetic transceiver
WO2000035255A1 (en) X-ray source interlock apparatus
US20220230725A1 (en) Systems and methods for authenticating medical infusion lines
JPH0451810Y2 (en)
JP2020522323A (en) Method and apparatus for calibrating the light source of a medical device
CN117320651A (en) Method and apparatus for enabling active monitoring and communication between a medical fiber catheter and a medical laser system
CN114696206A (en) Light emitting module and camera module
JP2024502745A (en) Medical device control system, connector, medical device controller device structure and medical device structure
AU2003246959B2 (en) Laser system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20161212

MKLA Lapsed

Effective date: 20161212