CA2570416A1 - Receiver circuit using nanotube-based switches and logic - Google Patents

Receiver circuit using nanotube-based switches and logic Download PDF

Info

Publication number
CA2570416A1
CA2570416A1 CA002570416A CA2570416A CA2570416A1 CA 2570416 A1 CA2570416 A1 CA 2570416A1 CA 002570416 A CA002570416 A CA 002570416A CA 2570416 A CA2570416 A CA 2570416A CA 2570416 A1 CA2570416 A1 CA 2570416A1
Authority
CA
Canada
Prior art keywords
output
electrical communication
input
link
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002570416A
Other languages
French (fr)
Other versions
CA2570416C (en
Inventor
Claude L. Bertin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantero Inc
Original Assignee
Nantero, Inc.
Claude L. Bertin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantero, Inc., Claude L. Bertin filed Critical Nantero, Inc.
Publication of CA2570416A1 publication Critical patent/CA2570416A1/en
Application granted granted Critical
Publication of CA2570416C publication Critical patent/CA2570416C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/94Specified use of nanostructure for electronic or optoelectronic application in a logic circuit

Abstract

Receiver circuits using nanotube based switches and logic. Preferably, the circuits are dual-rail (differential). A receiver circuit(l.theta.) includes a differential input having a first and second input link (25, 25'), and a differential output having a first and second output link (30, 30'). First, second, third and fourth switching elements (15, 20, 35, 40) each have an input node, an output node, a nanotube channel element, and a control structure disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The receiver circuit can sense small voltage inputs and convert them to larger voltage swings.

Claims (6)

1. A receiver circuit, comprising:
a differential input having a first and second input link;

a differential output having a first and second output link;

first, second, third and fourth switching elements, each having an input node, an output node, a nanotube channel element, and a control structure disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node;

the control structure of the first switching element in electrical communication with the first input link, the input node being in electrical communication with a low reference voltage, and the output node being in electrical communication with the first output link;

the control structure of the second switching element in electrical communication with the second input link, the input node being in electrical communication with a low reference voltage, and the output node being in electrical communication with the second output link;

the output node of the third switching element in electrical communication with the first output link, the control structure being in electrical communication with the second output link and the input node being in electrical communication a high reference voltage;

the output node of the fourth switching element in electrical communication with the second output link, the control structure being in electrical communication with the first output link and the input node being in electrical communication a high reference voltage.
2. The receiver circuit of claim 1 wherein the high reference voltage is Vdd and the low reference voltage is ground.
3. The receiver circuit of claim 1 wherein the control structure of the first and second switching elements includes a set electrode and a release electrode, and wherein the first input link is coupled to the set electrode of the first switching element and the release electrode of the second switching element, and wherein the second input link is coupled to the set electrode of the second switching element and the release electrode of the first switching element.
4. The receiver circuit of claim 3 wherein the control structure of the third and fourth switching elements includes a set electrode and a release electrode, and wherein the first output link is coupled to the set electrode of the fourth switching element; wherein the second output link is coupled to the set electrode of the third switching element, and the release electrodes of the third and fourth switching elements are coupled to the high reference voltage.
5. The receiver circuit of claim 1 wherein the first and second switching elements are sized to be non-volatile switches.
6. The receiver circuit of claim 1 wherein the third and fourth switching elements are sized to be volatile switches.
CA2570416A 2004-06-18 2005-05-26 Receiver circuit using nanotube-based switches and logic Expired - Fee Related CA2570416C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US58107504P 2004-06-18 2004-06-18
US60/581,075 2004-06-18
US11/033,215 US7330709B2 (en) 2004-06-18 2005-01-10 Receiver circuit using nanotube-based switches and logic
US11/033,215 2005-01-10
PCT/US2005/018536 WO2006033681A2 (en) 2004-06-18 2005-05-26 Receiver circuit using nanotube-based switches and logic

Publications (2)

Publication Number Publication Date
CA2570416A1 true CA2570416A1 (en) 2006-03-30
CA2570416C CA2570416C (en) 2011-05-17

Family

ID=35481265

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2570416A Expired - Fee Related CA2570416C (en) 2004-06-18 2005-05-26 Receiver circuit using nanotube-based switches and logic

Country Status (3)

Country Link
US (2) US7330709B2 (en)
CA (1) CA2570416C (en)
WO (1) WO2006033681A2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US7858185B2 (en) 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
US7666382B2 (en) 2004-12-16 2010-02-23 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US7294877B2 (en) * 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
US7780918B2 (en) 2003-05-14 2010-08-24 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
JP2007502545A (en) 2003-08-13 2007-02-08 ナンテロ,インク. Nanotube-based exchange element with a plurality of control devices and circuit produced from said element
US7504051B2 (en) 2003-09-08 2009-03-17 Nantero, Inc. Applicator liquid for use in electronic manufacturing processes
US7375369B2 (en) 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7658869B2 (en) 2004-06-03 2010-02-09 Nantero, Inc. Applicator liquid containing ethyl lactate for preparation of nanotube films
US7652342B2 (en) * 2004-06-18 2010-01-26 Nantero, Inc. Nanotube-based transfer devices and related circuits
US7330709B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US8471238B2 (en) 2004-09-16 2013-06-25 Nantero Inc. Light emitters using nanotubes and methods of making same
US7567414B2 (en) 2004-11-02 2009-07-28 Nantero, Inc. Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
TWI324773B (en) 2005-05-09 2010-05-11 Nantero Inc Non-volatile shadow latch using a nanotube switch
US7598127B2 (en) * 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
US7575693B2 (en) * 2005-05-23 2009-08-18 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US7541216B2 (en) * 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
US7402770B2 (en) 2005-06-10 2008-07-22 Lsi Logic Corporation Nano structure electrode design
US7538040B2 (en) 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
US7446044B2 (en) 2005-09-19 2008-11-04 California Institute Of Technology Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same
US7858918B2 (en) * 2007-02-05 2010-12-28 Ludwig Lester F Molecular transistor circuits compatible with carbon nanotube sensors and transducers
US7838809B2 (en) 2007-02-17 2010-11-23 Ludwig Lester F Nanoelectronic differential amplifiers and related circuits having carbon nanotubes, graphene nanoribbons, or other related materials
US8222127B2 (en) * 2008-07-18 2012-07-17 Micron Technology, Inc. Methods of forming structures having nanotubes extending between opposing electrodes and structures including same
US8541843B2 (en) * 2008-08-14 2013-09-24 Nantero Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
KR101539669B1 (en) * 2008-12-16 2015-07-27 삼성전자주식회사 Method of forming core-shell type structure and method of manufacturing transistor using the same
KR101210277B1 (en) * 2008-12-23 2012-12-18 한국전자통신연구원 System for activity monitoring and information transmission method for activity monitoring
US8057239B2 (en) * 2009-04-29 2011-11-15 GM Global Technology Operations LLC Power module assembly
US8384239B2 (en) * 2009-07-16 2013-02-26 GM Global Technology Operations LLC DC source assemblies
US8227708B2 (en) * 2009-12-14 2012-07-24 Qualcomm Incorporated Via structure integrated in electronic substrate
US8435798B2 (en) 2010-01-13 2013-05-07 California Institute Of Technology Applications and methods of operating a three-dimensional nano-electro-mechanical resonator and related devices
AU2021347277B2 (en) 2020-09-25 2022-12-01 Cbn Nano Technologies Inc. Efficient and manufacturable mechanical computing

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH670914A5 (en) * 1986-09-10 1989-07-14 Landis & Gyr Ag
US5410267A (en) * 1993-09-24 1995-04-25 Intel Corporation 3.3 V to 5 V supply interface buffer
US5521531A (en) * 1993-12-13 1996-05-28 Nec Corporation CMOS bidirectional transceiver/translator operating between two power supplies of different voltages
US5486785A (en) * 1994-09-30 1996-01-23 Mitsubishi Semiconductor America, Inc. CMOS level shifter with feedforward control to prevent latching in a wrong logic state
US5537070A (en) * 1994-10-14 1996-07-16 Texas Instruments Incorporated Output driver with slew rate control
US5574389A (en) * 1995-08-09 1996-11-12 Taiwan Semiconductor Manufacturing Company Ltd. CMOS 3.3 volt output buffer with 5 volt protection
US6445006B1 (en) * 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same
US5867010A (en) * 1997-06-06 1999-02-02 International Business Machines Corporation Circuit and method for voltage level translation utilizing a bias generator
US5903010A (en) * 1997-10-29 1999-05-11 Hewlett-Packard Company Quantum wire switch and switching method
US6348700B1 (en) * 1998-10-27 2002-02-19 The Mitre Corporation Monomolecular rectifying wire and logic based thereupon
US6472705B1 (en) * 1998-11-18 2002-10-29 International Business Machines Corporation Molecular memory & logic
JP4658329B2 (en) 1999-02-12 2011-03-23 ボード オブ トラスティーズ,オブ ミシガン ステイト ユニバーシティ Nanocapsules containing charged particles, methods of use and formation thereof
US7030408B1 (en) * 1999-03-29 2006-04-18 Hewlett-Packard Development Company, L.P. Molecular wire transistor (MWT)
US6314019B1 (en) 1999-03-29 2001-11-06 Hewlett-Packard Company Molecular-wire crossbar interconnect (MWCI) for signal routing and communications
US6518156B1 (en) * 1999-03-29 2003-02-11 Hewlett-Packard Company Configurable nanoscale crossbar electronic circuits made by electrochemical reaction
US6128214A (en) * 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
AU782000B2 (en) * 1999-07-02 2005-06-23 President And Fellows Of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
US7072415B2 (en) * 1999-10-19 2006-07-04 Rambus Inc. Method and apparatus for generating multi-level reference voltage in systems using equalization or crosstalk cancellation
US6396329B1 (en) * 1999-10-19 2002-05-28 Rambus, Inc Method and apparatus for receiving high speed signals with low latency
WO2001044796A1 (en) 1999-12-15 2001-06-21 Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US7335603B2 (en) * 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
EP1170799A3 (en) 2000-07-04 2009-04-01 Infineon Technologies AG Electronic device and method of manufacture of an electronic device
DE10134866B4 (en) 2000-07-18 2005-08-11 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the process grown carbon nanotubes
US6495905B2 (en) * 2000-11-09 2002-12-17 Texas Instruments Incorporated Nanomechanical switches and circuits
US6423583B1 (en) 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
WO2002080360A1 (en) * 2001-03-30 2002-10-10 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
AU2002307129A1 (en) * 2001-04-03 2002-10-21 Carnegie Mellon University Electronic circuit device, system and method
US6673424B1 (en) * 2001-06-19 2004-01-06 Arizona Board Of Regents Devices based on molecular electronics
DE10134665C1 (en) 2001-07-20 2002-09-05 Infineon Technologies Ag Operating method for semiconductor element has differential resistance switched to lesser value above given current limit
US6911682B2 (en) * 2001-12-28 2005-06-28 Nantero, Inc. Electromechanical three-trace junction devices
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US7259410B2 (en) * 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6992938B1 (en) * 2001-12-06 2006-01-31 Virage Logic Corporation Methods and apparatuses for test circuitry for a dual-polarity non-volatile memory cell
US6784028B2 (en) * 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US20040132070A1 (en) 2002-01-16 2004-07-08 Nanomix, Inc. Nonotube-based electronic detection of biological molecules
US6894359B2 (en) * 2002-09-04 2005-05-17 Nanomix, Inc. Sensitivity control for nanotube sensors
WO2003063208A2 (en) 2002-01-18 2003-07-31 California Institute Of Technology Array-based architecture for molecular electronics
DE60301582T2 (en) 2002-02-09 2006-06-22 Samsung Electronics Co., Ltd., Suwon Carbon nanotube storage device and method of manufacturing the storage device
US7049625B2 (en) 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
US6760245B2 (en) * 2002-05-01 2004-07-06 Hewlett-Packard Development Company, L.P. Molecular wire crossbar flash memory
US6759693B2 (en) 2002-06-19 2004-07-06 Nantero, Inc. Nanotube permeable base transistor
US6809465B2 (en) * 2002-08-23 2004-10-26 Samsung Electronics Co., Ltd. Article comprising MEMS-based two-dimensional e-beam sources and method for making the same
WO2005004196A2 (en) * 2002-08-23 2005-01-13 Sungho Jin Article comprising gated field emission structures with centralized nanowires and method for making the same
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
JP4124635B2 (en) 2002-12-05 2008-07-23 シャープ株式会社 Semiconductor memory device and memory cell array erasing method
CN1720346B (en) 2003-01-13 2011-12-21 南泰若股份有限公司 Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
EP1585845A1 (en) 2003-01-13 2005-10-19 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
AU2003303765A1 (en) 2003-01-13 2004-08-13 Nantero, Inc. Carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6919740B2 (en) 2003-01-31 2005-07-19 Hewlett-Packard Development Company, Lp. Molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits, and more complex circuits composed, in part, from molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits
US6918284B2 (en) 2003-03-24 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Interconnected networks of single-walled carbon nanotubes
US7294877B2 (en) 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
US6982903B2 (en) 2003-06-09 2006-01-03 Nantero, Inc. Field effect devices having a source controlled via a nanotube switching element
KR100568425B1 (en) 2003-06-30 2006-04-05 주식회사 하이닉스반도체 Method of manufacturing bit line in a flash device
US7289357B2 (en) * 2003-08-13 2007-10-30 Nantero, Inc. Isolation structure for deflectable nanotube elements
US7115960B2 (en) * 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
JP2007502545A (en) * 2003-08-13 2007-02-08 ナンテロ,インク. Nanotube-based exchange element with a plurality of control devices and circuit produced from said element
CN101562049B (en) * 2003-08-13 2012-09-05 南泰若股份有限公司 Nanotube-based switching elements with multiple controls and circuits made thereof
WO2005017967A2 (en) * 2003-08-13 2005-02-24 Nantero, Inc. Nanotube device structure and methods of fabrication
US6890780B2 (en) 2003-10-10 2005-05-10 General Electric Company Method for forming an electrostatically-doped carbon nanotube device
US6969651B1 (en) 2004-03-26 2005-11-29 Lsi Logic Corporation Layout design and process to form nanotube cell for nanotube memory applications
JP2005285822A (en) 2004-03-26 2005-10-13 Fujitsu Ltd Semiconductor device and semiconductor sensor
US7329931B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
US7161403B2 (en) * 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US7330709B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US7164744B2 (en) * 2004-06-18 2007-01-16 Nantero, Inc. Nanotube-based logic driver circuits
US7109546B2 (en) * 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US6955937B1 (en) 2004-08-12 2005-10-18 Lsi Logic Corporation Carbon nanotube memory cell for integrated circuit structure with removable side spacers to permit access to memory cell and process for forming such memory cell
US8362525B2 (en) 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7655548B2 (en) * 2005-11-23 2010-02-02 Lsi Corporation Programmable power management using a nanotube structure

Also Published As

Publication number Publication date
CA2570416C (en) 2011-05-17
US20080197881A1 (en) 2008-08-21
US7720514B2 (en) 2010-05-18
US20050282516A1 (en) 2005-12-22
WO2006033681A3 (en) 2006-11-30
US7330709B2 (en) 2008-02-12
WO2006033681A2 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
CA2570416A1 (en) Receiver circuit using nanotube-based switches and logic
CA2570429A1 (en) Receiver circuit using nanotube-based switches and transistors
TW200625622A (en) Nanotube-based transfer devices and related circuits
WO2005084164A3 (en) Nanotube-based switching elements and logic circuits
WO2005048296A3 (en) Nanotube-based switching elements with multiple controls and circuits made from same
CA2570308A1 (en) Nanotube-based logic driver circuits
CA2570486A1 (en) Integrated nanotube and field effect switching device
CN101494451B (en) Switch circuit
MXPA05009600A (en) Multi-terminal chalcogenide switching devices.
JP2008518406A5 (en)
JP2018124550A5 (en) Semiconductor device
EP1594176A4 (en) Switching device
WO2007139793A3 (en) Multi-functional chalcogenide electronic devices having gain
CN102882498B (en) Resistance shares switching circuit
TW200733552A (en) Circuit device and substrate used in said circuit device
CN104579306A (en) Low-power phase inverter circuit
CN209134378U (en) Low-cost and high-performance switch tube driving circuit
CN101394173A (en) Single-knife dual-close switch based on reinforcement type PHEMT
CN109167592A (en) Low-cost and high-performance switch tube driving circuit
CN101420222A (en) Single-knife dual-close large power solid relay
CN107680961A (en) Use the silicon controlled rectifier (SCR) of independent and different bipolar variable holding voltages
CN114142842A (en) Positive and negative pressure bidirectional switch circuit
CN107742498B (en) Reference voltage circuit, reference voltage providing module and display device
WO2019091375A1 (en) Circuit having analog/digital conversion function and electronic device
CN203522158U (en) Battery protecting circuit with battery core balancing function and battery system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20130528