CA2626969A1 - Temperature limited heater with a conduit substantially electrically isolated from the formation - Google Patents

Temperature limited heater with a conduit substantially electrically isolated from the formation Download PDF

Info

Publication number
CA2626969A1
CA2626969A1 CA002626969A CA2626969A CA2626969A1 CA 2626969 A1 CA2626969 A1 CA 2626969A1 CA 002626969 A CA002626969 A CA 002626969A CA 2626969 A CA2626969 A CA 2626969A CA 2626969 A1 CA2626969 A1 CA 2626969A1
Authority
CA
Canada
Prior art keywords
formation
conduit
heat
heater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002626969A
Other languages
French (fr)
Other versions
CA2626969C (en
Inventor
Harold J. Vinegar
Chester Ledlie Sandberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij B.V.
Harold J. Vinegar
Chester Ledlie Sandberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V., Harold J. Vinegar, Chester Ledlie Sandberg filed Critical Shell Internationale Research Maatschappij B.V.
Publication of CA2626969A1 publication Critical patent/CA2626969A1/en
Application granted granted Critical
Publication of CA2626969C publication Critical patent/CA2626969C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/24Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by heating with electrical means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/281Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

A system for heating a hydrocarbon containing formation includes a conduit located in an opening in the formation. An electrical conductor is positioned inside the conduit. The electrical conductor forms a heater which is electrically isolated from the formation thereby reducing electrical losses to the formation and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the inside of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25 0C. The conduit is configured to generate heat and heat the formation during application of electrical current to the system.

Description

TEIVIPERATURE LIMITED HEATER WITH A CONDUIT SUBSTANTIALLY
ELECTRICALLY ISOLATED FROM THE FORMATION

BACKGROUND
1. Field of the Invention The present invention relates generally to methods and systems for production of hydrocarbons, hydrogen, and/or other products fronl various subsurface formations such as hydrocarbon containing formations. In particular, certain embodiments relate to heating a selected portion or portions of the formation using teniperature limited heaters with conduits that are electrically isolated from the formation.
2. Description of Related Art Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources and concerns over declining overall quality of produced hydrocarbons have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations. Chemical and/or physical properties of hydrocarbon material in a subteiranean formation may need to be changed to allow hydrocarbon material to be more easily removed from the subterranean formation. The chemical and physical changes may include in situ reactions that produce removable fluids, composition changes, solubility changes, density clianges, phase changes, and/or viscosity changes of the hydrocarbon material in the formation. A fluid may be, but is not limited to, a gas, a liquid, an emulsion, a slurry, and/or a stream of solid particles that has flow characteristics similar to liquid flow.
Heaters may be placed in wellbores to lieat a forniation during an in situ process. Examples of in situ processes utilizing downhole heaters are illustrated in U.S. Patent Nos.
2,634,961 to Ljungstrom;
2,732,195 to Ljungstronl; 2,780,450 to Ljungstrom; 2,789,805 to Ljungstrom;
2,923,535 to Ljungstrom; and 4,886,118 to Van Meurs et al.
Application of heat to oil shale formations is described in U.S. Patent Nos.
2,923,535 to Ljungstrom and 4,886,118 to Van Meurs et al. Heat may be applied to the oil shale formation to pyrolyze kerogen in the oil shale formation. The heat may also fracture the formation to increase permeability of the formation. The increased permeability may allow formation fluid to travel to a production well ivhere the fluid is removed from the oil shale formation. In some processes disclosed by Ljungstrom, for example, an oxygen containing gaseous medium is introduced to a permeable stratum, preferably while still hot from a preheating step, to initiate combustion.
A heat source may be used to heat a subterranean formation. Electric heaters may be used to heat the subterranean formation by radiation and/or conduction. An electric heater may resistively heat an element. U.S. Patent No. 2,548,360 to Germain describes an electric heating element placed in a viscous oil in a wellbore. The heater element heats and thins the oil to allow the oil to be pumped from the wellbore.
U.S. Patent No. 4,716,960 to Eastlund et al. describes electrically heating tubing of a petroleum well by passing a relatively low voltage current through the tubing to prevent formation of solids. U.S. Patent No.
5,065,818 to Van Egmond describes an electric heating element that is cemented into a well borehole without a casing surrounding the heating elenient.

"(7.S Pateri't 'Ko:"6;f~'~3;554 to Vinegar et al. describes an electric heating element that is positioned in a casing. The heating element generates radiant energy that heats the casing. A granular solid fill material may be placed between the casing and the formation. The casing may conductively heat the fill material, which in turn conductively heats the formation.
Some formations may have thin hydrocarbon layers or thin rich layers in a thick hydrocarbon layer.
It may be advantageous to use heaters that are electrically isolated from the formation for heating and/or treating these types of formations. Electrically isolating the heater from the formation reduces electrical losses to the formation and increases heating efficiency in the heater.
Electrically isolating the heater may also provide for safer operation of the heater. The heaters may be substantially u-shaped wellbores that reduce the number of openings on the surface of the formation. Reducing the number of openings may be desirable to reduce capital costs and/or reduce the impact of drilling openings in the formation (for example, the environmental impact and/or surface topography modifications).
SUMMARY
Embodiments described herein generally relate to systems, methods, and heaters for treating a subsurface formation. Embodiments described herein also generally relate to heaters that have novel components therein. Such heaters can be obtained by using the systems and methods described herein.
In certain embodiments, the invention provides one or more systems, methods, and/or heaters. In some embodiments, the systems, methods, and/or heaters are used for treating a subsurface formation.
In certain embodiments, the invention provides a system for heating a hydrocarbon containing formation, comprising: a conduit located in an opening in the formation, the conduit comprising ferromagnetic material; an electrical conductor positioned inside the conduit, and electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series and electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system; wherein, during application of electrical current to the system, the flow of electrons is substantially confined to the inside of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25 C; and the conduit is configured to generate heat and heat the formation during application of electrical current to the system.
In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments.
In further embodiments, treating a subsurface formation is performed using any of the methods, systems, or heaters described herein.
In further embodiments, additional features may be added to the specific embodiments described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description and upon reference to the accompanying drawings in which:
FIG. 1 depicts an illustration of stages of heating a hydrocarbon containing formation.

r'1Ci. 2 shows a schematic view of an embodiment of a portion of an in situ heat treatment system for treating a hydrocarbon containing formation.
FIG. 3 depicts an embodiment of a substantially u-shaped heater that electrically isolates itself from the formation.
FIG. 4 depicts an embodiment of a single-ended, substantially horizontal heater that electrically isolates itself from the formation.
FIG. 5 depicts an embodiment of a single-ended, substantially horizontal heater that electrically isolates itself from the formation using an insulated conductor as the center conductor.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail.
The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
DETAILED DESCRIPTION
The following description generally relates to systems and methods for treating hydrocarbons in the formations. Such formations may be treated to yield hydrocarbon products, hydrogen, and other products.
"Hydrocarbons" are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, kerogen, bitumen, pyrobitumen, oils, natural mineral waxes, and asphaltites. Hydrocarbons may be located in or adjacent to mineral matrices in the earth. Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. "Hydrocarbon fluids" are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids such as hydrogen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia.
A "formation" includes one or more hydrocarbon containing layers, one or more non-hydrocarbon layers, an overburden, and/or an underburden. The "overburden" and/or the "underburden" include one or more different types of impermeable materials. For example, overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate. In some embodiments of in situ heat treatment processes, the overburden and/or the underburden may include a hydrocarbon containing layer or hydrocarbon containing layers that are relatively impermeable and are not subjected to temperatures during in situ heat treatment processing that result in significant characteristic changes of the hydrocarbon containing layers of the overburden and/or the underburden. For example, the underburden may contain shale or mudstone, but the underburden is not allowed to heat to pyrolysis temperatures during the in situ heat treatment process. In some cases, the overburden and/or the underburden may be somewhat permeable.
"Formation fluids" and refer to fluids present in a formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbon, and water (steam). Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids. The term "mobilized fluid" refers to fluids in a hydrocarbon containing formation that are able to flow as a result of thermal treatment of the formation. "Produced fluids" refer to formation fluids removed from the formation.
"A"fibat source' is "aiiy system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer. For example, a heat source may include electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed in a conduit. A heat source may also include systems that generate heat by burning a fuel external to or in a formation. The systems may be surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors.
In some embodiments, heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer medium that directly or indirectly heats the formation. It is to be understood that one or more heat sources that are applying heat to a formation may use different sources of energy. Thus, for example, for a given formation some heat sources may supply heat from electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (for example, chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy). A chemical reaction may include an exothermic reaction (for example, an oxidation reaction). A
heat source may also include a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.
A "heater" is any system or heat source for generating heat in a well or a near wellbore region.
Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation, and/or combinations thereof.
An "in situ heat treatment process" refers to a process of heating a hydrocarbon containing formation with heat sources to raise the temperature of at least a portion of the formation above a mobilization, or visbreaking, or pyrolysis temperature so that mobilized fluids, visbroken fluids, or pyrolyzation fluids are procfuced in the formation.
"Insulated condvf;tor" refers to any elongated material that is able to conduct electricity and that is covered, in whole or in pact, by an electrically insulating material.
An elongated mernber may be a bare metal heater or an exposed metal heater.
"Bare metal" and "exposed metal" refer to rnetals that do not include a layer of electrical insulation, such as mineral insulation, that is designed to provide electrical insulation for the metal throughout an operating temperature range of the elongated member. Bare metal and exposed metal may encompass a metal that includes a corrosion inhibiter such as a naturally occurring oxidation layer, an applied oxidation layer, and/or a film. Bare metal and exposed metal include metals with polymeric or other types of electrical insulation that cannot retain electrical insulating properties at typical operating temperature of the elongated,member. Such material may be placed on the metal and may be thermally degraded during use of the heater.
"Temperature limited heater" generally refers to a heater that regulates heat output (for example, reduces heat output) above a specified temperature without the use of external controls such as temperature controllers, power regulators, rectifiers, or other devices. Temperature limited heaters may be AC
(alternating current) or modulated (for example, "chopped'') DC (direct current) powered electrical resistance heaters.
"Curie temperature" is the temperature above which a ferromagnetic material loses all of its ferromagnetic properties. In addition to losing all of its ferromagnetic properties above the Curie tdinperalure;'the fe"r'roiriagrielic material begins to lose its ferromagnetic properties when an increasing electrical current is passed through the ferromagnetic material.
"Time-varying current" refers to electrical current that produces skin effect electricity flow in a ferromagnetic conductor and has a magnitude that varies with time. Time-varying current includes both alternating current (AC) and modulated direct current (DC).
"Alternating current (AC)" refers to a time-varying current that reverses direction substantially sinusoidally. AC produces skin effect electricity flow in a ferromagnetic conductor.
"Modulated direct current (DC)" refers to any substantially non-sinusoidal time-varying current that produces skin effect electricity flow in a ferromagnetic conductor.
"Turndown ratio" for the temperature limited heater is the ratio of the highest AC or modulated DC
resistance below the Curie temperature to the lowest resistance above the Curie temperature for a given current.
In the context of reduced heat output heating systems, apparatus, and methods, the term "automatically" means such systems, apparatus, and methods function in a certain way without the use of external control (for example, external controllers such as a controller with a temperature sensor and a feedback loop, PID controller, or predictive controller).
The term "wellbore" refers to a hole in a formation made by drilling or insertion of a conduit into the formation. A wellbore may have a substantially circular cross section, or another cross-sectional shape.
As used herein, the terms "well" and "opening," when referring to an opening in the formation may be used interchangeably with the term "wellbore."
A "u-shaped wellbore" refers to a wellbore that extends from a first opening in the formation, through at least a portion of the formation, and out through a second opening in the formation. In this context, the wellbore may be only roughly in the shape of a "v" or "u", with the understanding that the "legs" of the "u" do not need to be parallel to each other, or perpendicular to the "bottom" of the "u" for the wellbore to be considered "u-shaped".
"Pyrolysis" is the breaking of chemical bonds due to the application of heat.
For example, pyrolysis may include transforming a compound into one or more other substances by heat alone. Heat may be transferred to a section of the formation to cause pyrolysis. In some formations, portions of the formation and/or other materials in the formation may promote pyrolysis through catalytic activity.
"Pyrolyzation fluids" or "pyrolysis products" refers to fluid produced substantially during pyrolysis of hydrocarbons. Fluid produced by pyrolysis reactions may mix with other fluids in a formation. The mixture would be considered pyrolyzation fluid or pyrolyzation product. As used herein, "pyrolysis zone"
refers to a volume of a formation (for example, a relatively permeable formation such as a tar sands formation) that is reacted or reacting to form a pyrolyzation fluid.
Hydrocarbons in formations may be treated in various ways to produce many different products. In certain embodiments, hydrocarbons in formations are treated in stages. FIG. 1 depicts an illustration of stages of heating the hydrocarbon containing formation. FIG. 1 also depicts an example of yield ("Y") in barrels of oil equivalent per ton (y axis) of formation fluids from the formation versus temperature ("T") of the heated formation in degrees Celsius (x axis).
"I7e's6rpti6ri of'fnet~'a"rie and vaporization of water occurs during stage 1 heating. Heating of the formation through stage 1 may be performed as quickly as possible. For example, when the hydrocarbon containing formation is initially heated, hydrocarbons in the formation desorb adsorbed methane. The desorbed methane may be produced from the formation. If the hydrocarbon containing formation is heated further, water in the hydrocarbon containing formation is vaporized. Water may occupy, in some hydrocarbon containing formations, between 10% and 50% of the pore volume in the formation. In other formations, water occupies larger or smaller portions of the pore volume.
Water typically is vaporized in a formation between 160 C and 285 C at pressures of 600 kPa absolute to 7000 kPa absolute. In some embodiments, the vaporized water produces wettability changes in the formation and/or increased formation pressure. The wettability changes and/or increased pressure may affect pyrolysis reactions or other reactions in the formation. In certain embodiments, the vaporized water is produced from the formation. In other embodiments, the vaporized water is used for steam extraction and/or distillation in the formation or outside the formation. Removing the water from and increasing the pore volume in the formation increases the storage space for hydrocarbons in the pore volume.
In certain embodiments, after stage 1 heating, the formation is heated further, such that a temperature in the formation reaches (at least) an initial pyrolyzation temperature (such as a temperature at the lower end of the temperature range shown as stage 2). Hydrocarbons in the formation may be pyrolyzed throughout stage 2. A pyrolysis temperature range varies depending on the types of hydrocarbons in the formation. The pyrolysis temperature range may include temperatures between 250 C and 900 C. The pyrolysis temperature range for producing desired products may extend through only a portion of the total pyrolysis temperature range. In some embodiments, the pyrolysis temperature range for producing desired products may include temperatures between 250 C and 400 C or temperatures between 270 C and 350 C.
If a temperature of hydrocarbons in the formation is slowly raised through the temperature'range from 250 C to 400 C, production of pyrolysis products may be substantially complete when the temperature approaches 400 C. Average temperature of the hydrocarbons may be raised at a rate of less than 5 C per day, less than 2 C per day, less than 1 C per day, or less than 0.5 C per day through the pyrolysis temperature range for producing desired products. Heating the hydrocarbon containing formation with a plurality of heat sources may establish thermal gradients around the heat sources that slowly raise the temperature of hydrocarbons in the formation through the pyrolysis temperature range.
The rate of temperature increase through the pyrolysis temperature range for desired products may affect the quality and quantity of the formation fluids produced from the hydrocarbon containing formation.
Raising the temperature slowly through the pyrolysis temperature range for desired products may inhibit mobilization of large chain molecules in the formation. Raising the temperature slowly through the pyrolysis temperature range for desired products may limit reactions between mobilized hydrocarbons that produce undesired products. Slowly raising the temperature of the formation through the pyrolysis temperature range for desired products may allow for the production of high quality, high API gravity hydrocarbons from the formation. Slowly raising the temperature of the formation through the pyrolysis temperature range for desired products may allow for the removal of a large amount of the hydrocarbons present in the formation as hydrocarbon product.
lri'some in sTtu rieat"treatment embodiments, a portion of the formation is heated to a desired temperature instead of slowly heating the temperature through a temperature range. In some embodiments, the desired temperature is 300 C, 325 C, or 350 C. Other temperatures may be selected as the desired temperature. Superposition of heat from heat sources allows the desired temperature to be relatively quickly and efficiently established in the formation. Energy input into the formation from the heat sources may be adjusted to maintain the temperature in the formation substantially at the desired temperature. The heated portion of the formation is maintained substantially at the desired temperature until pyrolysis declines such that production of desired formation fluids from the formation becomes uneconomical. Parts of the formation that are subjected to pyrolysis may include regions brought into a pyrolysis temperature range by heat transfer from only one heat source.
In certain embodiments, formation fluids including pyrolyzation fluids are produced from the formation. As the temperature of the formation increases, the amount of condensable hydrocarbons in the produced formation fluid may decrease. At high temperatures, the formation may produce mostly methane and/or hydrogen. If the hydrocarbon containing formation is heated throughout an entire pyrolysis range, the formation may produce only small amounts of hydrogen towards an upper limit of the pyrolysis range. After all of the available hydrogen is depleted, a minimal amount of fluid production from the formation will typically occur.
After pyrolysis of hydrocarbons, a large amount of carbon and some hydrogen may still be present in the formation. A significant portion of carbon remaining in the formation can be produced from the formation in the form of synthesis gas. Synthesis gas generation may take place during stage 3 heating depicted in FIG. 1. Stage 3 may include heating a hydrocarbon containing formation to a temperature sufficient to allow synthesis gas generation. For example, synthesis gas may be produced in a temperature range from about 400 C to about 1200 C, about 500 C to about 1100 C, or about 550 C to about 1000 C. The temperature of the heated portion of the formation when the synthesis gas generating fluid is introduced to the formation determines the composition of synthesis gas produced in the formation. The generated synthesis gas may be removed from the formation through a production well or production wells.
Total energy content of fluids produced from the hydrocarbon containing formation may stay relatively constant throughout pyrolysis and synthesis gas generation. During pyrolysis at relatively low formation temperatures, a significant portion of the produced fluid may be condensable hydrocarbons that have a high energy content. At higher pyrolysis temperatures, however, less of the formation fluid may include condensable hydrocarbons. More non-condensable formation fluids may be produced from the formation. Energy content per unit volume of the produced fluid may decline slightly during generation of predominantly non-condensable formation fluids. During synthesis gas generation, energy content per unit volume of produced synthesis gas declines significantly compared to energy content of pyrolyzation fluid.
The volume of the produced synthesis gas, however, will in many instances increase substantially, thereby compensating for the decreased energy content.
FIG. 2 depicts a schematic view of an embodiment of a portion of the in situ heat treatment system for treating the hydrocarbon containing formation. The in situ heat treatment system may include barrier wells 200. Barrier wells are used to form a barrier around a treatment area.
The barrier inhibits fluid flow into and/or out of the treatment area. Barrier wells include, but are not limited to, dewatering wells, vacuum weiis, capture weirs; injection wells, grout wells, freeze wells, or combinations thereof. In some embodiments, barrier wells 200 are dewatering wells. Dewatering wells may remove liquid water and/or inhibit liquid water from entering a portion of the formation to be heated, or to the formation being heated.
In the embodiment depicted in FIG. 2, the barrier wells 200 are shown extending only along one side of heat sources 202, but the barrier wells typically encircle all heat sources 202 used, or to be used, to heat a treatment area of the formation.
Heat sources 202 are placed in at least a portion of the formation. Heat sources 202 may include heaters such as insulated conductors, conductor-in-conduit heaters, surface burners, flameless distributed combustors, and/or natural distributed combustors. Heat sources 202 may also include other types of heaters. Heat sources 202 provide heat to at least a portion of the formation to heat hydrocarbons in the formation. Energy may be supplied to heat sources 202 through supply lines 204. Supply lines 204 may be structurally different depending on the type of heat source or heat sources used to heat the formation.
Supply lines 204 for heat sources may transmit electricity for electric heaters, may transport fuel for combustors, or may transport heat exchange fluid that is circulated in the formation.
Production wells 206 are used to remove formation fluid from the formation. In some embodiments, production wel1206 includes a heat source. The heat source in the production well may heat one or more portions of the formation at or near the production well. In some in situ heat treatment process embodiments, the amount of heat supplied to the formation from the production well per meter of the production well is less than the amount of heat applied to the formation from a heat source that heats the formation per meter of the heat source. Heat applied to the formation from the production well may increase formation permeability adjacent to the production well by vaporizing and removing liquid phase fluid adjacent to the production well and/or by increasing the permeability of the formation adjacent to the production well by formation of macro and/or micro fractures.
Formation fluid produced from production wells 206 may be transported through collection piping 208 to treatment facilities 210. Formation fluids may also be produced from heat sources 202. For example, fluid may be produced from heat sources 202 to control pressure in the formation adjacent to the heat sources. Fluid produced from heat sources 202 may be transported through tubing or piping to collection piping 208 or the produced fluid may be transported through tubing or piping directly to treatment facilities 210. Treatment facilities 210 may include separation units, reaction units, upgrading units, fuel cells, turbines, storage vessels, and/or other systems and units for processing produced formation fluids. The treatment facilities may form transportation fuel from at least a portion of the hydrocarbons produced from the formation. In some embodiments, the transportation fuel may be jet fuel, such as JP-8.
Temperature limited heaters may be in configurations and/or may include materials that provide automatic temperature limiting properties for the heater at certain temperatures. In certain embodiments, ferromagnetic materials are used in temperature limited heaters. Ferromagnetic material may self-limit temperature at or near the Curie temperature of the material to provide a reduced amount of heat at or near the Curie temperature when a time-varying current is applied to the material.
In certain embodiments, the ferromagnetic material self-limits temperature of the temperature limited heater at a selected temperature that is approximately the Curie temperature. In certain embodiments, the selected temperature is within 35 C, within 25 C, within 20 C, or within 10 C of the Curie temperature. In certain embodiments, terromagnetio'materials"a're cdupled with other materials (for example, highly conductive materials, high strength materials, corrosion resistant materials, or combinations thereof) to provide various electrical and/or mechanical properties. Some parts of the temperature limited heater may have a lower resistance (caused by different geometries and/or by using different ferromagnetic and/or non-ferromagnetic materials) than other parts of the temperature limited heater. Having parts of the temperature limited heater with various materials and/or dimensions allows for tailoring the desired heat output from each part of the heater.
Temperature limited heaters may be more reliable than other heaters.
Temperature limited heaters may be less apt to break down or fail due to hot spots in the formation. In some embodiments, temperature limited heaters allow for substantially uniform heating of the formation. In some embodiments, temperature limited heaters are able to heat the formation more efficiently by operating at a higher average heat output along the entire length of the heater. The temperature limited heater operates at the higher average heat output along the entire length of the heater because power to the heater does not have to be reduced to the entire heater, as is the case with typical constant wattage heaters, if a temperature along any point of the heater exceeds, or is to exceed, a maximum operating temperature of the heater. Heat output from portions of a temperature limited heater approaching a Curie temperature of the heater automatically reduces without controlled adjustment of the time-varying current applied to the heater. The heat output automatically reduces due to changes in electrical properties (for example, electrical resistance) of portions of the temperature limited heater. Thus, more power is supplied by the temperature limited heater during a greater portion of a heating process.
In certain embodiments, the system including temperature limited heaters initially provides a first heat output and then provides a reduced (second heat output) heat output, near, at, or above the Curie temperature of an electrically resistive portion of the heater when the temperature limited heater is energized' by a time-varying current. The first heat output is the heat output at temperatures below which the temperature limited heater begins to self-limit. In some embodiments, the first heat output is the heat output at a temperature 50 C, 75 C, 100 C, or 125 C below the Curie temperature of the ferromagnetic material in the temperature limited heater.
The temperature limited heater may be energized by time-varying current (alternating current or modulated direct current) supplied at the wellhead. The wellhead may include a power source and other components (for example, modulation components, transformers, and/or capacitors) used in supplying power to the temperature limited heater. The temperature limited heater may be one of many heaters used to heat a portion of the formation.
In certain embodiments, the temperature limited heater includes a conductor that operates as a skin effect or proximity effect heater when time-varying current is applied to the conductor. The skin effect limits the depth of current penetration into the interior of the conductor.
For ferromagnetic materials, the skin effect is dominated by the magnetic permeability of the conductor. The relative magnetic permeability of ferromagnetic materials is typically between 10 and 1000 (for example, the relative magnetic permeability of ferromagnetic materials is typically at least 10 and may be at least 50, 100, 500, 1000 or greater). As the temperature of the ferromagnetic material is raised above the Curie temperature and/or as the applied electrical current is increased, the magnetic permeability of the ferromagnetic material decreases substantially and the skin depth expands rapidly (for example, the skin depth expands as the inverse square root of t e magne'ic permeabi ity). The reduction in magnetic permeability results in a decrease in the AC
or modulated DC resistance of the conductor near, at, or above the Curie temperature and/or as the applied electrical current is increased. When the temperature limited heater is powered by a substantially constant current source, portions of the heater that approach, reach, or are above the Curie temperature may have reduced heat dissipation. Sections of the temperature limited heater that are not at or near the Curie temperature may be dominated by skin effect heating that allows the heater to have high heat dissipation due to a higher resistive load.
An advantage of using the temperature limited heater to heat hydrocarbons in the formation is that the conductor is chosen to have a Curie temperature in a desired range of temperature operation. Operation within the desired operating temperature range allows substantial heat injection into the formation while maintaining the temperature of the temperature limited heater, and other equipment, below design limit temperatures. Design limit temperatures are terriperatures at which properties such as corrosion, creep, and/or deformation are adversely affected. The temperature limiting properties of the temperature limited heater inhibits overheating or burnout of the heater adjacent to low thermal conductivity "hot spots" in the formation. In some embodiments, the temperature limited heater is able to lower or control heat output and/or withstand heat at temperatures above 25 C, 37 C, 100 C, 250 C, 500 C, 700 C, 800 C, 900 C, or higher up to 1131 C, depending on the materials used in the heater.
The temperature limited heater allows for more heat injection into the formation than constant wattage heaters because the energy input into the temperature limited heater does not have to be limited to accommodate low thermal conductivity regions adjacent to the heater. For example, in Green River oil shale there is a difference of at least a factor of 3 in the thermal conductivity of the lowest richness oil shale layers and the highest richness oil shale layers. When heating such a formation, substantially more heat is transferred to the formation with the temperature limited heater than with the conventional heater that is limited by the temperature at low thermal conductivity layers. The heat output along the entire length of the conventional heater needs to accommodate the low thermal conductivity layers so that the heater does not overheat at the low thermal conductivity layers and burn out. The heat output adjacent to the low thermal conductivity layers that are at high temperature will reduce for the temperature limited heater, but the remaining portions of the temperature limited heater that are not at high temperature will still provide high heat output. Because heaters for heating hydrocarbon formations typically have long lengths (for example, at least 10 m, 100 m, 300 m, at least 500 m, 1 km or more up to 10 km), the majority of the length of the temperature limited heater may be operating below the Curie temperature while only a few portions are at or near the Curie temperature of the temperature limited heater.
The use of temperature limited heaters allows for efficient transfer of heat to the formation.
Efficient transfer of heat allows for reduction in time needed to heat the formation to a desired temperature.
For example, in Green River oil shale, pyrolysis typically requires 9.5 years to 10 years of heating when using a 12 m heater well spacing with conventional constant wattage heaters.
For the same heater spacing, temperature limited heaters may allow a larger average heat output while maintaining heater equipment temperatures below equipment design limit temperatures. Pyrolysis in the formation may occur at an earlier time with the larger average heat output provided by temperature limited heaters than the lower average heat output provided by constant wattage heaters. For example, in Green River oil shale, pyrolysis may occur in S' yed'rs'Usirig'temper"a"ture limited heaters with a 12 m heater well spacing. Temperature limited heaters counteract hot spots due to inaccurate well spacing or drilling where heater wells come too close together.
In certain embodiments, temperature limited heaters allow for increased power output over time for heater wells that have been spaced too far apart, or limit power output for heater wells that are spaced too close together. Temperature limited heaters also supply more power in regions adjacent the overburden and underburden to compensate for temperature losses in these regions.
Temperature limited heaters may be advantageously used in many types of formations. For example, in tar sands formations or relatively permeable formations containing heavy hydrocarbons, temperature limited heaters may be used to provide a controllable low temperature output for reducing the viscosity of fluids, mobilizing fluids, and/or enhancing the radial flow of fluids at or near the wellbore or in the formation. Temperature limited heaters may be used to inhibit excess coke formation due to overheating of the near wellbore region of the formation.
The use of temperature limited heaters, in some embodiments, eliminates or reduces the need for expensive temperature control circuitry. For example, the use of temperature limited heaters eliminates or reduces the need to perform temperature logging and/or the need to use fixed thermocouples on the heaters to monitor potential overheating at hot spots.
In certain embodiments, the temperature limited heater is deformation tolerant. Localized movement of material in the wellbore may result in lateral stresses on the heater that could deform its shape.
Locations along a length of the heater at which the wellbore approaches or closes on the heater may be hot spots where a standard heater overheats and has the potential to burn out.
These hot spots may lower the yield strength and creep strength of the metal, allowing crushing or deformation of the heater. The temperature limited heater may be formed with S curves (or other non-linear shapes) that accommodate deformation of the temperature limited heater without causing failure of the heater.
In some embodiments, temperature limited heaters are more economical to manufacture or make than standard heaters. Typical ferromagnetic materials include iron, carbon steel, or ferritic stainless steel.
Such materials are inexpensive as compared to nickel-based heating alloys (such as nichrome, KanthalTM
(Bulten-Kanthal AB, Sweden), and/or LOHMTM (Driver-Harris Company, Harrison, New Jersey, U.S.A.)) typically used in insulated conductor (mineral insulated cable) heaters. In one embodiment of the temperature limited heater, the temperature limited heater is manufactured in continuous lengths as an insulated conductor heater to lower costs and improve reliability.
The ferromagnetic alloy or ferromagnetic alloys used in the temperature limited heater determine the Curie temperature of the heater. Curie temperature data for various metals is listed in "American Institute of Physics Handbook," Second Edition, McGraw-Hill, pages 5-170 through 5-176. Ferromagnetic conductors may include one or more of the ferromagnetic elements (iron, cobalt, and nickel) and/or alloys of these elements. In some embodiments, ferromagnetic conductors include iron-chromium (Fe-Cr) alloys that contain tungsten (W) (for example, HCM12A and SAVE12 (Sumitomo Metals Co., Japan) and/or iron alloys that contain chromium (for example, Fe-Cr alloys, Fe-Cr-W alloys, Fe-Cr-V
(vanadium) alloys, Fe-Cr-Nb (Niobium) alloys). Of the three main ferromagnetic elements, iron has a Curie temperature of 770 C; cobalt (Co) has a Curie temperature of 1131 C; and nickel has a Curie temperature of approximately 358 C. An iron-cobalt alloy has a Curie temperature higher than the Curie temperature of iron. For example, iron-c6balfal'1'oy"'w'ith 2 /"hy'weig'Fi'Mobalt has a Curie temperature of 800 C;
iron-cobalt alloy with 12% by weight cobalt has a Curie temperature of 900 C; and iron-cobalt alloy with 20% by weight cobalt has a Curie temperature of 950 C. Iron-nickel alloy has a Curie temperature lower than the Curie temperature of iron. For example, iron-nickel alloy with 20% by weight nickel has a Curie temperature of 720 C, and iron-nickel alloy with 60% by weight nickel has a Curie temperature of 560 C.
Some non-ferromagnetic elements used as alloys raise the Curie temperature of iron. For example, an iron-vanadium alloy with 5.9% by weight vanadium has a Curie temperature of approximately 815 C.
Other non-ferromagnetic elements (for example, carbon, aluminum, copper, silicon, and/or chromium) may be alloyed with iron or other ferromagnetic materials to lower the Curie temperature. Non-ferromagnetic materials that raise the Curie temperature may be combined with non-ferromagnetic materials that lower the Curie temperature and alloyed with iron or other ferromagnetic materials to produce a material with a desired Curie temperature and other desired physical and/or chemical properties. In some embodiments, the Curie temperature material is a ferrite such as NiFezO4. In other embodiments, the Curie temperature material is a binary compound such as. FeNi3 or Fe3AI.
Certain embodiments of temperature limited heaters may include more than one ferromagnetic material. Such embodiments are within the scope of embodiments described herein if any conditions described herein apply to at least one of the ferromagnetic materials in the temperature limited heater.
Ferromagnetic properties generally decay as the Curie temperature is approached. Thus, the self-limiting temperature may be somewhat below the actual Curie temperature of the ferromagnetic conductor.
Skin depth generally defines an effective penetration depth of time-varying current into the conductive material. In general, current density decreases exponentially with distance from an outer surface to the center along the radius of the conductor. The depth at which the current density is approximately 1/e of the surface current density is called the skin depth. The skin depth for current flow in 1% carbon steel is 0.132 cm at room temperature and increases to 0.445 em at 720 C. From 720 C to 730 C, the skin depth sharply increases to over 2.5 cm. Thus, a temperature limited heater embodiment using 1% carbon steel begins to self-limit between 650 C and 730 C.
For most metals, resistivity (p) increases with temperature. The relative magnetic permeability generally varies with temperature and with current. Additional equations may be used to assess the variance of magnetic permeability and/or skin depth on both temperature and/or current.
The dependence of on current arises from the dependence of on the electromagnetic field.
Materials used in the temperature limited heater may be selected to provide a desired turndown ratio. Turndown ratios of at least 1.1:1, 2:1, 3:1, 4:1, 5:1, 10:1, 30:1, or 50:1 may be selected for temperature limited heaters. Larger turndown ratios may also be used. A
selected turndown ratio may depend on a number of factors including, but not limited to, the type of formation in which the temperature limited heater is located (for example, a higher turndown ratio may be used for an oil shale formation with large variations in thermal conductivity between rich and lean oil shale layers) and/or a temperature limit of materials used in the wellbore (for example, temperature limits of heater materials). In some embodiments, the turndown ratio is increased by coupling additional copper or another good electrical conductor to the ferromagnetic material (for example, adding copper to lower the resistance above the Curie temperature).

TEe"tempe"ratu'reTiinited heater may provide a minimum heat output (power output) below the Curie temperature of the heater. In certain embodiments, the minimum heat output is at least 400 W/m (Watts per meter), 600 W/m, 700 W/m, 800 W/m, or higher up to 2000 W/m. The temperature limited heater reduces the amount of heat output by a section of the heater when the temperature of the section of the heater approaches or is above the Curie temperature. The reduced amount of heat may be substantially less than the heat output below the Curie temperature. In some embodiments, the reduced amount of heat is at most 400 W/m, 200 W/m, 100 W/m or may approach 0 W/m.
In some embodiments, AC frequency is adjusted to change the skin depth of the ferromagnetic material. For example, the skin depth of 1% carbon steel at room temperature is 0.132 cm at 60 Hz, 0.0762 cm at 180 Hz, and 0.046 cm at 440 Hz. Since heater diameter is typically larger than twice the skin depth, using a higher frequency (and thus a heater with a smaller diameter) reduces heater costs. For a fixed geometry, the higher frequency results in a higher turndown ratio. The turndown ratio at a higher frequency is calculated by multiplying the turndown ratio at a lower frequency by the square root of the higher frequency divided by the lower frequency. In some embodiments, a frequency between 100 Hz and 1000 Hz, between 140 Hz and 200 Hz, or between 400 Hz and 600 Hz is used (for example, 180 Hz, 540 Hz, or 720 Hz). In some embodiments, high frequencies may be used. The frequencies may be greater than 1000 Hz.
In certain embodiments, modulated DC (for example, chopped DC, waveform modulated DC, or cycled DC) may be used for providing electrical power to the temperature limited heater. A DC modulator or DC chopper may be coupled to a DC power supply to provide an output of modulated direct current. In some embodiments, the DC power supply may include means for modulating DC. One example of a DC
modulator is a DC-to-DC converter system. DC-to-DC converter systems are generally known in the art.
DC is typically modulated or chopped into a desired waveform. Waveforms for DC
modulation include, but are not limited to, square-wave, sinusoidal, deformed sinusoidal, deformed square-wave, triangular, and other regular or irregular waveforms.
The modulated DC waveform generally defines the frequency of the modulated DC.
Thus, the modulated DC waveform may be selected to provide a desired modulated DC
frequency. The shape and/or the rate of modulation (such as the rate of chopping) of the modulated DC
waveform may be varied to vary the modulated DC frequency. DC may be modulated at frequencies that are higher than generally available AC frequencies. For example, modulated DC may be provided at frequencies of at least 1000 Hz.
Increasing the frequency of supplied current to higher values advantageously increases the turndown ratio of the temperature limited heater.
In certain embodiments, the modulated DC waveform is adjusted or altered to vary the modulated DC frequency. The DC modulator may be able to adjust or alter the modulated DC
waveform at any time during use of the temperature limited heater and at high currents or voltages.
Thus, modulated DC provided to the temperature limited heater is not limited to a single frequency or even a small set of frequency values.
Waveform selection using the DC modulator typically allows for a wide range of modulated DC frequencies and for discrete control of the modulated DC frequency. Thus, the modulated DC
frequency is more easily set at a distinct value whereas AC frequency is generally limited to multiples of the line frequency. Discrete control of the modulated DC frequency allows for more selective control over the turndown ratio of the temperature limited heater. Being able to selectively control the turndown ratio of the temperature limited heater allows for a broader range of materials to be used in designing and constructing the temperature limited heater.
In some embodiments, the modulated DC frequency or the AC frequency is adjusted to compensate for changes in properties (for example, subsurface conditions such as temperature or pressure) of the temperature limited heater during use. The modulated DC frequency or the AC
frequency provided to the temperature limited heater is varied based on assessed downhole conditions.
For example, as the teniperature of the temperature limited heater in the wellbore increases, it may be advantageous to increase the frequency of the current provided to the heater, thus increasing the turndown ratio of the heater. In an embodiment, the downhole temperature of the temperature limited heater in the wellbore is assessed.
In certain embodiments, the modulated DC frequency, or the AC frequency, is varied to adjust the turndown ratio of the temperature limited heater. The turndown ratio may be adjusted to compensate for hot spots occurring along a length of the temperature limited heater. For example, the turndown ratio is increased because the temperature limited heater is getting too hot in certain locations. In some embodiments, the modulated DC frequency, or the AC frequency, are varied to adjust a turndown ratio without assessing a subsurface condition.
The Metals Handbook, vol. 8, page 291 (American Society of Materials (ASM)) includes a graph of Curie temperature of iron-chromium alloys versus the amount of chromium in the alloys. In some temperature limited heater embodiments, a separate support rod or tubular (made from 347H stainless steel) is coupled to the temperature limited heater made from an iron-chromium alloy to provide yield strength and/or creep resistance. In certain embodiments, the support material and/or the ferromagnetic material is selected to provide a 100,000 hour creep-rupture strength of at least 20.7 MPa at 650 C. In some embodiments, the 100,000 hour creep-rupture strength is at least 13.8 MPa at 650 C or at least 6.9 MPa at 650 C. For example, 347H steel has a favorable creep-rupture strength at or above 650 C. In some embodiments, the 100,000 hour creep-rupture strength ranges from 6.9 MPa to 41.3 MPa or more for longer heaters and/or higher earth or fluid stresses.
In certain embodiments, temperature limited heating elements are used in substantially horizontal sections of u-shaped wellbores. Substantially u-shaped wellbores may be used in tar sands formations, oil shale formation, or other formations with relatively thin hydrocarbon layers.
Tar sands or thin oil shale formations may have thin shallow layers that are more easily and uniformly heated using heaters placed in substantially u-shaped wellbores. Substantially u-shaped wellbores may also be used to process formations with thick hydrocarbon layers in formations. In some embodiments, substantially u-shaped wellbores are used to access rich layers in a thick hydrocarbon formation.
Heaters in substantially u-shaped wellbores may have long lengths compared to heaters in vertical wellbores because horizontal heating sections do not have problems with creep or hanging stress encountered with vertical heating elements. Substantially u-shaped wellbores may make use of natural seals in the formation and/or the limited thickness of the hydrocarbon layer. For example, the wellbores may be placed above or below natural seals in the formation without punching large numbers of holes in the natural seals, as would be needed with vertically oriented wellbores. Using substantially u-shaped wellbores instead of vertical wellbores may also reduce the number of wells needed to treat a surface footprint of the zormation. using iess weiis reauces capital costs for equipment and reduces the environmental impact of treating the formation by reducing the amount of wellbores on the surface and the amount of equipment on the surface. Substantially u-shaped wellbores may also utilize a lower ratio of overburden section to heated section than vertical wellbores.
Substantially u-shaped wellbores may allow for flexible placement of opening of the wellbores on the surface. Openings to the wellbores may be placed according to the surface topology of the formation. In certain embodiments, the openings of wellbores are placed at geographically accessible locations such as topological highs (for examples, hills). For example, the wellbore may have a first opening on a first topologic high and a second opening on a second topologic high and the wellbore crosses beneath a topologic low (for example, a valley with alluvial fill) between the first and second topologic highs. This placement of the openings may avoid placing openings or equipment in topologic lows or other inaccessible locations. In addition, the water level may not be artesian in topologically high areas. Wellbores may be drilled so that the openings are not located near environmentally sensitive areas such as, but not limited to, streams, nesting areas, or animal refuges.
In certain embodiments, a heater is electrically isolated from the formation because the heater has little or no voltage potential on the outside of the heater. FIG. 3 depicts an embodiment of a substantially u-shaped heater that electrically isolates itself from the formation. Heater 220 has a first end portion at a first opening on surface 216 and a second end portion at a second opening on the surface. In some embodiments, heater 220 has only the first end portion at the surface with the second end of the heater located in hydrocarbon layer 212 (the heater is a single-ended heater). FIGS. 4 and 5 depict embodiments of single-ended heaters that electrically isolate themselves from the formation. In certain embodiments, single-ended heater 220 has an elongated portion that is substantially horizontal in hydrocarbon layer 212, as shown in FIGS. 4 and 5. In some embodiments, single-ended heater 220 has an elongated portion with an orientation other than substantially horizontal in hydrocarbon layer 212. For example, the single-ended heater may have an elongated portion that is oriented 15 off horizontal in the hydrocarbon layer.
As shown in FIGS. 3-5, heater 220 includes heating element 218 located in hydrocarbon layer 212.
Heating element 218 may be a ferromagnetic conduit heating element or ferromagnetic tubular heating element. In certain embodiments, heating element 218 is a temperature limited heater tubular heating element. In certain embodiments, heating element 218 is a 9% by weight to 13%
by weight chromium stainless steel tubular such as a 410 stainless steel tubular, a T/P91 stainless steel tubular, or a T/P92 stainless steel tubular. In certain embodiments, heating element 218 includes ferromagnetic material with a wall thickness of at least about one skin depth of the ferromagnetic material at 25 C. In some embodiments, heating element 218 includes ferromagnetic material with a wall thickness of at least about two times the skin depth of the ferromagnetic material at 25 C, at least about three times the skin depth of the ferromagnetic material at 25 C, or at least about four times the skin depth of the ferromagnetic material at 25 C.
Heating element 218 is coupled to one or more sections 222. Sections 222 are located in overburden 214. Sections 222 include higher electrical conductivity materials such as copper or aluminum.
In certain embodiments, sections 222 are copper clad inside carbon steel.

"Cerite'r corid1Tct6'r"'226'i's' positioned inside heating element 218. In some embodiments, heating element 218 and center conductor 226 are placed or installed in the formation by unspooling the heating element and the center conductor from one or more spools while they are placed into the formation. In some embodiments, heating element 218 and center conductor 226 are coupled together on a single spool and unspooled as a single system with the center conductor inside the heating element. In some embodiments, heating element 218 and center conductor 226 are located on separate spools and the center conductor is positioned inside the heating element after the heating element is placed in the formation.
In certain embodiments, center conductor 226 is located at or near a center of heating element 218.
Center conductor 226 may be substantially electrically isolated from heating element 218 along a length of the center conductor (for example, the length of the center conductor in hydrocarbon layer 212). In certain embodiments, center conductor 226 is separated from heating element 218 by one or more electrically-insulating centralizers. The centralizers may include silicon nitride or another electrically insulating material. The centralizers may inhibit electrical contact between center conductor 226 and heating element 218 so that, for example, arcing or shorting between the center conductor and the heating element is inhibited. In some embodiments, center conductor 226 is a conductor (for example, a solid conductor or a tubular conductor) so that the heater is in a conductor-in-conduit configuration.
In certain embodiments, center conductor 226 is a copper rod or copper tubular. In some embodiments, center conductor 226 and/or heating element 218 has a thin electrically insulating layer to inhibit current leakage from the heating elements. In some embodiments, the thin electrically insulating layer is aluminum oxide or thermal spray coated aluminum oxide. In some embodiments, the thin electrically insulating layer is an enamel coating of a ceramic composition.
The thin electrically insulating layer may inhibit heating elements of a three-phase heater from leaking current between the elements, from leaking current into the formation, and from leaking current to other heaters in the formation. Thus, the three-phase heater may have a longer heater length.
In certain embodiments, center conductor 226 is an insulated conductor. The insulated conductor may include an electrically conductive core inside an electrically conductive sheath with electrical insulation between the core and the sheath. In certain embodiments, the insulated conductor includes a copper core inside a non-ferromagnetic stainless steel (for example, 347 stainless steel) sheath with magnesium oxide insulation between the core and the sheath. The core may be used to conduct electrical current through the insulated conductor. In some embodiments, the insulated conductor is placed inside heating element 218 without centralizers or spacers between the insulated conductor and the heating element. The sheath and the electrical insulation of the insulated conductor may electrically insulate the core from heating element 218 if the center conductor and the heating element touch. Thus, the core and heating element 218 are inhibit from electrically shorting to each other. The insulated conductor or another solid center conductor 226 may be inhibited from being crushed or deformed by heating element 218.In certain embodiments, one end portion of center conductor 226 is electrically coupled to one end portion of heating element 218 at surface 216 using electrical coupling 224, as shown in FIG. 3. In some embodiments, the end of center conductor 226 is electrically coupled to the end of heating element 218 in hydrocarbon layer 212 using electrical coupling 224, as shown in FIGS. 4 and 5. Thus, center conductor 226 is electrically coupled to heating element 218 in a series configuration in the embodiments depicted in FIGS. 3-5. In certain embodiments, center conductor 226 is the'Tnsu'1'af'd't1"d-6nductor and the core of the insulated conductor is electrically coupled to heating element 218 in the series configuration. Center conductor 226 is a return electrical conductor for heating element 218 so that current in the center conductor flows in an opposite direction from current in the heating element (as represented by arrows 228). The electromagnetic field generated by current flow in center conductor 226 substantially confines the flow of electrons and heat generation to the inside of heating element 218 (for example, the inside wall of the heating element) below the Curie temperature of the ferromagnetic material in the heating element. Thus, the outside of heating element 218 is at substantially zero potential and the heating element is electrically isolated from the formation and any adjacent heater or heating element at temperatures below the Curie temperature of the ferromagnetic material (for example, at 25 C). Having the outside of heating element 218 at substantially zero potential and the heating element electrically isolated from the formation and any adjacent heater or heating element allows for long length heaters to be used in hydrocarbon layer 212 without significant electrical (current) losses to the hydrocarbon layer. For example, heaters with lengths of at least about 100 m, at least about 500 m, or at least about 1000 m may be used in hydrocarbon layer 212.
During application of electrical current to heating element 218 and center conductor 226, heat is generated by the heater. In certain embodiments, heating element 218 generates a majority or all of the heat output of the heater. For example, when electrical current flows through ferromagnetic material in heating element 218 and copper or another low resistivity material in center conductor 226, the heating element generates a majority or all of the heat output of the heater. Generating a majority of the heat in the outer conductor (heating element 218) instead of center conductor 226 may increase the efficiency of heat transfer to the formation by allowing direct heat transfer from the heat generating element (heating element 218) to the formation and may reduce heat losses across heater 220 (for example, heat losses between the center conductor and the outer conductor if the center conductor is the heat generating element). Generating heat in heating element 218 instead of center conductor 226 also increases the heat generating surface area of heater 220. Thus, for the same operating temperature of heater 220, more heat can be provided to the formation using the outer conductor (heating element 218) as the heat generating element rather than center conductor 226.
In some embodiments, a fluid flows through heater 220 (represented by arrows 230 in FIGS. 3 and 4) to preheat the formation and/or to recover heat from the heating element.
In the embodiment depicted in FIG. 3, fluid flows from one end of heater 220 to the other end of the heater inside and through heating element 218 and outside center conductor 226, as shown by arrows 230. In the embodiment depicted in FIG.
4, fluid flows into heater 220 through center conductor 226, which is a tubular conductor, as shown by arrows 230. Center conductor 226 includes openings 232 at the end of the center conductor to allow fluid to exit the center conductor. Openings 232 may be perforations or other orifices that allow fluid to flow into and/or out of center conductor 226. Fluid then returns to the surface inside heating element 218 and outside center conductor 226, as shown by arrows 230.
Fluid flowing inside heater 220 (represented by arrows 230 in FIGS. 3 and 4) may be used to preheat the heater, to initially heat the formation, and/or to recover heat from the formation after heating is completed for the in situ heat treatment process. Fluids that may flow through the heater include, but are not limited to, air, water, steam, helium, carbon dioxide or other high heat capacity fluids. In some embodimeritg,'a hot fluid; ''siSdh'a's carbon dioxide, helium, or DOWTHERM
(The Dow Chemical Company, Midland, Michigan, U.S.A.), flows through the tubular heating elements to provide heat to the formation.
The hot fluid may be used to provide heat to the formation before electrical heating is used to provide heat to the formation. In some embodiments, the hot fluid is used to provide heat in addition to electrical heating.
Using the hot fluid to provide heat to or preheat the formation in addition to providing electrical heating may be less expensive than using electrical heating alone to provide heat to the formation. In some embodiments, water and/or steam flows through the tubular heating element to recover heat from the formation after in situ heat treatment of the formation. The heated water and/or steam may be used for solution mining and/or other processes.
Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. In addition, it is to be understood that features described herein independently may, in certain embodiments, be combined.

Claims (29)

1. A system for heating a hydrocarbon containing formation, comprising:
a conduit located in an opening in the formation, the conduit comprising ferromagnetic material;
an electrical conductor positioned inside the conduit, and electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series and electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system;
wherein, during application of electrical current to the system, the flow of electrons is substantially confined to the inside of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25 °C; and the conduit is configured to generate heat and heat the formation during application of electrical current to the system.
2. The system as claimed in claim 1, wherein the outside of the conduit is substantially electrically isolated from the formation.
3. The system as claimed in any of claims 1 or 2, wherein the conduit is proximate the formation.
4. The system as claimed in any of claims 1-3, wherein the conduit is proximate the formation such that heat generated in the conduit wall transfers to the formation.
5. The system as claimed in any of claims 1-4, wherein the conduit is configured to generate a majority of the heat output of the system.
6. The system as claimed in any of claims 1-5, wherein the conduit has an outer circumference that is greater than an outer circumference of the electrical conductor, and heat generated in the conduit wall transfers from the outer circumference of the conduit to the formation.
7. The system as claimed in any of claims 1-6, wherein the conduit has a wall thickness of at least one skin depth of the ferromagnetic material at 25 °C.
8. The system as claimed in any of claims 1-7, wherein the conduit is electrically isolated from at least one adjacent conduit located in the formation.
9. The system as claimed in any of claims 1-8, wherein the opening has a first end portion at a first location on the surface of the formation and a second end portion at a second location on the surface of the formation.
10. The system as claimed in any of claims 1-9, wherein a majority of the conduit is oriented substantially horizontally in a hydrocarbon layer of the formation.
11. The system as claimed in any of claims 1-10, wherein the electrical conductor is substantially electrically isolated from the conduit along a length of the conduit, and the electrical conductor is electrically coupled to the conduit near an end portion of the conduit.
12. The system as claimed in any of claims 1-11, wherein the system further comprises one or more centralizers to electrically separate the conduit from the electrical conductor.
13. The system as claimed in any of claims 1-12, wherein the system further comprises a thin electrically insulating layer on a surface of the conduit and/or on the outside surface of the electrical conductor.
14. The system as claimed in any of claims 1-13, wherein the conduit is configured to provide a first heat output below the Curie temperature of the ferromagnetic member, the conduit being configured to automatically provide a second heat output approximately at and above the Curie temperature of the ferromagnetic member, and the second heat output is reduced compared to the first heat output.
15. The system as claimed in any of claims 1-14, wherein the electrical conductor is an insulated conductor, the insulated conductor including an electrically conductive core inside an electrically conductive sheath with electrical insulation between the core and the sheath.
16. The system of claim 15, wherein the core is copper and the sheath is non-ferromagnetic stainless steel.
17. The system as claimed in any of claims 1-16, wherein the system has a turndown ratio of at least 2 to 1.
18. The system as claimed in any of claims 1-17, wherein the conduit has a length of at least 100 m, at least 500 m, or at least 1000 m and is in a hydrocarbon layer of the formation.
19. The system as claimed in any of claims 1-18, wherein the conduit is configured to allow a fluid to flow through the conduit to (a) preheat the conduit and the system and/or (b) recover heat from the system.
20. The system as claimed in any of claims 1-19, wherein the electrical conductor is a tubular conductor with openings at or near an end portion of the electrical conductor, the openings being configured to allow a fluid to flow between the inside of the electrical conductor and the conduit.
21. A method of heating a subsurface formation using the system in any of claims 1-20, the method comprising providing electrical current to the conduit to provide heat to at least a portion of the subsurface formation.
22. The method as claimed in claim 21, wherein the subsurface formation comprises hydrocarbons, the method further comprising allowing the heat to transfer to the formation such that at least some hydrocarbons are pyrolyzed in the formation.
23. The method as claimed in any of claims 21-22, further comprising providing a hot heat transfer fluid to the conduit to provide heat to the formation.
24. The method as claimed in 23, wherein the hot heat transfer fluid is heated water, steam, and/or heated carbon dioxide.
25. The method as claimed in any of claims 21-24, further comprising producing a fluid from the formation.
26. The method as claimed in any of claims 21-25, further comprising providing a fluid to the conduit to recover heat from the system.
27. A method of installing the system in any of claims 1-20 in the opening, the method comprising unspooling the conduit and the electrical conductor from one or more spools, and placing the conduit and the electrical conductor in the opening in the formation.
28. A composition comprising hydrocarbons produced from a subsurface formation using the system as claimed in any of claims 1-20, or using the methods as claimed in any of claims 21-27.
29. A transportation fuel comprising hydrocarbons made from the composition as claimed in claim 28.
CA2626969A 2005-10-24 2006-10-20 Temperature limited heater with a conduit substantially electrically isolated from the formation Active CA2626969C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US72976305P 2005-10-24 2005-10-24
US60/729,763 2005-10-24
US79429806P 2006-04-21 2006-04-21
US60/794,298 2006-04-21
PCT/US2006/041122 WO2007050469A1 (en) 2005-10-24 2006-10-20 Temperature limited heater with a conduit substantially electrically isolated from the formation

Publications (2)

Publication Number Publication Date
CA2626969A1 true CA2626969A1 (en) 2007-05-03
CA2626969C CA2626969C (en) 2014-06-10

Family

ID=37736147

Family Applications (9)

Application Number Title Priority Date Filing Date
CA002626319A Abandoned CA2626319A1 (en) 2005-10-24 2006-10-20 Systems, methods and processes for use in treating subsurface formations
CA2626965A Expired - Fee Related CA2626965C (en) 2005-10-24 2006-10-20 Methods of cracking a crude product to produce additional crude products
CA2626972A Expired - Fee Related CA2626972C (en) 2005-10-24 2006-10-20 Solution mining systems and methods for treating hydrocarbon containing formations
CA2626962A Expired - Fee Related CA2626962C (en) 2005-10-24 2006-10-20 Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
CA2626905A Expired - Fee Related CA2626905C (en) 2005-10-24 2006-10-20 Systems and methods for producing hydrocarbons from tar sands with heat created drainage paths
CA2626946A Active CA2626946C (en) 2005-10-24 2006-10-20 Cogeneration systems and processes for treating hydrocarbon containing formations
CA2626970A Expired - Fee Related CA2626970C (en) 2005-10-24 2006-10-20 Methods of hydrotreating a liquid stream to remove clogging compounds
CA2626959A Expired - Fee Related CA2626959C (en) 2005-10-24 2006-10-20 Methods of filtering a liquid stream produced from an in situ heat treatment process
CA2626969A Active CA2626969C (en) 2005-10-24 2006-10-20 Temperature limited heater with a conduit substantially electrically isolated from the formation

Family Applications Before (8)

Application Number Title Priority Date Filing Date
CA002626319A Abandoned CA2626319A1 (en) 2005-10-24 2006-10-20 Systems, methods and processes for use in treating subsurface formations
CA2626965A Expired - Fee Related CA2626965C (en) 2005-10-24 2006-10-20 Methods of cracking a crude product to produce additional crude products
CA2626972A Expired - Fee Related CA2626972C (en) 2005-10-24 2006-10-20 Solution mining systems and methods for treating hydrocarbon containing formations
CA2626962A Expired - Fee Related CA2626962C (en) 2005-10-24 2006-10-20 Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
CA2626905A Expired - Fee Related CA2626905C (en) 2005-10-24 2006-10-20 Systems and methods for producing hydrocarbons from tar sands with heat created drainage paths
CA2626946A Active CA2626946C (en) 2005-10-24 2006-10-20 Cogeneration systems and processes for treating hydrocarbon containing formations
CA2626970A Expired - Fee Related CA2626970C (en) 2005-10-24 2006-10-20 Methods of hydrotreating a liquid stream to remove clogging compounds
CA2626959A Expired - Fee Related CA2626959C (en) 2005-10-24 2006-10-20 Methods of filtering a liquid stream produced from an in situ heat treatment process

Country Status (14)

Country Link
US (14) US7556096B2 (en)
EP (8) EP1941003B1 (en)
JP (8) JP5441412B2 (en)
KR (9) KR101434248B1 (en)
AT (1) ATE499428T1 (en)
AU (9) AU2006306471B2 (en)
CA (9) CA2626319A1 (en)
DE (1) DE602006020314D1 (en)
EA (8) EA012941B1 (en)
GB (1) GB2451311A (en)
IL (8) IL190658A (en)
MA (8) MA29956B1 (en)
NZ (9) NZ567415A (en)
WO (9) WO2007050476A1 (en)

Families Citing this family (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081239A2 (en) 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation
AU2002257221B2 (en) 2001-04-24 2008-12-18 Shell Internationale Research Maatschappij B.V. In situ recovery from a oil shale formation
NZ532089A (en) 2001-10-24 2005-09-30 Shell Int Research Installation and use of removable heaters in a hydrocarbon containing formation
DE10245103A1 (en) * 2002-09-27 2004-04-08 General Electric Co. Control cabinet for a wind turbine and method for operating a wind turbine
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
NZ567052A (en) 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
US8296968B2 (en) * 2003-06-13 2012-10-30 Charles Hensley Surface drying apparatus and method
US7552762B2 (en) * 2003-08-05 2009-06-30 Stream-Flo Industries Ltd. Method and apparatus to provide electrical connection in a wellhead for a downhole electrical device
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
DE102004025528B4 (en) * 2004-05-25 2010-03-04 Eisenmann Anlagenbau Gmbh & Co. Kg Method and apparatus for drying coated articles
US7024796B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US20070084077A1 (en) * 2004-07-19 2007-04-19 Gorbell Brian N Control system for gas turbine in material treatment unit
DE102005000782A1 (en) * 2005-01-05 2006-07-20 Voith Paper Patent Gmbh Drying cylinder for use in the production or finishing of fibrous webs, e.g. paper, comprises heating fluid channels between a supporting structure and a thin outer casing
US8224165B2 (en) * 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
AU2006239999B2 (en) 2005-04-22 2010-06-17 Shell Internationale Research Maatschappij B.V. In situ conversion process systems utilizing wellbores in at least two regions of a formation
EP1941003B1 (en) * 2005-10-24 2011-02-23 Shell Internationale Research Maatschappij B.V. Methods of filtering a liquid stream produced from an in situ heat treatment process
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US20070163316A1 (en) * 2006-01-18 2007-07-19 Earthrenew Organics Ltd. High organic matter products and related systems for restoring organic matter and nutrients in soil
US7445041B2 (en) * 2006-02-06 2008-11-04 Shale And Sands Oil Recovery Llc Method and system for extraction of hydrocarbons from oil shale
US7484561B2 (en) * 2006-02-21 2009-02-03 Pyrophase, Inc. Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations
US7931080B2 (en) * 2006-02-24 2011-04-26 Shale And Sands Oil Recovery Llc Method and system for extraction of hydrocarbons from oil sands
US20090173491A1 (en) * 2006-02-24 2009-07-09 O'brien Thomas B Method and system for extraction of hydrocarbons from oil shale and limestone formations
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7775281B2 (en) * 2006-05-10 2010-08-17 Kosakewich Darrell S Method and apparatus for stimulating production from oil and gas wells by freeze-thaw cycling
US7426926B2 (en) * 2006-05-31 2008-09-23 Ford Global Technologies, Llc Cold idle adaptive air-fuel ratio control utilizing lost fuel approximation
US20070281224A1 (en) * 2006-05-31 2007-12-06 Kerry Arthur Kirk Scratch-off document and method for producing same
NO325979B1 (en) * 2006-07-07 2008-08-25 Shell Int Research System and method for dressing a multiphase source stream
CA2664321C (en) 2006-10-13 2014-03-18 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
CA2663650A1 (en) 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Improved method of developing a subsurface freeze zone using formation fractures
WO2008048456A2 (en) 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
GB2455947B (en) 2006-10-20 2011-05-11 Shell Int Research Heating hydrocarbon containing formations in a checkerboard pattern staged process
DE102007008292B4 (en) * 2007-02-16 2009-08-13 Siemens Ag Apparatus and method for recovering a hydrocarbonaceous substance while reducing its viscosity from an underground deposit
US8608942B2 (en) * 2007-03-15 2013-12-17 Kellogg Brown & Root Llc Systems and methods for residue upgrading
BRPI0808508A2 (en) 2007-03-22 2014-08-19 Exxonmobil Upstream Res Co METHODS FOR HEATING SUB-SURFACE FORMATION AND ROCK FORMATION RICH IN ORGANIC COMPOUNDS, AND METHOD FOR PRODUCING A HYDROCARBON FLUID
CA2675780C (en) 2007-03-22 2015-05-26 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US7950458B2 (en) * 2007-03-26 2011-05-31 J. I. Livingstone Enterprises Ltd. Drilling, completing and stimulating a hydrocarbon production well
GB2460980B (en) 2007-04-20 2011-11-02 Shell Int Research Controlling and assessing pressure conditions during treatment of tar sands formations
BRPI0810761A2 (en) 2007-05-15 2014-10-21 Exxonmobil Upstream Res Co METHOD FOR HEATING IN SITU OF A SELECTED PORTION OF A ROCK FORMATION RICH IN ORGANIC COMPOUND, AND TO PRODUCE A HYDROCARBON FLUID, AND, WELL HEATER.
BRPI0810752A2 (en) 2007-05-15 2014-10-21 Exxonmobil Upstream Res Co METHODS FOR IN SITU HEATING OF A RICH ROCK FORMATION IN ORGANIC COMPOUND, IN SITU HEATING OF A TARGETED XISTO TRAINING AND TO PRODUCE A FLUID OF HYDROCARBON, SQUARE FOR A RACHOSETUS ORGANIC BUILDING , AND FIELD TO PRODUCE A HYDROCARBON FLUID FROM A TRAINING RICH IN A TARGET ORGANIC COMPOUND.
AU2008262537B2 (en) 2007-05-25 2014-07-17 Exxonmobil Upstream Research Company A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
EP2008726B1 (en) * 2007-06-29 2013-08-14 Eurecat Sa. Colour sorting of catalyst or adsorbent particles
US20090028000A1 (en) * 2007-07-26 2009-01-29 O'brien Thomas B Method and process for the systematic exploration of uranium in the athabasca basin
CA2597881C (en) 2007-08-17 2012-05-01 Imperial Oil Resources Limited Method and system integrating thermal oil recovery and bitumen mining for thermal efficiency
WO2009038777A1 (en) * 2007-09-18 2009-03-26 Vast Power Portfolio, Llc Heavy oil recovery with fluid water and carbon dioxide
US9556709B2 (en) * 2007-09-26 2017-01-31 Pentair Thermal Management Llc Skin effect heating system having improved heat transfer and wire support characteristics
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
CA2609419C (en) * 2007-11-02 2010-12-14 Imperial Oil Resources Limited System and method of heat and water recovery from tailings using gas humidification/dehumidification
CA2609859C (en) * 2007-11-02 2011-08-23 Imperial Oil Resources Limited Recovery of high quality water from produced water arising from a thermal hydrocarbon recovery operation using vacuum technologies
CA2610052C (en) * 2007-11-08 2013-02-19 Imperial Oil Resources Limited System and method of recovering heat and water and generating power from bitumen mining operations
CA2610463C (en) * 2007-11-09 2012-04-24 Imperial Oil Resources Limited Integration of an in-situ recovery operation with a mining operation
CA2610230C (en) * 2007-11-13 2012-04-03 Imperial Oil Resources Limited Water integration between an in-situ recovery operation and a bitumen mining operation
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
WO2009082674A1 (en) * 2007-12-22 2009-07-02 Services Petroliers Schlumberger Thermal bubble point measurement system and method
US8090227B2 (en) 2007-12-28 2012-01-03 Halliburton Energy Services, Inc. Purging of fiber optic conduits in subterranean wells
US20090192731A1 (en) * 2008-01-24 2009-07-30 Halliburton Energy Services, Inc. System and Method for Monitoring a Health State of Hydrocarbon Production Equipment
US20090218876A1 (en) * 2008-02-29 2009-09-03 Petrotek Engineering Corporation Method of achieving hydraulic control for in-situ mining through temperature-controlled mobility ratio alterations
JP2011514429A (en) * 2008-03-17 2011-05-06 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Kerosene base fuel
CN101981272B (en) * 2008-03-28 2014-06-11 埃克森美孚上游研究公司 Low emission power generation and hydrocarbon recovery systems and methods
WO2009129143A1 (en) 2008-04-18 2009-10-22 Shell Oil Company Systems, methods, and processes utilized for treating hydrocarbon containing subsurface formations
WO2009142803A1 (en) 2008-05-23 2009-11-26 Exxonmobil Upstream Research Company Field management for substantially constant composition gas generation
US8122956B2 (en) * 2008-07-03 2012-02-28 Baker Hughes Incorporated Magnetic stirrer
DE102008047219A1 (en) * 2008-09-15 2010-03-25 Siemens Aktiengesellschaft Process for the extraction of bitumen and / or heavy oil from an underground deposit, associated plant and operating procedures of this plant
JP2010073002A (en) * 2008-09-19 2010-04-02 Hoya Corp Image processor and camera
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
EP2341859B1 (en) 2008-10-06 2017-04-05 Virender K. Sharma Apparatus for tissue ablation
WO2010045115A2 (en) 2008-10-13 2010-04-22 Shell Oil Company Treating subsurface hydrocarbon containing formations and the systems, methods, and processes utilized
US8247747B2 (en) * 2008-10-30 2012-08-21 Xaloy, Inc. Plasticating barrel with integrated exterior heater layer
SG171709A1 (en) 2008-12-18 2011-07-28 Shell Int Research Process for removing asphaltenic particles
CA2751701C (en) * 2009-02-06 2016-03-29 Hpd, Llc Method and system for recovering oil and generating steam from produced water
KR101078725B1 (en) * 2009-02-16 2011-11-01 주식회사 하이닉스반도체 Semiconductor device and method of manufacturing the same
CN102325959B (en) 2009-02-23 2014-10-29 埃克森美孚上游研究公司 Water treatment following shale oil production by in situ heating
DE102009010289A1 (en) * 2009-02-24 2010-09-02 Siemens Aktiengesellschaft Device for measuring temperature in electromagnetic fields, use of this device and associated measuring arrangement
DE102009023910A1 (en) * 2009-03-03 2010-09-16 Tracto-Technik Gmbh & Co. Kg An earth boring
US8312928B2 (en) 2009-04-09 2012-11-20 General Synfuels International, Inc. Apparatus and methods for the recovery of hydrocarbonaceous and additional products from oil shale and oil sands
US8262866B2 (en) 2009-04-09 2012-09-11 General Synfuels International, Inc. Apparatus for the recovery of hydrocarbonaceous and additional products from oil shale and sands via multi-stage condensation
US8261831B2 (en) 2009-04-09 2012-09-11 General Synfuels International, Inc. Apparatus and methods for the recovery of hydrocarbonaceous and additional products from oil/tar sands
US8312927B2 (en) * 2009-04-09 2012-11-20 General Synfuels International, Inc. Apparatus and methods for adjusting operational parameters to recover hydrocarbonaceous and additional products from oil shale and sands
CA2758192A1 (en) 2009-04-10 2010-10-14 Shell Internationale Research Maatschappij B.V. Treatment methodologies for subsurface hydrocarbon containing formations
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
BRPI1015966A2 (en) 2009-05-05 2016-05-31 Exxonmobil Upstream Company "method for treating an underground formation, and, computer readable storage medium."
EP2442898B1 (en) * 2009-06-18 2019-01-02 Entegris, Inc. Sintered porous material comprising particles of different average sizes
NO330123B1 (en) 2009-07-11 2011-02-21 Sargas As Low CO2 plant for oil sand extraction
US8833454B2 (en) * 2009-07-22 2014-09-16 Conocophillips Company Hydrocarbon recovery method
SG178161A1 (en) * 2009-07-31 2012-03-29 Nicholas Castellano Method to enhance the production capacity of an oil well
AU2010279465B2 (en) 2009-08-05 2014-07-31 Shell Internationale Research Maatschappij B.V. Systems and methods for monitoring a well
US8776609B2 (en) 2009-08-05 2014-07-15 Shell Oil Company Use of fiber optics to monitor cement quality
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
WO2011049675A1 (en) * 2009-10-22 2011-04-28 Exxonmobil Upstream Research Company System and method for producing geothermal energy
US8602103B2 (en) 2009-11-24 2013-12-10 Conocophillips Company Generation of fluid for hydrocarbon recovery
EP2508725A1 (en) * 2009-12-01 2012-10-10 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8240370B2 (en) 2009-12-18 2012-08-14 Air Products And Chemicals, Inc. Integrated hydrogen production and hydrocarbon extraction
US8512009B2 (en) * 2010-01-11 2013-08-20 Baker Hughes Incorporated Steam driven pump for SAGD system
EP2531575A4 (en) * 2010-02-05 2013-08-07 Texas A & M Univ Sys Devices and methods for a pyrolysis and gasification system for biomass feedstock
US20110207972A1 (en) * 2010-02-23 2011-08-25 Battelle Memorial Institute Catalysts and processes for the hydrogenolysis of glycerol and other organic compounds for producing polyols and propylene glycol
DE102010013982A1 (en) * 2010-04-06 2011-10-06 Bomag Gmbh Apparatus for producing foam bitumen and method for its maintenance
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
CA2703319C (en) * 2010-05-05 2012-06-12 Imperial Oil Resources Limited Operating wells in groups in solvent-dominated recovery processes
US20110277992A1 (en) * 2010-05-14 2011-11-17 Paul Grimes Systems and methods for enhanced recovery of hydrocarbonaceous fluids
CN103003222B (en) * 2010-07-20 2015-04-22 巴斯夫欧洲公司 Method for producing acetylene according to the sachsse-bartholome method
US8975460B2 (en) * 2010-07-20 2015-03-10 Basf Se Process for preparing acetylene by the Sachsse-Bartholomé process
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
WO2012030426A1 (en) 2010-08-30 2012-03-08 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US9466398B2 (en) * 2010-09-27 2016-10-11 Purdue Research Foundation Ceramic-ceramic composites and process therefor, nuclear fuels formed thereby, and nuclear reactor systems and processes operated therewith
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8356678B2 (en) * 2010-10-29 2013-01-22 Racional Energy & Environment Company Oil recovery method and apparatus
US9334436B2 (en) 2010-10-29 2016-05-10 Racional Energy And Environment Company Oil recovery method and product
US9097110B2 (en) * 2010-12-03 2015-08-04 Exxonmobil Upstream Research Company Viscous oil recovery using a fluctuating electric power source and a fired heater
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
US8936089B2 (en) 2010-12-22 2015-01-20 Chevron U.S.A. Inc. In-situ kerogen conversion and recovery
JP5287962B2 (en) * 2011-01-26 2013-09-11 株式会社デンソー Welding equipment
US20120217233A1 (en) * 2011-02-28 2012-08-30 Tom Richards, Inc. Ptc controlled environment heater
DE102011014345A1 (en) * 2011-03-18 2012-09-20 Ecoloop Gmbh Process for the energy-efficient and environmentally friendly production of light oil and / or fuels from raw bitumen from oil shale and / or oil sands
US9739123B2 (en) 2011-03-29 2017-08-22 Conocophillips Company Dual injection points in SAGD
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
WO2013106036A2 (en) 2011-04-08 2013-07-18 Preston Manwaring Impedance matching circuit
RU2587459C2 (en) 2011-04-08 2016-06-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Systems for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
WO2012158722A2 (en) 2011-05-16 2012-11-22 Mcnally, David, J. Surgical instrument guide
US9051828B2 (en) 2011-06-17 2015-06-09 Athabasca Oil Sands Corp. Thermally assisted gravity drainage (TAGD)
US9279316B2 (en) 2011-06-17 2016-03-08 Athabasca Oil Corporation Thermally assisted gravity drainage (TAGD)
US9062525B2 (en) * 2011-07-07 2015-06-23 Single Buoy Moorings, Inc. Offshore heavy oil production
HU230571B1 (en) * 2011-07-15 2016-12-28 Sld Enhanced Recovery, Inc. Method and apparatus for refusing molted rock arisen during the processing rock by laser
US8685281B2 (en) 2011-07-21 2014-04-01 Battelle Energy Alliance Llc System and process for the production of syngas and fuel gasses
WO2013040255A2 (en) 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
JO3139B1 (en) 2011-10-07 2017-09-20 Shell Int Research Forming insulated conductors using a final reduction step after heat treating
WO2013052566A1 (en) 2011-10-07 2013-04-11 Shell Oil Company Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
JO3141B1 (en) 2011-10-07 2017-09-20 Shell Int Research Integral splice for insulated conductors
CA2791725A1 (en) * 2011-10-07 2013-04-07 Shell Internationale Research Maatschappij B.V. Treating hydrocarbon formations using hybrid in situ heat treatment and steam methods
CA2845012A1 (en) 2011-11-04 2013-05-10 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
CA2783819C (en) 2011-11-08 2014-04-29 Imperial Oil Resources Limited Dewatering oil sand tailings
CA2857180A1 (en) 2011-12-06 2013-06-13 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US20130168094A1 (en) * 2012-01-03 2013-07-04 Conocophillips Company Enhanced heavy oil recovery using downhole bitumen upgrading with steam assisted gravity drainage
CA2898956A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
JP5696063B2 (en) * 2012-02-02 2015-04-08 信越化学工業株式会社 Polycrystalline silicon rod unloading jig and method for harvesting polycrystalline silicon rod
AU2013221197A1 (en) * 2012-02-18 2014-08-28 Genie Ip B.V. Method and system for heating a bed of hydrocarbon- containing rocks
US8910514B2 (en) * 2012-02-24 2014-12-16 Schlumberger Technology Corporation Systems and methods of determining fluid properties
CA2811666C (en) 2012-04-05 2021-06-29 Shell Internationale Research Maatschappij B.V. Compaction of electrical insulation for joining insulated conductors
RU2479620C1 (en) * 2012-04-10 2013-04-20 Общество с ограниченной ответственностью "Инжиниринговый центр" Method of gas separation during catalytic cracking of petroleum direction
TW201400407A (en) 2012-04-18 2014-01-01 Exxonmobil Upstream Res Co Generating catalysts for forming carbon allotropes
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
WO2013180909A1 (en) * 2012-05-29 2013-12-05 Exxonmobil Upstream Research Company Systems and methods for hydrotreating a shale oil stream using hydrogen gas that is concentrated from the shale oil stream
HU229953B1 (en) 2012-07-05 2015-03-02 Sld Enhanced Recovery, Inc Method and apparatus for removing alkaline earth metal salt scale depesits from primarily producing pipes
US20140030117A1 (en) * 2012-07-24 2014-01-30 David Zachariah Multi-stage hydraulic jet pump
KR101938171B1 (en) 2012-10-31 2019-01-14 대우조선해양 주식회사 Brine and base oil supply system with backup function and back up supply method of brine and base oil therof
US9777564B2 (en) 2012-12-03 2017-10-03 Pyrophase, Inc. Stimulating production from oil wells using an RF dipole antenna
EP3964151A3 (en) 2013-01-17 2022-03-30 Virender K. Sharma Apparatus for tissue ablation
US9243485B2 (en) 2013-02-05 2016-01-26 Triple D Technologies, Inc. System and method to initiate permeability in bore holes without perforating tools
US9309741B2 (en) 2013-02-08 2016-04-12 Triple D Technologies, Inc. System and method for temporarily sealing a bore hole
US9534489B2 (en) * 2013-03-06 2017-01-03 Baker Hughes Incorporated Modeling acid distribution for acid stimulation of a formation
GB2528191B (en) * 2013-03-27 2019-12-04 Logined Bv Automatic geosteering and evolutionary algorithm for use with same
US10316644B2 (en) 2013-04-04 2019-06-11 Shell Oil Company Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation
US20140318773A1 (en) * 2013-04-26 2014-10-30 Elliot B. Kennel Methane enhanced liquid products recovery from wet natural gas
CN103233713B (en) * 2013-04-28 2014-02-26 吉林省众诚汽车服务连锁有限公司 Method and process for extracting shale oil gas through oil shale in situ horizontal well fracture chemical destructive distillation
CA2818322C (en) * 2013-05-24 2015-03-10 Expander Energy Inc. Refinery process for heavy oil and bitumen
GB2515547A (en) * 2013-06-27 2014-12-31 Statoil Petroleum As Increasing hydrocarbon production from reservoirs
WO2015021062A1 (en) 2013-08-05 2015-02-12 Gradiant Corporation Water treatment systems and associated methods
US9920608B2 (en) * 2013-08-13 2018-03-20 Board Of Regents, The University Of Texas System Method of improving hydraulic fracturing by decreasing formation temperature
KR101519967B1 (en) * 2013-09-09 2015-05-15 한국지질자원연구원 Method for solution mining by cycling process
KR101506469B1 (en) * 2013-09-09 2015-03-27 한국지질자원연구원 Apparatus for solution mining by cycling process
AU2014202934B2 (en) 2013-09-09 2016-03-17 Korea Institute Of Geoscience And Mineral Resources (Kigam) Apparatus and method for solution mining using cycling process
KR101510826B1 (en) 2013-11-19 2015-04-10 한국지질자원연구원 Apparatus and Method for solution mining by cycling process having improved blades
US9822621B2 (en) 2013-09-20 2017-11-21 Baker Hughes, A Ge Company, Llc Method of using surface modifying treatment agents to treat subterranean formations
US9683431B2 (en) 2013-09-20 2017-06-20 Baker Hughes Incorporated Method of using surface modifying metallic treatment agents to treat subterranean formations
US9701892B2 (en) 2014-04-17 2017-07-11 Baker Hughes Incorporated Method of pumping aqueous fluid containing surface modifying treatment agent into a well
CA2922688C (en) 2013-09-20 2018-10-30 Baker Hughes Incorporated Composites for use in stimulation and sand control operations
EP3046986B1 (en) 2013-09-20 2020-07-22 Baker Hughes Holdings LLC Method of inhibiting fouling on a metallic surface using a surface modifying treatment agent
RU2676341C2 (en) 2013-09-20 2018-12-28 Бейкер Хьюз Инкорпорейтед Organophosphorus containing composites for use in well treatment operations
CN105683095B (en) 2013-09-23 2019-09-17 格雷迪安特公司 Desalination system and correlation technique
CA2923681A1 (en) 2013-10-22 2015-04-30 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US10041341B2 (en) 2013-11-06 2018-08-07 Nexen Energy Ulc Processes for producing hydrocarbons from a reservoir
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
CN103711483B (en) * 2014-01-13 2017-01-11 北京源海威科技有限公司 Simulation system and simulation method of hydrocarbon generation, adsorption and desorption of shale
CA3176275A1 (en) 2014-02-18 2015-08-18 Athabasca Oil Corporation Cable-based well heater
GB2523567B (en) 2014-02-27 2017-12-06 Statoil Petroleum As Producing hydrocarbons from a subsurface formation
RU2686564C2 (en) * 2014-04-04 2019-04-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Insulated conductors, formed using the stage of final decrease dimension after thermal treatment
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US9451792B1 (en) * 2014-09-05 2016-09-27 Atmos Nation, LLC Systems and methods for vaporizing assembly
US20160097247A1 (en) * 2014-10-01 2016-04-07 H2O Oilfield Services Methods of filtering a fluid using a portable fluid filtration apparatus
CA2967325C (en) 2014-11-21 2019-06-18 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation
US10400563B2 (en) 2014-11-25 2019-09-03 Salamander Solutions, LLC Pyrolysis to pressurise oil formations
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
US10066156B2 (en) * 2015-04-14 2018-09-04 Saudi Arabian Oil Company Supercritical carbon dioxide emulsified acid
GB2539045A (en) * 2015-06-05 2016-12-07 Statoil Asa Subsurface heater configuration for in situ hydrocarbon production
EP3328522A4 (en) 2015-07-29 2019-04-24 Gradiant Corporation Osmotic desalination methods and associated systems
WO2017030937A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US10301198B2 (en) 2015-08-14 2019-05-28 Gradiant Corporation Selective retention of multivalent ions
TW201733664A (en) * 2015-11-13 2017-10-01 艾克頌美孚研究工程公司 Hydrocarbon reverse osmosis membranes and separations
US9337704B1 (en) * 2015-11-20 2016-05-10 Jerry Leslie System for electricity generation by utilizing flared gas
KR102460225B1 (en) 2016-01-29 2022-10-31 각코호진 메이지다이가쿠 The laser scan system, the laser scan method, and the movement laser scan system and program
US10689264B2 (en) 2016-02-22 2020-06-23 Gradiant Corporation Hybrid desalination systems and associated methods
CN105952431B (en) * 2016-04-21 2018-08-10 中国石油天然气股份有限公司 Fixed tubular column method for removing blockage
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
IT201600074309A1 (en) * 2016-07-15 2018-01-15 Eni Spa CABLELESS BIDIRECTIONAL DATA TRANSMISSION SYSTEM IN A WELL FOR THE EXTRACTION OF FORMATION FLUIDS.
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
RU2654886C2 (en) * 2016-10-18 2018-05-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Cogeneration system of energy supply of cluster drilling rig
JP6917647B2 (en) * 2017-02-28 2021-08-11 国立大学法人東北大学 Methane gas recovery method and carbon dioxide low emission power generation method, and methane gas recovery system and carbon dioxide low emission power generation system
CN107488464B (en) * 2017-04-27 2019-04-30 中国石油大学(北京) A kind of production method and production system of ultra-clean high-knock rating gasoline
US10870810B2 (en) * 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas
JOP20180091B1 (en) * 2017-10-12 2022-09-15 Red Leaf Resources Inc Heating materials through co-generation of heat and electricity
US10450494B2 (en) 2018-01-17 2019-10-22 Bj Services, Llc Cement slurries for well bores
WO2019232432A1 (en) 2018-06-01 2019-12-05 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
CN110608023B (en) * 2018-06-15 2021-12-10 中国石油化工股份有限公司 Adaptability boundary analysis and evaluation method for stratified steam injection of thickened oil
CA3109230A1 (en) 2018-08-22 2020-02-27 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
CN109273105B (en) * 2018-09-13 2022-03-25 中国核动力研究设计院 Supercritical carbon dioxide reactor fuel assembly
US11053775B2 (en) * 2018-11-16 2021-07-06 Leonid Kovalev Downhole induction heater
CN109507182B (en) * 2018-12-04 2021-07-30 中山市中能检测中心有限公司 Soil pH value imbalance detection equipment and use method thereof
CN111396011B (en) * 2019-01-02 2022-06-03 中国石油天然气股份有限公司 Method and device for improving gas production rate of double-branch U-shaped well
RU190546U1 (en) * 2019-03-29 2019-07-03 Оксана Викторовна Давыдова Associated petroleum gas utilizing power plant for generating steam supplied to injection wells
RU194690U1 (en) * 2019-07-16 2019-12-19 Алексей Петрович Сальников Electric heater
CN110259424B (en) * 2019-07-17 2020-07-28 中国石油大学(北京) Method and device for extracting oil shale in situ
CN110439503B (en) * 2019-08-14 2021-08-10 西安石油大学 Selective water plugging method for fractured low-permeability reservoir multi-section plug oil well
RU2726693C1 (en) * 2019-08-27 2020-07-15 Анатолий Александрович Чернов Method for increasing efficiency of hydrocarbon production from oil-kerogen-containing formations and technological complex for its implementation
US11376548B2 (en) * 2019-09-04 2022-07-05 Uop Llc Membrane permeate recycle process for use with pressure swing adsorption processes
US11207636B2 (en) * 2019-09-04 2021-12-28 Uop Llc Membrane permeate recycle system for use with pressure swing adsorption apparatus
RU2726703C1 (en) * 2019-09-26 2020-07-15 Анатолий Александрович Чернов Method for increasing efficiency of extracting high-technology oil from petroleum-carbon-bearing formations and technological complex for implementation thereof
CN110702840B (en) * 2019-10-14 2022-06-07 河北地质大学华信学院 Analysis device based on energy utilization rate of carbonized urban domestic sewage biomass
CN110595859B (en) * 2019-10-29 2022-09-13 长沙开元弘盛科技有限公司 Water removal method, analyzer and water removal device thereof
PH12021050221A1 (en) * 2020-05-13 2021-11-22 Greenfire Energy Inc Hydrogen production from geothermal resources using closed-loop systems
US20230174870A1 (en) * 2020-05-21 2023-06-08 Pyrophase, Inc. Configurable Universal Wellbore Reactor System
CN111883851B (en) * 2020-08-02 2022-04-12 江西安驰新能源科技有限公司 Method for formation to matching of lithium ion batteries
CN111929219B (en) * 2020-08-12 2022-04-01 西南石油大学 Shale oil reservoir oil-water two-phase relative permeability calculation method
CA3197204A1 (en) 2020-11-17 2022-05-27 Richard STOVER Osmotic methods and systems involving energy recovery
RU2752299C1 (en) * 2021-01-13 2021-07-26 Алексей Владимирович Лысенков Method for thermal acid treatment of bottomhole formation zone
CN112901128B (en) * 2021-01-23 2022-09-02 长安大学 SAGD (steam assisted gravity drainage) starting method for aquifer heavy oil reservoir by using salinity response type emulsion
CN112983376B (en) * 2021-03-05 2022-03-04 中国矿业大学 In-situ methane explosion energy-gathering perforation device with molecular sieve
DE102021203551A1 (en) 2021-04-09 2022-10-13 Volkswagen Aktiengesellschaft Driving intention detection
CN113585333B (en) * 2021-07-09 2022-05-17 中铁建工集团有限公司 Underground space construction karst cave top wall reinforcing structure and processing method
CN115012878B (en) * 2022-06-30 2023-06-23 西南石油大学 Sulfur-containing gas well non-stop inhibitor filling system based on double-layer pipe
KR102618021B1 (en) * 2023-06-12 2023-12-27 주식회사 에이치엔티 Hydrocyclone type desander with water film
KR102618017B1 (en) * 2023-06-12 2023-12-27 주식회사 에이치엔티 System for separation of liquid and solid

Family Cites Families (869)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US94813A (en) 1869-09-14 Improvement in torpedoes for oil-wells
US2732195A (en) 1956-01-24 Ljungstrom
SE126674C1 (en) 1949-01-01
US48994A (en) * 1865-07-25 Improvement in devices for oil-wells
SE123136C1 (en) 1948-01-01
US2734579A (en) 1956-02-14 Production from bituminous sands
CA899987A (en) 1972-05-09 Chisso Corporation Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current
SE123138C1 (en) 1948-01-01
US326439A (en) * 1885-09-15 Protecting wells
US345586A (en) 1886-07-13 Oil from wells
US760304A (en) 1903-10-24 1904-05-17 Frank S Gilbert Heater for oil-wells.
US1342741A (en) 1918-01-17 1920-06-08 David T Day Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks
US1269747A (en) 1918-04-06 1918-06-18 Lebbeus H Rogers Method of and apparatus for treating oil-shale.
GB156396A (en) 1919-12-10 1921-01-13 Wilson Woods Hoover An improved method of treating shale and recovering oil therefrom
US1457479A (en) 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US1510655A (en) * 1922-11-21 1924-10-07 Clark Cornelius Process of subterranean distillation of volatile mineral substances
US1634236A (en) * 1925-03-10 1927-06-28 Standard Dev Co Method of and apparatus for recovering oil
US1646599A (en) 1925-04-30 1927-10-25 George A Schaefer Apparatus for removing fluid from wells
US1666488A (en) * 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1681523A (en) 1927-03-26 1928-08-21 Patrick V Downey Apparatus for heating oil wells
US1913395A (en) * 1929-11-14 1933-06-13 Lewis C Karrick Underground gasification of carbonaceous material-bearing substances
US1998123A (en) * 1932-08-25 1935-04-16 Socony Vacuum Oil Co Inc Process and apparatus for the distillation and conversion of hydrocarbons
US2244255A (en) 1939-01-18 1941-06-03 Electrical Treating Company Well clearing system
US2244256A (en) 1939-12-16 1941-06-03 Electrical Treating Company Apparatus for clearing wells
US2319702A (en) 1941-04-04 1943-05-18 Socony Vacuum Oil Co Inc Method and apparatus for producing oil wells
US2370507A (en) * 1941-08-22 1945-02-27 Texas Co Production of gasoline hydrocarbons
US2365591A (en) 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2423674A (en) 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2381256A (en) 1942-10-06 1945-08-07 Texas Co Process for treating hydrocarbon fractions
US2390770A (en) 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2484063A (en) * 1944-08-19 1949-10-11 Thermactor Corp Electric heater for subsurface materials
US2472445A (en) 1945-02-02 1949-06-07 Thermactor Company Apparatus for treating oil and gas bearing strata
US2481051A (en) 1945-12-15 1949-09-06 Texaco Development Corp Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2444755A (en) 1946-01-04 1948-07-06 Ralph M Steffen Apparatus for oil sand heating
US2634961A (en) 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2466945A (en) 1946-02-21 1949-04-12 In Situ Gases Inc Generation of synthesis gas
US2497868A (en) 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2939689A (en) 1947-06-24 1960-06-07 Svenska Skifferolje Ab Electrical heater for treating oilshale and the like
US2786660A (en) 1948-01-05 1957-03-26 Phillips Petroleum Co Apparatus for gasifying coal
US2548360A (en) * 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater
US2685930A (en) 1948-08-12 1954-08-10 Union Oil Co Oil well production process
US2630307A (en) 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2595979A (en) * 1949-01-25 1952-05-06 Texas Co Underground liquefaction of coal
US2642943A (en) 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process
US2593477A (en) 1949-06-10 1952-04-22 Us Interior Process of underground gasification of coal
GB674082A (en) 1949-06-15 1952-06-18 Nat Res Dev Improvements in or relating to the underground gasification of coal
US2670802A (en) 1949-12-16 1954-03-02 Thermactor Company Reviving or increasing the production of clogged or congested oil wells
US2714930A (en) 1950-12-08 1955-08-09 Union Oil Co Apparatus for preventing paraffin deposition
US2695163A (en) 1950-12-09 1954-11-23 Stanolind Oil & Gas Co Method for gasification of subterranean carbonaceous deposits
GB697189A (en) 1951-04-09 1953-09-16 Nat Res Dev Improvements relating to the underground gasification of coal
US2630306A (en) * 1952-01-03 1953-03-03 Socony Vacuum Oil Co Inc Subterranean retorting of shales
US2757739A (en) * 1952-01-07 1956-08-07 Parelex Corp Heating apparatus
US2777679A (en) 1952-03-07 1957-01-15 Svenska Skifferolje Ab Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ
US2780450A (en) * 1952-03-07 1957-02-05 Svenska Skifferolje Ab Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US2789805A (en) 1952-05-27 1957-04-23 Svenska Skifferolje Ab Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member
US2780449A (en) 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2825408A (en) 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US2783971A (en) 1953-03-11 1957-03-05 Engineering Lab Inc Apparatus for earth boring with pressurized air
US2771954A (en) 1953-04-29 1956-11-27 Exxon Research Engineering Co Treatment of petroleum production wells
US2703621A (en) * 1953-05-04 1955-03-08 George W Ford Oil well bottom hole flow increasing unit
US2743906A (en) 1953-05-08 1956-05-01 William E Coyle Hydraulic underreamer
US2803305A (en) 1953-05-14 1957-08-20 Pan American Petroleum Corp Oil recovery by underground combustion
US2914309A (en) 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands
US2847306A (en) 1953-07-01 1958-08-12 Exxon Research Engineering Co Process for recovery of oil from shale
US2902270A (en) 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US2890754A (en) 1953-10-30 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2882218A (en) * 1953-12-09 1959-04-14 Kellogg M W Co Hydrocarbon conversion process
US2890755A (en) * 1953-12-19 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2841375A (en) 1954-03-03 1958-07-01 Svenska Skifferolje Ab Method for in-situ utilization of fuels by combustion
US2794504A (en) 1954-05-10 1957-06-04 Union Oil Co Well heater
US2793696A (en) 1954-07-22 1957-05-28 Pan American Petroleum Corp Oil recovery by underground combustion
US2923535A (en) 1955-02-11 1960-02-02 Svenska Skifferolje Ab Situ recovery from carbonaceous deposits
US2799341A (en) * 1955-03-04 1957-07-16 Union Oil Co Selective plugging in oil wells
US2801089A (en) 1955-03-14 1957-07-30 California Research Corp Underground shale retorting process
US2862558A (en) 1955-12-28 1958-12-02 Phillips Petroleum Co Recovering oils from formations
US2819761A (en) * 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US2857002A (en) 1956-03-19 1958-10-21 Texas Co Recovery of viscous crude oil
US2906340A (en) 1956-04-05 1959-09-29 Texaco Inc Method of treating a petroleum producing formation
US2991046A (en) 1956-04-16 1961-07-04 Parsons Lional Ashley Combined winch and bollard device
US2889882A (en) 1956-06-06 1959-06-09 Phillips Petroleum Co Oil recovery by in situ combustion
US3120264A (en) * 1956-07-09 1964-02-04 Texaco Development Corp Recovery of oil by in situ combustion
US3016053A (en) 1956-08-02 1962-01-09 George J Medovick Underwater breathing apparatus
US2997105A (en) 1956-10-08 1961-08-22 Pan American Petroleum Corp Burner apparatus
US2932352A (en) * 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US2804149A (en) 1956-12-12 1957-08-27 John R Donaldson Oil well heater and reviver
US2952449A (en) 1957-02-01 1960-09-13 Fmc Corp Method of forming underground communication between boreholes
US3127936A (en) * 1957-07-26 1964-04-07 Svenska Skifferolje Ab Method of in situ heating of subsurface preferably fuel containing deposits
US2942223A (en) 1957-08-09 1960-06-21 Gen Electric Electrical resistance heater
US2906337A (en) 1957-08-16 1959-09-29 Pure Oil Co Method of recovering bitumen
US3007521A (en) 1957-10-28 1961-11-07 Phillips Petroleum Co Recovery of oil by in situ combustion
US3010516A (en) 1957-11-18 1961-11-28 Phillips Petroleum Co Burner and process for in situ combustion
US2954826A (en) * 1957-12-02 1960-10-04 William E Sievers Heated well production string
US2994376A (en) 1957-12-27 1961-08-01 Phillips Petroleum Co In situ combustion process
US3061009A (en) * 1958-01-17 1962-10-30 Svenska Skifferolje Ab Method of recovery from fossil fuel bearing strata
US3062282A (en) 1958-01-24 1962-11-06 Phillips Petroleum Co Initiation of in situ combustion in a carbonaceous stratum
US3051235A (en) 1958-02-24 1962-08-28 Jersey Prod Res Co Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation
US3004603A (en) 1958-03-07 1961-10-17 Phillips Petroleum Co Heater
US3032102A (en) 1958-03-17 1962-05-01 Phillips Petroleum Co In situ combustion method
US3004601A (en) 1958-05-09 1961-10-17 Albert G Bodine Method and apparatus for augmenting oil recovery from wells by refrigeration
US3048221A (en) 1958-05-12 1962-08-07 Phillips Petroleum Co Hydrocarbon recovery by thermal drive
US3026940A (en) 1958-05-19 1962-03-27 Electronic Oil Well Heater Inc Oil well temperature indicator and control
US3010513A (en) * 1958-06-12 1961-11-28 Phillips Petroleum Co Initiation of in situ combustion in carbonaceous stratum
US2958519A (en) 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US3044545A (en) 1958-10-02 1962-07-17 Phillips Petroleum Co In situ combustion process
US3050123A (en) 1958-10-07 1962-08-21 Cities Service Res & Dev Co Gas fired oil-well burner
US2974937A (en) 1958-11-03 1961-03-14 Jersey Prod Res Co Petroleum recovery from carbonaceous formations
US2998457A (en) 1958-11-19 1961-08-29 Ashland Oil Inc Production of phenols
US2970826A (en) 1958-11-21 1961-02-07 Texaco Inc Recovery of oil from oil shale
US3097690A (en) 1958-12-24 1963-07-16 Gulf Research Development Co Process for heating a subsurface formation
US3036632A (en) 1958-12-24 1962-05-29 Socony Mobil Oil Co Inc Recovery of hydrocarbon materials from earth formations by application of heat
US2969226A (en) 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3017168A (en) 1959-01-26 1962-01-16 Phillips Petroleum Co In situ retorting of oil shale
US3110345A (en) * 1959-02-26 1963-11-12 Gulf Research Development Co Low temperature reverse combustion process
US3113619A (en) * 1959-03-30 1963-12-10 Phillips Petroleum Co Line drive counterflow in situ combustion process
US3113620A (en) 1959-07-06 1963-12-10 Exxon Research Engineering Co Process for producing viscous oil
US3181613A (en) * 1959-07-20 1965-05-04 Union Oil Co Method and apparatus for subterranean heating
US3113623A (en) * 1959-07-20 1963-12-10 Union Oil Co Apparatus for underground retorting
US3116792A (en) * 1959-07-27 1964-01-07 Phillips Petroleum Co In situ combustion process
US3132692A (en) * 1959-07-27 1964-05-12 Phillips Petroleum Co Use of formation heat from in situ combustion
US3150715A (en) * 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3095031A (en) 1959-12-09 1963-06-25 Eurenius Malte Oscar Burners for use in bore holes in the ground
US3004911A (en) 1959-12-11 1961-10-17 Phillips Petroleum Co Catalytic cracking process and two unit system
US3006142A (en) 1959-12-21 1961-10-31 Phillips Petroleum Co Jet engine combustion processes
US3131763A (en) * 1959-12-30 1964-05-05 Texaco Inc Electrical borehole heater
US3163745A (en) 1960-02-29 1964-12-29 Socony Mobil Oil Co Inc Heating of an earth formation penetrated by a well borehole
US3127935A (en) * 1960-04-08 1964-04-07 Marathon Oil Co In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs
US3137347A (en) 1960-05-09 1964-06-16 Phillips Petroleum Co In situ electrolinking of oil shale
US3139928A (en) * 1960-05-24 1964-07-07 Shell Oil Co Thermal process for in situ decomposition of oil shale
US3058730A (en) * 1960-06-03 1962-10-16 Fmc Corp Method of forming underground communication between boreholes
US3106244A (en) 1960-06-20 1963-10-08 Phillips Petroleum Co Process for producing oil shale in situ by electrocarbonization
US3142336A (en) * 1960-07-18 1964-07-28 Shell Oil Co Method and apparatus for injecting steam into subsurface formations
US3105545A (en) 1960-11-21 1963-10-01 Shell Oil Co Method of heating underground formations
US3164207A (en) 1961-01-17 1965-01-05 Wayne H Thessen Method for recovering oil
US3138203A (en) * 1961-03-06 1964-06-23 Jersey Prod Res Co Method of underground burning
US3191679A (en) 1961-04-13 1965-06-29 Wendell S Miller Melting process for recovering bitumens from the earth
US3130007A (en) 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3207220A (en) 1961-06-26 1965-09-21 Chester I Williams Electric well heater
US3114417A (en) * 1961-08-14 1963-12-17 Ernest T Saftig Electric oil well heater apparatus
US3246695A (en) 1961-08-21 1966-04-19 Charles L Robinson Method for heating minerals in situ with radioactive materials
US3057404A (en) 1961-09-29 1962-10-09 Socony Mobil Oil Co Inc Method and system for producing oil tenaciously held in porous formations
US3183675A (en) 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation
US3170842A (en) 1961-11-06 1965-02-23 Phillips Petroleum Co Subcritical borehole nuclear reactor and process
US3209825A (en) 1962-02-14 1965-10-05 Continental Oil Co Low temperature in-situ combustion
US3205946A (en) 1962-03-12 1965-09-14 Shell Oil Co Consolidation by silica coalescence
US3165154A (en) * 1962-03-23 1965-01-12 Phillips Petroleum Co Oil recovery by in situ combustion
US3149670A (en) * 1962-03-27 1964-09-22 Smclair Res Inc In-situ heating process
US3214890A (en) * 1962-04-19 1965-11-02 Marathon Oil Co Method of separation of hydrocarbons by a single absorption oil
US3149672A (en) * 1962-05-04 1964-09-22 Jersey Prod Res Co Method and apparatus for electrical heating of oil-bearing formations
US3208531A (en) 1962-08-21 1965-09-28 Otis Eng Co Inserting tool for locating and anchoring a device in tubing
US3182721A (en) 1962-11-02 1965-05-11 Sun Oil Co Method of petroleum production by forward in situ combustion
US3288648A (en) 1963-02-04 1966-11-29 Pan American Petroleum Corp Process for producing electrical energy from geological liquid hydrocarbon formation
US3205942A (en) 1963-02-07 1965-09-14 Socony Mobil Oil Co Inc Method for recovery of hydrocarbons by in situ heating of oil shale
US3221811A (en) 1963-03-11 1965-12-07 Shell Oil Co Mobile in-situ heating of formations
US3250327A (en) 1963-04-02 1966-05-10 Socony Mobil Oil Co Inc Recovering nonflowing hydrocarbons
US3241611A (en) 1963-04-10 1966-03-22 Equity Oil Company Recovery of petroleum products from oil shale
GB959945A (en) 1963-04-18 1964-06-03 Conch Int Methane Ltd Constructing a frozen wall within the ground
US3237689A (en) 1963-04-29 1966-03-01 Clarence I Justheim Distillation of underground deposits of solid carbonaceous materials in situ
US3205944A (en) 1963-06-14 1965-09-14 Socony Mobil Oil Co Inc Recovery of hydrocarbons from a subterranean reservoir by heating
US3233668A (en) 1963-11-15 1966-02-08 Exxon Production Research Co Recovery of shale oil
US3285335A (en) 1963-12-11 1966-11-15 Exxon Research Engineering Co In situ pyrolysis of oil shale formations
US3273640A (en) 1963-12-13 1966-09-20 Pyrochem Corp Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ
US3272261A (en) * 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
US3275076A (en) 1964-01-13 1966-09-27 Mobil Oil Corp Recovery of asphaltic-type petroleum from a subterranean reservoir
US3342258A (en) 1964-03-06 1967-09-19 Shell Oil Co Underground oil recovery from solid oil-bearing deposits
US3294167A (en) 1964-04-13 1966-12-27 Shell Oil Co Thermal oil recovery
US3284281A (en) 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3302707A (en) * 1964-09-30 1967-02-07 Mobil Oil Corp Method for improving fluid recoveries from earthen formations
US3380913A (en) 1964-12-28 1968-04-30 Phillips Petroleum Co Refining of effluent from in situ combustion operation
US3332480A (en) 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US3338306A (en) 1965-03-09 1967-08-29 Mobil Oil Corp Recovery of heavy oil from oil sands
US3358756A (en) 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3262741A (en) * 1965-04-01 1966-07-26 Pittsburgh Plate Glass Co Solution mining of potassium chloride
DE1242535B (en) 1965-04-13 1967-06-22 Deutsche Erdoel Ag Process for the removal of residual oil from oil deposits
US3316344A (en) 1965-04-26 1967-04-25 Central Electr Generat Board Prevention of icing of electrical conductors
US3342267A (en) 1965-04-29 1967-09-19 Gerald S Cotter Turbo-generator heater for oil and gas wells and pipe lines
US3278234A (en) * 1965-05-17 1966-10-11 Pittsburgh Plate Glass Co Solution mining of potassium chloride
US3352355A (en) 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3349845A (en) 1965-10-22 1967-10-31 Sinclair Oil & Gas Company Method of establishing communication between wells
US3379248A (en) 1965-12-10 1968-04-23 Mobil Oil Corp In situ combustion process utilizing waste heat
US3424254A (en) * 1965-12-29 1969-01-28 Major Walter Huff Cryogenic method and apparatus for drilling hot geothermal zones
US3386508A (en) 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
US3362751A (en) 1966-02-28 1968-01-09 Tinlin William Method and system for recovering shale oil and gas
US3595082A (en) 1966-03-04 1971-07-27 Gulf Oil Corp Temperature measuring apparatus
US3410977A (en) 1966-03-28 1968-11-12 Ando Masao Method of and apparatus for heating the surface part of various construction materials
DE1615192B1 (en) 1966-04-01 1970-08-20 Chisso Corp Inductively heated heating pipe
US3513913A (en) 1966-04-19 1970-05-26 Shell Oil Co Oil recovery from oil shales by transverse combustion
US3372754A (en) 1966-05-31 1968-03-12 Mobil Oil Corp Well assembly for heating a subterranean formation
US3399623A (en) 1966-07-14 1968-09-03 James R. Creed Apparatus for and method of producing viscid oil
US3412011A (en) 1966-09-02 1968-11-19 Phillips Petroleum Co Catalytic cracking and in situ combustion process for producing hydrocarbons
US3465819A (en) 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
US3389975A (en) 1967-03-10 1968-06-25 Sinclair Research Inc Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide
NL6803827A (en) 1967-03-22 1968-09-23
US3528501A (en) 1967-08-04 1970-09-15 Phillips Petroleum Co Recovery of oil from oil shale
US3434541A (en) * 1967-10-11 1969-03-25 Mobil Oil Corp In situ combustion process
US3485300A (en) 1967-12-20 1969-12-23 Phillips Petroleum Co Method and apparatus for defoaming crude oil down hole
US3477058A (en) 1968-02-01 1969-11-04 Gen Electric Magnesia insulated heating elements and methods of production
US3580987A (en) 1968-03-26 1971-05-25 Pirelli Electric cable
US3455383A (en) 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3578080A (en) 1968-06-10 1971-05-11 Shell Oil Co Method of producing shale oil from an oil shale formation
US3529682A (en) 1968-10-03 1970-09-22 Bell Telephone Labor Inc Location detection and guidance systems for burrowing device
US3537528A (en) 1968-10-14 1970-11-03 Shell Oil Co Method for producing shale oil from an exfoliated oil shale formation
US3593789A (en) 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3565171A (en) 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US3502372A (en) 1968-10-23 1970-03-24 Shell Oil Co Process of recovering oil and dawsonite from oil shale
US3554285A (en) * 1968-10-24 1971-01-12 Phillips Petroleum Co Production and upgrading of heavy viscous oils
US3629551A (en) 1968-10-29 1971-12-21 Chisso Corp Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current
US3501201A (en) * 1968-10-30 1970-03-17 Shell Oil Co Method of producing shale oil from a subterranean oil shale formation
US3540999A (en) * 1969-01-15 1970-11-17 Universal Oil Prod Co Jet fuel kerosene and gasoline production from gas oils
US3614986A (en) 1969-03-03 1971-10-26 Electrothermic Co Method for injecting heated fluids into mineral bearing formations
US3562401A (en) * 1969-03-03 1971-02-09 Union Carbide Corp Low temperature electric transmission systems
US3542131A (en) 1969-04-01 1970-11-24 Mobil Oil Corp Method of recovering hydrocarbons from oil shale
US3547192A (en) 1969-04-04 1970-12-15 Shell Oil Co Method of metal coating and electrically heating a subterranean earth formation
US3618663A (en) 1969-05-01 1971-11-09 Phillips Petroleum Co Shale oil production
US3605890A (en) 1969-06-04 1971-09-20 Chevron Res Hydrogen production from a kerogen-depleted shale formation
US3572838A (en) * 1969-07-07 1971-03-30 Shell Oil Co Recovery of aluminum compounds and oil from oil shale formations
US3599714A (en) 1969-09-08 1971-08-17 Roger L Messman Method of recovering hydrocarbons by in situ combustion
US3614387A (en) 1969-09-22 1971-10-19 Watlow Electric Mfg Co Electrical heater with an internal thermocouple
US3547193A (en) 1969-10-08 1970-12-15 Electrothermic Co Method and apparatus for recovery of minerals from sub-surface formations using electricity
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3661423A (en) 1970-02-12 1972-05-09 Occidental Petroleum Corp In situ process for recovery of carbonaceous materials from subterranean deposits
JPS4829418B1 (en) * 1970-03-04 1973-09-10
US3709979A (en) * 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3759574A (en) * 1970-09-24 1973-09-18 Shell Oil Co Method of producing hydrocarbons from an oil shale formation
US4305463A (en) 1979-10-31 1981-12-15 Oil Trieval Corporation Oil recovery method and apparatus
US3679812A (en) 1970-11-13 1972-07-25 Schlumberger Technology Corp Electrical suspension cable for well tools
US3680633A (en) 1970-12-28 1972-08-01 Sun Oil Co Delaware Situ combustion initiation process
US3675715A (en) 1970-12-30 1972-07-11 Forrester A Clark Processes for secondarily recovering oil
US3770614A (en) 1971-01-15 1973-11-06 Mobil Oil Corp Split feed reforming and n-paraffin elimination from low boiling reformate
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US3748251A (en) * 1971-04-20 1973-07-24 Mobil Oil Corp Dual riser fluid catalytic cracking with zsm-5 zeolite
US3700280A (en) 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3774701A (en) * 1971-05-07 1973-11-27 C Weaver Method and apparatus for drilling
US3770398A (en) 1971-09-17 1973-11-06 Cities Service Oil Co In situ coal gasification process
US3812913A (en) * 1971-10-18 1974-05-28 Sun Oil Co Method of formation consolidation
US3893918A (en) 1971-11-22 1975-07-08 Engineering Specialties Inc Method for separating material leaving a well
US3766982A (en) 1971-12-27 1973-10-23 Justheim Petrol Co Method for the in-situ treatment of hydrocarbonaceous materials
US3759328A (en) 1972-05-11 1973-09-18 Shell Oil Co Laterally expanding oil shale permeabilization
US3794116A (en) 1972-05-30 1974-02-26 Atomic Energy Commission Situ coal bed gasification
US3779602A (en) 1972-08-07 1973-12-18 Shell Oil Co Process for solution mining nahcolite
US3757860A (en) 1972-08-07 1973-09-11 Atlantic Richfield Co Well heating
US3809159A (en) 1972-10-02 1974-05-07 Continental Oil Co Process for simultaneously increasing recovery and upgrading oil in a reservoir
US3804172A (en) * 1972-10-11 1974-04-16 Shell Oil Co Method for the recovery of oil from oil shale
US3794113A (en) * 1972-11-13 1974-02-26 Mobil Oil Corp Combination in situ combustion displacement and steam stimulation of producing wells
US3804169A (en) * 1973-02-07 1974-04-16 Shell Oil Co Spreading-fluid recovery of subterranean oil
US3947683A (en) 1973-06-05 1976-03-30 Texaco Inc. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones
US4076761A (en) 1973-08-09 1978-02-28 Mobil Oil Corporation Process for the manufacture of gasoline
US4016245A (en) 1973-09-04 1977-04-05 Mobil Oil Corporation Crystalline zeolite and method of preparing same
US3881551A (en) 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
US3907045A (en) 1973-11-30 1975-09-23 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3853185A (en) 1973-11-30 1974-12-10 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3882941A (en) 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US3922148A (en) 1974-05-16 1975-11-25 Texaco Development Corp Production of methane-rich gas
US3948755A (en) 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3894769A (en) * 1974-06-06 1975-07-15 Shell Oil Co Recovering oil from a subterranean carbonaceous formation
US3948758A (en) 1974-06-17 1976-04-06 Mobil Oil Corporation Production of alkyl aromatic hydrocarbons
US4006778A (en) * 1974-06-21 1977-02-08 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbon from tar sands
US4026357A (en) 1974-06-26 1977-05-31 Texaco Exploration Canada Ltd. In situ gasification of solid hydrocarbon materials in a subterranean formation
US4005752A (en) * 1974-07-26 1977-02-01 Occidental Petroleum Corporation Method of igniting in situ oil shale retort with fuel rich flue gas
US4029360A (en) 1974-07-26 1977-06-14 Occidental Oil Shale, Inc. Method of recovering oil and water from in situ oil shale retort flue gas
US3941421A (en) 1974-08-13 1976-03-02 Occidental Petroleum Corporation Apparatus for obtaining uniform gas flow through an in situ oil shale retort
GB1454324A (en) 1974-08-14 1976-11-03 Iniex Recovering combustible gases from underground deposits of coal or bituminous shale
US3948319A (en) 1974-10-16 1976-04-06 Atlantic Richfield Company Method and apparatus for producing fluid by varying current flow through subterranean source formation
AR205595A1 (en) 1974-11-06 1976-05-14 Haldor Topsoe As PROCEDURE FOR PREPARING GASES RICH IN METHANE
US3933447A (en) * 1974-11-08 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Underground gasification of coal
US4138442A (en) 1974-12-05 1979-02-06 Mobil Oil Corporation Process for the manufacture of gasoline
US3952802A (en) 1974-12-11 1976-04-27 In Situ Technology, Inc. Method and apparatus for in situ gasification of coal and the commercial products derived therefrom
US3986556A (en) 1975-01-06 1976-10-19 Haynes Charles A Hydrocarbon recovery from earth strata
US4042026A (en) 1975-02-08 1977-08-16 Deutsche Texaco Aktiengesellschaft Method for initiating an in-situ recovery process by the introduction of oxygen
US4096163A (en) 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US3924680A (en) 1975-04-23 1975-12-09 In Situ Technology Inc Method of pyrolysis of coal in situ
US3973628A (en) 1975-04-30 1976-08-10 New Mexico Tech Research Foundation In situ solution mining of coal
US3989108A (en) * 1975-05-16 1976-11-02 Texaco Inc. Water exclusion method for hydrocarbon production wells using freezing technique
US4016239A (en) 1975-05-22 1977-04-05 Union Oil Company Of California Recarbonation of spent oil shale
US3987851A (en) 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3986557A (en) 1975-06-06 1976-10-19 Atlantic Richfield Company Production of bitumen from tar sands
CA1064890A (en) 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US3950029A (en) 1975-06-12 1976-04-13 Mobil Oil Corporation In situ retorting of oil shale
US3993132A (en) 1975-06-18 1976-11-23 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbons from tar sands
US4069868A (en) 1975-07-14 1978-01-24 In Situ Technology, Inc. Methods of fluidized production of coal in situ
BE832017A (en) * 1975-07-31 1975-11-17 NEW PROCESS FOR EXPLOITATION OF A COAL OR LIGNITE DEPOSIT BY UNDERGROUND GASING UNDER HIGH PRESSURE
US4199024A (en) 1975-08-07 1980-04-22 World Energy Systems Multistage gas generator
US3954140A (en) 1975-08-13 1976-05-04 Hendrick Robert P Recovery of hydrocarbons by in situ thermal extraction
US3986349A (en) 1975-09-15 1976-10-19 Chevron Research Company Method of power generation via coal gasification and liquid hydrocarbon synthesis
US4037658A (en) 1975-10-30 1977-07-26 Chevron Research Company Method of recovering viscous petroleum from an underground formation
US3994341A (en) 1975-10-30 1976-11-30 Chevron Research Company Recovering viscous petroleum from thick tar sand
US3994340A (en) 1975-10-30 1976-11-30 Chevron Research Company Method of recovering viscous petroleum from tar sand
US4087130A (en) 1975-11-03 1978-05-02 Occidental Petroleum Corporation Process for the gasification of coal in situ
US4018279A (en) 1975-11-12 1977-04-19 Reynolds Merrill J In situ coal combustion heat recovery method
US4018280A (en) * 1975-12-10 1977-04-19 Mobil Oil Corporation Process for in situ retorting of oil shale
US3992474A (en) * 1975-12-15 1976-11-16 Uop Inc. Motor fuel production with fluid catalytic cracking of high-boiling alkylate
US4019575A (en) 1975-12-22 1977-04-26 Chevron Research Company System for recovering viscous petroleum from thick tar sand
US4017319A (en) 1976-01-06 1977-04-12 General Electric Company Si3 N4 formed by nitridation of sintered silicon compact containing boron
US3999607A (en) 1976-01-22 1976-12-28 Exxon Research And Engineering Company Recovery of hydrocarbons from coal
US4031956A (en) 1976-02-12 1977-06-28 In Situ Technology, Inc. Method of recovering energy from subsurface petroleum reservoirs
US4008762A (en) 1976-02-26 1977-02-22 Fisher Sidney T Extraction of hydrocarbons in situ from underground hydrocarbon deposits
US4010800A (en) 1976-03-08 1977-03-08 In Situ Technology, Inc. Producing thin seams of coal in situ
US4048637A (en) 1976-03-23 1977-09-13 Westinghouse Electric Corporation Radar system for detecting slowly moving targets
DE2615874B2 (en) * 1976-04-10 1978-10-19 Deutsche Texaco Ag, 2000 Hamburg Application of a method for extracting crude oil and bitumen from underground deposits by means of a combustion front in deposits of any content of intermediate hydrocarbons in the crude oil or bitumen
GB1544245A (en) * 1976-05-21 1979-04-19 British Gas Corp Production of substitute natural gas
US4049053A (en) 1976-06-10 1977-09-20 Fisher Sidney T Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating
US4487257A (en) * 1976-06-17 1984-12-11 Raytheon Company Apparatus and method for production of organic products from kerogen
US4193451A (en) 1976-06-17 1980-03-18 The Badger Company, Inc. Method for production of organic products from kerogen
US4067390A (en) 1976-07-06 1978-01-10 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
US4057293A (en) 1976-07-12 1977-11-08 Garrett Donald E Process for in situ conversion of coal or the like into oil and gas
US4043393A (en) * 1976-07-29 1977-08-23 Fisher Sidney T Extraction from underground coal deposits
US4091869A (en) 1976-09-07 1978-05-30 Exxon Production Research Company In situ process for recovery of carbonaceous materials from subterranean deposits
US4059308A (en) * 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4083604A (en) * 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4064943A (en) * 1976-12-06 1977-12-27 Shell Oil Co Plugging permeable earth formation with wax
US4089374A (en) 1976-12-16 1978-05-16 In Situ Technology, Inc. Producing methane from coal in situ
US4084637A (en) 1976-12-16 1978-04-18 Petro Canada Exploration Inc. Method of producing viscous materials from subterranean formations
US4093026A (en) 1977-01-17 1978-06-06 Occidental Oil Shale, Inc. Removal of sulfur dioxide from process gas using treated oil shale and water
US4277416A (en) 1977-02-17 1981-07-07 Aminoil, Usa, Inc. Process for producing methanol
US4085803A (en) * 1977-03-14 1978-04-25 Exxon Production Research Company Method for oil recovery using a horizontal well with indirect heating
US4099567A (en) 1977-05-27 1978-07-11 In Situ Technology, Inc. Generating medium BTU gas from coal in situ
US4169506A (en) * 1977-07-15 1979-10-02 Standard Oil Company (Indiana) In situ retorting of oil shale and energy recovery
US4144935A (en) 1977-08-29 1979-03-20 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4140180A (en) * 1977-08-29 1979-02-20 Iit Research Institute Method for in situ heat processing of hydrocarbonaceous formations
NL181941C (en) * 1977-09-16 1987-12-01 Ir Arnold Willem Josephus Grup METHOD FOR UNDERGROUND GASULATION OF COAL OR BROWN.
US4125159A (en) 1977-10-17 1978-11-14 Vann Roy Randell Method and apparatus for isolating and treating subsurface stratas
SU915451A1 (en) 1977-10-21 1988-08-23 Vnii Ispolzovania Method of underground gasification of fuel
US4119349A (en) 1977-10-25 1978-10-10 Gulf Oil Corporation Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale
US4114688A (en) 1977-12-05 1978-09-19 In Situ Technology Inc. Minimizing environmental effects in production and use of coal
US4158467A (en) 1977-12-30 1979-06-19 Gulf Oil Corporation Process for recovering shale oil
SU680357A1 (en) * 1978-01-30 1981-08-07 Всесоюзный Научно-Исследовательскийи Проектный Институт Галургии Method of underground dissolution of salt
US4148359A (en) 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
FR2420024A1 (en) * 1978-03-16 1979-10-12 Neftegazovy N Iss I Petroleum prodn. by hot fluid injection from mine system - with sealed injection galleries
DE2812490A1 (en) 1978-03-22 1979-09-27 Texaco Ag PROCEDURE FOR DETERMINING THE SPATIAL EXTENSION OF SUBSEQUENT REACTIONS
JPS54128401A (en) * 1978-03-27 1979-10-05 Texaco Development Corp Recovery of oil from underground
US4160479A (en) * 1978-04-24 1979-07-10 Richardson Reginald D Heavy oil recovery process
US4197911A (en) 1978-05-09 1980-04-15 Ramcor, Inc. Process for in situ coal gasification
US4228853A (en) 1978-06-21 1980-10-21 Harvey A Herbert Petroleum production method
US4186801A (en) 1978-12-18 1980-02-05 Gulf Research And Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4185692A (en) * 1978-07-14 1980-01-29 In Situ Technology, Inc. Underground linkage of wells for production of coal in situ
US4184548A (en) * 1978-07-17 1980-01-22 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort
US4183405A (en) * 1978-10-02 1980-01-15 Magnie Robert L Enhanced recoveries of petroleum and hydrogen from underground reservoirs
US4446917A (en) 1978-10-04 1984-05-08 Todd John C Method and apparatus for producing viscous or waxy crude oils
ES474736A1 (en) * 1978-10-31 1979-04-01 Empresa Nacional Aluminio System for generating and autocontrolling the voltage or current wave form applicable to processes for the electrolytic coloring of anodized aluminium
US4311340A (en) * 1978-11-27 1982-01-19 Lyons William C Uranium leeching process and insitu mining
NL7811732A (en) 1978-11-30 1980-06-03 Stamicarbon METHOD FOR CONVERSION OF DIMETHYL ETHER
JPS5576586A (en) 1978-12-01 1980-06-09 Tokyo Shibaura Electric Co Heater
US4299086A (en) 1978-12-07 1981-11-10 Gulf Research & Development Company Utilization of energy obtained by substoichiometric combustion of low heating value gases
US4457365A (en) 1978-12-07 1984-07-03 Raytheon Company In situ radio frequency selective heating system
US4265307A (en) 1978-12-20 1981-05-05 Standard Oil Company Shale oil recovery
US4194562A (en) 1978-12-21 1980-03-25 Texaco Inc. Method for preconditioning a subterranean oil-bearing formation prior to in-situ combustion
US4258955A (en) * 1978-12-26 1981-03-31 Mobil Oil Corporation Process for in-situ leaching of uranium
US4274487A (en) 1979-01-11 1981-06-23 Standard Oil Company (Indiana) Indirect thermal stimulation of production wells
US4232902A (en) * 1979-02-09 1980-11-11 Ppg Industries, Inc. Solution mining water soluble salts at high temperatures
US4324292A (en) 1979-02-21 1982-04-13 University Of Utah Process for recovering products from oil shale
US4289354A (en) * 1979-02-23 1981-09-15 Edwin G. Higgins, Jr. Borehole mining of solid mineral resources
US4248306A (en) * 1979-04-02 1981-02-03 Huisen Allan T Van Geothermal petroleum refining
US4282587A (en) 1979-05-21 1981-08-04 Daniel Silverman Method for monitoring the recovery of minerals from shallow geological formations
US4254287A (en) * 1979-07-05 1981-03-03 Conoco, Inc. Removal of catalyst from ethoxylates by centrifugation
US4241787A (en) * 1979-07-06 1980-12-30 Price Ernest H Downhole separator for wells
US4290650A (en) * 1979-08-03 1981-09-22 Ppg Industries Canada Ltd. Subterranean cavity chimney development for connecting solution mined cavities
US4228854A (en) 1979-08-13 1980-10-21 Alberta Research Council Enhanced oil recovery using electrical means
US4701587A (en) 1979-08-31 1987-10-20 Metcal, Inc. Shielded heating element having intrinsic temperature control
US4256945A (en) * 1979-08-31 1981-03-17 Iris Associates Alternating current electrically resistive heating element having intrinsic temperature control
US4549396A (en) 1979-10-01 1985-10-29 Mobil Oil Corporation Conversion of coal to electricity
US4368114A (en) 1979-12-05 1983-01-11 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4250230A (en) 1979-12-10 1981-02-10 In Situ Technology, Inc. Generating electricity from coal in situ
US4250962A (en) 1979-12-14 1981-02-17 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4398151A (en) 1980-01-25 1983-08-09 Shell Oil Company Method for correcting an electrical log for the presence of shale in a formation
US4359687A (en) 1980-01-25 1982-11-16 Shell Oil Company Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain
USRE30738E (en) 1980-02-06 1981-09-08 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4303126A (en) 1980-02-27 1981-12-01 Chevron Research Company Arrangement of wells for producing subsurface viscous petroleum
US4269697A (en) * 1980-02-27 1981-05-26 Mobil Oil Corporation Low pour point heavy oils
US4375302A (en) * 1980-03-03 1983-03-01 Nicholas Kalmar Process for the in situ recovery of both petroleum and inorganic mineral content of an oil shale deposit
US4445574A (en) 1980-03-24 1984-05-01 Geo Vann, Inc. Continuous borehole formed horizontally through a hydrocarbon producing formation
US4417782A (en) 1980-03-31 1983-11-29 Raychem Corporation Fiber optic temperature sensing
FR2480300B1 (en) * 1980-04-09 1985-06-07 Inst Francais Du Petrole PROCESS FOR THE RECOVERY OF HEAVY OILS
CA1168283A (en) 1980-04-14 1984-05-29 Hiroshi Teratani Electrode device for electrically heating underground deposits of hydrocarbons
US4273188A (en) 1980-04-30 1981-06-16 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4306621A (en) 1980-05-23 1981-12-22 Boyd R Michael Method for in situ coal gasification operations
US4287957A (en) * 1980-05-27 1981-09-08 Evans Robert F Cooling a drilling tool component with a separate flow stream of reduced-temperature gaseous drilling fluid
US4409090A (en) 1980-06-02 1983-10-11 University Of Utah Process for recovering products from tar sand
CA1165361A (en) 1980-06-03 1984-04-10 Toshiyuki Kobayashi Electrode unit for electrically heating underground hydrocarbon deposits
US4381641A (en) 1980-06-23 1983-05-03 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
CA1183909A (en) * 1980-06-30 1985-03-12 Vernon L. Heeren Rf applicator for in situ heating
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4401099A (en) 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4299285A (en) 1980-07-21 1981-11-10 Gulf Research & Development Company Underground gasification of bituminous coal
US4396062A (en) 1980-10-06 1983-08-02 University Of Utah Research Foundation Apparatus and method for time-domain tracking of high-speed chemical reactions
US4353418A (en) 1980-10-20 1982-10-12 Standard Oil Company (Indiana) In situ retorting of oil shale
US4384613A (en) * 1980-10-24 1983-05-24 Terra Tek, Inc. Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US4401163A (en) 1980-12-29 1983-08-30 The Standard Oil Company Modified in situ retorting of oil shale
US4385661A (en) 1981-01-07 1983-05-31 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator with improved preheating, combustion and protection features
US4448251A (en) * 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4423311A (en) 1981-01-19 1983-12-27 Varney Sr Paul Electric heating apparatus for de-icing pipes
US4366668A (en) 1981-02-25 1983-01-04 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4382469A (en) 1981-03-10 1983-05-10 Electro-Petroleum, Inc. Method of in situ gasification
US4363361A (en) 1981-03-19 1982-12-14 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4390067A (en) 1981-04-06 1983-06-28 Exxon Production Research Co. Method of treating reservoirs containing very viscous crude oil or bitumen
US4399866A (en) 1981-04-10 1983-08-23 Atlantic Richfield Company Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit
US4444255A (en) 1981-04-20 1984-04-24 Lloyd Geoffrey Apparatus and process for the recovery of oil
US4380930A (en) 1981-05-01 1983-04-26 Mobil Oil Corporation System for transmitting ultrasonic energy through core samples
US4429745A (en) * 1981-05-08 1984-02-07 Mobil Oil Corporation Oil recovery method
US4378048A (en) 1981-05-08 1983-03-29 Gulf Research & Development Company Substoichiometric combustion of low heating value gases using different platinum catalysts
US4384614A (en) 1981-05-11 1983-05-24 Justheim Pertroleum Company Method of retorting oil shale by velocity flow of super-heated air
US4437519A (en) 1981-06-03 1984-03-20 Occidental Oil Shale, Inc. Reduction of shale oil pour point
US4428700A (en) 1981-08-03 1984-01-31 E. R. Johnson Associates, Inc. Method for disposing of waste materials
US4456065A (en) 1981-08-20 1984-06-26 Elektra Energie A.G. Heavy oil recovering
US4344483A (en) * 1981-09-08 1982-08-17 Fisher Charles B Multiple-site underground magnetic heating of hydrocarbons
US4452491A (en) 1981-09-25 1984-06-05 Intercontinental Econergy Associates, Inc. Recovery of hydrocarbons from deep underground deposits of tar sands
US4425967A (en) 1981-10-07 1984-01-17 Standard Oil Company (Indiana) Ignition procedure and process for in situ retorting of oil shale
US4605680A (en) 1981-10-13 1986-08-12 Chevron Research Company Conversion of synthesis gas to diesel fuel and gasoline
JPS6053159B2 (en) * 1981-10-20 1985-11-22 三菱電機株式会社 Electric heating method for hydrocarbon underground resources
US4410042A (en) 1981-11-02 1983-10-18 Mobil Oil Corporation In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant
US4444258A (en) 1981-11-10 1984-04-24 Nicholas Kalmar In situ recovery of oil from oil shale
US4388176A (en) * 1981-11-19 1983-06-14 Texaco Inc. Hydrocarbon conversion process
US4418752A (en) 1982-01-07 1983-12-06 Conoco Inc. Thermal oil recovery with solvent recirculation
FR2519688A1 (en) 1982-01-08 1983-07-18 Elf Aquitaine SEALING SYSTEM FOR DRILLING WELLS IN WHICH CIRCULATES A HOT FLUID
US4397732A (en) 1982-02-11 1983-08-09 International Coal Refining Company Process for coal liquefaction employing selective coal feed
US4551226A (en) 1982-02-26 1985-11-05 Chevron Research Company Heat exchanger antifoulant
US4530401A (en) 1982-04-05 1985-07-23 Mobil Oil Corporation Method for maximum in-situ visbreaking of heavy oil
CA1196594A (en) 1982-04-08 1985-11-12 Guy Savard Recovery of oil from tar sands
US4537252A (en) 1982-04-23 1985-08-27 Standard Oil Company (Indiana) Method of underground conversion of coal
US4491179A (en) 1982-04-26 1985-01-01 Pirson Sylvain J Method for oil recovery by in situ exfoliation drive
US4455215A (en) 1982-04-29 1984-06-19 Jarrott David M Process for the geoconversion of coal into oil
US4412585A (en) 1982-05-03 1983-11-01 Cities Service Company Electrothermal process for recovering hydrocarbons
US4524826A (en) 1982-06-14 1985-06-25 Texaco Inc. Method of heating an oil shale formation
US4457374A (en) 1982-06-29 1984-07-03 Standard Oil Company Transient response process for detecting in situ retorting conditions
US4442896A (en) * 1982-07-21 1984-04-17 Reale Lucio V Treatment of underground beds
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4407973A (en) 1982-07-28 1983-10-04 The M. W. Kellogg Company Methanol from coal and natural gas
US4479541A (en) 1982-08-23 1984-10-30 Wang Fun Den Method and apparatus for recovery of oil, gas and mineral deposits by panel opening
US4460044A (en) 1982-08-31 1984-07-17 Chevron Research Company Advancing heated annulus steam drive
US4458767A (en) 1982-09-28 1984-07-10 Mobil Oil Corporation Method for directionally drilling a first well to intersect a second well
US4485868A (en) * 1982-09-29 1984-12-04 Iit Research Institute Method for recovery of viscous hydrocarbons by electromagnetic heating in situ
US4695713A (en) 1982-09-30 1987-09-22 Metcal, Inc. Autoregulating, electrically shielded heater
CA1214815A (en) 1982-09-30 1986-12-02 John F. Krumme Autoregulating electrically shielded heater
US4927857A (en) 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
US4498531A (en) * 1982-10-01 1985-02-12 Rockwell International Corporation Emission controller for indirect fired downhole steam generators
US4485869A (en) 1982-10-22 1984-12-04 Iit Research Institute Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ
DE3365337D1 (en) 1982-11-22 1986-09-18 Shell Int Research Process for the preparation of a fischer-tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons
US4498535A (en) * 1982-11-30 1985-02-12 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line
US4474238A (en) 1982-11-30 1984-10-02 Phillips Petroleum Company Method and apparatus for treatment of subsurface formations
US4752673A (en) 1982-12-01 1988-06-21 Metcal, Inc. Autoregulating heater
US4436613A (en) * 1982-12-03 1984-03-13 Texaco Inc. Two stage catalytic cracking process
US4501326A (en) * 1983-01-17 1985-02-26 Gulf Canada Limited In-situ recovery of viscous hydrocarbonaceous crude oil
US4609041A (en) 1983-02-10 1986-09-02 Magda Richard M Well hot oil system
US4526615A (en) * 1983-03-01 1985-07-02 Johnson Paul H Cellular heap leach process and apparatus
US4640352A (en) 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4886118A (en) 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4500651A (en) * 1983-03-31 1985-02-19 Union Carbide Corporation Titanium-containing molecular sieves
US4458757A (en) 1983-04-25 1984-07-10 Exxon Research And Engineering Co. In situ shale-oil recovery process
US4524827A (en) 1983-04-29 1985-06-25 Iit Research Institute Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations
US4545435A (en) 1983-04-29 1985-10-08 Iit Research Institute Conduction heating of hydrocarbonaceous formations
US4518548A (en) 1983-05-02 1985-05-21 Sulcon, Inc. Method of overlaying sulphur concrete on horizontal and vertical surfaces
US4436615A (en) * 1983-05-09 1984-03-13 United States Steel Corporation Process for removing solids from coal tar
US4794226A (en) 1983-05-26 1988-12-27 Metcal, Inc. Self-regulating porous heater device
EP0130671A3 (en) * 1983-05-26 1986-12-17 Metcal Inc. Multiple temperature autoregulating heater
US5073625A (en) 1983-05-26 1991-12-17 Metcal, Inc. Self-regulating porous heating device
DE3319732A1 (en) 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim MEDIUM-POWER PLANT WITH INTEGRATED COAL GASIFICATION SYSTEM FOR GENERATING ELECTRICITY AND METHANOL
US4658215A (en) 1983-06-20 1987-04-14 Shell Oil Company Method for induced polarization logging
US4583046A (en) 1983-06-20 1986-04-15 Shell Oil Company Apparatus for focused electrode induced polarization logging
US4717814A (en) 1983-06-27 1988-01-05 Metcal, Inc. Slotted autoregulating heater
US5209987A (en) 1983-07-08 1993-05-11 Raychem Limited Wire and cable
US4985313A (en) 1985-01-14 1991-01-15 Raychem Limited Wire and cable
US4598392A (en) 1983-07-26 1986-07-01 Mobil Oil Corporation Vibratory signal sweep seismic prospecting method and apparatus
US4501445A (en) * 1983-08-01 1985-02-26 Cities Service Company Method of in-situ hydrogenation of carbonaceous material
US4698149A (en) 1983-11-07 1987-10-06 Mobil Oil Corporation Enhanced recovery of hydrocarbonaceous fluids oil shale
US4573530A (en) 1983-11-07 1986-03-04 Mobil Oil Corporation In-situ gasification of tar sands utilizing a combustible gas
US4489782A (en) 1983-12-12 1984-12-25 Atlantic Richfield Company Viscous oil production using electrical current heating and lateral drain holes
US4598772A (en) 1983-12-28 1986-07-08 Mobil Oil Corporation Method for operating a production well in an oxygen driven in-situ combustion oil recovery process
US4583242A (en) 1983-12-29 1986-04-15 Shell Oil Company Apparatus for positioning a sample in a computerized axial tomographic scanner
US4540882A (en) 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US4613754A (en) 1983-12-29 1986-09-23 Shell Oil Company Tomographic calibration apparatus
US4635197A (en) 1983-12-29 1987-01-06 Shell Oil Company High resolution tomographic imaging method
US4542648A (en) 1983-12-29 1985-09-24 Shell Oil Company Method of correlating a core sample with its original position in a borehole
US4571491A (en) 1983-12-29 1986-02-18 Shell Oil Company Method of imaging the atomic number of a sample
US4662439A (en) 1984-01-20 1987-05-05 Amoco Corporation Method of underground conversion of coal
US4572229A (en) * 1984-02-02 1986-02-25 Thomas D. Mueller Variable proportioner
US4623401A (en) 1984-03-06 1986-11-18 Metcal, Inc. Heat treatment with an autoregulating heater
US4644283A (en) 1984-03-19 1987-02-17 Shell Oil Company In-situ method for determining pore size distribution, capillary pressure and permeability
US4552214A (en) 1984-03-22 1985-11-12 Standard Oil Company (Indiana) Pulsed in situ retorting in an array of oil shale retorts
US4637464A (en) * 1984-03-22 1987-01-20 Amoco Corporation In situ retorting of oil shale with pulsed water purge
US4570715A (en) 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4577690A (en) 1984-04-18 1986-03-25 Mobil Oil Corporation Method of using seismic data to monitor firefloods
US4592423A (en) 1984-05-14 1986-06-03 Texaco Inc. Hydrocarbon stratum retorting means and method
US4597441A (en) 1984-05-25 1986-07-01 World Energy Systems, Inc. Recovery of oil by in situ hydrogenation
US4663711A (en) 1984-06-22 1987-05-05 Shell Oil Company Method of analyzing fluid saturation using computerized axial tomography
US4577503A (en) 1984-09-04 1986-03-25 International Business Machines Corporation Method and device for detecting a specific acoustic spectral feature
US4577691A (en) * 1984-09-10 1986-03-25 Texaco Inc. Method and apparatus for producing viscous hydrocarbons from a subterranean formation
US4576231A (en) 1984-09-13 1986-03-18 Texaco Inc. Method and apparatus for combating encroachment by in situ treated formations
US4597444A (en) 1984-09-21 1986-07-01 Atlantic Richfield Company Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US4691771A (en) 1984-09-25 1987-09-08 Worldenergy Systems, Inc. Recovery of oil by in-situ combustion followed by in-situ hydrogenation
US4616705A (en) 1984-10-05 1986-10-14 Shell Oil Company Mini-well temperature profiling process
US4750990A (en) * 1984-10-15 1988-06-14 Uop Inc. Membrane separation of hydrocarbons using cycloparaffinic solvents
US4598770A (en) 1984-10-25 1986-07-08 Mobil Oil Corporation Thermal recovery method for viscous oil
JPS61104582A (en) * 1984-10-25 1986-05-22 株式会社デンソー Sheathed heater
US4572299A (en) * 1984-10-30 1986-02-25 Shell Oil Company Heater cable installation
US4669542A (en) 1984-11-21 1987-06-02 Mobil Oil Corporation Simultaneous recovery of crude from multiple zones in a reservoir
US4634187A (en) * 1984-11-21 1987-01-06 Isl Ventures, Inc. Method of in-situ leaching of ores
US4585066A (en) 1984-11-30 1986-04-29 Shell Oil Company Well treating process for installing a cable bundle containing strands of changing diameter
US4704514A (en) 1985-01-11 1987-11-03 Egmond Cor F Van Heating rate variant elongated electrical resistance heater
US4645906A (en) * 1985-03-04 1987-02-24 Thermon Manufacturing Company Reduced resistance skin effect heat generating system
US4698583A (en) 1985-03-26 1987-10-06 Raychem Corporation Method of monitoring a heater for faults
US4785163A (en) 1985-03-26 1988-11-15 Raychem Corporation Method for monitoring a heater
NO861531L (en) 1985-04-19 1986-10-20 Raychem Gmbh HOT BODY.
US4671102A (en) 1985-06-18 1987-06-09 Shell Oil Company Method and apparatus for determining distribution of fluids
US4626665A (en) 1985-06-24 1986-12-02 Shell Oil Company Metal oversheathed electrical resistance heater
US4605489A (en) 1985-06-27 1986-08-12 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4623444A (en) 1985-06-27 1986-11-18 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4662438A (en) 1985-07-19 1987-05-05 Uentech Corporation Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole
US4728892A (en) 1985-08-13 1988-03-01 Shell Oil Company NMR imaging of materials
US4719423A (en) 1985-08-13 1988-01-12 Shell Oil Company NMR imaging of materials for transport properties
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
CA1253555A (en) 1985-11-21 1989-05-02 Cornelis F.H. Van Egmond Heating rate variant elongated electrical resistance heater
US4662443A (en) 1985-12-05 1987-05-05 Amoco Corporation Combination air-blown and oxygen-blown underground coal gasification process
US4686029A (en) 1985-12-06 1987-08-11 Union Carbide Corporation Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4849611A (en) 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
US4730162A (en) 1985-12-31 1988-03-08 Shell Oil Company Time-domain induced polarization logging method and apparatus with gated amplification level
US4706751A (en) 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US4694907A (en) * 1986-02-21 1987-09-22 Carbotek, Inc. Thermally-enhanced oil recovery method and apparatus
US4640353A (en) 1986-03-21 1987-02-03 Atlantic Richfield Company Electrode well and method of completion
US4734115A (en) * 1986-03-24 1988-03-29 Air Products And Chemicals, Inc. Low pressure process for C3+ liquids recovery from process product gas
US4810397A (en) 1986-03-26 1989-03-07 Union Oil Company Of California Antifoulant additives for high temperature hydrocarbon processing
US4651825A (en) 1986-05-09 1987-03-24 Atlantic Richfield Company Enhanced well production
US4814587A (en) 1986-06-10 1989-03-21 Metcal, Inc. High power self-regulating heater
US4682652A (en) 1986-06-30 1987-07-28 Texaco Inc. Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells
US4769602A (en) 1986-07-02 1988-09-06 Shell Oil Company Determining multiphase saturations by NMR imaging of multiple nuclides
US4893504A (en) * 1986-07-02 1990-01-16 Shell Oil Company Method for determining capillary pressure and relative permeability by imaging
US4716960A (en) * 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
US4818370A (en) 1986-07-23 1989-04-04 Cities Service Oil And Gas Corporation Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions
US4772634A (en) 1986-07-31 1988-09-20 Energy Research Corporation Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer
US4744245A (en) 1986-08-12 1988-05-17 Atlantic Richfield Company Acoustic measurements in rock formations for determining fracture orientation
US4863585A (en) * 1986-09-03 1989-09-05 Mobil Oil Corporation Fluidized catalytic cracking process utilizing a C3-C4 paraffin-rich Co-feed and mixed catalyst system with selective reactivation of the medium pore silicate zeolite component thereofo
US4769606A (en) 1986-09-30 1988-09-06 Shell Oil Company Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations
US5316664A (en) 1986-11-24 1994-05-31 Canadian Occidental Petroleum, Ltd. Process for recovery of hydrocarbons and rejection of sand
US4983319A (en) 1986-11-24 1991-01-08 Canadian Occidental Petroleum Ltd. Preparation of low-viscosity improved stable crude oil transport emulsions
US5340467A (en) 1986-11-24 1994-08-23 Canadian Occidental Petroleum Ltd. Process for recovery of hydrocarbons and rejection of sand
CA1288043C (en) 1986-12-15 1991-08-27 Peter Van Meurs Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil
US4766958A (en) 1987-01-12 1988-08-30 Mobil Oil Corporation Method of recovering viscous oil from reservoirs with multiple horizontal zones
US4756367A (en) 1987-04-28 1988-07-12 Amoco Corporation Method for producing natural gas from a coal seam
US4817711A (en) 1987-05-27 1989-04-04 Jeambey Calhoun G System for recovery of petroleum from petroleum impregnated media
US4818371A (en) 1987-06-05 1989-04-04 Resource Technology Associates Viscosity reduction by direct oxidative heating
US4787452A (en) 1987-06-08 1988-11-29 Mobil Oil Corporation Disposal of produced formation fines during oil recovery
US4821798A (en) * 1987-06-09 1989-04-18 Ors Development Corporation Heating system for rathole oil well
US4793409A (en) 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US4827761A (en) 1987-06-25 1989-05-09 Shell Oil Company Sample holder
US4856341A (en) 1987-06-25 1989-08-15 Shell Oil Company Apparatus for analysis of failure of material
US4884455A (en) 1987-06-25 1989-12-05 Shell Oil Company Method for analysis of failure of material employing imaging
US4776638A (en) 1987-07-13 1988-10-11 University Of Kentucky Research Foundation Method and apparatus for conversion of coal in situ
US4848924A (en) 1987-08-19 1989-07-18 The Babcock & Wilcox Company Acoustic pyrometer
US4828031A (en) 1987-10-13 1989-05-09 Chevron Research Company In situ chemical stimulation of diatomite formations
US4762425A (en) 1987-10-15 1988-08-09 Parthasarathy Shakkottai System for temperature profile measurement in large furnances and kilns and method therefor
US5306640A (en) 1987-10-28 1994-04-26 Shell Oil Company Method for determining preselected properties of a crude oil
US4983278A (en) * 1987-11-03 1991-01-08 Western Research Institute & Ilr Services Inc. Pyrolysis methods with product oil recycling
US4987368A (en) 1987-11-05 1991-01-22 Shell Oil Company Nuclear magnetism logging tool using high-temperature superconducting squid detectors
US4808925A (en) * 1987-11-19 1989-02-28 Halliburton Company Three magnet casing collar locator
US4852648A (en) 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
US4823890A (en) * 1988-02-23 1989-04-25 Longyear Company Reverse circulation bit apparatus
US4866983A (en) 1988-04-14 1989-09-19 Shell Oil Company Analytical methods and apparatus for measuring the oil content of sponge core
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US4885080A (en) 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US4872991A (en) * 1988-07-05 1989-10-10 Texaco Inc. Treatment of water
US4840720A (en) 1988-09-02 1989-06-20 Betz Laboratories, Inc. Process for minimizing fouling of processing equipment
US4928765A (en) 1988-09-27 1990-05-29 Ramex Syn-Fuels International Method and apparatus for shale gas recovery
US4856587A (en) 1988-10-27 1989-08-15 Nielson Jay P Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US5064006A (en) 1988-10-28 1991-11-12 Magrange, Inc Downhole combination tool
US4848460A (en) 1988-11-04 1989-07-18 Western Research Institute Contained recovery of oily waste
US5065501A (en) 1988-11-29 1991-11-19 Amp Incorporated Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus
US4974425A (en) 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4860544A (en) 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US5103920A (en) 1989-03-01 1992-04-14 Patton Consulting Inc. Surveying system and method for locating target subterranean bodies
CA2015318C (en) * 1990-04-24 1994-02-08 Jack E. Bridges Power sources for downhole electrical heating
US4895206A (en) 1989-03-16 1990-01-23 Price Ernest H Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes
US4913065A (en) 1989-03-27 1990-04-03 Indugas, Inc. In situ thermal waste disposal system
US5150118A (en) 1989-05-08 1992-09-22 Hewlett-Packard Company Interchangeable coded key pad assemblies alternately attachable to a user definable keyboard to enable programmable keyboard functions
US5059303A (en) * 1989-06-16 1991-10-22 Amoco Corporation Oil stabilization
DE3922612C2 (en) * 1989-07-10 1998-07-02 Krupp Koppers Gmbh Process for the production of methanol synthesis gas
US4982786A (en) * 1989-07-14 1991-01-08 Mobil Oil Corporation Use of CO2 /steam to enhance floods in horizontal wellbores
US5050386A (en) 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth
US5097903A (en) 1989-09-22 1992-03-24 Jack C. Sloan Method for recovering intractable petroleum from subterranean formations
US5305239A (en) 1989-10-04 1994-04-19 The Texas A&M University System Ultrasonic non-destructive evaluation of thin specimens
US4926941A (en) 1989-10-10 1990-05-22 Shell Oil Company Method of producing tar sand deposits containing conductive layers
US4984594A (en) 1989-10-27 1991-01-15 Shell Oil Company Vacuum method for removing soil contamination utilizing surface electrical heating
US5656239A (en) 1989-10-27 1997-08-12 Shell Oil Company Method for recovering contaminants from soil utilizing electrical heating
US5082055A (en) * 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5020596A (en) 1990-01-24 1991-06-04 Indugas, Inc. Enhanced oil recovery system with a radiant tube heater
US5011329A (en) 1990-02-05 1991-04-30 Hrubetz Exploration Company In situ soil decontamination method and apparatus
CA2009782A1 (en) * 1990-02-12 1991-08-12 Anoosh I. Kiamanesh In-situ tuned microwave oil extraction process
US5152341A (en) 1990-03-09 1992-10-06 Raymond S. Kasevich Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes
US5027896A (en) 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
GB9007147D0 (en) * 1990-03-30 1990-05-30 Framo Dev Ltd Thermal mineral extraction system
CA2015460C (en) 1990-04-26 1993-12-14 Kenneth Edwin Kisman Process for confining steam injected into a heavy oil reservoir
US5126037A (en) 1990-05-04 1992-06-30 Union Oil Company Of California Geopreater heating method and apparatus
US5080776A (en) * 1990-06-14 1992-01-14 Mobil Oil Corporation Hydrogen-balanced conversion of diamondoid-containing wash oils to gasoline
US5201219A (en) * 1990-06-29 1993-04-13 Amoco Corporation Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core
GB2246308A (en) * 1990-07-25 1992-01-29 Shell Int Research Process for reducing the metal content of a hydrocarbon mixture
US5054551A (en) 1990-08-03 1991-10-08 Chevron Research And Technology Company In-situ heated annulus refining process
US5042579A (en) * 1990-08-23 1991-08-27 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers
US5060726A (en) 1990-08-23 1991-10-29 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication
US5046559A (en) 1990-08-23 1991-09-10 Shell Oil Company Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers
BR9004240A (en) 1990-08-28 1992-03-24 Petroleo Brasileiro Sa ELECTRIC PIPE HEATING PROCESS
US5085276A (en) 1990-08-29 1992-02-04 Chevron Research And Technology Company Production of oil from low permeability formations by sequential steam fracturing
US5207273A (en) 1990-09-17 1993-05-04 Production Technologies International Inc. Method and apparatus for pumping wells
US5066852A (en) 1990-09-17 1991-11-19 Teledyne Ind. Inc. Thermoplastic end seal for electric heating elements
US5182427A (en) * 1990-09-20 1993-01-26 Metcal, Inc. Self-regulating heater utilizing ferrite-type body
JPH04272680A (en) 1990-09-20 1992-09-29 Thermon Mfg Co Switch-controlled-zone type heating cable and assembling method thereof
US5517593A (en) 1990-10-01 1996-05-14 John Nenniger Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint
US5247994A (en) 1990-10-01 1993-09-28 Nenniger John E Method of stimulating oil wells
US5400430A (en) 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
US5070533A (en) * 1990-11-07 1991-12-03 Uentech Corporation Robust electrical heating systems for mineral wells
US5217076A (en) * 1990-12-04 1993-06-08 Masek John A Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess)
US5065818A (en) 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5060287A (en) 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5190405A (en) 1990-12-14 1993-03-02 Shell Oil Company Vacuum method for removing soil contaminants utilizing thermal conduction heating
SU1836876A3 (en) 1990-12-29 1994-12-30 Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики Process of development of coal seams and complex of equipment for its implementation
US5289882A (en) 1991-02-06 1994-03-01 Boyd B. Moore Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas
US5626190A (en) 1991-02-06 1997-05-06 Moore; Boyd B. Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well
US5261490A (en) 1991-03-18 1993-11-16 Nkk Corporation Method for dumping and disposing of carbon dioxide gas and apparatus therefor
US5093002A (en) 1991-04-29 1992-03-03 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
US5102551A (en) 1991-04-29 1992-04-07 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
US5142608A (en) * 1991-04-29 1992-08-25 Meshekow Oil Recovery Corp. Horizontal steam generator for oil wells
DK0519573T3 (en) 1991-06-21 1995-07-03 Shell Int Research Hydrogenation catalyst and process
IT1248535B (en) 1991-06-24 1995-01-19 Cise Spa SYSTEM TO MEASURE THE TRANSFER TIME OF A SOUND WAVE
US5133406A (en) * 1991-07-05 1992-07-28 Amoco Corporation Generating oxygen-depleted air useful for increasing methane production
US5215954A (en) 1991-07-30 1993-06-01 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst
AU661863B2 (en) * 1991-08-15 1995-08-10 Mobil Oil Corporation Hydrocarbon upgrading process
US5189283A (en) 1991-08-28 1993-02-23 Shell Oil Company Current to power crossover heater control
US5168927A (en) 1991-09-10 1992-12-08 Shell Oil Company Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation
US5173213A (en) 1991-11-08 1992-12-22 Baker Hughes Incorporated Corrosion and anti-foulant composition and method of use
US5347070A (en) 1991-11-13 1994-09-13 Battelle Pacific Northwest Labs Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material
US5349859A (en) 1991-11-15 1994-09-27 Scientific Engineering Instruments, Inc. Method and apparatus for measuring acoustic wave velocity using impulse response
US5158681A (en) * 1991-11-21 1992-10-27 Separation Dynamics International Ltd. Dual membrane process for removing organic compounds from the water
DE69209466T2 (en) 1991-12-16 1996-08-14 Inst Francais Du Petrole Active or passive monitoring arrangement for underground deposit by means of fixed stations
CA2058255C (en) 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
US5246071A (en) * 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles
US5420402A (en) 1992-02-05 1995-05-30 Iit Research Institute Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles
US5211230A (en) 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
GB9207174D0 (en) 1992-04-01 1992-05-13 Raychem Sa Nv Method of forming an electrical connection
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
MY108830A (en) 1992-06-09 1996-11-30 Shell Int Research Method of completing an uncased section of a borehole
US5255742A (en) 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5226961A (en) 1992-06-12 1993-07-13 Shell Oil Company High temperature wellbore cement slurry
US5297626A (en) 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5392854A (en) 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5236039A (en) 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
US5295763A (en) * 1992-06-30 1994-03-22 Chambers Development Co., Inc. Method for controlling gas migration from a landfill
US5275726A (en) 1992-07-29 1994-01-04 Exxon Research & Engineering Co. Spiral wound element for separation
US5282957A (en) 1992-08-19 1994-02-01 Betz Laboratories, Inc. Methods for inhibiting polymerization of hydrocarbons utilizing a hydroxyalkylhydroxylamine
US5305829A (en) * 1992-09-25 1994-04-26 Chevron Research And Technology Company Oil production from diatomite formations by fracture steamdrive
US5229583A (en) 1992-09-28 1993-07-20 Shell Oil Company Surface heating blanket for soil remediation
US5339904A (en) 1992-12-10 1994-08-23 Mobil Oil Corporation Oil recovery optimization using a well having both horizontal and vertical sections
US5256297A (en) * 1992-12-17 1993-10-26 Exxon Research And Engineering Company Multi-stage ultrafiltration process (OP-3711)
CA2096034C (en) 1993-05-07 1996-07-02 Kenneth Edwin Kisman Horizontal well gravity drainage combustion process for oil recovery
US5360067A (en) 1993-05-17 1994-11-01 Meo Iii Dominic Vapor-extraction system for removing hydrocarbons from soil
CA2117571A1 (en) * 1993-08-30 1995-03-01 Junichi Kubo Process for hydrotreating heavy hydrocarbon oil
US5377756A (en) 1993-10-28 1995-01-03 Mobil Oil Corporation Method for producing low permeability reservoirs using a single well
US5388640A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388641A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations
US5566755A (en) 1993-11-03 1996-10-22 Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US5388642A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using membrane separation of oxygen from air
US5388645A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388643A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using pressure swing adsorption separation
US5411086A (en) 1993-12-09 1995-05-02 Mobil Oil Corporation Oil recovery by enhanced imbitition in low permeability reservoirs
US5435666A (en) 1993-12-14 1995-07-25 Environmental Resources Management, Inc. Methods for isolating a water table and for soil remediation
US5411089A (en) 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US5404952A (en) 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5425416A (en) * 1994-01-06 1995-06-20 Enviro-Tech Tools, Inc. Formation injection tool for down-bore in-situ disposal of undesired fluids
MY112792A (en) 1994-01-13 2001-09-29 Shell Int Research Method of creating a borehole in an earth formation
US5411104A (en) 1994-02-16 1995-05-02 Conoco Inc. Coalbed methane drilling
CA2144597C (en) 1994-03-18 1999-08-10 Paul J. Latimer Improved emat probe and technique for weld inspection
US5415231A (en) 1994-03-21 1995-05-16 Mobil Oil Corporation Method for producing low permeability reservoirs using steam
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
US5431224A (en) 1994-04-19 1995-07-11 Mobil Oil Corporation Method of thermal stimulation for recovery of hydrocarbons
FR2719579B1 (en) * 1994-05-05 1996-06-21 Inst Francais Du Petrole Paraffin alkylation process.
US5409071A (en) 1994-05-23 1995-04-25 Shell Oil Company Method to cement a wellbore
JPH07316566A (en) * 1994-05-27 1995-12-05 Nippon Oil Co Ltd Hydrogenation treatment of heavy oil
ZA954204B (en) 1994-06-01 1996-01-22 Ashland Chemical Inc A process for improving the effectiveness of a process catalyst
GB2304355A (en) * 1994-06-28 1997-03-19 Amoco Corp Oil recovery
AU2241695A (en) 1994-07-18 1996-02-16 Babcock & Wilcox Co., The Sensor transport system for flash butt welder
US5458774A (en) 1994-07-25 1995-10-17 Mannapperuma; Jatal D. Corrugated spiral membrane module
US5632336A (en) 1994-07-28 1997-05-27 Texaco Inc. Method for improving injectivity of fluids in oil reservoirs
US5525322A (en) 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5553189A (en) 1994-10-18 1996-09-03 Shell Oil Company Radiant plate heater for treatment of contaminated surfaces
US5497087A (en) 1994-10-20 1996-03-05 Shell Oil Company NMR logging of natural gas reservoirs
US5498960A (en) 1994-10-20 1996-03-12 Shell Oil Company NMR logging of natural gas in reservoirs
US5624188A (en) 1994-10-20 1997-04-29 West; David A. Acoustic thermometer
US5554453A (en) 1995-01-04 1996-09-10 Energy Research Corporation Carbonate fuel cell system with thermally integrated gasification
US6088294A (en) 1995-01-12 2000-07-11 Baker Hughes Incorporated Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction
WO1996021871A1 (en) 1995-01-12 1996-07-18 Baker Hughes Incorporated A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers
DE19505517A1 (en) 1995-02-10 1996-08-14 Siegfried Schwert Procedure for extracting a pipe laid in the ground
CA2152521C (en) 1995-03-01 2000-06-20 Jack E. Bridges Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits
US5621844A (en) 1995-03-01 1997-04-15 Uentech Corporation Electrical heating of mineral well deposits using downhole impedance transformation networks
DE19507584C2 (en) 1995-03-04 1997-06-12 Geesthacht Gkss Forschung Radiation-chemically modified silicone composite membrane for ultrafiltration
US5935421A (en) 1995-05-02 1999-08-10 Exxon Research And Engineering Company Continuous in-situ combination process for upgrading heavy oil
US5911898A (en) 1995-05-25 1999-06-15 Electric Power Research Institute Method and apparatus for providing multiple autoregulated temperatures
US5571403A (en) 1995-06-06 1996-11-05 Texaco Inc. Process for extracting hydrocarbons from diatomite
US6015015A (en) * 1995-06-20 2000-01-18 Bj Services Company U.S.A. Insulated and/or concentric coiled tubing
US5824214A (en) * 1995-07-11 1998-10-20 Mobil Oil Corporation Method for hydrotreating and upgrading heavy crude oil during production
US5899958A (en) 1995-09-11 1999-05-04 Halliburton Energy Services, Inc. Logging while drilling borehole imaging and dipmeter device
US5759022A (en) 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
US5890840A (en) * 1995-12-08 1999-04-06 Carter, Jr.; Ernest E. In situ construction of containment vault under a radioactive or hazardous waste site
PT870100E (en) 1995-12-27 2000-09-29 Shell Int Research CHAMBER OF COMBUSTION WITHOUT FLAME AND RESPECTIVE IGNITION PROCESS
IE960011A1 (en) * 1996-01-10 1997-07-16 Padraig Mcalister Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures
US5751895A (en) 1996-02-13 1998-05-12 Eor International, Inc. Selective excitation of heating electrodes for oil wells
US5826655A (en) 1996-04-25 1998-10-27 Texaco Inc Method for enhanced recovery of viscous oil deposits
US5652389A (en) 1996-05-22 1997-07-29 The United States Of America As Represented By The Secretary Of Commerce Non-contact method and apparatus for inspection of inertia welds
CA2177726C (en) 1996-05-29 2000-06-27 Theodore Wildi Low-voltage and low flux density heating system
US5769569A (en) 1996-06-18 1998-06-23 Southern California Gas Company In-situ thermal desorption of heavy hydrocarbons in vadose zone
US5828797A (en) 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
WO1997048639A1 (en) 1996-06-21 1997-12-24 Syntroleum Corporation Synthesis gas production system and method
PE17599A1 (en) * 1996-07-09 1999-02-22 Syntroleum Corp PROCEDURE TO CONVERT GASES TO LIQUIDS
US5785860A (en) * 1996-09-13 1998-07-28 University Of British Columbia Upgrading heavy oil by ultrafiltration using ceramic membrane
US5782301A (en) 1996-10-09 1998-07-21 Baker Hughes Incorporated Oil well heater cable
US6079499A (en) 1996-10-15 2000-06-27 Shell Oil Company Heater well method and apparatus
US6056057A (en) 1996-10-15 2000-05-02 Shell Oil Company Heater well method and apparatus
US5861137A (en) 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US7462207B2 (en) * 1996-11-18 2008-12-09 Bp Oil International Limited Fuel composition
US5862858A (en) * 1996-12-26 1999-01-26 Shell Oil Company Flameless combustor
US6427124B1 (en) 1997-01-24 2002-07-30 Baker Hughes Incorporated Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries
US6039121A (en) 1997-02-20 2000-03-21 Rangewest Technologies Ltd. Enhanced lift method and apparatus for the production of hydrocarbons
GB9704181D0 (en) 1997-02-28 1997-04-16 Thompson James Apparatus and method for installation of ducts
US5744025A (en) * 1997-02-28 1998-04-28 Shell Oil Company Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock
US5926437A (en) 1997-04-08 1999-07-20 Halliburton Energy Services, Inc. Method and apparatus for seismic exploration
US5802870A (en) * 1997-05-02 1998-09-08 Uop Llc Sorption cooling process and system
GB2364381B (en) 1997-05-02 2002-03-06 Baker Hughes Inc Downhole injection evaluation system
WO1998050179A1 (en) 1997-05-07 1998-11-12 Shell Internationale Research Maatschappij B.V. Remediation method
US6023554A (en) 1997-05-20 2000-02-08 Shell Oil Company Electrical heater
AU720947B2 (en) 1997-06-05 2000-06-15 Shell Internationale Research Maatschappij B.V. Remediation method
US6102122A (en) 1997-06-11 2000-08-15 Shell Oil Company Control of heat injection based on temperature and in-situ stress measurement
US6112808A (en) 1997-09-19 2000-09-05 Isted; Robert Edward Method and apparatus for subterranean thermal conditioning
US5984010A (en) 1997-06-23 1999-11-16 Elias; Ramon Hydrocarbon recovery systems and methods
CA2208767A1 (en) 1997-06-26 1998-12-26 Reginald D. Humphreys Tar sands extraction process
US5868202A (en) * 1997-09-22 1999-02-09 Tarim Associates For Scientific Mineral And Oil Exploration Ag Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations
US5962763A (en) * 1997-11-21 1999-10-05 Shell Oil Company Atmospheric distillation of hydrocarbons-containing liquid streams
US6354373B1 (en) 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
US6152987A (en) 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
US6094048A (en) 1997-12-18 2000-07-25 Shell Oil Company NMR logging of natural gas reservoirs
NO305720B1 (en) 1997-12-22 1999-07-12 Eureka Oil Asa Procedure for increasing oil production from an oil reservoir
US6026914A (en) * 1998-01-28 2000-02-22 Alberta Oil Sands Technology And Research Authority Wellbore profiling system
US6035949A (en) * 1998-02-03 2000-03-14 Altschuler; Sidney J. Methods for installing a well in a subterranean formation
MA24902A1 (en) 1998-03-06 2000-04-01 Shell Int Research ELECTRIC HEATER
US6540018B1 (en) 1998-03-06 2003-04-01 Shell Oil Company Method and apparatus for heating a wellbore
US6035701A (en) * 1998-04-15 2000-03-14 Lowry; William E. Method and system to locate leaks in subsurface containment structures using tracer gases
AU3978399A (en) 1998-05-12 1999-11-29 Lockheed Martin Corporation System and process for secondary hydrocarbon recovery
US6016868A (en) * 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US6016867A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US5958365A (en) * 1998-06-25 1999-09-28 Atlantic Richfield Company Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods
US6130398A (en) 1998-07-09 2000-10-10 Illinois Tool Works Inc. Plasma cutter for auxiliary power output of a power source
US6180008B1 (en) * 1998-07-30 2001-01-30 W. R. Grace & Co.-Conn. Polyimide membranes for hyperfiltration recovery of aromatic solvents
NO984235L (en) 1998-09-14 2000-03-15 Cit Alcatel Heating system for metal pipes for crude oil transport
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
FR2784687B1 (en) * 1998-10-14 2000-11-17 Inst Francais Du Petrole PROCESS FOR HYDROTREATING A HEAVY HYDROCARBON FRACTION WITH PERMUTABLE REACTORS AND INTRODUCING A MEDIUM DISTILLATE
US6192748B1 (en) 1998-10-30 2001-02-27 Computalog Limited Dynamic orienting reference system for directional drilling
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US20040035582A1 (en) 2002-08-22 2004-02-26 Zupanick Joseph A. System and method for subterranean access
US6123830A (en) * 1998-12-30 2000-09-26 Exxon Research And Engineering Co. Integrated staged catalytic cracking and staged hydroprocessing process
US6609761B1 (en) * 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US6078868A (en) 1999-01-21 2000-06-20 Baker Hughes Incorporated Reference signal encoding for seismic while drilling measurement
US6196314B1 (en) * 1999-02-15 2001-03-06 Baker Hughes Incorporated Insoluble salt control system and method
US6218333B1 (en) 1999-02-15 2001-04-17 Shell Oil Company Preparation of a hydrotreating catalyst
US6155117A (en) 1999-03-18 2000-12-05 Mcdermott Technology, Inc. Edge detection and seam tracking with EMATs
US6561269B1 (en) * 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6110358A (en) 1999-05-21 2000-08-29 Exxon Research And Engineering Company Process for manufacturing improved process oils using extraction of hydrotreated distillates
US6257334B1 (en) * 1999-07-22 2001-07-10 Alberta Oil Sands Technology And Research Authority Steam-assisted gravity drainage heavy oil recovery process
US6269310B1 (en) 1999-08-25 2001-07-31 Tomoseis Corporation System for eliminating headwaves in a tomographic process
US6193010B1 (en) * 1999-10-06 2001-02-27 Tomoseis Corporation System for generating a seismic signal in a borehole
US6196350B1 (en) * 1999-10-06 2001-03-06 Tomoseis Corporation Apparatus and method for attenuating tube waves in a borehole
US6288372B1 (en) 1999-11-03 2001-09-11 Tyco Electronics Corporation Electric cable having braidless polymeric ground plane providing fault detection
US6353706B1 (en) * 1999-11-18 2002-03-05 Uentech International Corporation Optimum oil-well casing heating
US6422318B1 (en) 1999-12-17 2002-07-23 Scioto County Regional Water District #1 Horizontal well system
US6679332B2 (en) * 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
US6715550B2 (en) 2000-01-24 2004-04-06 Shell Oil Company Controllable gas-lift well and valve
US7259688B2 (en) 2000-01-24 2007-08-21 Shell Oil Company Wireless reservoir production control
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
AU4777000A (en) * 2000-02-16 2001-08-27 Indian Oil Corporation Limited A multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks
US7170424B2 (en) 2000-03-02 2007-01-30 Shell Oil Company Oil well casting electrical power pick-off points
MY128294A (en) 2000-03-02 2007-01-31 Shell Int Research Use of downhole high pressure gas in a gas-lift well
AU4341301A (en) * 2000-03-02 2001-09-12 Shell Oil Co Controlled downhole chemical injection
US6357526B1 (en) 2000-03-16 2002-03-19 Kellogg Brown & Root, Inc. Field upgrading of heavy oil and bitumen
US6485232B1 (en) 2000-04-14 2002-11-26 Board Of Regents, The University Of Texas System Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system
US6918444B2 (en) * 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
GB0009662D0 (en) 2000-04-20 2000-06-07 Scotoil Group Plc Gas and oil production
US6698515B2 (en) * 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030085034A1 (en) 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
WO2001081239A2 (en) 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030066642A1 (en) * 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US6715548B2 (en) * 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6584406B1 (en) 2000-06-15 2003-06-24 Geo-X Systems, Ltd. Downhole process control method utilizing seismic communication
GB2383633A (en) 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
FR2813209B1 (en) 2000-08-23 2002-11-29 Inst Francais Du Petrole SUPPORTED TWO-METAL CATALYST HAVING STRONG INTERACTION BETWEEN GROUP VIII METAL AND TIN AND USE THEREOF IN A CATALYTIC REFORMING PROCESS
US6585046B2 (en) 2000-08-28 2003-07-01 Baker Hughes Incorporated Live well heater cable
US6541524B2 (en) * 2000-11-08 2003-04-01 Chevron U.S.A. Inc. Method for transporting Fischer-Tropsch products
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
US20020110476A1 (en) 2000-12-14 2002-08-15 Maziasz Philip J. Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
US20020112987A1 (en) 2000-12-15 2002-08-22 Zhiguo Hou Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts
US6649061B2 (en) * 2000-12-28 2003-11-18 Exxonmobil Research And Engineering Company Membrane process for separating sulfur compounds from FCC light naphtha
US20020112890A1 (en) 2001-01-22 2002-08-22 Wentworth Steven W. Conduit pulling apparatus and method for use in horizontal drilling
US6872231B2 (en) * 2001-02-08 2005-03-29 Bp Corporation North America Inc. Transportation fuels
US6827845B2 (en) * 2001-02-08 2004-12-07 Bp Corporation North America Inc. Preparation of components for refinery blending of transportation fuels
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US20020153141A1 (en) 2001-04-19 2002-10-24 Hartman Michael G. Method for pumping fluids
US6531516B2 (en) * 2001-03-27 2003-03-11 Exxonmobil Research & Engineering Co. Integrated bitumen production and gas conversion
CA2668387C (en) * 2001-04-24 2012-05-22 Shell Canada Limited In situ recovery from a tar sands formation
AU2002257221B2 (en) 2001-04-24 2008-12-18 Shell Internationale Research Maatschappij B.V. In situ recovery from a oil shale formation
US6948562B2 (en) * 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
JP2002338968A (en) * 2001-05-11 2002-11-27 New Business Trading:Kk Method for recovering oil sand oil
CA2351272C (en) * 2001-06-22 2009-09-15 Petro Sep International Ltd. Membrane-assisted fluid separation apparatus and method
US20030029617A1 (en) * 2001-08-09 2003-02-13 Anadarko Petroleum Company Apparatus, method and system for single well solution-mining
WO2003035803A1 (en) * 2001-10-18 2003-05-01 Shell Internationale Research Maatschappij B.V. Continuous process to separate colour bodies and/or asphalthenic contaminants from a hydrocarbon mixture
US6846402B2 (en) * 2001-10-19 2005-01-25 Chevron U.S.A. Inc. Thermally stable jet prepared from highly paraffinic distillate fuel component and conventional distillate fuel component
US7165615B2 (en) * 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7104319B2 (en) * 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7090013B2 (en) * 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
NZ532089A (en) 2001-10-24 2005-09-30 Shell Int Research Installation and use of removable heaters in a hydrocarbon containing formation
BR0213513B8 (en) * 2001-10-24 2013-02-19 Method for soil contamination remediation, and soil remediation system.
US6759364B2 (en) 2001-12-17 2004-07-06 Shell Oil Company Arsenic removal catalyst and method for making same
US6684948B1 (en) * 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US6679326B2 (en) 2002-01-15 2004-01-20 Bohdan Zakiewicz Pro-ecological mining system
CA2473372C (en) * 2002-01-22 2012-11-20 Presssol Ltd. Two string drilling system using coil tubing
US6958195B2 (en) 2002-02-19 2005-10-25 Utc Fuel Cells, Llc Steam generator for a PEM fuel cell power plant
US6818333B2 (en) * 2002-06-03 2004-11-16 Institut Francais Du Petrole Thin zeolite membrane, its preparation and its use in separation
US6709573B2 (en) * 2002-07-12 2004-03-23 Anthon L. Smith Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
AU2003260210A1 (en) 2002-08-21 2004-03-11 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric coil tubing
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US6942032B2 (en) * 2002-11-06 2005-09-13 Thomas A. La Rovere Resistive down hole heating tool
AR041930A1 (en) * 2002-11-13 2005-06-01 Shell Int Research DIESEL FUEL COMPOSITIONS
US7048051B2 (en) * 2003-02-03 2006-05-23 Gen Syn Fuels Recovery of products from oil shale
FR2853904B1 (en) * 2003-04-15 2007-11-16 Air Liquide PROCESS FOR THE PRODUCTION OF HYDROCARBON LIQUIDS USING A FISCHER-TROPSCH PROCESS
NZ567052A (en) * 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
US6951250B2 (en) * 2003-05-13 2005-10-04 Halliburton Energy Services, Inc. Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well
GB0312394D0 (en) * 2003-05-30 2003-07-02 Weir Westgarth Ltd Filtration apparatus and method
WO2005010320A1 (en) * 2003-06-24 2005-02-03 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
NO20033230D0 (en) 2003-07-16 2003-07-16 Statoil Asa Procedure for oil recovery and upgrading
US7306735B2 (en) * 2003-09-12 2007-12-11 General Electric Company Process for the removal of contaminants from water
US7208647B2 (en) * 2003-09-23 2007-04-24 Synfuels International, Inc. Process for the conversion of natural gas to reactive gaseous products comprising ethylene
US7114880B2 (en) * 2003-09-26 2006-10-03 Carter Jr Ernest E Process for the excavation of buried waste
US7147057B2 (en) * 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
JP2007510769A (en) * 2003-11-04 2007-04-26 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for improving the quality of liquid hydrocarbon streams with non- or nano-porous filtration membranes
US7282138B2 (en) 2003-11-05 2007-10-16 Exxonmobil Research And Engineering Company Multistage removal of heteroatoms and wax from distillate fuel
US7416653B2 (en) 2003-12-19 2008-08-26 Shell Oil Company Systems and methods of producing a crude product
NL1027778C2 (en) * 2003-12-19 2006-09-11 Shell Int Research Systems and methods for preparing a crude product.
US20050167331A1 (en) 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US7354507B2 (en) * 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
US7320364B2 (en) * 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
FR2871167B1 (en) * 2004-06-04 2006-08-04 Inst Francais Du Petrole METHOD FOR IMPROVING ESSENTIAL CUPS AND GAS PROCESSING
US7582203B2 (en) 2004-08-10 2009-09-01 Shell Oil Company Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins
RU2399648C2 (en) 2004-08-10 2010-09-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method for obtaining middle-distillate product and low molecular weight olefins from hydrocarbon raw material and device for its implementation
US7722758B2 (en) 2004-10-11 2010-05-25 Shell Oil Company Process for separating colour bodies and/or asphalthenic contaminants from a hydrocarbon mixture
US20060096920A1 (en) * 2004-11-05 2006-05-11 General Electric Company System and method for conditioning water
US7426959B2 (en) * 2005-04-21 2008-09-23 Shell Oil Company Systems and methods for producing oil and/or gas
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
AU2006239999B2 (en) 2005-04-22 2010-06-17 Shell Internationale Research Maatschappij B.V. In situ conversion process systems utilizing wellbores in at least two regions of a formation
EP1941003B1 (en) * 2005-10-24 2011-02-23 Shell Internationale Research Maatschappij B.V. Methods of filtering a liquid stream produced from an in situ heat treatment process
US7124584B1 (en) * 2005-10-31 2006-10-24 General Electric Company System and method for heat recovery from geothermal source of heat
RU2418158C2 (en) * 2006-02-16 2011-05-10 ШЕВРОН Ю. Эс. Эй. ИНК. Extraction method of kerogenes from underground shale formation and explosion method of underground shale formation
US7533719B2 (en) * 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7644993B2 (en) * 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
AU2007313388B2 (en) 2006-10-13 2013-01-31 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
WO2008048456A2 (en) 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
GB2455947B (en) * 2006-10-20 2011-05-11 Shell Int Research Heating hydrocarbon containing formations in a checkerboard pattern staged process
US20080216321A1 (en) * 2007-03-09 2008-09-11 Eveready Battery Company, Inc. Shaving aid delivery system for use with wet shave razors
GB2460980B (en) 2007-04-20 2011-11-02 Shell Int Research Controlling and assessing pressure conditions during treatment of tar sands formations
BRPI0810752A2 (en) * 2007-05-15 2014-10-21 Exxonmobil Upstream Res Co METHODS FOR IN SITU HEATING OF A RICH ROCK FORMATION IN ORGANIC COMPOUND, IN SITU HEATING OF A TARGETED XISTO TRAINING AND TO PRODUCE A FLUID OF HYDROCARBON, SQUARE FOR A RACHOSETUS ORGANIC BUILDING , AND FIELD TO PRODUCE A HYDROCARBON FLUID FROM A TRAINING RICH IN A TARGET ORGANIC COMPOUND.
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
WO2009129143A1 (en) 2008-04-18 2009-10-22 Shell Oil Company Systems, methods, and processes utilized for treating hydrocarbon containing subsurface formations

Also Published As

Publication number Publication date
CA2626970C (en) 2014-12-16
US20070221377A1 (en) 2007-09-27
IL190849A (en) 2012-12-31
JP5456318B2 (en) 2014-03-26
WO2007050446A3 (en) 2008-05-22
WO2007050449A2 (en) 2007-05-03
EA014215B1 (en) 2010-10-29
KR101348117B1 (en) 2014-01-07
EA013579B1 (en) 2010-06-30
US7591310B2 (en) 2009-09-22
US7549470B2 (en) 2009-06-23
US20070127897A1 (en) 2007-06-07
IL190658A0 (en) 2008-11-03
JP5214458B2 (en) 2013-06-19
IL190848A0 (en) 2008-11-03
EP1941006A1 (en) 2008-07-09
US20070131415A1 (en) 2007-06-14
NZ567656A (en) 2012-04-27
KR101434259B1 (en) 2014-08-27
AU2006340864B9 (en) 2011-03-03
US7581589B2 (en) 2009-09-01
IL190849A0 (en) 2008-11-03
JP2009512550A (en) 2009-03-26
JP2009512798A (en) 2009-03-26
JP2009512775A (en) 2009-03-26
US20070131419A1 (en) 2007-06-14
MA29954B1 (en) 2008-11-03
CA2626962C (en) 2014-07-08
EA200801151A1 (en) 2008-08-29
AU2006340864A1 (en) 2007-10-04
EA016412B1 (en) 2012-04-30
US7556095B2 (en) 2009-07-07
WO2007050479A1 (en) 2007-05-03
JP2009512773A (en) 2009-03-26
KR101434226B1 (en) 2014-08-27
US7559367B2 (en) 2009-07-14
JP5441413B2 (en) 2014-03-12
US7556096B2 (en) 2009-07-07
US20070095537A1 (en) 2007-05-03
KR20080064889A (en) 2008-07-09
WO2007050446A2 (en) 2007-05-03
IL190844A (en) 2014-01-30
KR20080064887A (en) 2008-07-09
GB0806000D0 (en) 2008-05-07
AU2006306404B2 (en) 2010-12-09
JP5214459B2 (en) 2013-06-19
MA29965B1 (en) 2008-11-03
EA013253B1 (en) 2010-04-30
EA200801156A1 (en) 2008-10-30
US20070131428A1 (en) 2007-06-14
US20070125533A1 (en) 2007-06-07
CA2626972C (en) 2014-07-08
NZ567658A (en) 2011-08-26
KR101434248B1 (en) 2014-08-27
KR20080059331A (en) 2008-06-26
CA2626946C (en) 2014-08-12
KR20080072662A (en) 2008-08-06
US8151880B2 (en) 2012-04-10
EP1941125A1 (en) 2008-07-09
CA2626946A1 (en) 2007-05-03
WO2007050450A3 (en) 2007-07-26
DE602006020314D1 (en) 2011-04-07
EA200801153A1 (en) 2008-10-30
KR20140003620A (en) 2014-01-09
AU2006306471A1 (en) 2007-05-03
WO2007050476A1 (en) 2007-05-03
EP1941128A1 (en) 2008-07-09
IL190657A (en) 2013-09-30
IL190847A (en) 2012-08-30
AU2006306475A1 (en) 2007-05-03
AU2006306412A1 (en) 2007-05-03
AU2006306472B2 (en) 2010-11-18
JP2009512801A (en) 2009-03-26
CA2626959C (en) 2014-07-08
IL190845A0 (en) 2008-11-03
JP5214457B2 (en) 2013-06-19
IL190846A (en) 2013-11-28
WO2007050469A1 (en) 2007-05-03
IL190844A0 (en) 2008-11-03
NZ567657A (en) 2012-04-27
MA29960B1 (en) 2008-11-03
JP5441412B2 (en) 2014-03-12
WO2007050477A1 (en) 2007-05-03
US7562706B2 (en) 2009-07-21
MA29957B1 (en) 2008-11-03
KR101359313B1 (en) 2014-02-10
NZ567257A (en) 2011-02-25
CA2626905A1 (en) 2007-05-03
EP1941003A2 (en) 2008-07-09
EA200801155A1 (en) 2008-12-30
EP1941127A1 (en) 2008-07-09
AU2006306411A1 (en) 2007-05-03
JP5107928B2 (en) 2012-12-26
IL190848A (en) 2013-09-30
AU2006306411B2 (en) 2010-12-02
JP2009512799A (en) 2009-03-26
US20080017370A1 (en) 2008-01-24
EP1941001A2 (en) 2008-07-09
EA013513B1 (en) 2010-06-30
US20070131427A1 (en) 2007-06-14
EP1941126A1 (en) 2008-07-09
CA2626959A1 (en) 2007-05-03
IL190845A (en) 2014-12-31
US20080107577A1 (en) 2008-05-08
NZ567705A (en) 2011-03-31
CA2626972A1 (en) 2007-05-03
NZ567255A (en) 2011-05-27
WO2007050449A3 (en) 2007-07-26
JP5570723B2 (en) 2014-08-13
KR20080074904A (en) 2008-08-13
AU2006306414A1 (en) 2007-05-03
EA200801154A1 (en) 2008-10-30
EA200801152A1 (en) 2008-10-30
AU2006306414B2 (en) 2010-08-05
US20070095536A1 (en) 2007-05-03
JP2009512802A (en) 2009-03-26
AU2006306475B2 (en) 2010-07-29
JP2009512800A (en) 2009-03-26
US20090301724A1 (en) 2009-12-10
KR20080066052A (en) 2008-07-15
US7559368B2 (en) 2009-07-14
IL190657A0 (en) 2008-11-03
IL190846A0 (en) 2008-11-03
US20070131420A1 (en) 2007-06-14
CA2626965C (en) 2014-10-14
US7584789B2 (en) 2009-09-08
WO2007050445A1 (en) 2007-05-03
AU2006306476B2 (en) 2010-08-19
IL190847A0 (en) 2008-11-03
NZ567706A (en) 2010-12-24
AU2006306471B2 (en) 2010-11-25
NZ567415A (en) 2010-12-24
AU2006306472A1 (en) 2007-05-03
KR20080069635A (en) 2008-07-28
WO2007111642A2 (en) 2007-10-04
EP1941002A2 (en) 2008-07-09
IL190658A (en) 2012-05-31
CA2626965A1 (en) 2007-05-03
WO2007111642A3 (en) 2009-05-14
MA29953B1 (en) 2008-11-03
ATE499428T1 (en) 2011-03-15
EA014196B1 (en) 2010-10-29
AU2006340864B2 (en) 2010-12-23
AU2006306476A1 (en) 2007-05-03
EA200801150A1 (en) 2008-08-29
GB2451311A (en) 2009-01-28
MA29959B1 (en) 2008-11-03
KR101434232B1 (en) 2014-08-27
EA015618B1 (en) 2011-10-31
US7635025B2 (en) 2009-12-22
CA2626970A1 (en) 2007-05-03
EA016412B9 (en) 2012-07-30
MA29956B1 (en) 2008-11-03
AU2006306404A1 (en) 2007-05-03
CA2626962A1 (en) 2007-05-03
WO2007050450A2 (en) 2007-05-03
EA200801157A1 (en) 2008-12-30
EA012941B1 (en) 2010-02-26
EP1941003B1 (en) 2011-02-23
CA2626319A1 (en) 2007-10-04
KR20080074905A (en) 2008-08-13
CA2626969C (en) 2014-06-10
US20110168394A1 (en) 2011-07-14
CA2626905C (en) 2014-12-16
NZ568140A (en) 2011-01-28
AU2006306412B2 (en) 2010-08-19
US8606091B2 (en) 2013-12-10
MA29955B1 (en) 2008-11-03

Similar Documents

Publication Publication Date Title
CA2626969C (en) Temperature limited heater with a conduit substantially electrically isolated from the formation
EP1871985B1 (en) In situ conversion process utilizing a closed loop heating system
CA2650089C (en) Temperature limited heaters using phase transformation of ferromagnetic material
US20120085535A1 (en) Methods of heating a subsurface formation using electrically conductive particles

Legal Events

Date Code Title Description
EEER Examination request