CA2481533C - Method of foam emulsion well cleanout for gas well - Google Patents

Method of foam emulsion well cleanout for gas well Download PDF

Info

Publication number
CA2481533C
CA2481533C CA002481533A CA2481533A CA2481533C CA 2481533 C CA2481533 C CA 2481533C CA 002481533 A CA002481533 A CA 002481533A CA 2481533 A CA2481533 A CA 2481533A CA 2481533 C CA2481533 C CA 2481533C
Authority
CA
Canada
Prior art keywords
compressed air
foam
pressure
well
foaming solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002481533A
Other languages
French (fr)
Other versions
CA2481533A1 (en
Inventor
Al Leduc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36035870&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2481533(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to CA002481533A priority Critical patent/CA2481533C/en
Priority to PCT/CA2005/001294 priority patent/WO2006026849A1/en
Publication of CA2481533A1 publication Critical patent/CA2481533A1/en
Priority to US11/683,395 priority patent/US7278488B2/en
Application granted granted Critical
Publication of CA2481533C publication Critical patent/CA2481533C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/14Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using liquids and gases, e.g. foams
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells

Abstract

A method of foam emulsion well cleanout for gas well. An emulsifier apparatus is connected to a source of compressed air and a source of foaming solution that are capable of supplying compressed air and foaming solution to the emulsifier apparatus within a range of selected pressures. The foam outlet of the emulsifier apparatus is connected to a discharge conduit supplying foam to a gas well. The pressure of compressed air foaming solution supplied to the foaming solution inlet is increased until sufficient pressure is generated to force foam exiting the foam outlet along the discharge conduit and down the gas well with an average density of approximately 1 KPA per meter, while monitoring gas well pressure and varying compressed air pressure and foam density to ensure that pressure is always maintained at less than 80% of well pressure.

Description

TITLE OF THE INVENTION:
Method of foam emulsion well cleanout for gas well FIELD OF THE INVENTION
The present invention relates to a method of well cleanout for a gas well, which uses a foam emulsion as the cleaning medium.
BACKGROUND OF THE INVENTION
All petroleum producing wells drilled in sand formations, eventually become clogged by sand. Foam emulsion well cleanout equipment and procedures were developed for use in oil wells and are not suited for use with gas wells. Oil, particularly heavy oil, can be more than 1000 times the weight of natural gas. The pressure and volume of foam emulsion needed for et>f'ective cleaning of an oil well, would hinder rather than aid in the production of natural gas.
All attempts to adapt oil well foam emulsion cleanout methods to gas wells have, to date, proven unsuccessful. There have been so many instances of gas wells being damaged, that the industry is presently pre-mixing foam in tanks and then injecting the foam into the well under carefully controlled pressures. Working with pre-mixed foam does not permit the 2 0 crew servicing the gas well to react rapidly to changes in pressure by increasing or decreasing the density of the foam.
SUlI~rMARY OF THE INVENTION
What is required is a method of foam emulsion well cleanout for a gas well that will 2 5 permit an immediate increasing or decreasing of the density of the foam in response to changes in pressure.
According to the present invention there is provided a method of foam emulsion well cleanout for gas well. An emulsifier apparatus is provided having a compressed air inlet, a 3 0 foaming solution inlet and a foam outlet. he compressed air inlet is connected to a source of compressed air capable of supplying compressed air to the emulsifier apparatus within a range of selected pressures. The foaming solution is connected to a source of foaming solution capable of supplying foaming solution to the emuls~er apparatus within a range of selected pressures. The foam outlet is connected to a discharge conduit supplying foam to a gas well. The production of foam is initiated out of the foam outlet of the emulsifier apparatus by supplying compressed air to the emulsifier apparatus through the compressed air inlet at a rate of approximately 300 to 400 c.fm. and at pressures within a range of 175 p.s.i and 375 p.s.i. and foaming solution is supplied to the emulsifier apparatus through the foaming solution inlet at a rate of approximately 10 to 15 litres per minute and at pressures sufficient to overcome internal pressure within the emulsifier apparatus caused by the inflow of compressed air through the compressed air inlet. The pressure of compressed air supplied to the emulsifier apparatus through the compressed air inlet is increased with a corresponding increase in the pressure of foaming solution supplied to the foaming solution inlet until sufficient pressure is generated to force foam exiting the foam outlet along the discharge conduit and down the gas well with an average density of approximately 1 KPA per meter, while monitoring gas well pressure and varying compressed air pressure and foam density to ensure that pressure is always maintained at less than 80% of well pressure.
Other advantages will be apparent from the description below.

These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and- are not intended to in any way limit the scope of the invention to the particular embodiment or embodiments shown; wherein:
2 5 FIGURE 1 is a side view in section of the emulsifier apparatus constructed in accordance with the teachings of the present invention;
FIGURE 2 is a side plan view of the emulsifier apparatus of FIGURE 1 connected to a well; and FIGURE 3 is a perspective view in section of the mixing chamber.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The preferred embodiment, a method of foam emulsion well cleanout for gas will now be described with reference o FIGURES 1 and 2:
Referring now to FIGURE 1, there is shown an emulsifier apparatus 12 having a compressed air inlet 14, a foaming solution inlet 16 and a foam outlet 18.
Referring to FIGURE 2, compressed air inlet 14 is connected to a source of compressed air 20 capable of supplying compressed air to emulsifier apparatus 12 within a range of selected pressures. Foaming solution inlet 16 is connected to a source of foaming solution capable of supplying foaming solution to emulsifier apparatus 12 within a range of selected pressures. As shown in FIGURE 2, source of foaming solution 22 may comprise multiple tank 23 and 25. As depicted, tank:23 is used to hold the foaming agent and tanks 25 are used to hold water necessary for mixing on site to form the foaming solution.
Foam outlet 18 is connected to a discharge conduit 24 supplying foam to a gas well 26.
Referring again to FIGURE 1, a bypass line 27 may be included for the compressed air, in order to provide an option of using compressed air on the gas well without foam. A
series of control valves 29 and ball valves 31 allow the user to control the flow of compressed air, foam, and foaming solution through emulsifier apparatus 12. 1n addition, some sections of the piping are flex piping 34 and others are rigid piping 36 to improve the operation. The various sections are joined by unions 38: Once the above connections are made, the production of foam is initiated out of foam outlet 18 of emulsifier apparatus 12 by 2 0 supplying compressed air to emulsifier apparatus 12 through compressed air inlet 14 at a rate of approximately 30U to 400 c.fm, and at pressures within a range of 175 p.s.i and 375 p.s.i. At the same time, foaming solution is supplied to emulsifier apparatus 12 through foaming solution inlet 16 at a rate of approximately IO to 15 litres per minute and at pressures sufficient to overcome internal pressure within emulsifier apparatus 12 caused 2 5 by the inflow of compressed air through the compressed air inlet 14.
Referring to FIGURE 2, the pressure of compressed air supplied to emulsi$er apparatus 12 through compressed air inlet 14 is increased with a corresponding increase in the pressure of foaming solution supplied to foaming solution inlet 16. This is done until sufficient pressure is generated to force foam exiting foam outlet 18 along discharge conduit 24 and 3 0 down gas well 26 with an average density of approximately 1 KPA per meter.
The gas well pressure is monitored while this happens and the compressed air pressure and foam density are varied to ensure that pressure is always maintained at less than 80% of well pressure. A return tank 28 may also be included to capture the foam after being used in gas well 26.
Referring to FIGURE 3 while different designs may be possible, it is preferable that emulsifier apparatus 12 have a series of axially spaced mixing plates 30 having holes 32. Holes 32 in adjacent mixing plates 30 are axially offset to improve emulsification.
Plates 30 are held in a casing 40. It is also preferable that emulsifier apparatus 12 operates without the application of heat. It will be understood that the size of the holes and the number of holes plays a role in avoiding shear degradation of the foam. It has been found 2 0 that a plate diameter of about 12.7 cm with approximately 60 holes having a diameter of about 1.3 cm each is sufficient for the pressures being used to avoid shear degradation.
In this patent document; the word "comprising" is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article "a" does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
It will be apparent to one skilled in the art that modifications may be made to the 2 0 illustrated embodiment without departing from the spirit and scope of the invention as hereinafter defined in the Claims.

Claims (7)

1. A method of foam emulsion well cleanout for a well, comprising the steps of:
providing an emulsifier apparatus having a compressed air inlet, a foaming solution inlet and a foam outlet;
connecting the compressed air inlet to a source of compressed air capable of supplying compressed air to the emulsifier apparatus within a range of selected pressures;
connecting the foaming solution to a source of foaming solution capable of supplying foaming solution to the emulsifier apparatus within a range of selected pressures;
connecting the foam outlet to a discharge conduit supplying foam to the well;
initiating the production of foam out of the foam outlet of the emulsifier apparatus by supplying compressed air to the emulsifier apparatus through the compressed air inlet at a rate of approximately 300 to 400 c.f.m. and at pressures within a range of 175 p.s.i and 375 p.s.i. and supplying foaming solution to the emulsifier apparatus through the foaming solution inlet at a rate of approximately 10 to 15 litres per minute and at pressures sufficient to overcome internal pressure within the emulsifier apparatus caused by the inflow of compressed air through the compressed air inlet;
increasing the pressure of compressed air supplied to the emulsifier apparatus through the compressed air inlet with a corresponding increase in the pressure of foaming solution supplied to the foaming solution inlet until sufficient pressure is generated to force foam exiting the foam outlet along the discharge conduit and down the well with an average density of approximately 1 KPA per meter, while monitoring well pressure and varying compressed air pressure and foam density to ensure that pressure forcing the foam exiting the foam outlet is always maintained at less than 80% of well pressure.
2. The method as defined in claim 1, the emulsifier apparatus operating without the application of heat.
3. The method as defined in claim 1, the emulsifier apparatus having a series of axially spaced mixing plates having holes, the holes in adjacent mixing plates being axially offset.
4. The method as defined in claim 1, wherein the well is a gas well.
5. An emulsifier apparatus for providing foam for use in a well cleanout, comprising in combination:
an emulsifier apparatus having a compressed air inlet, a foaming solution inlet and a foam outlet;
a source of compressed air connected to the compressed air inlet, the source of compressed air having an air pressure controller for supplying compressed air to the emulsifier apparatus at a rate of approximately 300 to 400 c.f.m. and at pressures within a range of 175 p.s.i and 375 p.s.i.;
a source of foaming solution connecting the foaming solution, the source of foaming solution having a solution pressure controller for supplying foaming solution to the emulsifier apparatus at a rate of approximately 10 to 15 litres per minute and at pressures sufficient to overcome internal pressure within the emulsifier apparatus caused by the inflow of compressed air through the compressed air inlet; and a discharge conduit supplying foam to a well connected to the foam outlet;
the air pressure controller increasing the pressure of compressed air supplied to the emulsifier apparatus through the compressed air inlet with the solution pressure controller providing a corresponding increase in the pressure of foaming solution supplied to the foaming solution inlet until sufficient pressure is generated to force foam exiting the foam outlet along the discharge conduit and down the well with an average density of approximately 1 KPA per meter; and a gas well pressure monitor for monitoring well pressure.
6. The emulsifier apparatus as defined in claim 5, the emulsifier apparatus having a series of axially spaced mixing plates having holes, the holes in adjacent mixing plates being axially offset.
7. The emulsifier apparatus as defined in claim 5, wherein the well is a gas well.
CA002481533A 2004-09-10 2004-09-10 Method of foam emulsion well cleanout for gas well Expired - Fee Related CA2481533C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002481533A CA2481533C (en) 2004-09-10 2004-09-10 Method of foam emulsion well cleanout for gas well
PCT/CA2005/001294 WO2006026849A1 (en) 2004-09-10 2005-08-29 Method of foam emulsions well cleanout for gas well
US11/683,395 US7278488B2 (en) 2004-09-10 2007-03-07 Method of generating stable foam for oil and gas well cleanouts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002481533A CA2481533C (en) 2004-09-10 2004-09-10 Method of foam emulsion well cleanout for gas well

Publications (2)

Publication Number Publication Date
CA2481533A1 CA2481533A1 (en) 2006-03-10
CA2481533C true CA2481533C (en) 2009-04-21

Family

ID=36035870

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002481533A Expired - Fee Related CA2481533C (en) 2004-09-10 2004-09-10 Method of foam emulsion well cleanout for gas well

Country Status (3)

Country Link
US (1) US7278488B2 (en)
CA (1) CA2481533C (en)
WO (1) WO2006026849A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8056636B1 (en) 2008-03-03 2011-11-15 LP Chemical Service LLC Jet pump with foam generator
US9664009B2 (en) * 2012-04-04 2017-05-30 Weatherford Technologies, LLC Apparatuses, systems, and methods for forming in-situ gel pills to lift liquids from horizontal wells
RU2601879C1 (en) * 2015-11-09 2016-11-10 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Method of cleaning bottom-hole formation zone of injection wells after hydraulic fracturing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2125245A (en) * 1935-06-28 1938-07-26 Texas Co Emulsion apparatus
US3377139A (en) * 1963-06-21 1968-04-09 Allied Chem Apparatus for preparing low density urea-formaldehyde foams
FR2037745A5 (en) * 1969-03-13 1970-12-31 Chevron Res
US3662828A (en) * 1970-09-11 1972-05-16 Chevron Res Through tubing well cleanout method using foam
FR2214037B1 (en) * 1973-01-16 1975-10-31 Schlumberger Ltd
US4213936A (en) * 1978-08-09 1980-07-22 Robert Lodrick Foam generating and spraying apparatus
US4394289A (en) * 1981-07-01 1983-07-19 Brown Lamar W Continuous foam generating system
DE3782044T2 (en) * 1987-04-10 1993-03-25 Chugoku Kayaku MIXER.
US4913237A (en) * 1989-02-14 1990-04-03 Amoco Corporation Remedial treatment for coal degas wells
US5356565A (en) * 1992-08-26 1994-10-18 Marathon Oil Company In-line foam generator for hydrocarbon recovery applications and its use
US6086052A (en) * 1996-12-03 2000-07-11 Rowe; Carroll G. Foam generating apparatus
US6125761A (en) * 1997-08-07 2000-10-03 Southwest Energy Inc. Zinc oxide inhibited emulsion explosives and method
US6422734B1 (en) * 1999-10-27 2002-07-23 National Gypsum Properties, Llc Static foam generating apparatus and method

Also Published As

Publication number Publication date
US7278488B2 (en) 2007-10-09
WO2006026849A1 (en) 2006-03-16
US20070144742A1 (en) 2007-06-28
CA2481533A1 (en) 2006-03-10

Similar Documents

Publication Publication Date Title
US8813836B2 (en) Uni-bore dump line for fracturing manifold
US20190338762A1 (en) Mobile Pump System
AU2009256367B2 (en) Multi-point injection system for oilfield operations
CA2917673C (en) System and method for changing proppant concentration
US9222347B1 (en) Hydraulic fracturing system and method
US20120018148A1 (en) Real-time field friction reduction meter and method of use
CA2824206A1 (en) Fracturing system and method for an underground formation using natural gas and an inert purging fluid
WO2017079492A1 (en) Pressure-reducing choke assembly
US20120181785A1 (en) Integrated target hub flange for oilfield fracturing systems
US20090016900A1 (en) Well jet device and the operating method thereof
US7278488B2 (en) Method of generating stable foam for oil and gas well cleanouts
CN201236686Y (en) Foam generator with adjustable pore space medium
WO2012135555A2 (en) System and method for reducing pressure fluctuations in an oilfield pumping system
CA3097652A1 (en) Mobile pump system
CA2692663C (en) Well jet device
CN112228032A (en) Visual intelligent proppant pulse injection sand paving experimental device and method
US20170356586A1 (en) Accumulator assembly, pump system having accumulator assembly, and method
US20090235730A1 (en) Method for cleaning an oil field capillary tube
RU2516093C1 (en) Station for transfer and separation of multiphase mix
US9194216B2 (en) Manipulatable filter system
JP5514194B2 (en) Injection head for performing the injection filling process
RU2274731C2 (en) Oil production method and facility
AU2014281697B2 (en) Multi power launch system for pressure differential device
CN214292644U (en) Water cutting device driven by explosion-proof diesel engine
US4126182A (en) Method for decreasing resistance to flow of crude oil up from a well or through a pipeline

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20180910