CA2415011C - Vehicle data communications bus disrupter and associated methods - Google Patents

Vehicle data communications bus disrupter and associated methods Download PDF

Info

Publication number
CA2415011C
CA2415011C CA002415011A CA2415011A CA2415011C CA 2415011 C CA2415011 C CA 2415011C CA 002415011 A CA002415011 A CA 002415011A CA 2415011 A CA2415011 A CA 2415011A CA 2415011 C CA2415011 C CA 2415011C
Authority
CA
Canada
Prior art keywords
vehicle
data communications
communications bus
disrupter
vehicle data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002415011A
Other languages
French (fr)
Other versions
CA2415011A1 (en
Inventor
Kenneth E. Flick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Patents LLC
Original Assignee
Omega Patents LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Patents LLC filed Critical Omega Patents LLC
Publication of CA2415011A1 publication Critical patent/CA2415011A1/en
Application granted granted Critical
Publication of CA2415011C publication Critical patent/CA2415011C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/30Detection related to theft or to other events relevant to anti-theft systems
    • B60R25/33Detection related to theft or to other events relevant to anti-theft systems of global position, e.g. by providing GPS coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/01Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens
    • B60R25/04Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens operating on the propulsion system, e.g. engine or drive motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • B60R25/1004Alarm systems characterised by the type of sensor, e.g. current sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • B60R25/1018Alarm systems characterised by features related to the general power supply

Abstract

A vehicle security system may disrupt communications on a vehicle data communications bus, such as to prevent starting of the vehicle engine. The vehicle security system may include at least one vehicle security sensor, a vehicle data communications bus disrupter for disrupting communications on the vehicle data communications bus, and a security controller for selectively operating the vehicle data communications bus disrupter. The disrupter may be operated based upon the at least one vehicle security sensor to thereby disable the vehicle engine. The disrupter may alternately be operated based on a signal from a monitoring station that receives position information from the vehicle.

Description

VEHICLE DATA CO~~iONICATIONS BUS DISRUPTER
AND ASSOCIATED METHODS
Field of the Invention The present invention relates to the field of security and control systems and, more particularly, to security and control systems and related methods for a vehicle having a vehicle data communications bus.
Background of the Invention Vehicle security systems are widely used to deter vehicle theft, prevent theft of valuables from a vehicle, deter vandalism, and to protect vehicle owners and occupants. A typical vehicle security system, for example, includes a central processor or controller connected to a plurality of vehicle sensors. The sensors, for example, may detect opening of the trunk, hood, doors, windows, and also movement of the vehicle or within the vehicle. Ultrasonic and microwave motion detectors, vibration sensors, sound discriminators, differential pressure sensors, and switches may be used as sensors. In addition, radar sensors may be used to monitor the area proximate the vehicle.
The controller typically operates to give an alarm indication in the event of triggering of a vehicle sensor. The alarm indication rnay typically be flashing of vehicle lights and/or sounding of the vehicle horn or a siren. In addition, the vehicle fuel
2 supply and/or ignition power may be selectively disabled based upon an alarm condition.
A typical security system also includes a receiver associated with the controller that cooperates with one or more remote transmitters typically carried by a user as disclosed, for example, in U.S. Patent No.
4,383,242 to Sassover et al. and U.S. Patent No.
5,146,215 to Drori. The remote transmitter may be used to arm and disarm the vehicle security system or provide other remote control features from a predetermined range away from the vehicle. Also related to remote control of a vehicle function U.S.
Patent No. 5,252,966 to Lambropoulous et al, discloses a remote keyless entry system for a vehicle. The keyless entry system permits the user to remotely open the vehicle doors or open the vehicle trunk using a small handheld transmitter.
Unfortunately, the majority of vehicle security systems need to be directly connected by wires to individual vehicle devices, such as the vehicle horn or door switches of the vehicle. In other words, a conventional vehicle security system is hardwired to various vehicle components, typically by splicing into vehicle wiring harnesses or via interposing T-harnesses and connectors. The number of electrical devices in a vehicle has increased so that the size and complexity of wiring harnesses has also increased. For example, the steering wheel may include horn switches, an airbag, turn-signal and headlight switches, wiper controls, cruise control switches, ignition wiring, an emergency flasher switch, and/or radio controls.
Likewise, a door of a vehicle, for example, may include window controls, looks, outside mirror switches, and/or door-panel light switches.
In response to the increased wiring complexity and costs, vehicle manufacturers have begun attempts to reduce the amount of wiring within vehicles
3 to reduce weight, reduce wire routing problems, decrease costs, and reduce complications which may arise when troubleshooting the electrical system. For example, some manufacturers have adopted multiplexing schemes to reduce cables to three or four wires and to simplify the exchange of data among the various onboard electronic systems as disclosed, for example, in an article titled, "The Thick and Thin of Car Cabling" by Thompson appearing in the IEEE Spectrum, Feb. 1996, pp.
4245.
Implementing multiplexing concepts in vehicles in a cost-effective and reliable manner may not be easy. Successful implementation, for example, may require the development of low or error free communications in what may be considered harsh vehicle environments. With multiplexing technology, the various electronic modules or devices may be linked by signal wire in a bus that also contains a power wire, and one or more ground wires. Digital messages are communicated to all modules over the data communications bus. Each message may have one or more addresses associated with it so that the devices can recognize which messages to ignore and which messages w to respond to or read.
The Thompson article describes a number of multiplexed networks for vehicles. In particular, the Grand Cherokee made by Chrysler is described as having five multiplex nodes or controllers: the engine controller, the temperature controller, the airbag controller, the theft alarm, and-the overhead console.
Other nodes for different vehicles may include a transmission controller, a trip computer, an instrument cluster controller, an antilock braking controller, an active suspension controller, and a body controller for devices in the passenger compartment.
A number of patent references are also directed to digital or multiplex communications
4 networks or circuits, such as may be used in a vehicle.
For example, U.S. Patent No. 4,538,262 to Sinniger et al, discloses a multiplex bus system including a master control unit and a plurality of receiver transmitter S units connected thereto. Similarly, U.S. Patent No.
4,055,772 to Leung discloses a power bus in a vehicle controlled by a low current digitally coded communications system. Other references disclosing various vehicle multiplex control systems include, for example, U.S. Patent No. 4,760,275 to Sato et al.; U.S.
Patent No. 4,697,092 to Roggendorf et al.; and U.S.
Patent No. 4,792,783 to Burgess et al.
Several standards have been proposed for vehicle multiplex networks including, for example, the Society of Automotive Engineers (SAE), "Surface Vehicle Standard, Class B Data Communications Network Interface", SAE J1850, July 1995. Another report by the SAE is the "Surface Vehicle Information Report, Chrysler Sensor and Control (CSC) Bus Multiplexing Network for Class 'A' Applications", SAE J2058, July 1990. Many other networks are also being implemented or proposed for communications between vehicle devices and nodes or controllers.
Unfortunately, conventional vehicle security systems for hardwired connection to vehicle devices, such as aftermarket vehicle security systems, are not readily adaptable to a vehicle including a vehicle data communications bus. Moreover, a vehicle security system, if adapted for a vehicle data communications bus and devices for one particular model, model year, and manufacturer, may not be compatible with any other models, model years, or manufacturers. Other systems for remote control of vehicle functions may also suffer from such shortcomings.
One significant advance in the field of vehicle security systems for vehicles having data communications buses is found in U.S. Patent No,
5,719,551 to Flick, the entire contents of which are incorporated herein by reference. The patent discloses a vehicle security system that is adaptable for installation in a vehicle having a data communications 5 bus, and wherein the controller may learn or otherwise have downloaded thereto the desired device codes for a given vehicle from among a plurality of vehicles. In other words, the vehicle security system may be readily adapted to a vehicle including a data communications bus and may provide an alarm indication that deters vehicle theft. This device, while especially useful in many applications, may be relatively complicated for a more basic application, such as preventing engine starting, for example.
Summary of the Invention In view of the foregoing background, it is therefore an object of the present invention to provide a system that is readily adaptable for installation in a vehicle having a data communications bus and that is suitable for vehicle control applications, such as preventing or disabling vehicle engine starting, for example.
This and other objects, advantages, and features of the present invention are provided by a vehicle security or control system including a vehicle data communications bus disrupter for selectively disrupting communications on the vehicle data communications bus. More particularly, the vehicle system may be for a vehicle comprising a vehicle engine, at least one vehicle engine device, such as enabling starting of the vehicle engine, and a vehicle data communications bus carrying communications for the at least one vehicle device. The vehicle system may further comprise a security controller fox selectively operating the vehicle data communications bus disrupter based upon at least one vehicle security sensor to
6 disable the vehicle engine. The plurality of vehicle devices may comprise an engine starter, an engine ignition device, or an engine fuel supply device, for example. The data bus disrupter provides a relatively simple and cost-effective approach to interface a starter interrupt feature in a vehicle including a data communications bus, for example.
The vehicle data communications bus disrupter may be inductively coupled or directly connected to the vehicle data communications bus via a hard wired connection. The directly connected configuration may connect a plurality of electrical conductors of the data bus together, or may connect at least one electrical conductor to a reference voltage. A
disruption signal may also be generated and placed on the data bus.
The vehicle security system may alternately or additionally include a positioning determining device and a wireless communications device, both connected to the security controller, for communicating position information to a monitoring station. The security controller may also selectively operate the vehicle data communications bus disrupter responsive to the monitoring station. In other words, the starter interrupt feature can be selected from a user away from the vehicle and can be communicated to the vehicle.
In some embodiments, the one or more vehicle security sensors may be connected to the security controller via the vehicle data communications bus. Accordingly, the security controller may turn off~the vehicle data communications bus disrupter based on a predetermined event to permit renewed communication with the vehicle security sensors, for example. The predetermined event may include a predetermined time, a predetermined number of vehicle ignition cycles, or a predetermined signal received from a remote transmitter carried by a user, for example.
7 The vehicle security sensor may comprise at least one of a door switch, a hood switch, a trunk switch, a proximity sensor, and a motion sensor.
Additionally, the vehicle security system may include an alarm indicator connected directly to the security controller or indirectly via the vehicle data communications bus. The alarm indicator may include at least one of a vehicle light, a vehicle horn, a siren, a speech message generator, and a remote pager. The security controller may be switchable between armed and disarmed modes, and the system may further include a remote transmitter carried by a user for switching the security controller between the armed and disarmed modes.
In other embodiments, the vehicle control system may include different types of control devices for operating the data bus disrupter. For example, the control device may comprise at least one of a token reader, a biometric reader, a remote station receiver, and a personal identification number code reader. Of course, for many of the embodiments, the control device may also include an ignition switch sensor.
The vehicle data communications bus disrupter may comprise control logic for receiving as an input at least one control signal. The disrupter may also include an output circuit to be coupled to the vehicle data communications bus and being responsive to the control logic for selectively disrupting communications on the vehicle data communications bus for at least one vehicle device based upon the at~least one control signal. The output circuit may comprise at least one switch for connecting a plurality of electrical conductors of the data bus together. Alternately, the output circuit may comprise at least one switch for connecting at least one electrical conductor of the data bus to a voltage reference, such as ground or the positive vehicle supply. In other embodiments, the
8 output circuit may comprise a disrupting signal generator for generating a disrupting signal onto the at least one electrical conductor. In still other embodiments, the output circuit may further comprise an inductive coupling interface for inductively coupling the disrupting signal generator onto the at least one electrical conductor.
One method aspect of the invention is for disabling a vehicle engine for a vehicle comprising at least one vehicle engine device, and a vehicle data communications bus carrying communications for the at least one vehicle engine device. The method may comprise selectively disrupting communications on the vehicle data communications bus to disable the vehicle engine. For example, the at least one vehicle engine device may comprise at least one of an engine starter, an engine ignition device, an engine fuel supply device.
Another method aspect of the invention is for disrupting communications for at least one vehicle device connected to a vehicle data communications bus.
The method may comprise coupling an output circuit to the vehicle data communications bus for selectively disrupting communications on the vehicle data communications bus for the at least one vehicle device based upon the at least one control signal. For example, the at least one vehicle device may comprise at least one of an engine starter, an engine ignition device, and an engine fuel supply device.
3 0 Brief Description of the Drawincs FIG. 1 is a schematic block diagram of a first embodiment of a vehicle security system according to the present invention.
FIG. 2 is a more detailed schematic block diagram of the vehicle data communications bus disrupter as shown in .FIG. 1.
9 FIG. 3 is a more detailed schematic block diagram of an alternate embodiment of a vehicle data communications bus disrupter as shown in FIG. 2.
FIG. 4 is a more detailed schematic block diagram of another embodiment of a vehicle data communications bus disrupter as shown in FIG. 2.
FIG. 5 is a schematic block diagram of a second embodiment of the vehicle security system according to the present invention.
FIG. 6 is a more detailed schematic block diagram of the vehicle data communications bus disrupter as shown in FIG. 5.
FIG. 7 is a schematic block diagram of a third embodiment of the vehicle security system according to the present invention.
FIG. 8 is a schematic block diagram of yet another embodiment of a vehicle control system in accordance with the present invention.
FIGS. 9 and 10 are flow charts showing operation of the vehicle security systems according to the present invention.
Detailed Description of the Preferred Embodiments The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime and multiple prime notations are used in alternate embodiments to indicate similar elements.

1~
Referring initially to FIGS. 1-4, a first embodiment of vehicle security system 20 is now described. The vehicle security system 20 is for a vehicle comprising a vehicle engine 21, a plurality of vehicle devices 40 enabling starting of the vehicle engine, and a vehicle data communications bus 30 extending through the vehicle and carrying communications for the vehicle devices. The vehicle data communications bus 30 may include wires and/or optical fibers, for example, connected between the vehicle devices 40 so that the vehicle devices may communicate with one another, as understood by those skilled in the art.
Each of the vehicle devices typically includes a transmitter and receiver to transmit and receive signals from the vehicle data communications bus 30. In addition, each vehicle device 40 may include associated circuitry for performing a function based on received signals, and/or sensing circuitry for sensing a condition to be transmitted onto the data bus 30 as will also be appreciated by those skilled in the art.
The vehicle security system 20 illustratively includes a vehicle security sensor or sensors 24 connected to the security controller 50. The vehicle security .sensor 24 may include one or more of a door switch, a hood switch, a trunk switch, a proximity sensor, a motion sensor, for example, or any other type of vehicle security sensor that is capable of monitoring the security status of the vehicle as understood by those skilled in the art. The vehicle security sensor 24 is illustratively connected to the processor 52 of the security controller 50 via a hardwired interface 22.
The security controller 50 includes the processor 52, and a memory 54 connected to the processor. A vehicle data communications bus disrupter interface 56 connects the processor 52 to the data bus disrupter 60. Similarly, an optional vehicle data communications bus interface 58 may connect the processor 52 to the data bus 30 in some embodiments.
The vehicle data communications bus disrupter 60 disrupts communications on the vehicle data communications bus 30. and the security controller 50 selectively operates the vehicle data communications bus disrupter 60 based upon the vehicle security sensor 24 to disable the vehicle engine. By disabling means 20 that if the vehicle is not currently running, the engine 21 will not be allowed to start. If the vehicle engine 21 is already running, it may be immediately shut down or simply kept from restarting once it has been shut down. In either case, the engine is still disabled.
In the illustrated embodiment of FIG. 1, the vehicle data communications bus disrupter 60 is illustratively directly connected, i.e., hard wired, to the vehicle data communications bus 30. The vehicle security system 20 also illustratively includes an alarm indicator 65 connected to the security controller 50 to provide an alarm indication. The alarm indicator 65 may be a vehicle light, a vehicle horn, a siren, a speech message generator, a remote pager, or any other type of indicator as understood by those skilled in the art. The alarm indicator 65 may be operated by the controller 50 based upon activation of a vehicle sensor Z4, for example, such as to deter a would-be thief.
Disrupting the vehicle data communications bus 30 may be achieved in any of a number of different ways. For example, in the embodiment of the disrupter 60 shown in FIG. 2, the data bus 30 includes a pair of electrical conductors 30a, 30b connected to a corresponding pair of disrupter outputs 61a, 61b. The electrical conductors may be selectively connected together by the schematically illustrated switch 62 that, in turn, is connected to the control logic 63. The control logic 63 illustratively includes a pair of inputs 64a. 64b that may receive ON and OFF control signals, respectively.
The control logic 63 is also illustratively connected to power inputs 65a, 65b such as for the vehicle positive voltage and ground, respectively. A timer 66 is illustratively connected to the control logic 63 as may be used in some embodiments to provide self-contained timing functions as will be appreciated by those skilled in the art. Again, in this embodiment of the vehicle data communications bus disrupter 60, two or more conductors 30a, 30b of the data bus 30 may be shorted together, or through a resistor (not shown) to thereby disrupt communications on the data bus as will also be appreciated by those skilled in the art.
Considered in somewhat different terms, the switch 62 provides an output circuit connected to the data communications bus 30.
Turning now more specifically to FIG. 3, another embodiment of the disrupter 60 is now described. In this embodiment, at least one electrical conductor 30a of the data bus 30 may be selectively connected to a reference voltage, such as ground, fox example, or any other suitable reference voltage that will cause disruption of communications on the data communications bus. The reference voltage Vref may be generated internally, or may be received on an external reference voltage input 67. Of course, more than one electrical conductor may be connected to the same or different reference voltages as will be appreciated by those skilled in the art. The other portions of the disrupter 60 are similar to those discussed above and require no further discussion herein.
Referring now more specifically to FIG. 4, still another embodiment of a vehicle data communications bus disrupter 60 is now described. This disrupter 60 can also be used in the overall vehicle security system 20 as shown in FIG. 1, for example, as well as in other systems as described in greater detail below.
The illustrated disrupter 60 includes a disrupting signal generator 68 as its output circuit.
The disrupting signal generator 68 may send out interfering signals, noise, etc., which blocks device receivers, as will be appreciated by those skilled in the art. For example, the disrupter 60 may transmit noise, or broadband energy, on the vehicle data communications bus 30 so that the receivers of the vehicle devices 40 are unable to detect other signals.
For example, for a data bus 30 employing a collision avoidance communications scheme, the disrupter 60 may constantly send signals on the data bus so that no device will have an opening to send its transmission.
Yet another representative approach to disrupting the data communications bus 30 is to transmit signal codes that would keep the device circuitry busy performing other functions instead of starting. Of course, those of skill in the art will appreciate yet other ways in which the disrupter 60 can jam or disrupt communications on the data bus 30 and thereby disable the vehicle engine 21, for example, These disrupting techniques may be used for electrical and/or fiber optic type data busses as will also be appreciated by those skilled in the art.
Turning now additionally to FIG. 5 and 6, another similar embodiment of the vehicle security system is now described. The vehicle security system 20 illustratively includes the security controller 50 which is connected to the vehicle data communications bus disrupter 70 via the illustrated disrupter interface 56. The vehicle data communications bus disrupter 70 is illustratively inductively coupled to the vehicle data communications bus 30, although in other embodiments it could also be directly hard wire connected to the data bus as will be appreciated by those skilled in the art. The inductive coupling does not require direct connection or splicing to the wires of the data bus 30, for example. The vehicle devices 40 may include one or more of an engine starter 40a, an engine ignition device 40b, an engine fuel supply device 40c, and any other device that is involved with starting the vehicle engine as understood by those skilled in the art.
The security controller 50 may also be switchable between armed and disarmed modes responsive to signals from a remote transmitter 26. The remote transmitter 26 is typically carried by a user for switching the security controller 50 between armed and disarmed modes. The security controller 50 is illustratively connected to a receiver 28 for receiving signals from the remote transmitter 26.
In this embodiment of the security system 20, the vehicle security sensor or sensors 24 and alarm indicator 65 are connected to the controller 50 through the data communications bus 30. Accordingly, the security controller 50 may also turn off the vehicle data communications bus disrupter 60 based upon a predetermined event to permit renewed communications with the vehicle security sensor 24 and/or the alarm indicator 65, for example. The predetermined event may include the passing of a predetermined time, a predetermined number of vehicle ignition cycles, or a predetermined communication from the remote transmitter 26 carried by a user, for example. The memory 54 and data bus interface 58 are connected to the processor 52 and are similar to the corresponding devices described above with respect to the security system 20 of FIG. 1.
Accordingly, these devices need no further discussion herein.

As shown in FIG. 6, the disrupter 70 includes circuitry similar to that of the embodiment shown in FIG. 4~ however, the disrupter 70 illustratively includes an inductive coupling interface 79 to 5 interface the disrupting signals from the disrupting signal generator 78 to an inductive coupling loop 80, for example, that may be placed in proximity to the data communications bus 30 as will be appreciated by those skilled in the art.
10 The disrupter 70 illustratively includes a pair of disrupter outputs 71a, 71b connected to the inductive coupling loop 80. The disrupter outputs 71a, 71b are connected to the disrupting signal generator 78 via the schematically illustrated inductive coupling 15 interface 79 that; in turn, is connected to the control logic 63. The control logic 73 illustratively includes a pair of inputs 74a, 74b that may receive ON and OFF
control signals, respectively. The control logic 73 is also illustratively connected to power inputs 75a, 75b such as for the vehicle positive voltage and ground, respectively. A timer 76 is illustratively connected to the control logic 73 as may be used in some embodiments to provide self-contained timing functions as will be appreciated by those skilled in the art.
Referring now to FIG. 7, another variation of a vehicle security system 20 is now described. In this embodiment, the vehicle security system 20 illustratively includes a vehicle position determining device 25 connected to the processor 52 of the controller 50. and a wireless communications device 26 also connected to the processor. As will be readily appreciated by those skilled in the art, the security controller 50 cooperates with the wireless communications device 26 and the vehicle position determining device 25 for sending vehicle position information to a monitoring station 27. The monitoring station 27 may be a central monitoring station serving a number of subscribers, or may be a monitoring station specific to a given user. In other words, in this embodiment, the security system 20 provides vehicle position tracking features.
Other tracking features rnay also be incorporated into the system 20 as also disclosed, for example, in copending patent application entitled, Vehicle Tracker Including Stationary Time Determination and Associated Methods, serial no. 09/859,727, filed May 17, 2001 and to the inventor of the present invention. Additional tracking features are also described in copending patent application entitled, Vehicle Tracker Including Deviation in Direction Methods, serial no. 10/105,778, filed March 25, 2002 also to the inventor of the present invention. The entire contents of both of these applications are incorporated herein by reference.
In this embodiment, the security controller 50 also selectively operates the vehicle data communications bus disrupter 60 to disrupt communications on the vehicle data communications bus and thereby prevent starting of the vehicle engine.
The controller 50 causes disrupting based upon signals 25 received from the monitoring station 27. In other words, a disrupting signal is illustratively transmitted from the monitoring station 27 to the wireless communications device 26 which cooperates with the security controller 50 to jam communications on the 30 vehicle data communications bus 30. Other elements described above with reference to FIGS. 1 and 5 are indicated with double prime notation and need no further discussion herein.
Referring now additionally to FIG. 8, other variations of control system configurations using the vehicle data bus communications disrupter 60 are now further described. Although the disrupter 60 as explained above with reference to FIGS. 1 and 2 is described, those of skill in the art will recognize that the other disrupter embodiments specifically disclosed and contemplated by the present invention could also be used. 2n the illustrated embodiment of FIG. 8, the ignition sensor 80 is connected to the ON
input 64a so that if the vehicle key is positioned in the ignition switch, or rotated to the start position, for example, the control logic will close the switch 62 to thereby disrupt communications and disable the engine, for example. In order to permit vehicle engine starting, an OFF signal can be supplied by any of the illustrated control devices 81, and responsive thereto, the switch 62 is opened, and the vehicle engine may be started, for example.
The control device 81 may be provided by a token reader 82. The token reader 82 may read a code from a uniquely coded token carried by the user and presented to the reader when the user is in position to start the vehicle. For example, the token may be a coded transponder key that communicates wirelessly to the token reader as will be appreciated by those skilled in the art. The token may also be a coded token that is read by direct electrical contact by the token reader 82, such as a Dallas I button, for example.
The control device 81 may also be provided by a biometric reader 83 which reads a unique biometric characteristic of a user as will also be appreciated by those skilled in the art. For example, the biometric reader 83 may read one or more of a fingerprint, facial pattern, iris pattern, voice pattern, etc. as will also be appreciated by those skilled in the art. Of course, the control device 81 may be provided by a remote station receiver 84. This receiver 84 may receive a signal from a remote station under the user s control 1$
or under the control of another, such as to facilitate repossession of a vehicle, for example.
Yet another illustrated example of a control device 81 is the schematically illustrated personal identification (PIN) code reader 85. The PIN code reader 85 may be provided by one or more simple depressible switches, or a more complicated numeric keypad, for example, as will also be appreciated by those skilled in the art. The PIN code reader 85 provides additional security to the user, since without proper entry of the PIN code, the vehicle engine could not be started, for example.
In addition, those of skill in the art will appreciate other sources of control signals for the vehicle data communications bus disrupter 60 as described herein. Moreover, in addition to disabling the vehicle engine, the disrupter 60 can be used to defeat other functions controlled by the data communications bus 30. For example, the vehicle door locks could also be defeated by the disrupter as when a vehicle possessor fails to make timely car payments, for example. Those of skill in the art will appreciate many other additional scenarios advantageously benefiting from the disrupter as described herein.
Turning now additionally to the flowchart 90 of FIG. 9, a method of using the vehicle security system 20 is now described. From the start (Block 91) it is determined whether the security controller 50 is armed at Block 92. If it is determined at Block 92 that the security controller 50 is not armed, then the vehicle security system 20 awaits the arming of the security controller. If, however, at Block 92 it is determined that the security controller 50 is armed, then vehicle security sensor 24 is monitored at Block 93. At Block 94 it is determined whether the vehicle security sensor 24 has sensed a security breach. If it is determined that a security breach has not been sensed, then the vehicle security sensor 24 is again monitored at Block 93. If, however, it is determined at Block 94 that a security breach has been sensed, then the vehicle data communications bus 30 is jammed at Block 95.
At Block 96, it is determined whether a predetermined event has occurred. If it is determined at Block 96 that the predetermined event has not occurred, then disrupting of the vehicle data communications bus is continued. If, however, it is determined at Block 96 that the predetermined event has occurred, then the vehicle data communications bus disrupter 60 is turned off. The vehicle security sensor 24 is then monitored at Block 93.
Turning now additionally to the flowchart 100 of FIG. 10, another method aspect of the vehicle security system 20 is now described. From the start (Block 101) the vehicle position is determined at Block 102. At Block 103 a signal containing the vehicle position is sent to the monitoring station 27. It may be sent on a preestablished schedule or based upon predetermined events as disclosed in the present inventor s copending patent application identified above.
At Block 104 it is determined whether an engine disable signal has been received. If the disable signal is received, then the vehicle data communications bus 30 is jammed at Block 105. At Block 106, it is determined whether a predetermined event has occurred. If it is determined at Block 106 that the predetermined event has not occurred, then disrupting is continued on the vehicle data communications bus 30.
If, however, it is determined at Block 106 that the predetermined event has occurred, then the vehicle position is again determined at Block 102.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific 5 embodiments disclosed, and that other modifications and embodiments are intended to be included within the scope of the appended claims.

Claims (47)

THAT WHICH IS CLAIMED IS:
1. A vehicle control system for a vehicle comprising an engine, at least one vehicle engine device, and a vehicle data communications bus carrying communications for the at least one vehicle engine device, the vehicle control system comprising:
a vehicle data communications bus disrupter for disrupting communications on the vehicle data communications bus for the at least one vehicle engine device; and at least one security controller device for selectively operating said vehicle data communications bus disrupter.
2. The vehicle control system according to claim 1, further comprising at least one vehicle security sensor;
said at least one security controller device selectively operating said vehicle data communications bus disrupter based upon said at least one vehicle security sensor to disable the engine of the vehicle.
3. The vehicle control system according to claim 1, further comprising:
a vehicle position-determining device; and a wireless communications device;
wherein said at least one security controller device cooperates with said wireless communications device and said vehicle position determining device for sending vehicle position information to a monitoring station; said at least one security controller device selectively operating said vehicle data communications bus disrupter based upon the monitoring station to disable the engine of the vehicle.
4. A vehicle data communications bus disrupter for a vehicle with an engine and at least one vehicle engine device, comprising a vehicle data communications bus carrying communications for the at least one vehicle engine device, the vehicle data communications bus disrupter comprising:
control logic for receiving at least one control signal; and an output circuit to be coupled to the vehicle data communications bus and being responsive to said control logic for selectively disrupting communications on the vehicle data communications bus for the at least one vehicle engine device based upon the at least one control signal.
5. The vehicle control system according to any one of claims 1 to 3, wherein the at least one vehicle engine device comprises one of an engine starter, an engine ignition device and an engine fuel supply device.
6. The vehicle control system according to claim 2, wherein said vehicle data communications bus disrupter is directly connected to the vehicle data communications bus.
7. The vehicle control system according to any one of claims 1 to 3 and 5 to 6, wherein the data communications bus comprises a plurality of electrical conductors; and wherein said data communications bus disrupter connects said plurality of electrical conductors together.
8. The vehicle control system according to any one of claims 1, 3 and 5, wherein the data communications bus comprises at least one electrical conductor; and wherein said data communications bus disrupter connects said at least one electrical conductor to a reference voltage.
9. The vehicle control system according to any one of claims 1, 3 and 5, wherein the data communications bus comprises at least one electrical conductor; and wherein said data communications bus disrupter generates a data bus disruption signal onto said at least one electrical conductor.
10. The vehicle control system according to any one of claim 1, 3, 4 and 5, wherein said vehicle data communications bus disrupter is inductively coupled to the vehicle data communications bus.
11. The vehicle control system according to claim 2, further comprising:
a positioning determining device connected to said at least one security controller device; and a wireless communications device connected to said at least one security controller device for communicating position information to a monitoring station.
12. The vehicle control system according to claim 11, wherein said at least one security controller device selectively operates said vehicle data communications bus disrupter responsive to the monitoring station.
13. The vehicle control system according to claim 2, wherein said at least one vehicle security sensor is connected to said at least one security controller device via the vehicle data communications bus.
14. The vehicle control system according to claim 13, wherein said at least one security controller device is switchable between an armed and a disarmed mode; said vehicle security system further comprising a remote transmitter carried by a user for switching said at least one security controller device between the armed and the disarmed mode.
15. The vehicle control system according to claim 14, wherein said at least one security controller device turns off said vehicle data communications bus disrupter based upon a predetermined event to permit renewed communications with said at least one vehicle security sensor.
16. The vehicle control system according to claim 15, wherein the predetermined event is at least one of a passage of a predetermined time, a predetermined number of vehicle ignition cycles, and a predetermined communication from said remote transmitter.
17. The vehicle control system according to claim 2, wherein said at least one vehicle security sensor comprises at least one of a door switch, a hood switch, a trunk switch, a proximity sensor, and a motion sensor.
18. The vehicle control system according to claim 2, further comprising at least one alarm indicator connected to said at least one security controller device.
19. The vehicle control system according to claim 18, wherein said at least one alarm indicator is connected to said at least one security controller device via the vehicle data communications bus.
20. The vehicle control system according to claim 18, wherein said at least one alarm indicator comprises at least one of a vehicle light, a vehicle horn, a siren, a speech message generator, and a remote pager.
21. The vehicle control system according to claim 3, wherein said at least one security controller device is switchable between an armed and a disarmed mode; said vehicle security system further comprising a remote transmitter carried by a user for switching said at least one security controller device between the armed and the disarmed modes.
22. The vehicle control system according to claim 21, further comprising at least one alarm indicator connected to said at least one security controller device.
23. The vehicle control system according to claim 1, wherein said at least one security controller device comprises a vehicle security controller.
24. The vehicle control system according to claim 23, wherein said vehicle security controller selectively operates said vehicle data communications bus disrupter responsive to a remote station.
25. The vehicle control system according to claim 1, wherein said at least one security controller device comprises at least one of a token reader, a biometric reader, a remote station receiver, and a personal identification number code reader.
26. The vehicle control system according to claim 1, wherein said at least one security controller device comprises an ignition switch sensor.
27. The vehicle data communications bus disrupter according to claim 4, wherein the vehicle data communications bus comprises a plurality of electrical conductors; and wherein said output circuit comprises at least one switch for connecting said plurality of electrical conductors together.
28. The vehicle data communications bus disrupter according to claim 4, wherein the vehicle data communications bus comprises at least one electrical conductor; and wherein said output circuit comprises at least one switch for connecting said at least one electrical conductor to a voltage reference.
29. The vehicle data communications bus disrupter according to claim 4, wherein the vehicle data communications bus comprises at least one electrical conductor; and wherein said output circuit comprises a disrupting signal generator for generating a disrupting signal onto said at least one electrical conductor.
30. The vehicle data communications bus disrupter according to claim 29, wherein said output circuit further comprises an inductive coupling interface for inductively coupling said disrupting signal generator onto said at least one electrical conductor.
31. The vehicle data communications bus disrupter according to claim 4, wherein the at least one control signal comprises at least one of a vehicle security controller, a token reader, a biometric reader, a remote station receiver, a personal identification number code reader, and an ignition switch sensor.
32. A method for disabling a vehicle engine for a vehicle comprising at least one vehicle engine device, and a vehicle data communications bus carrying communications for the at least one vehicle engine device, the method comprising the step of selectively disrupting communications on the vehicle data communications bus to disable the engine of the vehicle.
33. A method for disrupting communications to at least one vehicle engine device connected to a vehicle data communications bus, the method comprising the step of coupling an output circuit to the vehicle data communications bus for selectively disrupting communications on the vehicle data communications bus for the at least one vehicle engine device based upon an at least one control signal.
34. The method according to any one of claims 32 and 33, wherein the at least one vehicle engine device comprises at least one of an engine starter, an engine ignition device, and an engine fuel supply device.
35. The method according to claim 32, wherein said step of selectively disrupting communications comprises directly connecting a vehicle data communications bus disrupter to the vehicle data communications bus.
36. The method according to claim 35, wherein the vehicle data communications bus comprises a plurality of electrical conductors and wherein the vehicle data communications bus disrupter connects the plurality of electrical conductors together.
37. The method according to claim 35, wherein the vehicle data communications bus comprises at least one electrical conductor; and wherein the vehicle data communications bus disrupter connects the at least one electrical conductor to a reference voltage.
38. The method according to claim 35, wherein the vehicle data communications bus comprises at least one electrical conductor; and wherein the vehicle data communications bus disrupter generates a data bus disruption signal onto the at least one electrical conductor.
39. The method according to claim 32, wherein a vehicle data communications bus disrupter is inductively coupled to the vehicle data communications bus.
40. The method according to claim 32, wherein said selectively disrupting communications is responsive to at least one control signal from at least one control device.
41. The method according to claim 40, wherein the at least one control device comprises at least one of a vehicle security controller, a token reader, a biometric reader, a remote station receiver, a personal identification number code reader, and an ignition switch sensor.
42. The method according to claim 33, wherein the vehicle data communications bus comprises a plurality of electrical conductors and wherein the output circuit comprises at least one switch for connecting the plurality of electrical conductors together.
43. The method according to claim 33, wherein the vehicle data communications bus comprises at least one electrical conductor; and wherein the output circuit comprises at least one switch for connecting the at least one electrical conductor to a voltage reference.
44. The method according to claim 33, wherein the vehicle data communications bus comprises at least one electrical conductor; and wherein the output circuit comprises a disrupting signal generator for generating a disrupting signal onto the at least one electrical conductor.
45. The method according to claim 44, wherein the output circuit further comprises an inductive coupling interface for inductively coupling the disrupting signal generator onto the at least one electrical conductor.
46. The method according to claim 33, wherein the at least one control signal comprises at least one of a vehicle security controller, a token reader, a biometric reader, a remote station receiver, a personal identification number code reader, and an ignition switch sensor.
47. The method according to claim 33, wherein the at least one vehicle engine device comprises at least one of an engine starter, an engine ignition device, and an engine fuel supply device.
CA002415011A 2002-10-16 2002-12-20 Vehicle data communications bus disrupter and associated methods Expired - Lifetime CA2415011C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/271,626 2002-10-16
US10/271,626 US7061137B2 (en) 2002-10-16 2002-10-16 Vehicle data communications bus disrupter and associated methods

Publications (2)

Publication Number Publication Date
CA2415011A1 CA2415011A1 (en) 2003-10-14
CA2415011C true CA2415011C (en) 2006-08-08

Family

ID=29270320

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002415011A Expired - Lifetime CA2415011C (en) 2002-10-16 2002-12-20 Vehicle data communications bus disrupter and associated methods

Country Status (2)

Country Link
US (1) US7061137B2 (en)
CA (1) CA2415011C (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147442A1 (en) * 2001-09-26 2003-04-17 Bosch Gmbh Robert Method and device and control unit for monitoring a bus system
DE10310294B4 (en) 2003-03-10 2019-04-04 Robert Bosch Gmbh Device for controlling an electrical safety device for a motor vehicle
US7650509B1 (en) 2004-01-28 2010-01-19 Gordon & Howard Associates, Inc. Encoding data in a password
JP4476062B2 (en) * 2004-07-23 2010-06-09 株式会社デンソー In-vehicle control device
US7317385B2 (en) * 2005-08-02 2008-01-08 Johnson Controls Technology Company In-vehicle animation bypass system and method
US20070194881A1 (en) * 2006-02-07 2007-08-23 Schwarz Stanley G Enforcing payment schedules
US20110040579A1 (en) * 2006-12-20 2011-02-17 Safeco Insurance Company Of America Web-based systems and methods for providing services related to automobile safety and an insurance product
US20080221743A1 (en) * 2007-03-09 2008-09-11 Gordon * Howard Associates, Inc. Onboard Starter-Interrupt Device Incorporating Wireless Personal Area Network
US9026267B2 (en) 2007-03-09 2015-05-05 Gordon*Howard Associates, Inc. Methods and systems of selectively enabling a vehicle by way of a portable wireless device
US8020775B2 (en) * 2007-12-24 2011-09-20 Dynamics Inc. Payment cards and devices with enhanced magnetic emulators
US8581712B2 (en) 2008-12-12 2013-11-12 Gordon * Howard Associates, Inc . Methods and systems related to establishing geo-fence boundaries
US8659404B2 (en) 2008-12-12 2014-02-25 Gordon Howard Associates, Inc. Methods and systems related to establishing geo-fence boundaries and collecting data
US8018329B2 (en) 2008-12-12 2011-09-13 Gordon * Howard Associates, Inc. Automated geo-fence boundary configuration and activation
US8686841B2 (en) 2008-12-12 2014-04-01 Gordon*Howard Associates, Inc. Methods and systems related to activating geo-fence boundaries and collecting location data
WO2011092166A2 (en) * 2010-01-26 2011-08-04 Atsr Limited A vehicle control system
US8581711B2 (en) 2011-03-22 2013-11-12 Gordon*Howard Associates, Inc. Methods and systems of rule-based intoxicating substance testing associated with vehicles
US8781900B2 (en) 2011-09-09 2014-07-15 Gordon*Howard Associates, Inc. Method and system of providing information to an occupant of a vehicle
US8385973B1 (en) 2011-09-23 2013-02-26 Peter Tamposi Remote equipment control system
US9665997B2 (en) 2013-01-08 2017-05-30 Gordon*Howard Associates, Inc. Method and system for providing feedback based on driving behavior
US9035756B2 (en) 2013-03-14 2015-05-19 Gordon*Howard Associates, Inc. Methods and systems related to remote tamper detection
US9840229B2 (en) 2013-03-14 2017-12-12 Gordon*Howard Associates, Inc. Methods and systems related to a remote tamper detection
US9378480B2 (en) 2013-03-14 2016-06-28 Gordon*Howard Associates, Inc. Methods and systems related to asset identification triggered geofencing
US8928471B2 (en) 2013-03-14 2015-01-06 Gordon*Howard Associates, Inc. Methods and systems related to remote tamper detection
US9013333B2 (en) 2013-06-24 2015-04-21 Gordon*Howard Associates, Inc. Methods and systems related to time triggered geofencing
US20170101006A1 (en) * 2015-10-13 2017-04-13 Consumer Safety Technology, Llc Diagnostic port intoxication vehicle immobilization
US10604011B2 (en) 2015-10-13 2020-03-31 Consumer Safety Technology, Llc Networked intoxication vehicle immobilization
US9701279B1 (en) 2016-01-12 2017-07-11 Gordon*Howard Associates, Inc. On board monitoring device
US10877008B2 (en) 2016-09-09 2020-12-29 Consumer Safety Technology, Llc Reference gas management in a breath alcohol calibration station
US10663440B2 (en) 2016-09-09 2020-05-26 Consumer Safety Technology, Llc Secure data handling in a breath alcohol calibration station
US10464500B2 (en) 2017-05-29 2019-11-05 Aamp Of Florida, Inc. Aftermarket head unit interface and protocol converter cartridge
US10249182B1 (en) 2018-01-04 2019-04-02 Directed, Llc Remote vehicle system configuration, control, and telematics
RU2714557C2 (en) * 2018-07-30 2020-02-18 Сергей Андреевич Липицкий Anti-theft method of vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055772A (en) 1975-11-03 1977-10-25 Cts Corporation Digitally coded electrical supply system
US4383242A (en) 1979-06-04 1983-05-10 Tmx Systems Limited Automobile anti-theft system
US4697092A (en) 1983-02-23 1987-09-29 Petri Ag Control system for electrically operated components of an automotive vehicle
US4538262A (en) 1983-08-03 1985-08-27 Rca Corporation Multiplex bus system for controlling the transmission of data between a master control unit and a plurality of remotely located receiver-transmitter units
JPS62237895A (en) 1986-04-09 1987-10-17 Nippon Denso Co Ltd On-vihicle communication equipment
US4792783A (en) 1986-05-07 1988-12-20 Electro-Mechanical Products Vehicular function controller having alterable function designators
US5252966A (en) 1987-05-21 1993-10-12 Trw Inc. Transmitter for remote control system for door locks
US5146215A (en) 1987-09-08 1992-09-08 Clifford Electronics, Inc. Electronically programmable remote control for vehicle security system
DE4232435C1 (en) 1992-09-28 1993-11-25 Telefunken Microelectron Method for operating an alarm system for motor vehicles
US5307048A (en) * 1992-12-18 1994-04-26 Protect & Defend, Inc. Vehicle security system including an anti-carjacking system
US5719551A (en) * 1996-08-22 1998-02-17 Flick; Kenneth E. Vehicle security system for a vehicle having a data communications bus and related methods
DE19843810A1 (en) * 1998-09-24 2000-03-30 Philips Corp Intellectual Pty Data bus
US6754485B1 (en) * 1998-12-23 2004-06-22 American Calcar Inc. Technique for effectively providing maintenance and information to vehicles

Also Published As

Publication number Publication date
CA2415011A1 (en) 2003-10-14
US20040075538A1 (en) 2004-04-22
US7061137B2 (en) 2006-06-13

Similar Documents

Publication Publication Date Title
CA2415011C (en) Vehicle data communications bus disrupter and associated methods
US5719551A (en) Vehicle security system for a vehicle having a data communications bus and related methods
US6011460A (en) Vehicle security system for a vehicle having a data communications bus and related methods
US6392534B1 (en) Remote control system for a vehicle having a data communications bus and related methods
US6771167B1 (en) Vehicle alert system for vehicle having a data bus and associated methods
US6297731B1 (en) Vehicle remote control system having keyless entry and piggyback control features and associated methods
US6249216B1 (en) Vehicle security system including adaptor for data communications bus and related methods
US8749346B2 (en) Vehicle security system including pre-warning features for a vehicle having a data communications bus and related methods
US6346876B1 (en) Multi-vehicle compatible control system generating command signals on a data bus and associated methods
US6756885B1 (en) Multi-vehicle compatible control system for reading from a data bus and associated methods
US7010402B2 (en) Vehicle control system including multi-vehicle controller using vehicle code learning index and related methods
US9981616B2 (en) Remote function control system for a vehicle having a data communications bus and related methods
US6756886B2 (en) Remote start system including an engine speed data bus reader and related methods
US6529124B2 (en) Remote vehicle function control system using data bus adaptor cartridge and associated methods
US7369936B2 (en) Remote start control system including an engine speed data bus reader and related methods
US6696927B2 (en) Vehicle security system for a vehicle having a data communications bus and related methods
US6243004B1 (en) Vehicle security system with inductive coupling to a vehicle having a data communications bus and related methods
US20020145535A1 (en) Vehicle control system for a vehicle data communications bus and having verification features
CA2974521C (en) Vehicle system including security unit providing degradation commands via a vehicle data bus and related methods
CA2415023C (en) Remote control system for a vehicle having a data communications bus and related methods
CA2415041C (en) Vehicle alert system for vehicle having a data bus and associated methods
CA2320248C (en) Vehicle security system for a vehicle having a data communications bus and related methods
CA2415027C (en) Multi-vehicle compatible control system for reading from a data bus and associated methods

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20221220