CA2558381A1 - Stent delivery apparatus and methods - Google Patents

Stent delivery apparatus and methods Download PDF

Info

Publication number
CA2558381A1
CA2558381A1 CA002558381A CA2558381A CA2558381A1 CA 2558381 A1 CA2558381 A1 CA 2558381A1 CA 002558381 A CA002558381 A CA 002558381A CA 2558381 A CA2558381 A CA 2558381A CA 2558381 A1 CA2558381 A1 CA 2558381A1
Authority
CA
Canada
Prior art keywords
stent
sheath
segments
stmt
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002558381A
Other languages
French (fr)
Inventor
Bernard Andreas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xtent Inc
Original Assignee
Xtent, Inc.
Bernard Andreas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xtent, Inc., Bernard Andreas filed Critical Xtent, Inc.
Publication of CA2558381A1 publication Critical patent/CA2558381A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/826Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/828Means for connecting a plurality of stents allowing flexibility of the whole structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak

Abstract

Apparatus and methods for stent delivery provide for dilatation at a treatment site as well as stent delivery, using the same stent delivery apparatus.
Apparatus generally include a catheter having at least one expandable member, at least one stent positionable thereon, and a sheath disposed over the expandable member and the stent. Some embodiments include separate expandable members for dilatation of a lesion and for stent expansion, while other embodiments use the same expandable member for both. In some embodiments a stent includes multiple separable stent segments. In various embodiments, self-expanding stents may be used. Methods involve positioning a stent delivery device at a treatment site, expanding an expandable member to dilate at least a portion of a lesion at the treatment site, and expanding (or allowing to expand) a stent at the treatment site.

Description

STENT DELIVERYAPPARATUS AND METHODS
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims priority to U.S. Patent Application Serial No.
10/794,405 (Attorney Docket No. 021629-002400US), filed March 3, 2004, which is a continuation-in-part of U.S. Patent Application Serial No. 10/637713, filed August 8, 2003 (Attorney Doclcet No. 021629-000340US), which is a continuation-in-part of U.S. Patent Application Serial No. 10/412,714, filed April 10, 2003 (Attorney Docket No.

000330US), which is a continuation-in-part of application Serial No.
101306,813, filed November 27, 2002 (Attorney Docket No. 21629-000320US), which is a non-provisional of U.S. Provisional Patent Application Serial Nos.: 601336,767, filed December 3, (Attorney Docket No. 21629-000300US), and 60/364,389, filed March 13, 2002 (Attorney Docket No. 21629-000310US). The disclosures of all of the above-listed references are hereby fully incorporated by reference.
BACKGROUND OF THE INVENTION
[0002] The present invention relates generally to medical devices and methods.
More particularly, the invention relates to apparatus and methods for independently delivering a plurality of luminal prostheses within a body lumen.
[0003] Stenting has become an increasingly important treatment option for patients with coronary artery disease. Stenting involves the placement of a tubular prosthesis witlun a diseased coronary artery to expand the arterial lumen and maintain the patency of the artery.
Early stmt technology suffered from problems with restenosis, the tendency of the coronary artery to become re-occluded following stem placement. In recent years, however, improvements in stmt design and the advent of drug-eluting stems have reduced restenosis rates dramatically. As a result, the number of stenting procedures being performed in the United States, Europe, and elsewhere has soared.
[0004] Stents are delivered to the coronary arteries using long, flexible vascular catheters, typically inserted through a femoral artery. For self expanding stems, the stmt is simply released from the delivery catheter, and it resiliently expands into engagement with the vessel wall. For balloon expandable stems, a balloon on the delivery catheter is expanded which expands and deforms the stent to the desired diameter, whereupon the balloon is deflated and removed.
[0005] Despite many recent advances in stmt delivery technology, a number of shortcomings still exist. For example, current stmt delivery catheters are not capable of customizing the length of the stmt in situ to match the size of the lesion to be treated. While lesion size may be measured prior to stenting using angiography or fluoroscopy, such measurements may be inexact. If a stmt is introduced that is found to be of inappropriate size, the delivery catheter and stmt must be removed from the patient and replaced with a different device of correct size. Moreover, current stmt delivery devices cannot treat multiple lesions with a single catheter. If multiple lesions are to be treated, a new catheter and stmt must be introduced for each lesion to be treated.
[0006] Additionally, currently available stmt delivery devices are not well-adapted for treating vascular lesions that are very long and/or in curved regions of a vessel. Current stems have a discrete length that is relatively short due to their stiffness.
If such stems were made longer, to treat longer lesions, they would not conform well to the curvature of vessels or to the movement of vessels on the surface of the beating heart. On the other hand, any attempt to place multiple stems end-to-end in longer lesions is hampered by the inability to maintain appropriate inter-stmt spacing and to prevent overlap of adjacent stems. Such shortcomings in the prior art are addressed by the inventions described in U.S. Patent Application Serial Nos. 10/412714 (Attorney Docket No. 21629-000330), which is hereby fully incorporated by reference, and 10/637713, which was previously incorporated by reference.
[0007] Even with improvements such as those described in the above-referenced patent applications, fiuther improvements in stmt delivery devices and methods are still being sought. For example, before a coronary stmt is deployed in a stenotic lesion, the physician will typically first dilate the lesion with an angioplasty balloon. Following such "predilatation," the angioplasty catheter is removed and a stmt delivery catheter is advanced to the treatment site to deploy the stmt. One of the significant advantages of the stmt delivery systems described in U.S. Patent Application Serial Nos. 101412714 and 10/637713, incorporated above, is the ability to treat multiple lesions at different locations without removing or replacing the catheter. Such a stent deliver system may be positioned at a first lesion for deployment of a first stent of a desired length, then moved to a second site where a second stmt of a different length may be deployed. This may be repeated for multiple lesions without exchanging catheters, which saves time and eliminates the inefficiency of using multiple catheters. Such efficiencies are reduced, however, if it is necessary to use an angioplasty catheter to predilate lesions and a separate stent delivery catheter to deliver stems. If separate predilatation and stmt delivery catheters are used, it may often be necessary to exchange, or "swap out," the two catheters multiple times during a stenting procedure.
[0008] Therefore, it would be desirable to have stmt delivery systems that could be used to predilatate lesions without requiring a separate angioplasty catheter.
Ideally, such stmt delivery systems would allow for separate predilatation of multiple and/or long lesions as well as separate stem deployment at those lesions, without requiring any catheters to be exchanged. Preferably, such systems would also enable a user to adjust the length of the predilatation device to match the length of the lesion to be treated. At least some of these objectives will be met by the present invention.

BRIEF SUMMARY OF THE INVENTION
[0009] The invention provides apparatus and methods for delivering one or more stems into a body lumen. In one aspect of the present invention, a stmt delivery device for delivering at least one stmt to a treatment site includes a catheter shaft having a proximal end and a distal end, at least one stmt positionable on the catheter shaft, a stmt deployment mechanism for deploying at least a portion of the stmt at the treatment site, and a dilatation member for dilating at least a portion of a lesion at the treatment site independently of deploying the at least one stmt. The deployment mechanism generally allows the length of the deployed portion of the stmt to be selected by a user. In some embodiments, the length of deployed stmt may be selected in situ. Similarly, in some embodiments the length of the dilatation member to be expanded to dilate the lesion may be selected in situ.
[0010] In some embodiments, the stmt deployment mechanism includes a stmt expansion member coupled with the catheter shaft near the distal end and at least one axially movable sheath disposed over at least part of the stmt expansion member and stmt thereon. In some embodiments, the stmt expansion member may also act as the dilatation member.
Alternatively, the dilatation member may coupled with the sheath. In other embodiments, the dilatation member may be coupled with an inner shaft slidably disposed within the catheter shaft.
[0011] In some embodiments, the at least one scent comprises a plurality of separable stmt segments. Optionally, the separable stmt segments may be axially movable relative to the catheter shaft and/or the stmt expansion member. Such embodiments may optionally further include a pusher member for advancing the stmt segments along the catheter shaft and/or stmt expansion member. In some embodiments including a sheath, as mentioned above, the sheath may be configured to constrain expansion of a first portion of the stmt expansion member and a first plurality of the stent segments while allowing expansion of a second portion of the stmt expansion member and a second plurality of the stmt segments.
Optionally, the sheath may further include at least one separation device for separating the first plurality of stmt segments from the second plurality, thus allowing for expansion of a stmt segment without interfering with adjacent stmt segments.
[0012] In some embodiments, the dilatation member and the stmt expansion member may be independently expandable. Such embodiments may optionally further include at least one inflation lumen for expanding the dilatation member. For example, in some embodiments the inflation lumen may comprise a tubular member disposed concentrically over a sheath coupled with the dilatation member. In alternative embodiments, the inflation lumen may comprise a tubular member coupled with and extending along the outer surface of a sheath coupled with the dilatation member. In other embodiments, the inflation lumen may be disposed within the wall of a sheath coupled with the dilatation member.
[0013] In another aspect of the invention, a stent delivery device for delivering at least one stent to a treatment site comprises: a catheter shaft having a proximal end and a distal end; an expandable member coupled with the catheter shaft near the distal end; at least one stmt slidably positionable on the expandable member; and at least one axially movable sheath disposed over at least part of the expandable member and stmt thereon.
Generally, the sheath is axially movable relative to the catheter body to expose at least a portion of the expandable member without exposing the stmt, and the sheath is also movable to expose at least a portion of the stmt to allow it to expand.
[0014] W some embodiments, the stmt is self expanding. For example, in some embodiments, the stmt comprises a plurality of separable, self expanding stem segments.
The stmt (or one or more stem segments) may be advanced along the expandable member, in some embodiments, by a pusher member. Optionally, the sheath may be configured to constrain expansion of a first plurality of the stmt segments while allowing expansion of a second plurality of the stent segments. In some embodiments, the sheath further comprises at least one separation device for separating the first plurality of stmt segments from the second plurality, thus allowing for expansion of a stmt segment without interfering with adjacent stmt segments. W various embodiments, the stent segments may comprise any suitable shape memory material or the life. In one embodiment, for example, the stmt segments comprise a thermal shape memory material, and the expandable member is configured to accept one or more heated or cooled fluids to change a temperature of the stmt segments.
[0015] In another aspect of the invention, a stmt delivery device for treating a target site in a vessel includes: a catheter shaft having a proximal end and a distal end; a first stmt carned on the catheter shaft and being deployable therefrom; a second stmt carried on the catheter shaft and being deployable therefrom independently of the first stmt; and a dilatation member for dilating the target site independently of deploying the first and second stems.
[0016] In another aspect of the invention, a stmt delivery device for delivering at least one stmt to a treatment site includes: a catheter shaft having a proximal end and a distal end; a stmt expansion member coupled with the catheter shaft near the distal end; at least one stmt positionable on the stmt expansion member; at least one axially movable sheath disposed over at least part of the stmt expansion member and stmt thereon; and a dilatation member coupled with the sheath for dilating one or more lesions at the treatment site. Again, the stmt may comprise a plurality of separable stmt segments, and the stmt segments may optionally be axially movable relative to the stmt expansion member. Such an embodiment may also include a pusher member for advancing the stmt segments. The sheath and expandable members may have any of the features described above.
[0017] In another aspect of the present invention, a stmt delivery device for delivering at least one stmt to a treatment site includes: a catheter shaft having a proximal end and a distal end; at least one stmt positionable on the catheter shaft; at least one axially movable sheath disposed over the catheter shaft and stmt; an inner shaft slidably disposed within the catheter shaft; and a dilatation member coupled with a distal end of the inner shaft for dilating one or more lesions at the treatment site. In some embodiments, the stmt may comprise a plurality of separable stmt segments, and the stmt segments may optionally be axially movable relative to the stmt expansion member. Such an embodiment may also include a pusher member for advancing the stmt segments. The sheath and expandable members may have any of the features described above.
[0018] In some embodiments, the inner shaft comprises a tubular catheter shaft.
Alternatively, the inner shaft may comprise a guidewire. In some embodiments, the inner shaft is slidable to expose at least part of the dilatation member out of the distal end of the catheter shaft, and wherein the inner shaft is slidable to retract the dilatation member to a position at least partially within the catheter shaft. In some embodiments, the dilatation member is expandable while only a portion is exposed out of the distal end of the catheter shaft. In some embodiments, the dilatation member is positionable relative to the catheter shaft to adjust a length of the exposed portion of the dilatation member to dilate a desired length of the lesion at the treatment site.
[0019] Optionally, separate inflation lumens may be included for expanding either or both of the stent expansion and dilatation members. Where a separate lumen is included for expanding the dilatation member, in some embodiments the inflation lumen comprises a tubular member disposed concentrically over the inner shaft. Alternatively, the inflation lumen may comprise a tubular member disposed within the inner shaft. In other embodiments, the inflation lumen may be disposed within the wall of the inner shaft.
[0020] In yet another aspect of the present invention, a method for delivering at least one stent to a treatment site involves: positioning a distal portion of a stmt delivery catheter device at the treatment site, the stmt delivery catheter carrying at least one stmt; expanding at least a portion of an expandable member on the catheter device to dilate at least a portion of a lesion at the treatment site; selecting a deployable portion of the stmt having a selected length; and expanding the deployable portion of the stent at the treatment site, and undeployed portion of the stmt remaining in the delivery catheter. Some embodiments may optionally further involve positioning the deployable portion of the stmt over the expandable member. In some embodiments, expanding the deployable portion of the stmt comprises expanding the expandable member. In some embodiments, the at least one stmt comprises a plurality of stmt segments, and retracting the sheath exposes at least one of the stmt segments to self expand at the treatment site. Such embodiments may optionally further include, after retracting the sheath: positioning the expandable member within the at least one self expanded stmt segment; and expanding at least a portion of the expandable member to further expand the stmt segment.
[0021] In some embodiments, the method may also involve exposing the portion of the expandable member outside the sheath before the expanding step. The method may optionally further include retracting the portion of the expandable member to a position within the sheath after the expanding step. Some embodiments may also involve passing a fluid through the expandable member while the stmt segments are disposed thereon, wherein the stmt segments comprise a thermal shape memory material, and wherein passing the fluid changes the temperature of the stmt segments. For example, in some embodiments the passed fluid is heated to a temperature higher than body temperature, while in others it is cooled to a temperature lower than body temperature. In some embodiments, the portion of the expandable member is expanded using fluid.
[0022] In another aspect of the invention, a method for delivering at least one stmt to a treatment site includes :positioning a distal portion of a stmt delivery catheter device at the treatment site, the stmt delivery catheter carrying at least one stmt;
expanding at least a portion of a dilatation member of the catheter device to dilate at least a portion of a lesion at the treatment site; and expanding at least a portion of a stmt expansion member of the catheter device to deploy at least a portion of the at least one stmt at the treatment site. The method may optionally further include selecting a deployable portion of the stmt, wherein the deployable portion is expanded by the stmt expansion member while an undeployed portion of the stmt remains unexpanded in the stmt delivery catheter. Again, in some embodiments the at least one stmt comprises a plurality of stmt segments, and deploying at least the portion comprises deploying at least one of the stmt segments.
[0023] In some embodiments, the dilatation member is disposed on an outer surface of a sheath slidably disposed over the stmt and the stmt expansion member. In such embodiments, the method may also include retracting the sheath to expose at least the portion of the stmt expansion member and at least one stmt. Alternative embodiments may further involve sliding an inner shaft of the catheter device distally relative to the stmt expansion member to expose at least the portion of the dilatation member, the dilatation member being disposed on the inner shaft. In some embodiments, such a method may also include sliding the catheter body distally over the inner shaft to position the stmt expansion member at the treatment site. Optionally, the dilatation member may then be re-expanded at the treatment site after the stmt is deployed.
[0024] Further aspects of the nature and advantages of the invention will become apparent from the detailed description below taken in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0025] Fig. 1 is a perspective view of a stmt delivery catheter according to the invention with sheath retracted and expandable member inflated.
[0026] Fig. 2A is a side cross-section of a distal portion of the stmt delivery catheter of Fig. 1 with expandable member deflated and sheath advanced distally.
[0027] Fig. 2B is a side cross-section of a distal portion of the stmt delivery catheter of Fig.
1 with expandable member inflated and sheath retracted.
[0028] Fig. 3 is a transverse cross-section through line 3-3 of Fig. 2A.
[0029] Fig. 4 is a transverse cross-section through line 4-4 of Fig. 2A.
[0030] Fig. SA is a side view of a first embodiment of a stmt segment according to the invention in an unexpanded configuration.
[0031] Fig. SB is a side view of the stmt segment of Fig. SA in an expanded configuration.
[0032] Fig. 6A is a side view of a second embodiment of a stmt segment according to the invention in an unexpanded configuration.
[0033] Fig. 6B is a side view of two of the stmt segments of Fig. 6A in an expanded configuration.
[0034] Figs. 7A-7E are side cut-away views of the stmt delivery catheter of the invention positioned in a vessel with the stmt segments of Figs. SA-SB, illustrating various steps of delivering a prosthesis according to the method of the invention.
[0035] Fig. 8 is a side cut-away view of the stmt delivery catheter of the invention positioned in a vessel with the stmt segments of Figs. 6A-6B in a deployed configuration.
[0036] Fig. 9 is a side cut-away view of a stmt delivery catheter having an expandable member disposed on a sheath according to one embodiment of the invention.
[0037] Fig. 10 is a side cut-away view of a stmt delivery catheter having an expandable member disposed on a slidable inner shaft according to one embodiment of the invention.
[0038] Figs. 11A and 11B are side cut-away views of a stmt delivery catheter being used to dilate a lesion and place stmt segments in the lesion according to one embodiment of the invention.
[0039] Figs. 12A-12E are side views of a stmt delivery catheter being used in a vessel to dilate a lesion and place stmt segments in the lesion according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION
[0040] One embodiment of a stmt delivery catheter according to present invention is illustrated in Fig. 1. Stent delivery catheter 20 includes a catheter body 22 comprising an outer sheath 25 slidably disposed over an inner shaft 27. An expandable member 24, preferably an inflatable balloon (shown in an inflated configuration), is mounted to inner shaft 27 and is exposed by retracting sheath 25 relative to inner shaft 27. A
tapered nosecone 28, composed of a soft elastomeric material to reduce trauma to the vessel during advancement of the device, is mounted distally of expandable member 38. A
stent 30, which preferably comprises a plurality of separate or separable stmt segments 32, is disposed on expandable member 24 for expansion therewith. A guidewire tube 34 is slidably positioned through a guidewire tube exit port 35 in sheath 25 proximal to expandable member 24. A
guidewire 36 is positioned slidably through guidewire tube 34, expandable member 24, and nosecone 28 and extends distally thereof.
[0041] A handle 38 is mounted to a proximal end 23 of sheath 25 and includes an actuator 40 slidably mounted thereto for purposes described below. An adaptor 42 is mounted to the proximal end of handle 38 and provides a catheter port 44 through which inner shaft 27 is slidably positioned. A flush port 48 is mounted to the side of adaptor 42 through which a fluid such as saline can be introduced into the interior of catheter body 22.
An annular seal (not shown) in catheter port 44 seals around inner shaft 27 to prevent fluid from leafing through catheter port 44. Optionally, a clamp (not shown) such as a threaded collar, can be mounted to catheter port 44 to loci inner shaft 27 relative to handle 38.
[0042] Inner shaft 27 has a proximal end 50 to which is mounted an inflation adaptor 52.
W flation adaptor 52 is configured to be fluidly coupled to an inflation device 54, which may be any commercially available balloon inflation device such as those sold under the trade name "Indeflator TM," available from Advanced Cardiovascular Systems of Santa Clara, CA.
Inflation adaptor 52 is in fluid communication with expandable member 24 via an inflation lumen (described below) in inner shaft 27 to enable inflation of expandable member 24.
[0043] Refernng now to Figs. 2A-2B, 3 and 4, which show a distal portion of the stmt delivery catheter in cross-section, it may be seen that sheath 25 may be extended up to nosecone 28 to fully surround expandable member 24 and stmt segments 32. One or more radiopaque marfers 56 are mounted near a distal end 57 of sheath 25 to facilitate visualization of the position of sheath 25 using fluoroscopy. In a preferred embodiment, two annular markers 56 are spaced apart a length equal to the length of one of stmt segments 32 for purposes described more fully below. Sheath 25 further includes a valve member 58 preferably spaced proximally from distal end 57 a distance equal to the length of one of stmt segments 32. Valve member 58 has an inwardly extending flange 60 configured to frictionally engage stmt segments 32 and thereby restrict the sliding movement of stmt segments 32 distally relative to sheath 25. Flange 60 may be a polymeric material integrally formed with sheath 25 or a separate annular member bonded or otherwise mounted to sheath 25. Various embodiments of valve member 58 are described in copending application Serial No. 10/412,714, Filed April 10, 2003 (Attorney Docket No. 21629-000330), which is incorporated herein by reference.
[0044] Sheath 25 has a distal extremity 62 configured to surround expandable member 24 and stmt segments 32 disposed thereon when in an unexpanded configuration.
Distal extremity 62 extends proximally to a junction 63, preferably aligned with the location of guidewire tube exit port 35, where distal extremity 62 is joined to a proximal extremity 64 that extends proximally to handle 38 (see Fig. 1). In a preferred embodiment, distal extremity 62 has a length of about 15-35 cm and proximal extremity 64 as a length of about 100-125 cm. Proximal extremity 64 may be constructed of a variety of biocompatible polymers or metals, preferably being stainless steel or Nitinol. Distal extremity 62 may be a polymer such as PTFE, FEP, polyimide, or Pebax, and is preferably reinforced with a metallic or polymeric braid to resist radial expansion when expandable member 24 is expanded.
[0045] Preferably, proximal extremity 64 has a smaller transverse dimension than distal extremity 62 to accommodate the added width of guidewire tube 34 within the vessel lumen, as well as to maximize flexibility and minimize profile. In one embodiment, shown in Fig. 3, distal extremity 62 is a tubular member having a first outer diameter, preferably about 1.0-1.5 mm, and proximal extremity 64 is a tubular member having a second, smaller outer diameter, preferably about 0.7-1.0 mm. At the junction of proximal extremity 64 with distal extremity 62, a proximally-facing crescent-shaped opening 65 is formed between the two tubulax members that creates guidewire tube exit port 35. Excess space within crescent-shaped opening 65 may be filled with a filler material such as adhesive.
[0046] In an alternative embodiment (not shown), a hole is formed in the sidewall of distal extremity 62 or proximal extremity 64 to create guidewire tube exit port 35.
Proximally of guidewire tube exit port 35, the wall of sheath 25 adjacent to guidewire tube 34 is flattened or collapsible inwardly thereby reducing the transverse dimension of sheath 25 to accommodate the width of guidewire tube 34.
[0047] Guidewire tube 34 is slidably positioned through guidewire tube exit port 35.
Preferably, guidewire tube exit port 35 is configured to provide a total or partial fluid seal around the periphery of guidewire tube 34 to limit blood flow into the interior of sheath 25 and to limit leal~age of saline (or other flushing fluid) out of sheath 25.
This may be accomplished by sizing guidewire tube exit port 35 appropriately so as to form a fairly tight frictional seal around guidewire tube 34 while still allowing the sliding motion thereof relative to sheath 25. Alternatively an annular sealing ring may be mounted in guidewire tube exit port 35 to provide the desired seal.
[0048] Guidewire tube exit port 35 will be positioned to provide optimal tracl~ing of stmt delivery catheter 20 through the vasculature and maximizing the ease with which the catheter can be inserted onto and removed from a guidewire to facilitate catheter exchanges. Usually, guidewire tube exit port 35 will be positioned at a location proximal to expandable member 24 when sheath 25 is extended fully distally up to nosecone 28, but a distance of no more than one-half the length of sheath 25 from distal end 57. In preferred embodiments for coronary applications, guidewire tube exit port 35 is spaced proximally a distance of about 20-35 cm from the distal end 57 of sheath 25.
[0049] Guidewire tube 34 should extend proximally from guidewire tube exit port 35 a distance at least as long as the longest possible stmt that may be deployed, e.g. 30-60 mm, to allow for retraction of sheath 25 that distance while retaining a portion of guidewire tube 34 external to sheath 25. Preferably guidewire tube 34 extends proximally a distance of about 3-15 cm from guidewire tube exit port 35 when sheath 25 is in a fully distal position, with the proximal end thereof disposed a distance of about 23-50 cm from the distal tip of nosecone 28. Where stmt delivery catheter 20 is to be positioned through a guiding catheter, the proximal end of guidewire tube 34 will preferably be positioned so as to be within the guiding catheter when expandable member 24 is positioned at the target site for stmt deployment. Guidewire tube 34 is preferably a highly flexible polymer such as PTFE, FEP, polyimide, or Pebax, and may optionally have a metal or polymer braid embedded in it to increase lcink-resistance.
[0050] Inner shaft 27 forms an inflation lumen 66 that is in communication with interior of expandable member 24. In the distal extremity of stmt delivery catheter 20 inner shaft 27 is preferably formed of a polymer such as PTFE, FEP, polyimide, or Pebax, and may be reinforced with a metallic braid for added radial strength and kink resistance. In the proximal extremity of delivery catheter 20, inner shaft 27 may be a similar polymer or a metal such as stainless steel or Nitinol.
[0051] Expandable member 24 has an expandable balloon member 70 that is joined to a non-expandable tubular leg 72. Expandable balloon member 70 is a semi-compliant polymer such as Pebax or Nylon. Tubular leg 72 is preferably a polymer such as polyimide, PTFE, FEP or Pebax and may optionally be reinforced with a metal or polymer braid.
Tubular leg 72 has an open proximal end 74 through which guidewire tube 34 extends.
Proximal end 74 of tubular leg 72 is fixed to distal end 68 of inner shaft 27 and to guidewire tube 34, forming a fluid-tight seal. Balloon member 70 has a distal end 76 bonded to an ammlar stop 78, which is mounted to nosecone 28. Stop 78 has a size and shape selected to engage stmt segment 32 and provide a stop against which stmt segments 32 can be located in the ideal deployment position without being pushed beyond the distal end of balloon member 70.
Guidewire tube 34 passes through the interior of balloon member 70 and is mounted to nosecone 28, thereby providing a passage through the distal portion of catheter body 22 through which guidewire 36 may pass.
[0052] Optionally, within the interior of balloon member 70 an annular base member 80 is mounted to guidewire tube 34 and has a diameter selected to urge balloon member 70 against stmt segments 32 in their unexpanded configuration, thereby providing frictional engagement with stmt segments 32. This helps to limit unintended sliding movement of stmt segments 32 on balloon member 70. Base member 80 may be made of a soft elastomer, foam, or other compressible material. Adjacent to the distal and proximal ends of base member 80 two annular radiopaque markers 82 are mounted to guidewire tube 34, facilitating visualization of the location of balloon member 70 with fluoroscopy and enabling appropriate positioning of stmt segments 32 on balloon member 70. Alternatively, only a single marlcer 82 at the distal end of base member 80 may be used, or markers may be placed at other locations on nosecone 28, guidewire tube 34, or inner shaft 27. Such markers may be made of various radiopaque materials such as platinum/iridium, tantalum, and other materials.
[0053] Stent segments 32 are slidably positioned over balloon member 70.
Depending upon the number of stmt segments 32 loaded in stmt delivery catheter 20, stmt segments 32 may be positioned over both balloon member 70 and tubular leg 72. In an exemplary embodiment, each stent segment is about 2-8 mm in length, and up to 10-50 stmt segments may be positioned end-to-end in a line over balloon member 70 and tubular leg 72. Stent segments 32 preferably are in direct contact with each other, but alternatively separate spacing elements may be disposed between adjacent stmt segments, the spacing elements being movable with the stmt segments along balloon member 70. Such spacing elements may be plastically deformable or self expanding so as to be deployable with stmt segments 32 into the vessel, but alternatively could be configured to remain on balloon member 70 following stmt deploylnent; for example, such spacing elements could comprise elastic rings which elastically expand with balloon member 70 and resiliently return to their unexpanded shape when balloon member 70 is deflated. The spacing elements could be pushed to the distal end of balloon member 70 against stop 78 as additional stent segments 32 are advanced distally.
[0054] Stent segments 32 are preferably a malleable metal so as to be plastically deformable by expandable member 24 as they are expanded to the desired diameter in the vessel. Alternatively, stmt segments 32 may be formed of an elastic or super elastic shape memory material such as Nitinol so as to self expand upon release into the vessel by retraction of sheath 25. Stent segments 32 may also be composed of polymers or other suitable biocompatible materials. In self expanding embodiments, expandable member 24 may also be used for predilatation of a lesion prior to stmt deployment and/or for augmenting the expansion of the self expanding stmt segments, as is described in greater detail below. In some embodiments, stmt segments 32 may be formed of a thermal shape memory material, and expandable member 24 may be used for accepting a heated or cooled fluid while in contact with stmt segments 32 so as to change the temperature of the stmt segments 32, causing them to expand upon release. In some embodiments, expandable member 24, when containing cooled fluid, may be further used to help expand a lesion after stmt segments 32 are in place.
[0055] In preferred embodiments, stmt segments 32 are coated with a drug that inhibits restenosis, such as Rapamycin, Paclitaxel, analogs, prodrugs, or derivatives of the foregoing, or other suitable agent, preferably carried in a bioerodable polymeric carrier. Alternatively, stmt segments 32 may be coated with other types of drugs and therapeutic materials such as antibiotics, thrombolytics, anti-thrombotics, anti-inflammatories, cytotoxic agents, anti-proliferative agents, vasodilators, gene therapy agents, radioactive agents, immunosuppressants, and chemotherapeutics. Such materials may be coated over all or a portion of the surface of stmt segments 32, or stmt segments 32 may include apertures, holes, channels, or other features in which such materials may be deposited.
[0056] Stent segments 32 may have a variety of configurations, including those described in copending application Serial No. 60/440839, filed January 17, 2003 (Attorney Docket No.
21629-000500), which is incorporated herein by reference. Other preferred stmt configurations are described below. Stent segments 32 are preferably completely separate from one another without any interconnections, but alternatively may have couplings between two or more adjacent segments which permit flexion between the segments. As a further alternative, one or more adjacent stmt segments may be comlected by separable or frangible couplings that are separated prior to or upon deployment, as described in copending application Serial No. 101306,813, filed November 27, 2002 (Attorney Docket No. 21629-000320), which is incorporated herein by reference.
[0057] A pusher tube 86 is slidably disposed over inner shaft 27 and has a distal extension 88 coupled to a pusher ring 90. Pusher ring 90 is slidable over tubular leg 72 and engages the stmt segment 32 at the proximal end of the line of stent segments 32. At its proximal end (not shown), pusher tube 86 is coupled to sliding actuator 40 on handle 38 (see Fig. 1). In this way pusher tube 86 can be advanced distally relative to inner shaft 27 to urge stem segments 32 distally over expandable member 24 (or pusher tube 86 may be held in position while retracting expandable member 24 relative to stmt segments 32) until the stmt segments engage stop 78. In addition, pusher tube 86 can be used to hold stmt segments 32 in place on expandable member 24 while sheath 25 is retracted to expose a desired number of stmt segments 32, as shown in Fig. 2B. Pusher tube 86 may be constructed of a variety of biocompatible polymers or metals, preferably being stainless steel or Nitinol.
Distal extension 88 and pusher ring 90 may be a polymer such as PTFE, FEP, polyimide, or Pebax, and are preferably reinforced with a metallic or polymeric braid to resist radial expansion when expandable member 24 is expanded.
[0058] It can be seen that with sheath 25 retracted a desired distance, expandable member 24 is allowed to expand when inflation fluid is delivered through inflation lumen 66, thereby expanding a desired number of stmt segments 32 exposed distally of sheath 25.
The remaining portion of expandable member 24 and the remaining stmt segments 32 within sheath 25 are constrained from expansion by sheath 25.
[0059] Fig. 2B further illustrates that when sheath 25 is retracted relative to expandable member 24, guidewire tube exit port 35 becomes further away from the point at which guidewire 36 exits the proximal end 74 of tubular leg 72, increasing the distance that guidewire 36 must pass within the interior of sheath 25. Advantageously, guidewire tube 34 provides a smooth and continuous passage from the tubular leg 72 through guidewire tube exit port 35, eliminating any problems that might result from changing the alignment of the two. This is particularly important in the present invention where the stmt delivery catheter may carry a large number of stmt segments 32 and sheath 25 may be retracted a substantial distance relative to expandable member 24, resulting in substantial misaligmnent of guidewire tube exit port 35 relative to tubular leg 72.
[0060] In order to confirm the positioning of stmt segments 32 on expandable member 24, fluoroscopy is used to visualize stmt segments 32 relative to markers 82 on inner shaft 27. In addition, by fluoroscopic visualization of markers 56 on sheath 25 the user can see the extent of retraction of sheath 25 relative to expandable member 24 and view the location of the exposed stmt segments 32 relative to sheath 25. Visualization of stem segments 32 is further enhanced with the use of radiopaque markers and/or materials in or on the stem segments themselves. Markers of radiopaque materials may be applied to the exterior of stmt segments 32, e.g, by applying a metal such as gold, platinum, a radiopaque polymer, or other suitable coating or mark on all or a portion of the stmt segments.
Alternatively, stmt segments 32 may include a radiopaque cladding or coating or may be composed of radiopaque materials such as L-605 cobalt chromium (ASTM F90), other suitable alloys containing radiopaque elements, or multilayered materials having radiopaque layers. In yet another alternative, stmt segments 32 may have a geometry conducive to fluoroscopic visualization, such as having struts of greater thickness, sections of higher density, or overlapping struts. Some of the possible materials that may be used in stmt segments 32 include (by ASTM number):
[0061] F67-00 Unalloyed Titanium [0062] F75-01 Cobalt-28 Chromium-6 Molybdenum Alloy [0063] F90-O1 Wrought Cobalt-20 Chromium-15 Tungsten-10 Niclcel Alloy [0064] F136-02a Wrought Titanium-6 Aluminum-4 Vanadium ELI Alloy [0065] F138-00, F139-00 Wrought 18 Chromium-14 Nickel-2.5 Molybdenum Stainless Steel Bar or Sheet [0066] F560-98 Unalloyed Tantalum [0067] F562-02 Wrought 35 Cobalt-35 Nickel-20 Chromium-10 Molybdenum Alloy [0068] F563-00 Wrought Cobalt-20 Nickel-20 Chromium 3.5 Molybdenum-3.5 Tungste-Iron Alloy [0069] F688 Wrought Cobalt-35 Nickel-20 Chromium-10 Molybdenum Alloy [0070] F745-00 18 Chromium-12.5 Nickel-2.5 Molybdenum Stainless Steel [0071] F799-02 Cobalt-28 Chromium-6 Molybdenum Alloy [0072] F961-96 Cobalt-35 Nickel-20 Chromium-10 Molybdenum Alloy [0073] F1058-02 Wrought 40 Cobalt-20 Chromium-16 Iron-15 Nickel-7 Molybdenum Alloy [0074] F1091-02 Wrought Cobalt-20 Chromium-15 Tungsten-10 Nickel Alloy [0075] F1108 Titanium-6 Aluminum-4 Vanadium Alloy [0076] F1295-O1 Wrought Titanium-6 Aluminum-7 Niobium Alloy [0077] F1314-O1 Wrought Nitrogen-strengthened 22 Chromium-13 Niclcel-5 Manganese-2.5 Molybdenum Stainless Steel Alloy [0078] F1241-99 Unalloyed Titanium Wire [0079] F1350-02 Wrought 18 Chromium-14 Nickel-2.5 Molybdenum Stainless Steel Wire [0080] F1377-98a Cobalt-28 Chromium-6 Molybdenum Powder coating [0081] F1472-02a Wrought Titanium-6 Aluminum-4 Vanadium Alloy [0082] F1537-00 Wrought Cobalt-28 Chromium-6 Molybdenum Alloy [0083] F1580-O1 Titanium and Titanium-6 Aluminum-4 Vanadium Alloy Powder coating [0084] F1586-02 Wrought Nitrogen Strengthened 21 Chromium-10 Nickel-3 Mnaganese-2.5 Molybdenum Stainless Steel Bar [0085] F1713-96 Wrought Titanium-13 Niobium-13 Zirconium Alloy [0086] F1813-O1 Wrought Titanium-12 Molybdenum-6 Zirconium-2 Iron Alloy [0087] F2063-00 Wrought Nickel-Titanium Shape Memory Alloys [0088] F2066-O1 Wrought Titanium-15 Molybdenum Alloy [0089] F2146-01 Wrought Titanium-3 Aluminum-2.5 Vanadium Alloy Seamless Tubing [0090] F2181-02a Wrought Stainless Steel Tubing [0091] A first preferred geometry of stmt segments 32 is illustrated in Figs.
SA-SB.
Fig. SA illustrates a portion of a stmt segment 32 in an unexpanded configuration, shown in a planar shape for clarity. Stent segment 32 comprises two parallel rows 98A, 98B of I-shaped cells 100 formed around an axis A so that stmt segment 32 has a cylindrical shape. Each cell 100 hasbupper and lower axial slots 102 aligned with the axial direction and a circumferential slot 104. Upper and lower slots 102 preferably have an oval, racetrack, rectangular or other oblong shape with a long dimension'L generally parallel to axis A and a short dimension W
perpendicular thereto. Axial slots 102 are bounded by upper axial struts 106 and lower axial struts 107, curved outer ends 108 and curved inner ends 110. Each circumferential slot 104 is bounded by an outer circumferential strut 109 and an inner circumferential strut 111. Each I-shaped cell 100 is connected to the adjacent I-shaped cell 100 in the same row 98A or 98B by a circumferential connecting strut 113. All or a portion of cells 100 in row 98A merge or join with cells 100 in row 98B at the inner ends 110, which are integrally formed with the firmer ends 110 of the adjacent cells 100.
[0092] In a preferred embodiment, a spacing member 112 extends outwardly in the axial direction from a selected number of outer circumferential struts 109 and/or connecting struts 113. Spacing member 112 preferably itself forms a subcell 114 in its interior, but alternatively may be solid without any cell or opening therein. For those spacing members 112 attached to outer circumferential struts 109, subcell 114 preferably communicates with I-shaped cell 100. Spacing members 112 are configured to engage the curved outer ends 108 of an adjacent stmt segment 32 so as to maintain appropriate spacing between adjacent stmt segments. In one embodiment, spacing members 112 have outer ends 116 with two spaced-apart protrusions 118 that provide a cradle-lilce structure to index and stabilize the curved outer end 108 of the adjacent stmt segment. Preferably, spacing members 112 have an axial length of at least about 10%, more preferably at least about 25%, of the long dimension L of I-shaped cells 100, so that the I-shaped cells 100 of adjacent stent segments are spaced apart at least that distance. Because spacing members 112 experience little or no axial shortening during expansion of stmt segments 32, this minimum spacing between stmt segments is maintained both in the unexpanded and expanded configurations.
[0093] Fig. SB shows stmt segment 32 of Fig. SA in an expanded configuration.
It may be seen that cells 100 are expanded so that upper and lower slots 102 are diamond shaped with circumferential slots 104 remaining basically unchanged. This results in some axial shortening of the stmt segment, thereby increasing the spacing between adjacent stmt segments. The stmt geometry is optimized by balancing the amount of axial shortening and associated inter-segment spacing, the desired degree of vessel wall coverage, the desired metal density, and other factors. Because the stent is comprised of multiple unconnected stmt segments 32, any desired number from 2 up to 10 or more stmt segments may be deployed simultaneously to treat lesions of any length. Further, because such segments are unconnected to each other, the deployed stmt structure is highly flexible and capable of deployment in long lesions having curves and other complex shapes.
[0094] As an additional feature, circumferential slots 104 provide a pathway through which vessel side branches can be accessed for catheter interventions. Should stmt segment 32 be deployed at a location in which it covers the ostium of a side branch to which access is desired, a balloon dilatation catheter may be positioned through circumferential slot 104 and expanded. This deforms circumferential struts 109, 111 axially outward, thereby expanding circumferential slot 104 and further expanding upper and lower slots 102, as shown in phantom in Fig. 3B. This provides a relatively large opening 120 through which a catheter may be inserted through stmt segment 32 and into the side branch for placing stems, performing angioplasty, or carrying out other interventions.
[0095] Figs. 6A-6B illustrate a second embodiment of a stmt segment 32 according to the invention. In Fig. 6A, a portion of stmt segment 32 is shown in a planar shape for clarity.
Similar to the embodiment of Fig. SA, stmt segment 32 comprises two parallel rows 122A, 122B of I-shaped cells 124 formed into a cylindrical shape axound axial axis A. Cells 124 have upper and lower axial slots 126 and a connecting circumferential slot 128. Upper and lower slots 126 are bounded by upper axial struts 130, lower axial struts 132, curved outer ends 134, and curved inner ends 136. Circumferential slots 128 are bounded by outer circumferential strut 138 and inner circumferential strut 140. Each I-shaped cell 124 is connected to the adjacent I-shaped cell 124 in the same row 122 by a circumferential connecting strut 142. Row 122A is connected to row 122B by the merger or joining of curved inner ends 136 of at least one of upper and lower slots 126 in each cell 124.
[0096] One of the differences between the embodiment of Figs. 6A-6B and that of Figs.
SA-SB is the way in which spacing is maintained between adjacent stmt segments. In place of the spacing members 112 of the earlier embodiment, the embodiment of Fig.
6A includes a bulge 144 in upper and lower axial struts 130, 132 extending circumferentially outwardly from axial slots 126. These give axial slots 126 an arrowhead or cross shape at their inner and outer ends. The bulge 144 in each upper axial strut 130 extends toward the bulge 144 in a lower axial strut 132 in the same cell 100 or in an adj acent cell 100, thus creating a concave abutment 146 in the space between each axial slot 126. Concave abutments 146 are configured to receive and engage curved outer ends 134 of cells 124 in the adjacent stmt segment, thereby maintaining spacing between the stmt segments. The axial location of bulges 144 along upper and lower axial struts 130, 132 may be selected to provide the desired degree of inter-segment spacing.
[0097] Fig. 6B shows two stmt segments 32 of Fig. 6A in an expanded condition.
It may be seen that axial slots 124 are deformed into a circumferentially widened modified diamond shape with bulges 144 on the now diagonal upper and lower axial struts 130, 132.
Circmnferential slots 128 are generally the same size and shape as in the unexpanded configuration. Bulges 144 have been pulled away from each other to some extent, but still provide a concave abutment 146 to maintain a minimum degree of spacing between adjacent stmt segments. As in the earlier embodiment, some axial shortening of each segment occurs upon expansion and stmt geometry can be optimized to provide the ideal intersegment spacing.
[0098] It should also be noted that the embodiment of Figs. 6A-6B retains the feature described above with respect to Figs. SA-SB to enable access to vessel side branches bloclced by stmt segment 32. Should such side branch access be desired, a dilatation catheter may be inserted into circumferential slot 128 and expanded to provide an enlarged opening through which a side branch may be entered. Other preferred geometries for stmt segments 32 are described in U.S. Patent Application Serial No. 10!738666 (Attorney Docket No.

000510US), with is hereby fully incorporated by reference.
[0099] Referring now to Figs. 7A-7E, the use of the stmt delivery catheter of the invention will be described. While the invention will be described in the context of coronary artery treatment, the invention is useful in any of a variety of blood vessels and other body lumens in which stems are deployed, including the carotid, femoral, iliac and other arteries, as well as veins and other fluid-carrying vessels. A guiding catheter (not shown) is first inserted into a peripheral artery such as the femoral and advanced to the ostium of the target coronary artery.
A guidewire GW is then inserted through the guiding catheter into the coronary artery A
where lesion L is to be treated. The proximal end of guidewire GW is then inserted through nosecone 28 and guidewire tube 34 outside the patient's body and stmt delivery catheter 20 is slidably advanced over guidewire GW and through the guiding catheter into the coronary artery A. Stent delivery catheter 20 is positioned through a lesion L to be treated such that nosecone 28 is distal to lesion L. During this positioning, sheath 25 is positioned distally up to nosecone 28 so as to surround expandable member 24 and all of the stmt segments 32 thereon.
[0100] Optionally, lesion L may be predilated prior to stmt deployment.
Predilatation may be performed prior to introduction of stmt delivery catheter 20 by inserting an angioplasty catheter over guidewire GW and dilating lesion L. Alternatively, scent delivery catheter 20 may be used for predilitation by retracting sheath 25 along with stmt segments 32 to expose an extremity of expandable member 24 long enough to extend through the entire lesion. This may be done while delivery catheter 20 is positioned proximally of lesion L or with expandable member 24 extending through lesion L. Fluoroscopy enables the user to visualize the extent of sheath retraction relative to lesion L by observing the position of marker 56 on sheath 25 relative to marlcer 82 at the distal end of expandable member 24. To allow stmt segments 32 to move proximally relative to expandable member 24, force is released from pusher tube 86 and valve member 58 engages and draws the stent segments proximally with sheath 25. With the appropriate length of expandable member 24 exposed, expandable member 24 is positioned within lesion L and inflation fluid is introduced through inflation lumen 66 to inflate expandable member 24 distally of sheath 25 and thereby dilate lesion L.
Expandable member 24 is then deflated and retracted within sheath 25 while maintaining force on pusher tube 86 so that stmt segments 32 are positioned up to the distal end of expandable member 24, surrounded by sheath 25. Alternative embodiments of devices and methods for lesion predilatation are described in detail below.
[0101] Following any predilatation, stmt delivery catheter 20 is repositioned in artery A so that nosecone 28 is distal to lesion L as shown in Fig. 7A. Sheath 25 is then retracted as in Fig. 7B to expose the appropriate number of stmt segments 32 to cover lesion L. Again, fluoroscopy can be used to visualize the position of sheath 25 by observing marlcer 56 thereon relative to marker 82 within expandable member 24. As sheath 25 is drawn proximally, force is maintained against pusher tube 86 so that stmt segments 32 remain positioned up to the distal end of expandable member 24. It should also be noted that sheath 25 moves proximally relative to guidewire tube 34, which slides through guidewire tube exit port 35. Advantageously, regardless of the position of sheath 25, guidewire tube 34 provides a smooth and continuous passage for guidewire GW so that stmt delivery catheter slides easily over guidewire GW. Optionally, a distal portion of expandable member 24 may have a different size of may be made of a different material or different polymeric formulation than the remainder of expandable member 24 so as to be more suited for pre- or post-dilatation.
For example, the distal portion of expandable member 24 may be less compliant than the remainder of the expandable member and/or may be made of a more hard or durable polymer suited to higher-pressure inflation for displacement of stenotic material.
[0102] With the desired number of stmt segments 32 exposed distally of sheath 25, it is frequently desirable to create some spacing between the stmt segments to be deployed and those remaining enclosed within sheath 25. This reduces the risk of dislodging or partially expanding the distal-most stmt segment 32 within sheath 25 when expandable member 24 is inflated. Such spacing is created, as shown in Fig. 7C, by releasing force against pusher tube 86 and retracting sheath 25 further proximally a short distance. The engagement of valve member 58 with stmt segments 32 moves those stmt segments 32 within sheath 25 away from those stmt segments 32 distal to sheath 25. The length of this spacing is preferably equal to the length of about %Z-1 stmt segment.
[0103] Expandable member 24 is then inflated by delivering inflation fluid through inflation lumen 66, as shown in Fig. 7D. The exposed distal portion of expandable member 24 expands so as to expand stmt segments 32 thereon into engagement with lesion L. If predilatation was not performed, lesion L may be dilated during the deployment of stmt segments 32 by appropriate expansion of expandable member 24. Sheath 25 constrains the expansion of the proximal portion of expandable member 24 and those stmt segments 32 within sheath 25.
[0104] Expandable member 24 is then deflated, leaving stmt segments 32 in a plastically-deformed, expanded configuration within lesion L, as shown in Fig. 7E. The alternative embodiment of stmt segment 32 illustrated in Figs. 6A-6B is shown in a similarly expanded condition in Fig. 8. With stmt segments 32 deployed, expandable member 24 may be retracted within sheath 25, again maintaining force against pusher tube 86 to position stmt segments 32 at the distal end of expandable member 24. Expandable member 24 is moved proximally relative to stent segments 32 until the distal-most stmt segment engages stop 78 (Figs 2A-2B), thereby placing stmt segments 32 in position for deployment.
Stent delivery catheter 20 is then ready to be repositioned at a different lesion in the same or different artery, and additional stmt segments may be deployed. During such repositioning, guidewire tube 34 facilitates smooth tracking over guidewire GW. Advantageously, multiple lesions of various lengths may be treated in this way without removing stem delivery catheter 20 from the patient's body. Should there be a need to exchange stem delivery catheter 20 with other catheters to be introduced over guidewire GW, guidewire tube 34 facilitates quick and easy exchanges.
[0105] When the movement of the pusher tube, sheath, or stmt segments is described in relation to other components of the delivery catheter of the invention, such movement is relative and will encompass both moving the sheath, pusher tube, or stmt segments while keeping the other components) stationary, keeping the sheath, pusher tube or stmt segments stationary while moving the other component(s), or moving multiple components simultaneously relative to each other.
[0106] Refernng now to Fig. 9, one embodiment of a stmt delivery catheter device 150 suitably includes a stmt expansion member 152 over which a stmt having multiple stmt segments 154 may be positioned, an inner sheath 156 disposed over stmt segments 154 and stmt expansion member 152, a pusher member 158 for slidably advancing stmt segments 154 along expansion member 152, a nosecone 164, and a dilatation member 160 coupled with an outer sheath 162. Inner sheath may include a stmt separation member 157 for separating adjacent stmt segments 154. Outer sheath 162 may be disposed over inner sheath 156 to form an inflation lumen 163 for expanding dilation member 160. Alternatively, the inflation lumen may be disposed within the wall of inner sheath 156, or it may comprise a tube or lumen fixed or molded on the exterior wall of inner sheath 156. As with other embodiments previously described, catheter device 150 may be delivered over a guidewire 166.
[0107] Stent delivery catheter device 150 could be used similarly to many of the embodiments described above, with the additional feature of using dilatation member 160 to pre-dilate a lesion before placing one or more stmt segments 154 at the lesion. Additionally, after pre-dilatation and stmt segment placement, dilatation member 160 may also be positioned, in its deflated form, within one or more expanded stmt segments 154 and expanded to further expand stmt segments 154, to confirm complete expansion of stmt segments 154, to further dilate the lesion and/or the like. Outer sheath 162 and inner sheath 156 are typically retractable together to expose one or more stmt segments 154 and/or a portion of stmt expansion member 152. Stent separation member 157 may be used to separate adjacent stmt segments 154, to retract slidable stent segments 154 over stmt expansion member 152, and/or to hold stmt segments 154 in place while stem expansion member 152 is advanced. In the embodiment shown in Fig. 9, stmt segments 154 may alternatively be self expanding, wherein inner sheath 156 restrains stmt segments 154 from expansion until it is retracted to allow one or more of the stmt segments to self expand into the lesion at the treatment site.
[0108] Referring now to Fig. 10, another embodiment of a stmt delivery catheter device 170 may include a stmt expansion member 172, a stmt having stmt segments 174 positionable on stmt expansion member 172, a sheath 176 disposed over expandable member 172 and stmt segments 174 and having a stmt separation member 177, a pusher member 178, a nosecone 184, a slidable inner shaft 192, and a dilatation member 190 disposed along slidable inner shaft 192. Again, catheter device 170 may be advanced along a guidewire 186.
In alternative embodiments, low-profile, flexible shaft may be fixed to and extend distally from nosecone 184, rather than being slidable, with dilatation member 190 coupled to its distal end. Alternatively, a dilatation member may be coupled with the nosecone itself, and/or the like.
[0109] Slidable inner shaft 192 may be moved axially in distal and proximal directions (two-headed arrow) to expose all or a portion of dilatation member 190 and to retract all or a portion back into nosecone 184 and/or first expandable member 172. In an alternative embodiment, dilatation member 190 may be significantly longer than the one shown in Fig.
(for example, about 30-100 mm), such that only a portion of dilatation member 190 is typically advanced out of the distal end of nosecone 184. This allows the user to adjust the length of the expanded portion of second expandable member 190 so as to match the length of the lesion being dilated. Nosecone 184 restrains the unexposed portion of second expandable member 190 from expansion while the exposed distal portion is expanded. In any case, dilatation member 190 may be used to pre-dilate a lesion before placing stmt segments 174 and may also be used to further expand the placed segments 174, further expand a lesion after placement of segments 174 and/or the like.
[0110] Figs. 11A and 11B demonstrate a method for dilating a lesion L in a vessel V and placing stmt segments according to one embodiment. In this embodiment, a stmt delivery catheter device 200 is positioned in a vessel V in a location for treating a lesion L, for example by passing device 200 over a guidewire 216 or by any other suitable positioning method. A sheath 206 may then be retracted andlor an expandable member 202 may be advanced to expose a portion of expandable member 202 distally of sheath 206.
As sheath 206 is retracted, a stmt separation/retaining member 207 may slide stmt segments 204 proximally relative to expandable member 202 to expose a desired length of expandable member 202 coextensive with lesion L. The exposed portion of expandable member 202, without stmt segments 202 thereon, may then be expanded (solid-tipped arrows) to pre-dilate the lesion. Expandable member 202 may then be deflated/unexpanded and retracted back into a position within stmt segments 204. Alternatively or additionally, sheath 206 and pusher 208 may be used to slidably advance stmt segments 204 over the now-unexpanded expandable member 202.
[0111] As shown in Fig. 11B, sheath 206 may next be retracted to expose both stmt segments 204 and expandable member 202. The number of stmt segments 204 and the length of expandable member 202 are selected to match the length of the lesion L. In some embodiments, stmt segments 204 self expand to contact the lesion L, while in other embodiments, stmt segments 204 are expanded by expandable member 202. Once stmt segments 204 are expanded, expandable member 202 may optionally be re-expanded to further expand segments 204, assure that segments 204 are fully expanded, further expand lesion L or the like. Tn some embodiments, further lesions along the vessel V
may be additionally treated by repositioning device 200, pre-dilating the additional lesion(s), placing stmt segments, and the like.
[0112] Figs. 12A-12E show another embodiment of a method for dilating and placing a stmt in a lesion L. A stmt delivery catheter device 220 is advanced over a guidewire 236 to a position in a vessel V for treating the lesion L. In one embodiment, catheter device 220 includes an outer sheath 232 coupled with an outer expandable member 230, both of which are slidably disposed over an inner catheter body 221. As shown in Fig. 12B, outer expandable member 230 may then be expanded to contact and expand the portion of the vessel V containing the lesion. Outer expandable member 230 may then be deflated and retracted, along with outer sheath 232, as shown in Fig. 12C. Retracting outer sheath 232 and outer expandable member 230 may expose a stmt having one or more stmt segments 224 as well as an imler expandable member 222. In one embodiment, as shoran in Fig.
12D, stmt segments 224 may self expand to contact the lesion. As shown in Fig. 12E an additional optional step may include expanding inner expandable member 222 to further dilate the lesion L, further expand segments 224, assure expansion of segments 224 and/or the like.
[0113] A number of additions, variations and modifications of the method just described may be made in various embodiments. For example, in an alternative embodiment, outer expandable member 230 may be moved distally after expansion of segments 224 and may be re-expanded to further expand segments. In such an embodiment, it may be necessary to have only one expandable member, such as outer expandable member 230. W other embodiments, such as described in relation to Figs. 11A and 11B, only an inner expandable member is used. Also, in various embodiments any suitable combination and order of dilation and stmt placement steps rnay be employed. Furthermore, various embodiments of the devices and methods described above for dilatation in combination with stmt placement may be used with any of a variety of stems and stmt delivery systems, including those described in U.S. Patent Application Nos. 10/306,622 (Attorney Docl~et No.

0001 lOUS) and 10/306,620 (Attorney Docl~et No. 021629-000210US), both of which were filed on November 27, 2002, and both of which are hereby fully incorporated by reference.
[0114] Therefore, although the above is complete description of the preferred embodiments of the invention, various alternatives, additions, modifications and improvements may be made without departing from the scope thereof. For example, while the foregoing description of the invention is directed to a stmt delivery catheter for deploying stems into vascular lumens to maintain patency, various other types of wire-guided catheters also may embody the principles of the invention. For example, balloon catheters for angioplasty and other purposes, particularly those having a slidable external sheath surrounding the balloon, may be constructed in accordance with the invention. Other types of catheters for deployment of prosthetic devices such as embolic coils, stmt grafts, aneurism repair devices, annuloplasty rings, heart valves, anastomosis devices, staples or clips, as well as ultrasound and angiography catheters, electrophysiological mapping and ablation catheters, and other.
devices may also utilize the principles of the invention. Thus, the above description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the claims as they are set forth below.

Claims (79)

1. A stent delivery device for delivering at least one stent to a treatment site, the device comprising:
a catheter shaft having a proximal end and a distal end;
at least one stent positionable on the catheter shaft;
a stent deployment mechanism for deploying at least a portion of the stent at the treatment site, the deployment mechanism allowing a length of the deployed portion of the stent to be selected; and a dilatation member for dilating at least a portion of a lesion at the treatment site independently of deploying the at least one stent.
2. A device as in claim 1, wherein the length of the deployed portion of the stent is selected in situ.
3. A device as in claim 1, wherein a length of the dilatation member to be expanded to dilate the lesion is selected in situ.
4. A device as in claim 1, wherein the stent deployment mechanism comprises:
a stent expansion member coupled with the catheter shaft near the distal end;
and at least one axially movable sheath disposed over at least part of the stent expansion member and stent thereon.
5. A device as in claim 4, wherein the stent expansion member also acts as the dilatation member.
6. A device as in claim 4, wherein the dilatation member is coupled with the sheath.
7. A device as in claim 4, wherein the dilatation member is coupled with an inner shaft slidably disposed within the catheter shaft.
8. A device as in claim 4, wherein the stent comprises a plurality of separable stent segments.
9. A device as in claim 8, wherein the separable stent segments are axially movable along the stent expansion member.
10. A device as in claim 9, further comprising a pusher member for advancing the stent segments axially along the stent expansion member.
11. A device as in claim 8, wherein the sheath is configured to constrain expansion of a first portion of the stent expansion member and a first plurality of the stent segments while allowing expansion of a second portion of the stent expansion member and a second plurality of the stent segments.
12. A device as in claim 11, wherein the sheath further comprises at least one separation device for separating the first plurality of stent segments from the second plurality, thus allowing for expansion of a stent segment without interfering with adjacent stent segments.
13. A device as in claim 4, wherein the stent expansion member and the dilatation member are independently expandable.
14. A device as in claim 13, further including at least one inflation lumen for expanding the dilatation member.
15. A device as in claim 14, wherein the inflation lumen comprises a tubular member disposed concentrically over the sheath.
16. A device as in claim 14, wherein the inflation lumen comprises a tubular member coupled with and extending along the outer surface of the sheath.
17. A device as in claim 14, wherein the inflation lumen is disposed within a wall of the sheath.
18. A stent delivery device for delivering at least one stent to a treatment site, the device comprising:
a catheter shaft having a proximal end and a distal end;
an expandable member coupled with the catheter shaft near the distal end;
at least one stent slidably positionable on the expandable member; and at least one axially movable sheath disposed over at least part of the expandable member and stent thereon, wherein the sheath is axially movable relative to the catheter body to expose at least a portion of the expandable member without exposing the stent, and wherein the sheath is also movable to expose at least a portion of the stent to allow it to expand.
19. A device as in claim 18, wherein the exposed portion of the expandable member is expanded to dilate a lesion at the treatment site, and wherein a length of the exposed portion of is selected in situ.
20. A device as in claim 18, wherein a length of the exposed portion of the stent is selected in situ.
21. A device as in claim 18, wherein the stent is self-expanding.
22. A device as in claim 18, further including a pusher member for advancing the stent along the expandable member.
23. A device as in claim 18, wherein the stent comprises a plurality of separable, self-expanding stent segments.
24. A device as in claim 23, wherein the sheath is configured to constrain expansion of a first plurality of the stent segments while allowing expansion of a second plurality of the stent segments.
25. A device as in claim 24, wherein the sheath further comprises at least one separation device for separating the first plurality of stent segments from the second plurality, thus allowing for expansion of a stent segment without interfering with adjacent stent segments.
26. A device as in claim 23, wherein the stent segments comprise a thermal shape memory material, and wherein the expandable member is configured to accept one or more heated or cooled fluids to change a temperature of the stent segments.
27. A stent delivery device for treating a target site in a vessel, the device comprising:
a catheter shaft having a proximal end and a distal end;

a first stent carried on the catheter shaft and being deployable therefrom;
a second stent carried on the catheter shaft and being deployable therefrom independently of the first stent; and a dilatation member for dilating the target site independently of deploying the first and second stents.
28. A stent delivery device for delivering at least one stent to a treatment site, the device comprising:
a catheter shaft having a proximal end and a distal end;
a stent expansion member coupled with the catheter shaft near the distal end;
at least one stent positionable on the stent expansion member;
at least one axially movable sheath disposed over at least part of the stent expansion member and stent thereon; and a dilatation member coupled with the sheath for dilating one or more lesions at the treatment site.
29. A device as in claim 28, wherein the stent comprises a plurality of separable stent segments.
30. A device as in claim 29, wherein the separable stent segments are axially movable along the stent expansion member.
31. A device as in claim 30, further comprising a pusher member for advancing the stent segments axially along the stent expansion member.
32. A device as in claim 29, wherein the sheath is configured to constrain expansion of a first portion of the stent expansion member and a first plurality of the stent segments while allowing expansion of a second portion of the stent expansion member and a second plurality of the stent segments.
33. A device as in claim 32, wherein the sheath further comprises at least one separation device for separating the first plurality of stent segments from the second plurality, thus allowing for expansion of a stent segment by the stent expansion member without interfering with adjacent stent segments.
34. A device as in claim 28, wherein the stent expansion member and the dilatation member are independently expandable.
35. A device as in claim 34, further including at least one inflation lumen for expanding the dilatation member.
36. A device as in claim 35, wherein the inflation lumen comprises a tubular member disposed concentrically over the sheath.
37. A device as in claim 35, wherein the inflation lumen comprises a tubular member coupled with and extending along the outer surface of the sheath.
38. A device as in claim 35, wherein the inflation lumen is disposed within a wall of the sheath.
39. A stent delivery device for delivering at least one stent to a treatment site, the device comprising:
a catheter shaft having a proximal end and a distal end;
at least one stent positionable on the catheter shaft;
at least one axially movable sheath disposed over the catheter shaft and stent;
an inner shaft slidably disposed within the catheter shaft; and a dilatation member coupled with a distal end of the inner shaft for dilating one or more lesions at the treatment site.
40. A device as in claim 39, further comprising a stent expansion member coupled with the catheter shaft near the distal end, the stent being positionable on the expansion member.
41. A device as in claim 40, wherein the dilatation member and the stent expansion member are separately expandable.
42. A device as in claim 39, wherein the stent comprises a plurality of separable stent segments.
43. A device as in claim 42, wherein the separable stent segments are axially movable relative to the catheter shaft.
44. A device as in claim 43, further including a pusher member for advancing the stent segments along the catheter shaft.
45. A device as in claim 42, wherein the sheath is configured to constrain expansion of a first plurality of the stent segments while allowing expansion of a second plurality of the stent segments.
46. A device as in claim 45, wherein the sheath further comprises at least one separation device for separating the first plurality of stent segments from the second plurality, thus allowing for expansion of a stent segment without interfering with adjacent stent segments.
47. A device as in claim 39, wherein the inner shaft comprises a tubular catheter shaft.
48. A device as in claim 39, wherein the inner shaft comprises a guidewire.
49. A device as in claim 39, wherein the inner shaft is slidable to expose at least part of the dilatation member out of the distal end of the catheter shaft, and wherein the inner shaft is slidable to retract the dilatation member to a position at least partially within the catheter shaft.
50. A device as in claim 49, wherein the dilatation member is expandable while only a portion is exposed out of the distal end of the catheter shaft.
51. A device as in claim 50, wherein the dilatation member is positionable relative to the catheter shaft to adjust a length of the exposed portion of the dilatation member to dilate a desired length of the lesion at the treatment site.
52. A device as in claim 39, further including at least one inflation lumen for expanding the dilatation member.
53. A device as in claim 52, wherein the inflation lumen comprises a tubular member disposed concentrically over the inner shaft.
54. A device as in claim 52, wherein the inflation lumen comprises an internal lumen disposed within the inner shaft.
55. A method for delivering at least one stent to a treatment site, the method comprising:
positioning a distal portion of a stent delivery catheter device at the treatment site, the stent delivery catheter carrying at least one stent;
expanding at least a portion of an expandable member on the catheter device to dilate at least a portion of a lesion at the treatment site;
selecting a deployable portion of the stent having a selected length; and expanding the deployable portion of the stent at the treatment site, an undeployed portion of the stent remaining in the delivery catheter.
56. A method as in claim 55, further comprising positioning the deployable portion of the stent over the expandable member.
57. A method as in claim 55, wherein expanding the deployable portion of the stent comprises expanding the expandable member.
58. A method as in claim 55, further comprising retracting a sheath disposed over the expandable member to expose at least the portion of the expandable member before dilating the lesion.
59. A method as in claim 58, wherein retracting the sheath also retracts the at least one stent relative to the expandable member.
60. A method as in claim 55, wherein the at least one stent comprises a plurality of stent segments, and wherein positioning at least the portion of the at least one stent over the expandable member comprises positioning at least one stent segment over the expandable member.
61. A method as in claim 60, wherein positioning the at least one stent segment over the expandable member comprises:
allowing the expandable member to return to an unexpanded form; and retracting the unexpanded expandable member to a position within the at least one stent segment.
62. A method as in claim 61, further comprising retracting a sheath disposed over the expandable member and the plurality of stent segments to expose at least the portion of the expandable member and stent segments thereon.
63. A method for delivering at least one stent segment to a treatment site, the method comprising:
positioning a distal portion of a stent delivery catheter device at the treatment site, the stent delivery catheter carrying at least one stent;
expanding at least a portion of an expandable member on the catheter device to dilate at least a portion of a lesion at the treatment site; and retracting a sheath on the catheter device to expose at least a portion of the at least one stent from within the sheath, the portion self-expanding at the treatment site.
64. A method as in claim 63, wherein the at least one stent comprises a plurality of stent segments, and wherein retracting the sheath exposes at least one of the stent segments to self-expand at the treatment site.
65. A method as in claim 64, further comprising, after retracting the sheath:
positioning the expandable member within the at least one self-expanded stent segment; and expanding at least a portion of the expandable member to further expand the stent segment.
66. A method as in claim 63, further comprising exposing the portion of the expandable member outside the sheath before the expanding step.
67. A method as in claim 66, further comprising retracting the portion of the expandable member to a position within the sheath after the expanding step.
68. A method as in claim 63, further comprising passing a fluid through the expandable member while the stent segments are disposed thereon, wherein the stent segments comprise a thermal shape memory material, and wherein passing the fluid changes the temperature of the stent segments.
69. A method as in claim 68, wherein the passed fluid is heated to a temperature higher than body temperature.
70. A method as in claim 68, wherein the passed fluid is cooled to a temperature lower than body temperature.
71. A method as in claim 68, wherein the portion of the expandable member is expanded using the fluid.
72. A method for delivering at least one stent to a treatment site, the method comprising:
positioning a distal portion of a stent delivery catheter device at the treatment site, the stent delivery catheter carrying at least one stent;
expanding at least a portion of a dilatation member of the catheter device to dilate at least a portion of a lesion at the treatment site; and expanding at least a portion of a stent expansion member of the catheter device to deploy at least a portion of the at least one stent at the treatment site.
73. A method as in claim 72, further comprising selecting a deployable portion of the stent, wherein the deployable portion is expanded by the stent expansion member while an undeployed portion of the stent remains unexpanded in the stent delivery catheter.
74. A method as in claim 72, wherein the at least one stent comprises a plurality of stent segments, and wherein deploying at least the portion comprises deploying at least one of the stent segments.
75. A method as in claim 72, wherein the dilatation member is disposed on an outer surface of a sheath slidably disposed over the stent and the stent expansion member.
76. A method as in claim 75, further comprising retracting the sheath to expose at least the portion of the stent expansion member and at least one stent.
77. A method as in claim 72, further comprising sliding an inner shaft of the catheter device distally relative to the stent expansion member to expose at least the portion of the dilatation member, wherein the dilatation member is disposed on the inner shaft.
78. A method as in claim 77, further comprising sliding the catheter body distally over the inner shaft to position the stent expansion member at the treatment site.
79. A method as in claim 77, further comprising re-expanding the dilatation member at the treatment site after the stent is deployed.
CA002558381A 2004-03-03 2005-03-02 Stent delivery apparatus and methods Abandoned CA2558381A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/794,405 2004-03-03
US10/794,405 US7351255B2 (en) 2001-12-03 2004-03-03 Stent delivery apparatus and method
PCT/US2005/007147 WO2005084382A2 (en) 2004-03-03 2005-03-02 Stent delivery apparatus and methods

Publications (1)

Publication Number Publication Date
CA2558381A1 true CA2558381A1 (en) 2005-09-15

Family

ID=34919756

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002558381A Abandoned CA2558381A1 (en) 2004-03-03 2005-03-02 Stent delivery apparatus and methods

Country Status (6)

Country Link
US (2) US7351255B2 (en)
EP (1) EP1771126B1 (en)
JP (1) JP2007526096A (en)
AU (1) AU2005218631A1 (en)
CA (1) CA2558381A1 (en)
WO (1) WO2005084382A2 (en)

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258230A3 (en) 2001-03-29 2003-12-10 CardioSafe Ltd Balloon catheter device
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US8080048B2 (en) * 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US7351255B2 (en) 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7147656B2 (en) 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US20030135266A1 (en) * 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
DE10233085B4 (en) * 2002-07-19 2014-02-20 Dendron Gmbh Stent with guide wire
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US7192440B2 (en) * 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US7403966B2 (en) * 2003-12-08 2008-07-22 Freescale Semiconductor, Inc. Hardware for performing an arithmetic function
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
AU2005260787A1 (en) 2004-06-28 2006-01-12 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US20050288766A1 (en) * 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US20060135983A1 (en) * 2004-12-16 2006-06-22 Cook Incorporated Catheter with tapered end balloon
US7402168B2 (en) * 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
US20060258981A1 (en) * 2005-04-27 2006-11-16 Tracee Eidenschink Balloon catheter with perfusion lumen
US8460357B2 (en) * 2005-05-31 2013-06-11 J.W. Medical Systems Ltd. In situ stent formation
US20060282149A1 (en) 2005-06-08 2006-12-14 Xtent, Inc., A Delaware Corporation Apparatus and methods for deployment of multiple custom-length prostheses (II)
WO2007033963A1 (en) * 2005-09-19 2007-03-29 Minvasys Apparatus and methods for protected angioplasty and stenting at a carotid bifurcation
US20070073391A1 (en) * 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
CA2625264C (en) 2005-10-13 2015-12-15 Synthes (U.S.A.) Drug-impregnated sleeve for a medical implant
US20070129682A1 (en) * 2005-12-02 2007-06-07 Tracee Eidenschink Guidewire with perfusion capability
US20070179587A1 (en) * 2006-01-30 2007-08-02 Xtent, Inc. Apparatus and methods for deployment of custom-length prostheses
EP1815821A1 (en) * 2006-02-02 2007-08-08 Dr. Karel Volenec - ELLA - CS Stent delivery system
CA2646885A1 (en) 2006-03-20 2007-09-27 Xtent, Inc. Apparatus and methods for deployment of linked prosthetic segments
US20070288183A1 (en) * 2006-06-07 2007-12-13 Cherik Bulkes Analog signal transition detector
WO2007146076A2 (en) * 2006-06-07 2007-12-21 Cherik Bulkes Biological tissue stimulator with flexible electrode carrier
US20070288077A1 (en) * 2006-06-07 2007-12-13 Cherik Bulkes Self-anchoring electrical lead with multiple electrodes
US8057528B2 (en) * 2006-06-20 2011-11-15 Cook Medical Technologies Llc Balloon-stent combination
US20080269865A1 (en) * 2006-08-07 2008-10-30 Xtent, Inc. Custom Length Stent Apparatus
WO2008030488A2 (en) * 2006-09-06 2008-03-13 Med Institute, Inc. Stents with connectors and stabilizing biodegradable elements
FR2911063B1 (en) 2007-01-09 2009-03-20 Stentys S A S Soc Par Actions RUPTIBLE BRIDGE STRUCTURE FOR STENT, AND STENT INCLUDING SUCH BRIDGE STRUCTURES.
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8052639B2 (en) * 2007-04-10 2011-11-08 Wilson David B Clampless anastomotic device
US20080255653A1 (en) * 2007-04-13 2008-10-16 Medtronic Vascular, Inc. Multiple Stent Delivery System and Method
US8366628B2 (en) * 2007-06-07 2013-02-05 Kenergy, Inc. Signal sensing in an implanted apparatus with an internal reference
US9427343B2 (en) 2007-06-22 2016-08-30 David L. Bogert Locked segments pushable stent-graft
US10154917B2 (en) * 2007-06-22 2018-12-18 C. R. Bard, Inc. Helical and segmented stent-graft
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
JP5290290B2 (en) * 2007-07-18 2013-09-18 シルク・ロード・メディカル・インコーポレイテッド Method and system for establishing regurgitation of carotid blood flow
DE102007040868A1 (en) * 2007-08-29 2009-04-16 Innora Gmbh Balloon catheter with protection against unfolding
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US20100256600A1 (en) * 2009-04-04 2010-10-07 Ferrera David A Neurovascular otw pta balloon catheter and delivery system
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US10022250B2 (en) 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US9375327B2 (en) 2007-12-12 2016-06-28 Intact Vascular, Inc. Endovascular implant
US9603730B2 (en) 2007-12-12 2017-03-28 Intact Vascular, Inc. Endoluminal device and method
US20110230954A1 (en) * 2009-06-11 2011-09-22 Peter Schneider Stent device having focal elevating elements for minimal surface area contact with lumen walls
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US7896911B2 (en) * 2007-12-12 2011-03-01 Innovasc Llc Device and method for tacking plaque to blood vessel wall
US8128677B2 (en) * 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US11589880B2 (en) 2007-12-20 2023-02-28 Angiodynamics, Inc. System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US10517617B2 (en) 2007-12-20 2019-12-31 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
ES2821762T3 (en) 2008-02-05 2021-04-27 Silk Road Medical Inc Interventional catheter system
ES2647310T3 (en) 2008-02-22 2017-12-20 Covidien Lp Device for flow restoration
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US20090264859A1 (en) * 2008-04-21 2009-10-22 Medtronic Vascular, Inc. Catheter Having a Selectively Expandable Distal Tip
EP2520320B1 (en) * 2008-07-01 2016-11-02 Endologix, Inc. Catheter system
US8828071B2 (en) 2008-09-25 2014-09-09 Advanced Bifurcation Systems, Inc. Methods and systems for ostial stenting of a bifurcation
AU2009296415B2 (en) 2008-09-25 2015-11-19 Advanced Bifurcation Systems Inc. Partially crimped stent
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
JP5466882B2 (en) * 2009-05-21 2014-04-09 川澄化学工業株式会社 Tubular treatment device placement device
AU2011232361B2 (en) 2010-03-24 2015-05-28 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
WO2011119884A1 (en) 2010-03-24 2011-09-29 Advanced Bifurcation Systems, Inc System and methods for treating a bifurcation
CN103037815B (en) 2010-03-24 2015-05-13 高级分支系统股份有限公司 Methods and systems for treating a bifurcation with provisional side branch stenting
US10039900B2 (en) * 2010-09-07 2018-08-07 Angiodynamics, Inc. Fluid delivery and treatment device and method of use
US9039749B2 (en) 2010-10-01 2015-05-26 Covidien Lp Methods and apparatuses for flow restoration and implanting members in the human body
US10449071B2 (en) * 2010-12-22 2019-10-22 Boston Scientific Scimed, Inc. Stent deployment system with integrated digital camera and dilation balloon
CA2826760A1 (en) 2011-02-08 2012-08-16 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
EP2672932B1 (en) 2011-02-08 2018-09-19 Advanced Bifurcation Systems, Inc. System for treating a bifurcation with a fully crimped stent
CN105232195B (en) 2011-03-01 2018-06-08 恩朵罗杰克斯股份有限公司 Delivery catheter system
US9055964B2 (en) 2011-03-15 2015-06-16 Angio Dynamics, Inc. Device and method for removing material from a hollow anatomical structure
JP5847160B2 (en) * 2011-03-25 2016-01-20 テルモ株式会社 Stent and stent delivery system
US10390977B2 (en) 2011-06-03 2019-08-27 Intact Vascular, Inc. Endovascular implant
US8734500B2 (en) 2011-09-27 2014-05-27 DePuy Synthes Products, LLC Distal detachment mechanisms for vascular devices
US9554904B2 (en) * 2011-09-28 2017-01-31 Medtronic CV Luxembourg S.a.r.l. Distal tip assembly for a heart valve delivery catheter
TWI590843B (en) 2011-12-28 2017-07-11 信迪思有限公司 Films and methods of manufacture
AU2013212056B2 (en) 2012-01-25 2016-07-21 Intact Vascular, Inc. Endoluminal device and method
US9005270B2 (en) 2012-03-27 2015-04-14 Medtronic Vascular, Inc. High metal to vessel ratio stent and method
US8911490B2 (en) 2012-03-27 2014-12-16 Medtronic Vascular, Inc. Integrated mesh high metal to vessel ratio stent and method
US10010436B2 (en) 2012-09-20 2018-07-03 Dotter Intellectual Pte, Ltd. Polymeric stent and methods of manufacturing the same
KR101231197B1 (en) * 2012-09-20 2013-02-07 썬텍 주식회사 Polymeric stent
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
EP3010560B1 (en) 2013-06-21 2020-01-01 DePuy Synthes Products, Inc. Films and methods of manufacture
US9192500B1 (en) 2015-01-29 2015-11-24 Intact Vascular, Inc. Delivery device and method of delivery
US9456914B2 (en) 2015-01-29 2016-10-04 Intact Vascular, Inc. Delivery device and method of delivery
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US20200100776A1 (en) * 2017-02-09 2020-04-02 Intuitive Surgical Operations, Inc. System and method of accessing encapsulated targets
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
US10441449B1 (en) 2018-05-30 2019-10-15 Vesper Medical, Inc. Rotary handle stent delivery system and method
CN108852575B (en) * 2018-07-11 2023-11-10 浙江巴泰医疗科技有限公司 Multisection application operating system of closed self-expansion unit bracket
CN108852570B (en) * 2018-07-11 2023-12-01 浙江巴泰医疗科技有限公司 Closed self-expansion unit bracket
US10449073B1 (en) 2018-09-18 2019-10-22 Vesper Medical, Inc. Rotary handle stent delivery system and method
US11648020B2 (en) 2020-02-07 2023-05-16 Angiodynamics, Inc. Device and method for manual aspiration and removal of an undesirable material
US11452629B2 (en) 2020-03-11 2022-09-27 Advanced Bifurcation Systems Inc. Stent retention
US11219541B2 (en) 2020-05-21 2022-01-11 Vesper Medical, Inc. Wheel lock for thumbwheel actuated device

Family Cites Families (425)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069825A (en) 1976-01-28 1978-01-24 Taichiro Akiyama Surgical thread and cutting apparatus for the same
US4564014A (en) 1980-01-30 1986-01-14 Thomas J. Fogarty Variable length dilatation catheter apparatus and method
US4468224A (en) 1982-01-28 1984-08-28 Advanced Cardiovascular Systems, Inc. System and method for catheter placement in blood vessels of a human patient
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US4891225A (en) 1984-05-21 1990-01-02 Massachusetts Institute Of Technology Bioerodible polyanhydrides for controlled drug delivery
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
DE3442736A1 (en) 1984-11-23 1986-06-05 Tassilo Dr.med. 7800 Freiburg Bonzel DILATATION CATHETER
US4770176A (en) 1985-07-12 1988-09-13 C. R. Bard, Inc. Vessel anastomosis using meltable stent
US4690684A (en) 1985-07-12 1987-09-01 C. R. Bard, Inc. Meltable stent for anastomosis
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4681110A (en) 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US5350395A (en) 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US5061273A (en) 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4775337A (en) 1986-12-02 1988-10-04 Universal Manufacturing Corporation Conductive wire with integral electrical terminal
US4748982A (en) 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
ES2043796T3 (en) 1987-02-27 1994-01-01 Bard Inc C R CATHETER AND CHUCK EXCHANGE SYSTEM.
US4988356A (en) 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5171222A (en) 1988-03-10 1992-12-15 Scimed Life Systems, Inc. Interlocking peel-away dilation catheter
US4994298A (en) 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US6730105B2 (en) 1988-07-29 2004-05-04 Samuel Shiber Clover leaf shaped tubular medical device
US5226913A (en) 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
US5092877A (en) 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US4994066A (en) 1988-10-07 1991-02-19 Voss Gene A Prostatic stent
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
DE68915150T2 (en) 1989-01-30 1994-10-13 Bard Inc C R Quickly replaceable coronary catheter.
US5217495A (en) 1989-05-10 1993-06-08 United States Surgical Corporation Synthetic semiabsorbable composite yarn
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
CA2026604A1 (en) 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5013318A (en) 1990-07-31 1991-05-07 Special Devices Incorporated Medical instrument for measuring depth of fastener hold in bone
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
AR246020A1 (en) 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms.
DE9116881U1 (en) 1990-10-09 1994-07-07 Cook Inc Percutaneous stent
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5533968A (en) 1991-05-15 1996-07-09 Advanced Cardiovascular Systems, Inc. Low profile catheter with expandable outer tubular member
US5135535A (en) * 1991-06-11 1992-08-04 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US5527354A (en) 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5976107A (en) 1991-07-05 1999-11-02 Scimed Life Systems. Inc. Catheter having extendable guide wire lumen
US5490837A (en) 1991-07-05 1996-02-13 Scimed Life Systems, Inc. Single operator exchange catheter having a distal catheter shaft section
DK0533960T3 (en) 1991-07-29 1995-01-30 Brandes Bernd Method for Detecting Leakages in Liquid Media Pipes
US5443498A (en) 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5628775A (en) 1991-11-08 1997-05-13 Ep Technologies, Inc. Flexible bond for sleeves enclosing a bendable electrode tip assembly
US5192297A (en) 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
CA2117386A1 (en) 1992-01-09 1993-07-22 Motasim M. Sirhan Guidewire replacement device
US5246421A (en) 1992-02-12 1993-09-21 Saab Mark A Method of treating obstructed regions of bodily passages
US5273536A (en) 1992-04-02 1993-12-28 Vicky Savas Tapered balloon catheter
US5201757A (en) 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
EP0596145B1 (en) 1992-10-31 1996-05-08 Schneider (Europe) Ag Disposition for implanting a self-expanding endoprothesis
US5336178A (en) 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
WO1994015549A1 (en) 1992-12-30 1994-07-21 Schneider (Usa) Inc. Apparatus for deploying body implantable stents
US5607463A (en) 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
CA2161776C (en) 1993-04-28 2005-12-20 Chandrashekhar P. Pathak Apparatus and methods for intraluminal photothermoforming
US5549553A (en) 1993-04-29 1996-08-27 Scimed Life Systems, Inc. Dilation ballon for a single operator exchange intravascular catheter or similar device
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5334187A (en) 1993-05-21 1994-08-02 Cathco, Inc. Balloon catheter system with slit opening handle
US5391172A (en) 1993-05-24 1995-02-21 Advanced Cardiovascular Systems, Inc. Stent delivery system with coaxial catheter handle
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5989280A (en) 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
US5445646A (en) 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5607444A (en) 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5549635A (en) 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
ATE166782T1 (en) 1994-02-25 1998-06-15 Fischell Robert STENT WITH A MULTIPLE CLOSED CIRCULAR STRUCTURES
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
EP0997115B1 (en) 1994-04-01 2003-10-29 Prograft Medical, Inc. Self-expandable stent and stent-graft and method of preparing them
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5478349A (en) 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
JP3647456B2 (en) 1994-04-29 2005-05-11 ボストン・サイエンティフィック・コーポレーション Medical artificial stent and method for producing the same
US5693085A (en) 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5456694A (en) 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
US5514093A (en) 1994-05-19 1996-05-07 Scimed Life Systems, Inc. Variable length balloon dilatation catheter
DE4418336A1 (en) 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5636641A (en) 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5723003A (en) 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5470315A (en) 1994-09-20 1995-11-28 Scimed Life Systems, Inc. Over-the-wire type balloon catheter with proximal hypotube
US5531735A (en) 1994-09-27 1996-07-02 Hercules Incorporated Medical devices containing triggerable disintegration agents
US5549563A (en) 1994-10-11 1996-08-27 Kronner; Richard F. Reinforcing insert for uterine manipulator
NL9500284A (en) * 1994-10-20 1996-06-03 Cordis Europ Catheter for stent implantation.
US5836964A (en) 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
CA2163823A1 (en) 1994-11-28 1996-05-29 Richard S. Stack System and method for delivering multiple stents
US5628755A (en) 1995-02-20 1997-05-13 Schneider (Europe) A.G. Balloon catheter and stent delivery system
US5735869A (en) 1994-11-30 1998-04-07 Schneider (Europe) A.G. Balloon catheter and stent delivery device
CA2163708C (en) 1994-12-07 2007-08-07 Robert E. Fischell Integrated dual-function catheter system for balloon angioplasty and stent delivery
US5549551A (en) 1994-12-22 1996-08-27 Advanced Cardiovascular Systems, Inc. Adjustable length balloon catheter
US5662675A (en) 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
ATE220308T1 (en) 1995-03-01 2002-07-15 Scimed Life Systems Inc LONGITUDONLY FLEXIBLE AND EXPANDABLE STENT
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
US5807398A (en) 1995-04-28 1998-09-15 Shaknovich; Alexander Shuttle stent delivery catheter
FR2733682B1 (en) 1995-05-04 1997-10-31 Dibie Alain ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5681347A (en) 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
WO1996037167A1 (en) 1995-05-25 1996-11-28 Raychem Corporation Stent assembly
US5639274A (en) 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
AU6093096A (en) 1995-06-06 1996-12-24 Corvita Corporation Endovascular measuring apparatus, loading and deployment means
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
AU5776696A (en) 1995-06-08 1997-01-09 Bard Galway Limited Bifurcated endovascular stent
JP3467916B2 (en) 1995-07-10 2003-11-17 松下電器産業株式会社 Transmission / reception method
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5797951A (en) 1995-08-09 1998-08-25 Mueller; Edward Gene Expandable support member
US5776141A (en) 1995-08-28 1998-07-07 Localmed, Inc. Method and apparatus for intraluminal prosthesis delivery
DE19531659C2 (en) 1995-08-29 1998-07-02 Ernst Peter Prof Dr M Strecker Stent
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5702418A (en) 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
WO1997010778A1 (en) 1995-09-18 1997-03-27 W.L. Gore & Associates, Inc. A delivery system for intraluminal vascular grafts
JP3725919B2 (en) 1995-09-26 2005-12-14 キーパー株式会社 Resin CVJ boots
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5749848A (en) 1995-11-13 1998-05-12 Cardiovascular Imaging Systems, Inc. Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US6090063A (en) 1995-12-01 2000-07-18 C. R. Bard, Inc. Device, system and method for implantation of filaments and particles in the body
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6579305B1 (en) 1995-12-07 2003-06-17 Medtronic Ave, Inc. Method and apparatus for delivery deployment and retrieval of a stent comprising shape-memory material
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6878161B2 (en) 1996-01-05 2005-04-12 Medtronic Vascular, Inc. Stent graft loading and deployment device and method
US5895398A (en) 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
US5749921A (en) 1996-02-20 1998-05-12 Medtronic, Inc. Apparatus and methods for compression of endoluminal prostheses
DE69729137T2 (en) * 1996-03-10 2005-05-12 Terumo K.K. Stent for implantation
US6334871B1 (en) 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
CA2199890C (en) 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US6533805B1 (en) 1996-04-01 2003-03-18 General Surgical Innovations, Inc. Prosthesis and method for deployment within a body lumen
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5709701A (en) 1996-05-30 1998-01-20 Parodi; Juan C. Apparatus for implanting a prothesis within a body passageway
US8728143B2 (en) 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
FR2749500B1 (en) * 1996-06-06 1998-11-20 Jacques Seguin DEVICE ALLOWING THE TREATMENT OF BODY DUCTS AT THE LEVEL OF A BIFURCATION
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US6190402B1 (en) * 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
DE69722720T2 (en) 1996-07-24 2004-05-13 Cordis Corp., Miami Lakes Balloon catheter and method of use
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
DE19630469C2 (en) 1996-07-27 2000-12-21 Michael Betzler Vascular endoprosthesis, especially for the endovascular treatment of aortic aneurysms
US6090136A (en) 1996-07-29 2000-07-18 Radiance Medical Systems, Inc. Self expandable tubular support
US5922020A (en) 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US5755781A (en) 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
US6217585B1 (en) 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
US6007517A (en) 1996-08-19 1999-12-28 Anderson; R. David Rapid exchange/perfusion angioplasty catheter
US6123712A (en) 1996-08-23 2000-09-26 Scimed Life Systems, Inc. Balloon catheter with stent securement means
US6007543A (en) * 1996-08-23 1999-12-28 Scimed Life Systems, Inc. Stent delivery system with stent securement means
JP3968444B2 (en) 1996-08-23 2007-08-29 ボストン サイエンティフィック サイムド,インコーポレイテッド Stent delivery mechanism with stent fixation device
US20030093143A1 (en) * 1999-03-01 2003-05-15 Yiju Zhao Medical device having surface depressions containing nitric oxide releasing compound
US5921971A (en) 1996-09-13 1999-07-13 Boston Scientific Corporation Single operator exchange biliary catheter
US6254628B1 (en) 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US5772669A (en) 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US5755776A (en) 1996-10-04 1998-05-26 Al-Saadon; Khalid Permanent expandable intraluminal tubular stent
US6086610A (en) * 1996-10-22 2000-07-11 Nitinol Devices & Components Composite self expanding stent device having a restraining element
US5843119A (en) * 1996-10-23 1998-12-01 United States Surgical Corporation Apparatus and method for dilatation of a body lumen and delivery of a prothesis therein
US7220275B2 (en) 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
WO1998020810A1 (en) 1996-11-12 1998-05-22 Medtronic, Inc. Flexible, radially expansible luminal prostheses
DE59610631D1 (en) * 1996-11-15 2003-09-04 Schneider Europ Gmbh Buelach Balloon catheter and stent delivery device
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US5858556A (en) 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
CN1626048B (en) 1997-01-24 2012-09-12 帕拉贡知识产权有限责任公司 Expandable device having bistable spring construction
JP3523765B2 (en) 1997-01-24 2004-04-26 テルモ株式会社 Living organ dilator
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
GB9703859D0 (en) * 1997-02-25 1997-04-16 Plante Sylvain Expandable intravascular stent
US6035856A (en) 1997-03-06 2000-03-14 Scimed Life Systems Percutaneous bypass with branching vessel
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
IL128261A0 (en) 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
US6852252B2 (en) 1997-03-12 2005-02-08 William Marsh Rice University Use of metalnanoshells to impede the photo-oxidation of conjugated polymer
US6344272B1 (en) 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US5817101A (en) 1997-03-13 1998-10-06 Schneider (Usa) Inc Fluid actuated stent delivery system
US5792144A (en) 1997-03-31 1998-08-11 Cathco, Inc. Stent delivery catheter system
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6143016A (en) 1997-04-21 2000-11-07 Advanced Cardiovascular Systems, Inc. Sheath and method of use for a stent delivery system
DE59711575D1 (en) 1997-06-10 2004-06-03 Schneider Europ Gmbh Buelach catheter system
US6004328A (en) 1997-06-19 1999-12-21 Solar; Ronald J. Radially expandable intraluminal stent and delivery catheter therefore and method of using the same
FR2764794B1 (en) 1997-06-20 1999-11-12 Nycomed Lab Sa EXPANDED TUBULAR DEVICE WITH VARIABLE THICKNESS
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US5899935A (en) 1997-08-04 1999-05-04 Schneider (Usa) Inc. Balloon expandable braided stent with restraint
US5984957A (en) 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US6306166B1 (en) 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
US6056722A (en) * 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
DE69838256T2 (en) 1997-09-24 2008-05-15 Med Institute, Inc., West Lafayette RADIAL EXPANDABLE STENT
US5972027A (en) 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5961536A (en) 1997-10-14 1999-10-05 Scimed Life Systems, Inc. Catheter having a variable length balloon and method of using the same
US6511468B1 (en) * 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
EP0917886B1 (en) * 1997-10-23 2003-10-01 Schneider (Europe) GmbH Seal for catheter assembly with dilation and occlusion balloon
NO311781B1 (en) 1997-11-13 2002-01-28 Medinol Ltd Metal multilayer stents
US6241691B1 (en) * 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6027519A (en) 1997-12-15 2000-02-22 Stanford; Ulf Harry Catheter with expandable multiband segment
US6022374A (en) 1997-12-16 2000-02-08 Cardiovasc, Inc. Expandable stent having radiopaque marker and method
US6159178A (en) 1998-01-23 2000-12-12 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6428811B1 (en) 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US6699724B1 (en) 1998-03-11 2004-03-02 Wm. Marsh Rice University Metal nanoshells for biosensing applications
US6425898B1 (en) 1998-03-13 2002-07-30 Cordis Corporation Delivery apparatus for a self-expanding stent
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6558415B2 (en) 1998-03-27 2003-05-06 Intratherapeutics, Inc. Stent
US6132460A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent
US6102942A (en) 1998-03-30 2000-08-15 Endovascular Technologies, Inc. Stent/graft deployment catheter with a stent/graft attachment mechanism
US6063111A (en) 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
IE980241A1 (en) 1998-04-02 1999-10-20 Salviac Ltd Delivery catheter with split sheath
US6037647A (en) 1998-05-08 2000-03-14 Fujitsu Limited Semiconductor device having an epitaxial substrate and a fabrication process thereof
US6036725A (en) 1998-06-10 2000-03-14 General Science And Technology Expandable endovascular support device
US6171334B1 (en) 1998-06-17 2001-01-09 Advanced Cardiovascular Systems, Inc. Expandable stent and method of use
DE19829702C1 (en) 1998-07-03 2000-03-16 Heraeus Gmbh W C Radially expandable support device V
WO2000012832A2 (en) 1998-08-26 2000-03-09 Molecular Geodesics, Inc. Radially expandable device
US6120522A (en) 1998-08-27 2000-09-19 Scimed Life Systems, Inc. Self-expanding stent delivery catheter
US5997563A (en) 1998-09-28 1999-12-07 Medtronic, Inc. Implantable stent having variable diameter
US6196995B1 (en) * 1998-09-30 2001-03-06 Medtronic Ave, Inc. Reinforced edge exchange catheter
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
US6293967B1 (en) 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
DE19855421C2 (en) 1998-11-02 2001-09-20 Alcove Surfaces Gmbh Implant
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
SG75982A1 (en) 1998-12-03 2000-10-24 Medinol Ltd Controlled detachment stents
US6340366B2 (en) 1998-12-08 2002-01-22 Bandula Wijay Stent with nested or overlapping rings
US6187034B1 (en) * 1999-01-13 2001-02-13 John J. Frantzen Segmented stent for flexible stent delivery system
US6022359A (en) 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6558414B2 (en) 1999-02-02 2003-05-06 Impra, Inc. Partial encapsulation of stents using strips and bands
US6248122B1 (en) 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
EP1156758B1 (en) 1999-02-26 2008-10-15 LeMaitre Vascular, Inc. Coiled stent
US6251134B1 (en) 1999-02-28 2001-06-26 Inflow Dynamics Inc. Stent with high longitudinal flexibility
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6613074B1 (en) 1999-03-10 2003-09-02 Cordis Corporation Endovascular aneurysm embolization device
US6379365B1 (en) 1999-03-29 2002-04-30 Alexis Diaz Stent delivery catheter system having grooved shaft
US6258117B1 (en) 1999-04-15 2001-07-10 Mayo Foundation For Medical Education And Research Multi-section stent
US6730116B1 (en) 1999-04-16 2004-05-04 Medtronic, Inc. Medical device for intraluminal endovascular stenting
US6273911B1 (en) 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6585756B1 (en) 1999-05-14 2003-07-01 Ernst P. Strecker Implantable lumen prosthesis
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6858034B1 (en) 1999-05-20 2005-02-22 Scimed Life Systems, Inc. Stent delivery system for prevention of kinking, and method of loading and using same
US6241758B1 (en) 1999-05-28 2001-06-05 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system and method of use
DE19938377A1 (en) 1999-08-06 2001-03-01 Biotronik Mess & Therapieg Stent for vascular branching
US6415696B1 (en) 1999-09-01 2002-07-09 Kennametal Pc Inc. Toolholder assembly
US6605062B1 (en) 1999-09-02 2003-08-12 Advanced Cardiovascular Systems, Inc. Catheter for guidewire support or exchange
US6383171B1 (en) * 1999-10-12 2002-05-07 Allan Will Methods and devices for protecting a passageway in a body when advancing devices through the passageway
EP1225935A4 (en) 1999-10-12 2009-07-29 Allan R Will Methods and devices for protecting a passageway in a body
US6409753B1 (en) 1999-10-26 2002-06-25 Scimed Life Systems, Inc. Flexible stent
US6325823B1 (en) 1999-10-29 2001-12-04 Revasc Corporation Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use
US6287291B1 (en) 1999-11-09 2001-09-11 Advanced Cardiovascular Systems, Inc. Protective sheath for catheters
US6428569B1 (en) 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
JP4473390B2 (en) 2000-01-07 2010-06-02 川澄化学工業株式会社 Stent and stent graft
US6322586B1 (en) 2000-01-10 2001-11-27 Scimed Life Systems, Inc. Catheter tip designs and method of manufacture
US6312458B1 (en) 2000-01-19 2001-11-06 Scimed Life Systems, Inc. Tubular structure/stent/stent securement member
JP2003521334A (en) 2000-02-04 2003-07-15 ウィルソン−クック メディカル インコーポレイテッド Stent introducer device
US6530944B2 (en) 2000-02-08 2003-03-11 Rice University Optically-active nanoparticles for use in therapeutic and diagnostic methods
US7373197B2 (en) 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
KR20030025222A (en) 2000-03-08 2003-03-28 기븐 이미징 리미티드 A device and system for in vivo imaging
DE10012460A1 (en) 2000-03-15 2001-09-20 Biotronik Mess & Therapieg Stent consists of several adjacent lengthwise tubular sections joined by first and second connections consisting of cell-type elements of one orientation.
US6264683B1 (en) 2000-03-17 2001-07-24 Advanced Cardiovascular Systems, Inc. Stent delivery catheter with bumpers for improved retention of balloon expandable stents
AUPQ641400A0 (en) 2000-03-23 2000-04-15 Kleiner, Daniel E. A device incorporating a hollow member for being positioned along a body cavity of a patient and method of positioning same
US6315708B1 (en) 2000-03-31 2001-11-13 Cordis Corporation Stent with self-expanding end sections
US6702843B1 (en) * 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US6964676B1 (en) 2000-04-14 2005-11-15 Scimed Life Systems, Inc. Stent securement system
US6825203B2 (en) 2000-04-28 2004-11-30 Memorial Sloan-Kettering Cancer Center Topical anesthetic/opioid formulations and uses thereof
US6451050B1 (en) 2000-04-28 2002-09-17 Cardiovasc, Inc. Stent graft and method
JP4939717B2 (en) 2000-05-02 2012-05-30 ウィルソン−クック メディカル インコーポレイテッド Catheter with reversible sleeve O.D. T.A. Introducing device for L
US6602282B1 (en) 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
JP4754714B2 (en) 2000-06-01 2011-08-24 テルモ株式会社 Intraluminal indwelling
US6569180B1 (en) 2000-06-02 2003-05-27 Avantec Vascular Corporation Catheter having exchangeable balloon
US6540775B1 (en) 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
US6555157B1 (en) * 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6529549B1 (en) * 2000-07-27 2003-03-04 2Wire, Inc. System and method for an equalizer-based symbol timing loop
US6773446B1 (en) 2000-08-02 2004-08-10 Cordis Corporation Delivery apparatus for a self-expanding stent
US6629992B2 (en) 2000-08-04 2003-10-07 Advanced Cardiovascular Systems, Inc. Sheath for self-expanding stent
AU2002212621A1 (en) 2000-09-14 2002-03-26 Tuborg Engineering Nv Adaptive balloon with improved flexibility
US6945989B1 (en) 2000-09-18 2005-09-20 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prostheses and methods of making and using them
JP5053501B2 (en) 2000-09-22 2012-10-17 ボストン サイエンティフィック リミテッド Flexible and expandable stent
US6589273B1 (en) 2000-10-02 2003-07-08 Impra, Inc. Apparatus and method for relining a blood vessel
US6602226B1 (en) 2000-10-12 2003-08-05 Scimed Life Systems, Inc. Low-profile stent delivery system and apparatus
WO2002059226A2 (en) 2000-11-03 2002-08-01 Wm. Marsh Rice University Partial coverage metal nanoshells and method of making same
US6582394B1 (en) * 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
US6743251B1 (en) * 2000-11-15 2004-06-01 Scimed Life Systems, Inc. Implantable devices with polymeric detachment junction
US6607553B1 (en) 2000-11-17 2003-08-19 B. Braun Medical, Inc. Method for deploying a thermo-mechanically expandable stent
US6582460B1 (en) 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US6884257B1 (en) 2000-11-28 2005-04-26 Advanced Cardiovascular Systems, Inc. Stent delivery system with adjustable length balloon
US6468298B1 (en) 2000-12-28 2002-10-22 Advanced Cardiovascular Systems, Inc. Gripping delivery system for self-expanding stents and method of using the same
DE10103000B4 (en) 2001-01-24 2007-08-30 Qualimed Innovative Medizinprodukte Gmbh Radially re-expandable vascular support
DE10105160B4 (en) 2001-02-06 2005-09-01 Osypka, Peter, Dr.-Ing. Implantable vascular support
US6540777B2 (en) 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
NZ540000A (en) 2001-02-16 2007-05-31 Abbott Lab Vascular Entpr Ltd Implants with tacrolimus
WO2002067816A1 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
AU2002250189A1 (en) 2001-02-26 2002-09-12 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US6790227B2 (en) 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
US20020123786A1 (en) 2001-03-02 2002-09-05 Ventrica, Inc. Methods and devices for bypassing an obstructed target vessel by placing the vessel in communication with a heart chamber containing blood
CA2708603C (en) 2001-03-13 2015-02-17 Yoram Richter Method and apparatus for stenting
US6592549B2 (en) 2001-03-14 2003-07-15 Scimed Life Systems, Inc. Rapid exchange stent delivery system and associated components
EP1258230A3 (en) 2001-03-29 2003-12-10 CardioSafe Ltd Balloon catheter device
US6660031B2 (en) 2001-04-11 2003-12-09 Scimed Life Systems, Inc. Multi-length delivery system
DE10216849B4 (en) * 2001-04-23 2015-11-05 Kyocera Corp. Toner and image forming method using the same
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
JP2002325046A (en) * 2001-04-25 2002-11-08 Alps Electric Co Ltd Filter switching circuit
US6676692B2 (en) 2001-04-27 2004-01-13 Intek Technology L.L.C. Apparatus for delivering, repositioning and/or retrieving self-expanding stents
GB0110551D0 (en) 2001-04-30 2001-06-20 Angiomed Ag Self-expanding stent delivery service
EP1254644A1 (en) 2001-05-01 2002-11-06 Pan Medical Limited Variable form stent and deployment arrangement for use therewith
US6749628B1 (en) 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US8337540B2 (en) 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
SE0101887L (en) 2001-05-30 2002-12-01 Jan Otto Solem Vascular instrument and method
US6599314B2 (en) 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
US6676693B1 (en) 2001-06-27 2004-01-13 Advanced Cardiovascular Systems, Inc. Apparatus and method for delivering a self-expanding stent
ES2266148T5 (en) 2001-07-20 2012-11-06 Sorin Biomedica Cardio S.R.L. Stent
US6599296B1 (en) 2001-07-27 2003-07-29 Advanced Cardiovascular Systems, Inc. Ratcheting handle for intraluminal catheter systems
US6679909B2 (en) * 2001-07-31 2004-01-20 Advanced Cardiovascular Systems, Inc. Rapid exchange delivery system for self-expanding stent
US20030045923A1 (en) * 2001-08-31 2003-03-06 Mehran Bashiri Hybrid balloon expandable/self expanding stent
US6796999B2 (en) 2001-09-06 2004-09-28 Medinol Ltd. Self articulating stent
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US20030055485A1 (en) 2001-09-17 2003-03-20 Intra Therapeutics, Inc. Stent with offset cell geometry
ATE519438T1 (en) 2001-09-26 2011-08-15 Rice University OPTICALLY ABSORBING NANOPARTICLES FOR IMPROVED TISSUE REPAIR
US6778316B2 (en) 2001-10-24 2004-08-17 William Marsh Rice University Nanoparticle-based all-optical sensors
JP4043216B2 (en) * 2001-10-30 2008-02-06 オリンパス株式会社 Stent
US6939376B2 (en) 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7682387B2 (en) 2002-04-24 2010-03-23 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
WO2007136946A2 (en) 2001-12-03 2007-11-29 Xtent, Inc. Delivery catheter having active engagement mechanism for prosthesis
US8080048B2 (en) 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US20030135266A1 (en) * 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7182779B2 (en) * 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US7351255B2 (en) 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7147656B2 (en) 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US7270668B2 (en) 2001-12-03 2007-09-18 Xtent, Inc. Apparatus and methods for delivering coiled prostheses
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7137993B2 (en) * 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20030114919A1 (en) * 2001-12-10 2003-06-19 Mcquiston Jesse Polymeric stent with metallic rings
US6991646B2 (en) 2001-12-18 2006-01-31 Linvatec Biomaterials, Inc. Method and apparatus for delivering a stent into a body lumen
WO2003053284A1 (en) 2001-12-20 2003-07-03 White Geoffrey H An intraluminal stent and graft
US7537607B2 (en) 2001-12-21 2009-05-26 Boston Scientific Scimed, Inc. Stent geometry for improved flexibility
AU2003205148A1 (en) 2002-01-16 2003-09-02 Eva Corporation Catheter hand-piece apparatus and method of using the same
US6939368B2 (en) 2002-01-17 2005-09-06 Scimed Life Systems, Inc. Delivery system for self expanding stents for use in bifurcated vessels
US6981985B2 (en) 2002-01-22 2006-01-03 Boston Scientific Scimed, Inc. Stent bumper struts
US6911040B2 (en) 2002-01-24 2005-06-28 Cordis Corporation Covered segmented stent
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
GB0206061D0 (en) 2002-03-14 2002-04-24 Angiomed Ag Metal structure compatible with MRI imaging, and method of manufacturing such a structure
US7052511B2 (en) 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Delivery system and method for deployment of foreshortening endoluminal devices
US6800065B2 (en) 2002-04-04 2004-10-05 Medtronic Ave, Inc. Catheter and guide wire exchange system
US20030195609A1 (en) 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
WO2003088848A2 (en) 2002-04-16 2003-10-30 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
US20040024450A1 (en) 2002-04-24 2004-02-05 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7470281B2 (en) 2002-04-26 2008-12-30 Medtronic Vascular, Inc. Coated stent with crimpable coating
US6645547B1 (en) 2002-05-02 2003-11-11 Labcoat Ltd. Stent coating device
WO2003101346A1 (en) 2002-05-29 2003-12-11 William A. Cook Australia Pty. Ltd. Multi-piece prosthesis deployment apparatus
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US20040015224A1 (en) 2002-07-22 2004-01-22 Armstrong Joseph R. Endoluminal expansion system
US6761734B2 (en) 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
US7141063B2 (en) 2002-08-06 2006-11-28 Icon Medical Corp. Stent with micro-latching hinge joints
US6945995B2 (en) 2002-08-29 2005-09-20 Boston Scientific Scimed, Inc. Stent overlap point markers
US8518096B2 (en) 2002-09-03 2013-08-27 Lifeshield Sciences Llc Elephant trunk thoracic endograft and delivery system
AU2003270070A1 (en) 2002-09-04 2004-03-29 Reva Medical, Inc. A slide and lock stent and method of manufacture from a single piece shape
US6893417B2 (en) 2002-09-20 2005-05-17 Medtronic Vascular, Inc. Catheter and guide wire exchange system with improved proximal shaft and transition section
JP4033747B2 (en) 2002-09-30 2008-01-16 テルモ株式会社 Biological organ expansion device
US7223283B2 (en) 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US6994721B2 (en) * 2002-10-21 2006-02-07 Israel Henry M Stent assembly
US7169172B2 (en) * 2002-11-01 2007-01-30 Counter Clockwise, Inc. Method and apparatus for caged stent delivery
CA2513721C (en) 2002-11-08 2013-04-16 Conor Medsystems, Inc. Method and apparatus for reducing tissue damage after ischemic injury
ITRM20020596A1 (en) 2002-11-27 2004-05-28 Mauro Ferrari IMPLANT VASCULAR PROSTHESIS WITH COMBINED, LAPAROSCOPIC AND ENDOVASCULAR TECHNIQUES, FOR THE TREATMENT OF ABDOMINAL AORTIC ANEURYSMS, AND OPERATIONAL EQUIPMENT FOR THE RELEASE OF A PROSTHESIS EQUIPPED WITH ANCHORING STENTS.
CA2506423C (en) 2002-12-04 2011-04-19 Cook Incorporated Method and device for treating aortic dissection
AU2003297832A1 (en) 2002-12-09 2004-06-30 Medtronic Vascular Modular stent having polymer bridges at modular unit contact sites
US6849084B2 (en) * 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US7314480B2 (en) 2003-02-27 2008-01-01 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery
EP1613242B1 (en) 2003-03-26 2013-02-20 The Foundry, LLC Devices for treatment of abdominal aortic aneurysms
ATE467402T1 (en) 2003-03-26 2010-05-15 Cardiomind Inc IMPLANT DEPOSIT CATHETER WITH ELECTROLYTICALLY DEGRADABLE COMPOUNDS
US7208001B2 (en) 2003-04-24 2007-04-24 Medtronic Vascular, Inc. Catheter with detached proximal inflation and guidewire shafts
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US7131993B2 (en) 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US7744620B2 (en) 2003-07-18 2010-06-29 Intervalve, Inc. Valvuloplasty catheter
US8784472B2 (en) 2003-08-15 2014-07-22 Boston Scientific Scimed, Inc. Clutch driven stent delivery system
US20050209674A1 (en) 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US20070219613A1 (en) 2003-10-06 2007-09-20 Xtent, Inc. Apparatus and methods for interlocking stent segments
US7553324B2 (en) 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US20050080475A1 (en) 2003-10-14 2005-04-14 Xtent, Inc. A Delaware Corporation Stent delivery devices and methods
US7192440B2 (en) 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US7175654B2 (en) 2003-10-16 2007-02-13 Cordis Corporation Stent design having stent segments which uncouple upon deployment
US20050085897A1 (en) 2003-10-17 2005-04-21 Craig Bonsignore Stent design having independent stent segments which uncouple upon deployment
US20060257558A1 (en) 2003-10-31 2006-11-16 Hiroshi Nomura Plasma polymerization of atomically modified surfaces
US7220755B2 (en) 2003-11-12 2007-05-22 Biosensors International Group, Ltd. 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
US7090694B1 (en) 2003-11-19 2006-08-15 Advanced Cardiovascular Systems, Inc. Portal design for stent for treating bifurcated vessels
US8157855B2 (en) 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
US7244336B2 (en) * 2003-12-17 2007-07-17 Lam Research Corporation Temperature controlled hot edge ring assembly for reducing plasma reactor etch rate drift
US9232948B2 (en) 2003-12-23 2016-01-12 Stryker Corporation Catheter with distal occlusion apparatus
US20070156225A1 (en) 2003-12-23 2007-07-05 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20050149168A1 (en) 2003-12-30 2005-07-07 Daniel Gregorich Stent to be deployed on a bend
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US20050222671A1 (en) 2004-03-31 2005-10-06 Schaeffer Darin G Partially biodegradable stent
US20050228477A1 (en) 2004-04-09 2005-10-13 Xtent, Inc. Topographic coatings and coating methods for medical devices
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US20050278011A1 (en) 2004-06-10 2005-12-15 Peckham John E Stent delivery system
JP4844394B2 (en) 2004-06-25 2011-12-28 日本ゼオン株式会社 Stent
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US7534449B2 (en) 2004-07-01 2009-05-19 Yale University Targeted and high density drug loaded polymeric materials
US20060069424A1 (en) 2004-09-27 2006-03-30 Xtent, Inc. Self-constrained segmented stents and methods for their deployment
EP1827304B1 (en) 2004-10-25 2011-04-20 Merit Medical Systems, Inc. Stent removal and repositioning device
US7402168B2 (en) 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
US8460357B2 (en) 2005-05-31 2013-06-11 J.W. Medical Systems Ltd. In situ stent formation
US7938851B2 (en) 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
US20060282149A1 (en) 2005-06-08 2006-12-14 Xtent, Inc., A Delaware Corporation Apparatus and methods for deployment of multiple custom-length prostheses (II)
US8021426B2 (en) 2005-06-15 2011-09-20 Ouroboros Medical, Inc. Mechanical apparatus and method for artificial disc replacement
JP4797473B2 (en) 2005-07-11 2011-10-19 ニプロ株式会社 Flexible stent with excellent expandability
US20080249607A1 (en) 2005-09-20 2008-10-09 Thomas Jay Webster Biocompatable Nanophase Materials
US20070179587A1 (en) 2006-01-30 2007-08-02 Xtent, Inc. Apparatus and methods for deployment of custom-length prostheses
CA2646885A1 (en) 2006-03-20 2007-09-27 Xtent, Inc. Apparatus and methods for deployment of linked prosthetic segments
WO2007124289A2 (en) 2006-04-21 2007-11-01 Xtent, Inc. Devices and methods for controlling and counting interventional elements
US20070281117A1 (en) 2006-06-02 2007-12-06 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
JP2009542319A (en) 2006-06-30 2009-12-03 ボストン サイエンティフィック リミテッド Stent with variable expansion column along circumference
US20080269865A1 (en) 2006-08-07 2008-10-30 Xtent, Inc. Custom Length Stent Apparatus
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US9370642B2 (en) 2007-06-29 2016-06-21 J.W. Medical Systems Ltd. Adjustable-length drug delivery balloon
US20090076584A1 (en) 2007-09-19 2009-03-19 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses

Also Published As

Publication number Publication date
US20080125850A1 (en) 2008-05-29
WO2005084382A3 (en) 2007-08-09
US7351255B2 (en) 2008-04-01
EP1771126B1 (en) 2019-01-23
EP1771126A4 (en) 2008-05-07
WO2005084382A2 (en) 2005-09-15
US8177831B2 (en) 2012-05-15
JP2007526096A (en) 2007-09-13
EP1771126A2 (en) 2007-04-11
US20040215312A1 (en) 2004-10-28
AU2005218631A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
EP1771126B1 (en) Stent delivery apparatus
US11439524B2 (en) Apparatus and methods for deployment of multiple custom-length prostheses (III)
EP2145609B1 (en) Apparatus for deployment of modular vascular prostheses
US8083788B2 (en) Apparatus and methods for positioning prostheses for deployment from a catheter

Legal Events

Date Code Title Description
FZDE Discontinued