CA2544922A1 - Hydrogen permeable member and method for production thereof - Google Patents

Hydrogen permeable member and method for production thereof Download PDF

Info

Publication number
CA2544922A1
CA2544922A1 CA002544922A CA2544922A CA2544922A1 CA 2544922 A1 CA2544922 A1 CA 2544922A1 CA 002544922 A CA002544922 A CA 002544922A CA 2544922 A CA2544922 A CA 2544922A CA 2544922 A1 CA2544922 A1 CA 2544922A1
Authority
CA
Canada
Prior art keywords
hydrogen permeable
metal
porous body
metal oxide
permeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002544922A
Other languages
French (fr)
Inventor
Takeharu Tanaka
Kazuhisa Kawata
Hiroyuki Mitani
Toshiki Sato
Noboru Nakao
Takeshi Yamashita
Keita Yura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of CA2544922A1 publication Critical patent/CA2544922A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0221Group 4 or 5 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time

Abstract

Disclosed herein is a hydrogen permeable member composed of a metal porous body and a hydrogen permeable membrane placed thereon, with a diffusion preventing layer interposed between them, wherein the metal porous body has those parts on which the diffusion preventing layer is absent and such parts are filled with metal oxide particles and/or porous metal oxide. This structure prevents direct contact between the metal porous body and the hydrogen permeable membrane, thereby relieving the latter from deterioration by diffusion of metal from the former.

Description

HYDROGEN PERMEABLE MEMBER AND METHOD FOR PRODUCTION THEREOF
BACKGROUND OF THE INVENTION
1. Field of the Invention:
The present invention relates to a hydrogen permeable member which selectively separates hydrogen gas from crude gas containing hydrogen gas, thereby obtaining high-purity hydrogen gas (simply referred to as hydrogen hereinafter).
2. Description of the Related Art:
Gas separation by membrane is attracting attention because of its low energy consumption. Recent developments in fuel cells raised a problem of efficiently producing high-purity hydrogen gas as the fuel.
A typical method of producing hydrogen gas is by ther-mal cracking of hydrocarbon gas (such as town gas and natu-ral gas) to give crude gas and subsequent separation of high-purity hydrogen gas from said crude gas. Unfortu-nately, this method needs selective separation of hydrogen gas from cracked crude gas containing hydrogen gas as well as carbon monoxide and carbon dioxide in large amounts.
Selective separation of hydrogen gas from crude gas is accomplished by means of a hydrogen permeable member (which is sometimes referred to as a hydrogen selectively perme-able member). A hydrogen permeable member is a sheet-like product composed of a porous body and a hydrogen permeable membrane formed thereon (the latter being sometimes re-ferred to as a membrane selectively permeable to hydrogen).

The hydrogen permeable membrane, which is weak in itself, is supported on a porous body. The porous body is made of metal with good oxidation resistance, good durability, and good handling for connection. The hydrogen permeable mem-brane is usually a metal film that permits hydrogen permea-tion.
There is an example of hydrogen permeable member which consists of a metal porous body, which is a sintered body of iron-based alloy such as stainless steel, and a hydrogen permeable membrane of Pd, which is formed directly on said sintered body. The disadvantage of this hydrogen permeable member is that Fe in the porous body diffuses and migrates to the hydrogen permeable membrane during operation, thereby alloying the hydrogen permeable membrane with Fe and deteriorating its hydrogen permeability. This is harm-ful to the durability of the hydrogen separating facility.
The present inventors proposed a way of preventing the metal contained in the metal porous body from diffusing and migrating to the hydrogen permeable membrane by forming a diffusion preventing layer on the surface of the metal porous body before the formation of the hydrogen permeable membrane. (See Patent Document 1.) However, their contin-ued researches revealed that there is an instance in which the diffusion preventing layer on the surface of the metal porous body cannot prevent the metal porous body from com-ing into contact with the hydrogen permeable membrane.
Thus, their proposed method needs further improvement.

Incidentally, Patent Document 2 discloses a method for simply producing a defect-free thin hydrogen permeable membrane. (This method is not concerned with the technol-ogy of preventing the hydrogen permeable membrane from coming into direct contact with the metal porous body.) This method consists of steps of filling with fine powder the interstices that open in the surface of the inorganic porous body as the support, forming a palladium thin film by plating, and forming a hydrogen permeable membrane of palladium on said thin film by chemical deposition. How-ever, this technology is not concerned with the selective permeation of hydrogen being deteriorated by metal diffu-sion from the inorganic porous body to the palladium thin film.
Patent Document 1 . Japanese Patent Laid-open No. 2002-219341 (Claim, Paragraphs 0042-0044).
Patent Document 2 . Japanese Patent Laid-open No. 2004-122006 (Claim, Paragraphs 0011, 0015, and 0035-0037).
OBJECT AND SUMMARY OF THE INVENTION
The present invention was completed in view of the foregoing. It is an object of the present invention to provide a hydrogen permeable member which eliminates direct contact between the metal porous body and the hydrogen permeable membrane, thereby preventing diffusion of metal from the former to the latter and protecting the latter from deterioration by diffused metal.
As mentioned above, the diffusion preventing layer on the surface of the metal porous body does not necessarily prevent direct contact between the metal porous body and the hydrogen permeable membrane. This is because the dif-fusion preventing layer cannot entirely cover pores and holes varying in size and shape which remain in the surface of the metal porous body. (Pores and holes will be collec-tively referred to openings hereinafter.) Particularly, the diffusion preventing layer formed by physical deposi-tion does not cover openings although it covers the surface of the metal porous body in which there exist no openings.
Therefore, the hydrogen permeable membrane formed on open-ings not covered by the diffusion preventing layer is li-able to come into direct contact with the metal porous body, and such direct contact permits diffusion of metal from the metal porous body into the hydrogen permeable membrane, thereby deteriorating the latter.
With the foregoing in mind, the present inventors carried out investigations into the method for certainly preventing direct contact between the metal porous body and the hydrogen permeable membrane and preventing diffusion of metal from the former into the latter, thereby protecting the latter from deterioration. As the result, it was found that this object is achieved by filling with particles and/or porous body the openings of pores or recesses in the surface of the metal porous body. This finding led to the present invention.
The gist of the present invention resides in a hydro-gen permeable member composed of a metal porous body and a hydrogen permeable membrane placed thereon, with a diffu-sion preventing layer interposed between them, wherein the metal porous body has those parts on which the diffusion preventing layer is absent and such parts are filled with metal oxide particles and/or porous metal oxide.
The gist of the present invention resides also in a hydrogen permeable member composed of a metal porous body and a hydrogen permeable membrane placed thereon, with a _ diffusion preventing layer interposed between them, wherein the metal porous body has pores that open in the surface thereof and/or recesses that appear in the surface thereof, and the openings of such pores and/or recesses are filled with metal oxide particles and/or porous metal oxide.
According to the present invention, the metal porous body should preferably be a sintered body of stainless steel, the hydrogen permeable membrane should preferably be a hydrogen permeable metal film of Pd or alloy thereof, the diffusion preventing layer should preferably be a ceramics layer, and the metal oxide particles should preferably be those which have the maximum particle diameter smaller than 1 Vim.
According to the present invention, the hydrogen per-meable member is produced by providing the metal porous body with the diffusion preventing layer on the surface thereof, filling with metal oxide particles and/or porous metal oxide those parts of the metal porous body on which the diffusion preventing layer is absent, and finally form-ing the hydrogen permeable membrane on the diffusion pre-venting layer.
Also, according to the present invention, the hydrogen permeable member is produced by providing the metal porous body with the diffusion preventing layer on the surface thereof, filling with metal oxide particles and/or porous metal oxide those pores which open in the surface thereof and/or those recesses which appear in the surface thereof, and finally forming the hydrogen permeable membrane on the diffusion preventing layer.
According to the present invention, the diffusion pre-venting layer and the hydrogen permeable membrane should preferably be formed by physical vapor deposition. In the case where the hydrogen permeable membrane is formed from physical vapor deposition, the metal oxide particles used for filling should preferably be those which have the maxi-mum particle diameter smaller than 1 Vim.
[Effect of the invention]
The hydrogen permeable member according to the present invention is characterized in that those parts of the metal porous body on which the diffusion prevent layer is absent (or the openings of pores or recesses appearing on the surface of the metal porous body) are filled with metal oxide particles and/or porous metal oxide. This structure prevents direct contact between the metal porous body and the hydrogen permeable membrane even though the surface of the metal porous body is not completely covered with the diffusion preventing layer, The result is protection of the hydrogen permeable membrane from deterioration.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an enlarged schematic sectional view showing the hydrogen permeable membrane pertaining to the present invention.
Fig. 2 is a schematic diagram showing how metal crys-tals grow.
Fig. 3 is a schematic diagram showing how metal crys-tals grow.
Fig. 4 is a micrograph of the surface of the hydrogen permeable member obtained in Experiment Example 9.
Fig. 5 is a micrograph of the surface of the hydrogen permeable member obtained in Experiment Example 10.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The hydrogen permeable member according to the present invention is characterized by it structure. That is, it is composed of a metal porous body and a hydrogen permeable membrane placed thereon, with a diffusion preventing layer interposed between them, and the metal porous body has those parts on which the diffusion preventing layer is absent and such parts are filled with metal oxide particles and/or porous metal oxide. This structure will be de-scribed in detail with reference to the accompanying draw-ings. (The structure is not restricted to the one shown in the drawings.) Fig. 1 is an enlarged schematic sectional view showing the hydrogen permeable membrane pertaining to the present invention. The reference numerals in Fig. 1 denote the following components.
1 . Metal porous body 2 . Hydrogen permeable membrane 3 . Diffusion preventing layer 4 Metal oxide particles and 6 . Those parts of the metal porous body on which the diffusion preventing layer is absent 7 . Hydrogen permeable member Incidentally, the part 5 corresponds to a pore that opens in the surface of the metal porous body, and the part 6 corresponds to a recess that appears in the surface of the metal porous body.
It is to be noted in Fig. 1 that the metal porous body is not completely covered by the diffusion preventing layer 3. In other words, the diffusion preventing layer is par-tially absent on some parts of the metal porous body. Such parts include pores 5 that open in the surface of the metal porous body (in the neighborhood of the interface adjacent to the hydrogen permeable membrane) and recesses 6 that appear in the surface of the metal porous body. According to the present invention, the pores 5 and recesses 6 men-tinned above are filled with metal oxide particles and/or porous metal oxide. This structure prevents the hydrogen permeable membrane 2 from coming into direct contact with the metal porous body 1. Thus it prevents the metal con-stituting the metal porous body 1 from diffusing into the hydrogen permeable membrane 2, thereby producing the effect of protecting the hydrogen permeable membrane from deterio-ration.
The metal porous body should be formed from an ade-quate metal material so that it exhibits good heat and acid resistance, good durability, and ability to be joined eas-ily. In addition, the metal porous body should be formed from an adequate metal material so that it has the same coefficient of thermal expansion as the hydrogen permeable membrane. This means that both the metal porous body and the hydrogen permeable membrane equally expand or contract as they are heated or cooled. Thus the hydrogen permeable membrane is exempt from stress that leads to defect.
Unfortunately, the metal material mentioned above often contains Fe, Ni, Cr, etc. as alloying elements or inevitable impurities. Such elements tend to diffuse into the hydrogen permeable membrane across the boundary between the metal porous body and the hydrogen permeable membrane.
And diffused elements alloy with the hydrogen permeable membrane to cause its deterioration. Contact between the metal porous body and the hydrogen permeable membrane tends to occur at those parts of the metal porous body where there are pores that open in the surface of the metal po-rous body and recesses that appear in the surface of the metal porous body. Such pores and recesses prevent the diffusion preventing layer from being formed thereon.
According to the present invention, the foregoing problem is addressed by filling pores and recesses with metal oxide particles or porous metal oxide which resist reduction in the hydrogen atmosphere and remain stable at high temperatures (about 600°C) required for hydrogen sepa-ration. Thus such metal oxide particles or porous metal oxide do not permit metal elements contained therein to diffuse into the hydrogen permeable membrane which is in direct contact with them.
The above-mentioned metal oxide may be formed from such metals as Al; Si, Zr, Ti, Mg, Y, Cd, Ga, Ge, Sr, Cr, Ta, Nb, Mn, La, and Li. Therefore, they may be selected from those of A1z03 (alumina), SiOz (silica), ZrOz (zirco-nia) , TiOz (titania) , MgO, Yz~3, CdO, Gaz03, GeO, SrO, Crz03, TaOz, NbzOs, MnO, Laz03, LizO. These species of metal oxide may be used alone or in combination with one another.
Examples of such combination include Si and A1, Mg and Ta, Nb and Ta, Mg and Si, Ga and Si, Ge and Al, Ga and Ge, Mg and Al, La and Al, Sr and Ti, and Y and V. Preferred metal oxide are those of A1203 and SiOz, which may be used alone or in combination, or those of A1-Si complex oxide.
The above-mentioned metal oxide particles should pref-erably be porous ones, which have a high hydrogen permea-bility. Examples of porous metal oxide particles include zeolite and mesoporous metal compounds. The porous metal oxide particles are not-(?~-- specifically restricted in open-ing ratio so long as it has an adequate one for hydrogen permeation. Similarly the porous metal oxide is not spe-cifically restricted in opening ratio so long as it has an adequate one for hydrogen permeation.
There is no universal rule for how densely the pores and recesses should be filled with metal oxide particles and/or porous metal oxide because of difficulties in meas-urement. It is only necessary to fill the pores and re-cesses with metal oxide particles and/or porous metal oxide densely enough to prevent direct contact between the hydro-gen permeable membrane and the porous metal oxide body.
When loosely filled, the metal oxide particles and/or po-rous metal oxide do not fully produce the effect of pre-venting metal diffusion. Dense filling is necessary for the openings of pores and recesses in the surface layer of the metal porous body; however, the metal oxide particles and/or porous metal oxide should not be present on the outer surface of the diffusion preventing layer. Otherwise, the metal oxide particles and/or porous metal oxide exist-ing between the diffusion preventing layer and the hydrogen permeable membrane prevent their close contact with each other and cause layer separation.
The above-mentioned metal porous body may be formed from any metal material without specific restrictions.
Examples of such metal material include iron and iron al-loys, and nonferrous metal, such as titanium, nickel, alu-minum, and chromium, and their alloys. Of these examples, iron and iron alloys (particularly stainless steel) are preferable because of their high strength and low price.
The above-mentioned metal porous body is not limited to the one which results from the sintering of metal powder, but it also includes foamed metal or the one which results from the sintering of metal unwoven fabric or the drilling of minute holes in bulk metal. Of these examples, a porous sintered body obtained by sintering metal powder is most desirable.
The above-mentioned metal porous body is not specifi-cally restricted in their average pore diameter. An ade-quate pore diameter should be established in consideration of strength (required for the support) and pressure loss (encountered at the time of hydrogen separation). A metal porous body with a large average pore diameter encounters a low pressure loss at the time of hydrogen separation, but it presents difficulties in forming a compact, thin hydro-gen permeable membrane thereon. By contrast, a metal po-rous body with a small average pore diameter encounters a large pressure loss at the time of hydrogen separation, although it permits a compact, thin hydrogen permeable membrane to be easily formed thereon.
The above-mentioned metal porous body may be of single layer structure or double (or multiple) layer structure.
For example, the metal porous body may be formed by lamina-tion from two or more layers of metal porous body which differ in density.
The above-mentioned metal porous body is not specifi-cally restricted in shape. It may take on any known shape, such as plate, disc, and cylinder.
The above-mentioned diffusion preventing layer is formed on the surface of the metal porous body. Unfortu-nately, the diffusion preventing layer does not entirely cover the surface of the metal porous body. In other words, it may be partially absent on pores that open in the sur-face of the metal porous body and on recesses that appear in the surface of the metal porous body.
The diffusion preventing layer may be an oxide layer originating from the metal porous body or a ceramics layer, with the latter being preferable. Incidentally, the former (or the oxide layer) may be formed by oxidizing the surface of the metal porous body. Therefore, oxidation of the metal porous body forms the diffusion preventing layer almost uniformly on the surface of the metal porous body.
The resulting oxide film prevents direct contact between the metal porous body and the hydrogen permeable membrane without requiring pores and recessed being filled with metal oxide particles and/or porous metal oxide.
The above-mentioned diffusion preventing layer may be formed from ceramics such as oxide, nitride, carbide, and boride. Nitrides are preferable because of its good proc-essability, good barrier properties, good thermal stability, and good adhesion to the hydrogen permeable membrane (of Pd or Pd alloy). Examples of nitrides include TiN, CrN, TiAlN, CrAlN, ZrN, HfN, VN, NbN, and TaN. Among preferred exam-pies are TiN, CrN, TiAlN, and CrAlN, and TiN is most desir-able.
The diffusion preventing layer is not specifically restricted in thickness so long as it is thick enough to prevent diffusion of metal from the metal porous body into the hydrogen permeable membrane. An adequate thickness is larger than about 0.1 Vim, preferably larger than bout 0.2 Vim, more preferably larger than about 0.3 Vim. With an excessively large thickness, the diffusion preventing layer has a smaller pore diameter, which leads to poor hydrogen permeability. Therefore, the thickness of the diffusion preventing layer should be smaller than about 2 Nm, pref-erably smaller than about 1.5 Vim, more preferably smaller than about 1 Vim.
The thickness of the diffusion preventing layer may be measured by observing the hydrogen permeable member under a scanning electron microscope (SEM) with a magnification of about 200 to 10000. Measurement should be made at the part in contact with the metal porous body, but measurement should not be made at the part adjacent to the openings of pores and recesses.
The metal porous body provided with the diffusion preventing layer should have an apparent average pore di-ameter of 0.1 to 20 Vim, preferably 1 to 15 Vim.
The hydrogen permeable membrane should be compact and thin so that it ensures high hydrogen permeability. It is usually a hydrogen permeable metal film made of any of Pd (palladium), V, Ti, Zr, Nb, Ta, and alloy thereof. Among preferred metals are Pd, Pd-Ag alloy, and Pd-Po (polonium) alloy. A particularly preferable one is Pd-Ag alloy, with Ag accounting for 10-30 ato, preferably 15-25 ato, more preferably 23 ato.
The above-mentioned hydrogen permeable member is not specifically restricted in thickness so long as it permits selective separation of hydrogen gas from crude gas. It should be no thinner than 1 Vim, preferably no thinner than 2 Vim, and more preferably no thinner than 3 Vim, and it should be no thicker than 10 Vim, preferably no thicker than 9 Vim, and more preferably no thicker than 8 Vim.
The thickness of the hydrogen permeable membrane may be measured by observing the hydrogen permeable member under a scanning electron microscope (SEM) with a magnifi-cation of about 1000 to 5000. Measurement should be made at the part on the surface of the metal porous body, but measurement should not be made at the part adjacent to the openings of pores and recesses.
The following is concerned with the method for produc-tion of the hydrogen permeable member according to the present invention. The hydrogen permeable member according to the present invention is comprised of a metal porous body and a hydrogen permeable membrane, with a diffusion preventing layer interposed between them, which are sequen-d ally placed on top of the other. The hydrogen permeable member constructed in such a way is produced by covering the surface of the metal porous body 1 with the diffusion preventing layer 3, filling with the metal oxide particles the openings of pores 5 or recesses 6 in the surface of the metal porous body on which the diffusion preventing layer is absent, and finally forming the hydrogen permeable mem-brane 2. (See Fig. l.) The metal porous body may be selected from a metal foam, a porous sintered body formed by sintering metal powder or metal nonwoven fabric, and a porous body formed by drilling minute holes in bulk metal. They may be pro-duced by any known method. For example, the porous sin-tered body of metal powder may be produced by sintering compacts formed by cold isostatic pressing (CIP) or hot isostatic pressing (HIP) or combination thereof. The metal powder for sintering should be one which has an average particle diameter of about 1 to 100 ~.m, preferably about 4 to 4 5 ~.m .
The next step is to cover the surface of the metal po-rous body with the diffusion preventing layer by any known method. A desirable method is physical vapor deposition, such as sputtering and arc ion plating, for the diffusion preventing layer of ceramics.
The next step is to put metal oxide particles and/or porous metal oxide in pores and recesses that open in the surface of the metal porous body. This step may be accom-plished in any way without specific restrictions as exem-plified below.
(1) Rubbing previously prepared metal oxide particles into pores and recesses that open in the surface of the metal porous body.
(2) Coating the metal porous body with a slurry of metal oxide, followed by drying.
(3) Coating the metal porous body with a sol (which subse-quently forms metal oxide), followed by gelling.
(4) Filtering a slurry through the metal porous body (as a filter medium), thereby filling pores in the metal porous body with slurry solids, followed by drying.
Coating in (2) and (3) may be accomplished by spin coating, dip coating, or spray coating. Incidentally, the surface of the metal porous body should be cleared of ex-cess metal oxide particles and/or porous metal oxide so that the openings and recesses will not be filled with more metal oxide particles and/or porous metal oxide than neces-nary.
The metal oxide particles are not specifically re-stricted in particle diameter so long as they are fine enough to be put in pores and recesses that open in the surface of the metal porous body. Those which have an average particle diameter of about 0.01 to 45 ~m are desir-able from the standpoint of superficial velocity and ease with which the hydrogen permeable membrane is formed. The preferred average particle diameter ranges from 0.03 ~m to 20 ~m (desirably 10 Vim).
It is possible to use two or more kinds of metal oxide particles differing in average particle diameter. Their selection depends on the size of the openings of pores and recesses. For example, openings larger than about 50 ~m in diameter should be filled first with coarse metal oxide particles with an average particle diameter of about 45 Vim, and then with medium metal oxide particles with an average particle diameter of about 20 Vim, and finally with fine metal oxide particles with an average particle diameter of about 4 Vim. It is also possible to use metal oxide parti-cles having distributed particle diameters.
After the metal oxide particles and/or porous metal oxide have been put in pores and recesses that open in the surface of the metal porous body, the hydrogen permeable membrane is formed. This step may be accomplished by any method, such as physical vapor deposition, chemical vapor deposition, plating, and frame spraying, with the first one being preferable because of its easy operation and its ability to give a high-performance membrane. Preferred methods of physical vapor deposition are sputtering and (arc) ion plating. Physical vapor deposition yields a hydrogen permeable membrane with good adhesion to the dif-fusion preventing layer or metal oxide particles or porous metal oxide. This good adhesion prevents the hydrogen permeable membrane from peeling off from the metal porous body even though it swells due to absorption of hydrogen when the hydrogen permeable member is in operation.
If physical vapor deposition is employed to form the hydrogen permeable membrane, it is desirable to fill pores and recesses with metal oxide particles having a maximum particle diameter no larger than 1 Vim. This is explained below. Physical vapor deposition causes crystals of metal constituting the hydrogen permeable membrane to gradually grow on the surface of the substrate (or the diffusion preventing layer or the metal oxide particles). The thus grown crystals of metal eventually form the hydrogen perme-able membrane. In the course of this step, metal grows into columnar crystals perpendicular to the surface of the substrate. A smooth surface on the substrate permits such columnar crystals to closely grow on it to form a hydrogen permeable membrane composed of crystals without interstices.
However, a rough surface on the substrate causes metal to irregularly grow from projecting or depressed parts, there-by yielding loosely grown columnar crystals. Interstices between crystals result in a defective hydrogen permeable membrane, which leads to a hydrogen permeable member with poor hydrogen permeability. The foregoing will be de-scribed with reference to the drawings.
Figs. 2 and 3 are schematic diagrams showing how metal crystals grow, in which reference numerals 2 and 4 denote the hydrogen permeable membrane and the metal oxide parti-cles, respectively.

It is assumed that the hydrogen permeable membrane is formed by physical vapor deposition on the surface of the substrate (which is metal oxide particles in Figs. 2 and 3).
In this case the above-mentioned columnar crystals grow in different manner. If the metal oxide particles 4 have a small particle diameter and a smooth surface, as shown in Fig. 2, the columnar crystals regularly grow upward to yield the hydrogen permeable membrane without interstices among crystals. By contrast, if the metal oxide particles 4 have a large particle diameter and a rough surface, as shown in Fig. 3, the columnar crystals grow in various directions, leaving interstices (surrounded by dotted line s in Fig. 3) between crystals. These interstices become defects in the hydrogen permeable membrane. Consequently, it is desirable to use fine metal oxide particles having a maximum particle diameter no larger than 1 Vim, preferably no larger than 0.5 dun, if physical vapor deposition is to be employed for the hydrogen permeable membrane.
The average and maximum particle diameter of the metal oxide particles may be determined from particle size dis-tribution measured by laser diffraction method. A typical instrument for measurement is "SALD-2000J" from Shimadzu Corp.
According to the present invention, the average parti-cle diameter is defined as D1 ~m if particles having diame-ters up to D1 ~tm account for 500 (in terms of number) in the particle size distribution, and the maximum particle diameter is defined as D2 ~m if particles having diameter up to D~ ~,m account for 99~ (in terms of number) in the particle size distribution.
An adequate dispersion medium for measurement should be selected according to the material of the metal oxide particles. For example, a dispersion medium suitable for silica or alumina particles is deionized water or ethanol (the former may contain about 0.2 wto of sodium metaphos-phate as a dispersing agent). An ultrasonic cleaner or the like may be employed to facilitate dispersion of the metal oxide particles into a dispersion medium.
F'YZ1MAT.~C
The invention will be described with reference to the following examples which are not intended to restrict the scope thereof, with understanding that it is subject to changes and modifications within the scope thereof.
Example 1 A stainless steel discoid support, 20 mm in diameter and 1 mm thick, was made by CIP method from stainless steel powder having an average particle diameter of 10 N.m. After dewaxing at 600°C, it was sintered at 950°C in an inert gas atmosphere to give a metal porous body (in the form of sintered body).
The metal porous body had its surface covered with a diffusion preventing layer of TiN by arc ion plating that employed a Ti target and an arc current of 150 A in the chamber containing nitrogen gas at a partial pressure of 2.7 Pa. The resulting product was designated as the porous body A.
By observation under an SEM (x5000), it was confirmed that there are openings about 2-4 ~m in diameter in the surface of the porous body A. (The term "openings" denotes openings of both pores and recesses hereinafter.) The next step was carried out to fill pores and re-cesses that open in the surface of the porous body A with any one kind of metal oxide porous particles or porous metal oxide prepared in the following Experiment Examples 1 to 5. Finally the porous body A was covered with a film of Pd-Ag alloy. Thus there was obtained the desired hydrogen permeable member.
Experiment Example 1 The metal oxide porous particles were prepared in the following manner. A separable flask was charged with 37 pbw of cetyltrimethylammonium bromide [CTAB: C,iEH33(CH3)3NBr]
and 189 pbw of ammonia water, and stirring at room tempera-ture for 1 hour followed to dissolve CTAB in ammonia water.
After addition of 41 pbw of tetraethylsilicate [TEOS:
Si(OC~HS)9], stirring was continued at room temperature for 1.5 hours under reflux, with a condenser tube attached to the separable flask. The resulting white turbid liquid was heated to 70°C and stirred at this temperature under reflux.
With the condenser tube removed, stirring was continued at 70°C for 2 hours for solvent evaporation. The resulting product was filtered out and washed with deionized water, followed by drying at 100°C for 18 hours. The dried prod-uct was heated to 550°C (at a heating rate of 3°Clmin) in a nitrogen atmosphere and then baked by keeping at 550°C for 2 hours. Thus there was obtained mesoporous silica (as the metal oxide porous particles). It was found to have an average pore diameter of 3.7 nm (37 A) through measurements by Horvath-Kawazoe method that employs nitrogen adsorption isotherm.
The mesoporous silica was crushed to a fine powder having an average particle diameter of 1 ~m by using a mortar and pestle. The resulting mesoporous silica powder was rubbed into pores and recesses that open in the surface layer of the porous body A, and its excess portion was removed. Observation of the surface of the porous body A
under an SEM (x5000) revealed that the mesoporous silica powder existed in those parts where the diffusion prevent-ing layer is absent but it did not exist on the diffusion preventing layer.
Experiment Example 2 The metal oxide porous particles were prepared from FAU zeolite powder ("Synthetic Zeolite F-9 Powder" from Toso) by crushing with a mortar and pestle to a fine powder having an average particle diameter of 1 Vim. The resulting FAU zeolite powder was rubbed onto the surface of the po-rows body A, and its excess portion was removed. Observa-tion of the surface of the porous body A under an SEM
(x5000) revealed that the FAU powder existed in those parts where the diffusion preventing layer is absent but it did not exist on the diffusion preventing layer.
Experiment Example 3 The porous body A was immersed in a sol composed of water glass, sodium aluminate, sodium hydroxide, and deion-ized water, with the molar ratio of their constituents being A1203 . Si02 . Na203 . H20 = 1 . 19.2 . 17 . 975.
(This sol is a raw material for synthetic zeolite as the porous metal oxide.) The sol underwent hydrothermal syn-thesis in an autoclave at 90°C for 24 hours.
Subsequent steps were washing with deionized water, ultrasonic cleaning, drying, and surface polishing to re-move excess porous metal oxide from the surface of the porous body A. Observation of the surface of the porous body A under an SEM (x5000) revealed that the porous metal oxide existed in those parts where the diffusion preventing layer is absent but they did not exist on the diffusion preventing layer. In addition, examination by X-ray dif-fraction revealed that the porous metal oxide existing in those parts where the diffusion preventing layer is absent was FAU zeolite.
Experiment Example 4 The filling of pores and recesses on the surface of the porous body A with porous metal oxide was carried out in the following manner. First, a separable flask was charged with 12 pbw of ethanol and 5 pbw of catalyst (aque-ous solution of nitric acid, pH = 3.0). After thorough mixing, the separable flask was further charged with 11 pbw of tetraethylorthosilicate [TEOS: Si(OC2H5)9], followed by reaction with stirring for 3 hours on a hot water bath at 60°C. After addition of 3 pbw of cetyltrimethylammonium bromide [CTAB: Cl6Hss(CHs)3NBrJ, stirring was continued to dissolve CTAB. In the resulting solution was immersed the porous body A for 10 minutes. With its surface cleaned with ethanol, the porous body A was dried in an oven at 100°C and then baked under a nitrogen stream in a furnace at 550°C for 2 hours after heating at a rate of 3°C/min.
Observation of the surface of the porous body A under an SEM (x5000) revealed that the porous metal oxide existed in those parts where the diffusion preventing layer is absent but they did not exist on the diffusion preventing layer. Tn addition, examination by X-ray diffraction re-vealed that the porous metal oxide existing in pores and recesses was mesoporous silica.
Experiment Example 5 The porous body A was immersed in a solution at 40°C
for 24 hours, which was prepared from 15 pbw of methyl-trimethoxysilane [MTMS: SiCH3(OCH3)3] reacted for 5 minutes by stirring with a homogenous solution of 1M nitric acid (4 pbw) and methanol (4 pbw) in a separable flask. After drying, the surface of the porous body was polished to remove excess porous metal oxide .
Observation of the surface of the porous body A under an SEM (x5000) revealed that the porous metal oxide existed in those parts where the diffusion preventing layer is absent but they did not exist on the diffusion preventing layer. Incidentally, the porous metal oxide existing in pores and recesses were found to have pores with a diameter of about 0.1 Vim.
Samples of the porous bodies obtained in Experiment Examples 1 to 5 above, which carry the metal oxide porous particles and the porous metal oxide, were covered with a Pd-Ag alloy film (as the hydrogen permeable membrane) by arc ion plating or sputtering.
Arc ion plating was carried out by using a Pd-Ag alloy (containing 23 ats Ag) as the target, with the atmosphere in the chamber replaced by argon gas at a partial pressure of 2.7 Pa (20 mTorr). An arc current of 80 A was applied to the target for arc discharging to form a Pd-Ag alloy film (containing 23 at% Ag), 6 dun thick, on the surface of the porous body.
Sputtering was performed by using a Pd-Ag alloy (con-taming 23 ato Ag) as the target, 6 inches in diameter, with the atmosphere in the chamber replaced by argon gas at a partial pressure of 0.3 Pa. Discharge with a DC power of 500 W was made across the target (negative) and the work (positive) for sputtering to form a Pd-Ag film (containing 23 ato Ag), 6 ~,un thick, on the surface of the porous body.
For the purpose of comparison, a Pd-Ag alloy film as the hydrogen permeable membrane was formed on the surface of the above-mentioned metal porous body by arc ion plating or sputtering according to the processes demonstrated in Experiment Examples 6 to 8 that follow.
Experiment Example 6 A sample of the hydrogen permeable member was prepared by covering the surface of the porous body A (mentioned above) directly with a Pd-Ag alloy film as the hydrogen permeable membrane.
Experiment Example 7 The same procedure as in Experiment Example 2 was repeated to give the hydrogen permeable member except for the step of clearing the surface of the porous body A of excess crushed FAU zeolite powder.
The surface of the porous body not yet covered with the hydrogen permeable membrane was observed under an SEM
(x5000). Observation revealed that the zeolite powder existed not only in those parts where the diffusion pre-venting layer is absent but also on the diffusion prevent-ing layer.
Experiment Example 8 A sample of hydrogen permeable member was prepared by rubbing crushed mesoporous silica (prepared in the same way as in Experiment Example 1) into the metal porous sintered body without the diffusion preventing layer. Incidentally, observation of the surface of the metal porous sintered body under an SEM (x5000) revealed that pores therein have openings of about 2-4 ~m in diameter.
The samples of the hydrogen permeable members obtained in Experiment Examples 1 to 8 above were examined as fol-lows for (1) adhesion between the hydrogen permeable mem-brave and the porous body, (2) hydrogen permeability, (3) the presence or absence of pinholes, and (4) deterioration of the hydrogen permeable membrane. The results of exami-nation are shown in Table 1 below. Incidentally, Samples Nos. 13 and 14 were so poor in adhesion that they were not examined for the items (2) to (4).
[Adhesion between hydrogen permeable membrane and porous body]
This property was examined by visual inspection, and the result was rated according to the following criteria.
<Criteria>
OO . No peeling at all. (pass) O . Slight peeling harmless to operation. (pass) x . Peeling detrimental to operation (rejected) [Hydrogen permeability]
The sample was tested for hydrogen permeability by supplying pure hydrogen gas to the hydrogen permeable mem-brave such that a pressure difference of 98 kPa (1 kgf/cm2) is produced between the inlet and the outlet. This test was continued at 600°C for 3 hours, and the change with time was recorded. The result was rated according to the following criteria.
<Criteria>
O . Good hydrogen permeability with a decrease less than loo within 3 hours after the start of test. (pass) x . Poor hydrogen permeability with a decrease more than loo within 3 hours after the start of test. (rejected) [Presence or absence of pinholes]
The sample that had undergone hydrogen permeability test was examined for pinholes in the hydrogen permeable membrane by measuring the amount of air that passes through the sample at room temperature. The result was rated ac-cording to the following criteria.
<Criteria>
O . Absent. (pass) x . Present. (rejected) [Deterioration of hydrogen permeable membrane]
The sample that had undergone the hydrogen permeabil-ity test was examined as follows for diffusion of metal from the metal porous sintered body into the hydrogen per-meable membrane. Diffusion of metal is a measure of dete-rioration.
After the hydrogen permeability test, the sample was cut and its exposed cross-section was embedded in resin and then mirror finished. Observations under an SEM (x5000 and x15000) were carried out to see metal diffusion into the hydrogen permeable membrane_ The specimen was also inspected by detecting Auger electrons to see if metal had diffused from the metal po-rous sintered body into the hydrogen permeable membrane.
In the case where no metal diffusion was found by the above-mentioned inspection, the specimen that had undergone the hydrogen permeability test was sliced and made into a thin film by using a focused ion beam (FIB). The thin film was observed under a TEM (x10,000, x60,000, x 1,500,000) to see metal diffusion from the metal porous sintered body.
The thin specimen prepared as mentioned above was also analyzed by electron energy loss spectroscopy (EELS). The presence or absence of trace components was examined in the hydrogen permeable membrane at a place about 5-10 nm away from the boundary between the metal porous sintered body and the hydrogen permeable membrane. The results were rated according to the following criteria.
<Criteria>
O . No metal diffusion is detected by Auger observation and EELS analysis and the hydrogen permeable membrane re-mains intact. (pass) x . Metal diffusion is detected by Auger observation and EELS analysis and the hydrogen permeable membrane is dete-riorated. (rejected) Table 1 Sample ExperimentFilm formingFilm Adhe- Hydrogenpin- Deteri-thick- permeab- oration No. Example method sion ility holes of film ness (p.m) 1 1 Sputtering 6 Oo O O O

2 1 Arc ion plating6 Oo O O O

3 2 Sputtering 6 op O O O

4 2 Arc ion plating6 Oo O O O

3 Sputtering 6 00 O O O

6 3 Arc ion plating6 OO O O O

7 4 Sputtering 6 00 O O O

8 4 Arc ion plating6 OO O O O

9 5 Sputtering 6 OO O O O
5 Arc ion plating6 OO O O O

11 6 Sputtering 6 Oo X X x 12 6 Arc ion plating6 Oo x x x 13 7 Sputtering 6 x -- -- --14 7 Arc ion plating6 x -- -- --8 Sputtering 6 p x O x 16 8 Arc ion plating6 O x o x It is noted from Table 1 that Sample Nos. 1 to 10 meet the requirements of the present invention and hence they are exempt from diffusion of metal from the metal porous sintered body into the hydrogen permeable membrane and they keep the hydrogen permeable membrane intact. By contrast, Sample Nos. 11 to 16 do not meet the requirements of the present invention and hence they permit metal to diffuse from the metal porous sintered body into the hydrogen per-meable membrane.

Example 2 Samples of the hydrogen permeable member were prepared by filling pores and recesses that open in the surface of the porous body A (obtained in Example 1) with metal oxide porous particles prepared in Experiment Examples 9 and 10 that follow and then forming thereon a Pd-Ag alloy film as the hydrogen permeable membrane.
Experiment Example 9 The surface of the porous body A was rubbed with sil-ica sol ("Snowtex XL" from Nissan Chemical), having a maxi-mum particle diameter of 0.06 um, as the metal oxide porous particles. With excess particles removed, the surface of the porous body was observed under an SEM (5000). It was found that silica sol exists in those parts where the dif-fusion preventing layer is absent but does not exist on the diffusion preventing layer.
Experiment Example 10 The surface of the porous body A was rubbed with FAU
zeolite powder ("Synthetic Zeolite F-9 Powder" from Toso) as the metal oxide porous particles. The FAU zeolite pow-der was used in the form of fine powder having an average particle diameter of 2.1 ~m after crushing with a mortar and pestle. With excess particles removed, the surface of the porous body was observed under an SEM (5000). It was found that FAU zeolite powder exists in those parts where the diffusion preventing layer is absent but does not exist on the diffusion preventing layer.

Each of the porous bodies which had been rubbed with metal oxide porous particles in Experiment Examples 9 and was coated with a Pd-Ag film, 6 um thick, (as the hydro-gen permeable membrane) by sputtering under the same condi-tion as in Example 1.
The surface of the hydrogen permeable member was pho-tographed through an SEM (x3000). The microphotographs in Experiment Examples 9 an 10 are shown in Figs. 4 and 5, respectively.
It is apparent from Fig. 4 that the hydrogen permeable membrane has a smooth surface with very few irregularities.
By contrast, it is apparent from Fig. 5 that course metal oxide porous particles (having the maximum particle diame-ter larger than 1 Vim) give rise to large surface irregu-larities. Thus, such course particles are more liable to cause defects than fine particles (with the maximum parti-cle diameter smaller than 1 Vim) when the membrane is formed by physical vapor deposition.

Claims (20)

1. A hydrogen permeable member composed of a metal porous body and a hydrogen permeable membrane placed thereon, with a diffusion preventing layer interposed be-tween them, wherein the metal porous body has those parts on which the diffusion preventing layer is absent and such parts are filled with metal oxide particles and/or porous metal oxide.
2. The hydrogen permeable member as defined in Claim 1, wherein the metal porous body is a sintered body of stainless steel.
3 The hydrogen permeable member as defined in Claim l, wherein the hydrogen permeable membrane is a hydrogen per-meable metal film.
4 The hydrogen permeable member as defined in Claim 3 wherein the hydrogen permeable metal film is a film of Pd or alloy thereof.
5. The hydrogen permeable member as defined in Claim 1, wherein the diffusion preventing layer is a ceramics layer.
6. The hydrogen permeable member as defined in Claim 1, wherein the metal oxide particles have the maximum par-ticle diameter no larger than 1 µm.
7. A hydrogen permeable member composed of a metal porous body and a hydrogen permeable membrane placed thereon, with a diffusion preventing layer interposed be-tween them, wherein the metal porous body has pores that open in the surface thereof and/or recesses that appear in the surface thereof, and the openings of such pores and/or recesses are filled with metal oxide particles and/or po-rous metal oxide.
8. The hydrogen permeable member as defined in Claim 7, wherein the metal porous body is a sintered body of stainless steel.
9. The hydrogen permeable member as defined in Claim 7, wherein the hydrogen permeable membrane is a hydrogen permeable metal film.
10. The hydrogen permeable member as defined in Claim 9, wherein the hydrogen permeable metal film is a film of Pd or alloy thereof.
11. The hydrogen permeable member as defined in Claim 7, wherein the diffusion preventing layer is a ceramics layer.
12. The hydrogen permeable member as defined in Claim 7, wherein the metal oxide particles have the maximum par-ticle diameter no larger than 1 µm.
13. A method of producing a hydrogen permeable member, said method comprising steps of providing,a metal porous body with a diffusion preventing layer on the surface thereof, filling with metal oxide particles and/or porous metal oxide those parts of the metal porous body on which the diffusion preventing layer is absent, and finally form-ing a hydrogen permeable membrane on the diffusion prevent-ing layer.
14. The method as defined in Claim 13, wherein the diffusion preventing layer is formed by physical vapor deposition.
15. The method as defined in Claim 13, wherein the hydrogen permeable membrane is formed by physical vapor deposition.
16. The method as defined in Claim 13, wherein the metal oxide particles are those which have the maximum particle diameter no larger than 1 µm and the hydrogen permeable membrane is formed by physical vapor deposition.
17. A method of producing a hydrogen permeable member, said method comprising steps of providing a metal porous body with a diffusion preventing layer on the surface thereof, filling with metal oxide particles and/or porous metal oxide pores that open in the surface thereof and/or recesses that appear in the surface thereof, and finally forming a hydrogen permeable membrane on the diffusion preventing layer.
18. The method as defined in Claim 17, wherein the diffusion preventing layer is formed by physical vapor deposition.
19. The method as defined in Claim 17, wherein the hydrogen permeable membrane is formed by physical vapor deposition.
20. The method as defined in Claim 17, wherein the metal oxide particles are those which have the maximum particle diameter no larger than 1 µm and the hydrogen permeable membrane is formed by physical vapor deposition.
CA002544922A 2005-05-23 2006-04-25 Hydrogen permeable member and method for production thereof Abandoned CA2544922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-150148 2005-05-23
JP2005150148 2005-05-23

Publications (1)

Publication Number Publication Date
CA2544922A1 true CA2544922A1 (en) 2006-11-23

Family

ID=37387895

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002544922A Abandoned CA2544922A1 (en) 2005-05-23 2006-04-25 Hydrogen permeable member and method for production thereof

Country Status (5)

Country Link
US (1) US20060260466A1 (en)
JP (1) JP2007000858A (en)
KR (1) KR100806489B1 (en)
CA (1) CA2544922A1 (en)
DE (1) DE102006024178A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172913B2 (en) * 2002-04-23 2012-05-08 Vencill Thomas R Array of planar membrane modules for producing hydrogen
AT9543U1 (en) 2006-07-07 2007-11-15 Plansee Se METHOD FOR PRODUCING AN ELECTRICALLY CONDUCTIVE LAYER
JP4876970B2 (en) * 2007-02-28 2012-02-15 株式会社日立製作所 Friction stir welding method for laminated member and hydrogen reaction apparatus
JP5061695B2 (en) * 2007-04-06 2012-10-31 大日本印刷株式会社 Hydrogen purification filter and method for producing the same
JP5541556B2 (en) * 2007-06-20 2014-07-09 日産自動車株式会社 Hydrogen separator and method for producing the same
CN101983757B (en) * 2010-12-06 2012-12-19 西北有色金属研究院 Palladium composite membrane taking multihole FeAlCr as substrate and preparation method thereof
WO2013096183A1 (en) * 2011-12-19 2013-06-27 Shell Oil Company A method of making a hydrogen separation composite membrane
KR101349011B1 (en) * 2012-01-10 2014-01-16 한국에너지기술연구원 Heat resistant hydrogen membrane and manufacturing method thereof
CN103007697B (en) * 2012-12-21 2015-03-18 上海合既得动氢机器有限公司 Membrane separator for methyl alcohol water hydrogen production equipment and fabrication method of membrane separator
CN104004992B (en) * 2014-05-27 2016-01-13 江苏科技大学 Stainless steel hydrogen permeation barrier composite membrane and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498278A (en) * 1990-08-10 1996-03-12 Bend Research, Inc. Composite hydrogen separation element and module
US5393325A (en) * 1990-08-10 1995-02-28 Bend Research, Inc. Composite hydrogen separation metal membrane
US6152987A (en) * 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
KR100592625B1 (en) * 1998-11-10 2006-06-23 에이티아이 프로퍼티즈, 인코퍼레이티드 Hydrogen separation membrane
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane
DE10039596C2 (en) * 2000-08-12 2003-03-27 Omg Ag & Co Kg Supported metal membrane, process for its manufacture and use
JP3882567B2 (en) * 2000-11-24 2007-02-21 住友電気工業株式会社 Material separation structure
JP2002219341A (en) * 2001-01-30 2002-08-06 Kobe Steel Ltd Supporting base for hydrogen-permselective membrane and hydrogen-permselective member
JP2002239352A (en) * 2001-02-16 2002-08-27 Sumitomo Electric Ind Ltd Hydrogen permeable structure and its production method
DE10135390A1 (en) * 2001-07-25 2003-02-20 Fraunhofer Ges Forschung Metallic solution-diffusion membrane, used for separating and purifying hydrogen for use in the electronics, metals and chemical industry, consists of a macroporous base body with a thin metallic membrane layer
DE10222568B4 (en) * 2002-05-17 2007-02-08 W.C. Heraeus Gmbh Composite membrane and process for its production
KR20050024311A (en) * 2002-06-04 2005-03-10 코노코필립스 컴퍼니 Hydrogen-selective silica-based membrane
JP3755056B2 (en) * 2002-10-03 2006-03-15 独立行政法人産業技術総合研究所 Hydrogen separation membrane, method for producing the same, and method for separating hydrogen
JP2004148138A (en) * 2002-10-28 2004-05-27 Nissan Motor Co Ltd Hydrogen separation membrane and hydrogen production apparatus using the same
DE602004016470D1 (en) * 2003-03-21 2008-10-23 Worcester Polytech Inst PROCESS FOR CORRECTING DEFECTS IN THE MANUFACTURE OF A COMPOSITE MEMBRANE GAS SEPARATING MODULE
US7018446B2 (en) * 2003-09-24 2006-03-28 Siemens Westinghouse Power Corporation Metal gas separation membrane
US20090000480A1 (en) * 2005-12-23 2009-01-01 Zissis Dardas Composite Palladium Membrane Having Long-Term Stability for Hydrogen Separation
IL175270A0 (en) * 2006-04-26 2006-09-05 Acktar Ltd Composite inorganic membrane for separation in fluid systems

Also Published As

Publication number Publication date
DE102006024178A1 (en) 2006-11-30
JP2007000858A (en) 2007-01-11
US20060260466A1 (en) 2006-11-23
KR100806489B1 (en) 2008-02-21
KR20060121704A (en) 2006-11-29

Similar Documents

Publication Publication Date Title
CA2544922A1 (en) Hydrogen permeable member and method for production thereof
Huang et al. Preparation of thin palladium membranes on a porous support with rough surface
EP1853399B1 (en) A method for fabricating an open-porous metal foam body
CA2531884C (en) Composite oxygen ion transport element
EP1342500A1 (en) Hydrogen-permeable structure and method for preparation thereof
CA2354952A1 (en) A supported metal membrane, a process for its preparation and use
JP2008237945A (en) Hydrogen-separating membrane
US7611565B1 (en) Device for hydrogen separation and method
EP1277512A1 (en) Hydrogen-permeable structure and method for manufacture thereof or repair thereof
US11607650B2 (en) Thin metal/ceramic hybrid membrane sheet and filter
EP2735361B1 (en) Hydrogen-separation-membrane protection layer and a coating method therefor
US20020039964A1 (en) Ceramic catalyst body, ceramic support and their production methods
KR100768805B1 (en) Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
JP3316173B2 (en) Substrate for supporting zeolite membrane
EP1937884B1 (en) Coated porous metal medium
EP3769867B1 (en) Porous titanium-based sintered body, method for producing the same, and electrode
WO2015028738A1 (en) Material for priming a metal substrate of a ceramic catalyst material
Suteerapongpun et al. Development of membrane filter made of alumina and silver-palladium particles for high-filtration efficiency, low-pressure drop and low-soot oxidation temperature
JP2007268443A (en) Catalyst member and its manufacturing method
CN109735787A (en) A kind of fire-resistant oxidation resistant ablation composite coating and preparation method
JP2001511485A (en) Thin ceramic coating
Zhang et al. Preparation of defect free ceramic/Ti composite membranes by surface modification and in situ oxidation
RU2281164C1 (en) Metal-based catalyst carrier (versions) and method of its preparation (versions)
Li et al. Synthesis of ordered mesoporous silica membranes containing iron oxide nanocrystallites
RU2394111C1 (en) Cermet and procedure for its fabrication

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued