CN100375364C - 变速风轮机发电机系统的网络及控制方法 - Google Patents

变速风轮机发电机系统的网络及控制方法 Download PDF

Info

Publication number
CN100375364C
CN100375364C CNB2004100567649A CN200410056764A CN100375364C CN 100375364 C CN100375364 C CN 100375364C CN B2004100567649 A CNB2004100567649 A CN B2004100567649A CN 200410056764 A CN200410056764 A CN 200410056764A CN 100375364 C CN100375364 C CN 100375364C
Authority
CN
China
Prior art keywords
wind turbine
generators
power
reactive power
turbine generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100567649A
Other languages
English (en)
Other versions
CN1630157A (zh
Inventor
T·A·维尔金斯
N·M·埃尔卡霍蒂
R·A·瓦林
J·P·莱昂斯
R·W·德尔梅里科
S·波斯
N·W·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34063455&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100375364(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1630157A publication Critical patent/CN1630157A/zh
Application granted granted Critical
Publication of CN100375364C publication Critical patent/CN100375364C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

本发明涉及一种变速风轮机发电机系统的网络及控制方法,在此描述的技术提供电压,以利用风轮机发电机系统(400)的总容量,从而提供动态VAR(无功功率支持)。由系统中的单个风轮机发电机(410,412)提供的VAR支持可动态改变以适应使用参数。

Description

变速风轮机发电机系统的网络及控制方法
技术领域
本发明涉及电功率的产生和分配。更具体地,本发明涉及用于无功负载的电功率供给补偿。
背景技术
输配电网从发电装置发送电能给终端用户。输配电系统上的电压管理是该系统运行和设计的重要因素。在典型的系统中,无功功率流对电压具有很大的影响。无功功率流可受到发电源、输配电系统中的改变、旁路无功元件的增加以及负载的影响。此外,过大的无功功率流可升高电压并在输电线、变压器和其它电子元件上施加过度的应力。
参考图1、2和3,电功率具有至少两个与功率分配有关的特性:电压和电流。在大型功率配电网中,电压和电流都随时间变化。当瞬时电压与瞬时电流相乘时,结果为瞬时功率。在大多数配电网中,电压和电流具有正弦波形。
如果无功功率(即VAR)流为零,电压和电流波同相,如图1所示,其中v(ωt)为随时间变化的电压波形,i(ωt)为随时间变化的电流波形。然而,如果无功功率(即感性或容性)不为零,电压波形v(ωt)将不与电流波形i(ωt)同相。电流滞后或超前电压的量可通过功率因数角φ进行量化,该功率因数角表示一个周期中电流超前或滞后电压的部分。一个周期为2π或360度,功率因数角φ为电流和电压的周期差。
关于恒定电压波形v(ωt),滞后电流用图2中的i(ωt-φ)表示,超前电流用图3中的i(ωt+φ)表示。电流滞后或超前电压的量可通过功率因数角φ进行量化,该功率因数角表示一个周期中电流超前或滞后电压的部分。一个周期为2π或360度,功率因数角φ为电流和电压的周期差。
从电力传输的观点考虑,无功功率因数是非常重要的。由于大多数输电系统为感性的,因此增加的无功电流分量(即,容性VAR)将使得电压升高。相反,减小的无功功率分量(即,感性VAR)将使得电压降低。
风力农场无功功率流控制可由单个风轮机发电机,旁路元件(如,开关电容器或开关电抗器),变压器抽头变换器或这些元件的某些组合来实现。
发明内容
一种变速风轮机发电机系统网络,包括产生有功功率和无功功率的发电机和与发电机连接的系统控制器,该系统控制器基于单个发电机的热容量和/或电压极限控制由单个发电机产生的有功和无功功率,从而使得该发电机系统网络提供所需要的有功和无功功率。
根据本发明的一个方面,提供一种变速风轮机发电机系统的网络,包括:
多个发电机,以产生有功和无功功率,其中一个或多个发电机包括控制有功功率和无功功率流的变频功率变换器激励系统,并且其中变频功率变换器激励系统能够与所述多个发电机无关地分配无功功率;以及
与多个发电机连接的系统控制器,从而基于单个发电机的热容量和/或电压极限控制由多个发电机中的单个发电机产生的有功和无功功率,从而使得多个发电机提供要求的有功和无功功率
其中由风轮机发电机提供的要求的无功功率成分是Q0+(dQ/dP)P的形式,其中Q0为额定VAR运行点,其提供给系统中所有的风轮机发电机,且(dQ/dP)P为风轮机发电机功率乘以无功功率相对于有功功率的增长斜率。
根据本发明的另一方面,提供一种方法,包括:
确定提供给预定位置的功率;
将指令提供给多风轮机系统中的每个风轮机发电机,其中一个或多个发电机包括控制有功和无功功率流的变频功率变换器激励系统,并且其中变频功率变换器激励系统能够与所述多个发电机无关地分配无功功率,该指令基于单个发电机的热容量和/或电压极限控制由多个发电机中的单个发电机产生的有功和无功功率,从而使得多个发电机提供要求的有功和无功功率;以及
响应该指令从风轮机发电机提供功率,
其中单个风轮机发电机的指令包括形式为
Q0+(dQ/dP)P的无功功率成分,其中Q0为额定VAR运行点,其提供给系统中所有的风轮机发电机,且(dQ/dP)P为风轮机发电机功率乘以无功功率相对于有功功率的增长斜率。
附图说明
本发明通过实施例但并非为限定方式示于附图中,其中相同的附图标记表示相同的元件。
图1示出了电压与电流同相的波形。
图2示出了电压超前电流的波形。
图3示出了电压滞后电流的波形。
图4是风轮机系统的闭环实施例的框图,其中风轮机发电机可单独进行控制以提供无功功率支持。
图5是风轮机系统的开环实施例的框图,其中风轮机发电机可单独进行控制以提供无功功率支持。
图6是风轮机的有功和无功功率容量的曲线概念图。
图7是风轮机系统中单个风轮机的动态无功功率控制的一个实施例的流程图。
图8是优化控制器的一个实施例的框图。
图9是在电力系统中的固定位置上提供期望电压曲线的实例传递函数。
图10是单个网络的实例优化比较。
图11是与图10的优化比较相对应的简单网络。
图12是双反馈感应发电机系统的一个实施例的框图。
具体实施方式
在下面的描述中,为了便于解释,给出大量的特定细节以提供本发明的透彻理解。然而,对于本领域的技术人员来说没有这些特定细节的情况下,本发明能够实现也是很明显的。在其他实施例中,为了避免使发明不清楚,结构和设备以框图的形式示出。
此处所述的技术提供电压以利用风轮机发电机系统(即,风力农场)的总容量,从而提供动态VAR(无功功率支持)。系统中由单个风轮机发电机提供的VAR支持可动态改变以适应使用参数。
风轮机发电机可基于有功功率产生和功率因数提供VAR支持。这类VAR支持可用例如方程式进行表示,该方程式为:
VAR=Watt*tan(θ)
其中θ为功率因数角。功率因数控制具有一些缺点。由于VAR支持与功率输出的平方成比例,因此该技术不使用每个风轮机发电机的总容量,如图6所示。同样,功率因数控制有时可导致执行错误的动作从而自然的在公共耦合点(PCC)上维持期望电压。
在一个实施例中,电压控制器监测风轮机发电机系统(例如风力农场)和与公共电网的连接之间的公共耦合点(PCC)。该电压控制器测量电网电压并且将该电网电压与期望的电压比较。该电压控制器计算从风力农场系统所需的无功功率量,从而使得电网电压在期望范围内。
在一个实施例中,为了在PCC上提供期望功率(包括无功功率),动态电压控制器通过配电控制网络发送无功功率指令给每个风轮机发电机。该风轮机发电机翻译所收到的指令并激励其发电机产生所要求的无功功率。当无功功率改变时,所测得的电网电压向期望电压电平移动。因此,该系统提供闭环电压控制系统。
风轮机发电机由与涡轮叶片机械连接的旋转电机组成。风轮机的机械能通过收集器系统转变为传递给电网的电能。变频功率变换器用来控制有功和无功功率流。
在一个实施例中,如图12所示,发电机是具有绕线转子和滑环的双反馈感应发电机。与发电机转子连接的变频功率变换器激励系统使得发电机以从(例如)800rpm到1600rpm范围内的速度运行。该变频功率变换器激励系统也用于调节发电机的无功功率输出。
为了产生无功功率,变频功率变换器发电机系统的响应时间等效于静态VAR调节器。该变频功率变换器也可独立于发电机进行控制,从而为收集器系统提供无功功率,如图12所示。
图4是风轮机系统的闭环实施例的框图,其中风轮发电机可单独进行控制以提供无功功率支持。示出了风轮机系统400,其具有两个风轮机(410和412),每一个包括一个发电机。然而,在使用在此所述的技术的系统中,可包括任何数量的风轮机。
每个风轮机电连接到公共耦合点(PCC)420上。由于许多风轮机系统包括大量的大面积分布的风轮机,因此每个风轮机和PCC420之间的距离可以改变。
系统测量430与PCC420连接。系统测量430的一个功能是监测PCC420上的电压,电流和功率。系统测量430基于PCC420上的电压将信号提供给滤波器440和441,线路电压降补偿器445和电压控制器450。在提供给滤波器440,线路电压降补偿器445和电压控制器450的信号中也可包括其他因数。
线路电压降补偿器445是用于补偿电压降的任意元件,该电压降由从PCC420到公共电网的传送所引起。在一个实施例中,该补偿包括线路负载的影响。在一个实施例中,PCC上的电压(Es)和电流(Is)测量和公共电网中所计算的电压(Er)之间的关系为:Er=A·Es+B·Is,其中A和B为派生出传输线参数(如线路阻抗和旁路电抗)的复合系数。图9是提供在电力系统的固定位置上的期望电压曲线的实施例传递函数。通常,传递函数的形状对于各个应用可以不相同,这取决于详细的电力系统研究。
系统测量430将与在PCC420上测得的电压对应的信号提供给滤波器440,将与在PCC420上测得的电流对应的信号提供给滤波器441。滤波器440滤出谐波和噪声,并将与PCC420上的电压对应的滤波信号提供给电压控制器450和线路电压降补偿器445。滤波器441滤出谐波和噪声,并将与PCC420上的电流对应的滤波信号提供给线路电压降补偿器445。线路电压降补偿器445是用作补偿电压降的任意元件,该电压降由从PCC420到公共电网或在系统400内的传送所引起。在一个实施例中,来自滤波器440和线路电压降补偿器445的输出信号结合以提供输入信号给电压控制器450。
在一个实施例中,电压控制器450确定将要提供给PCC420的期望无功功率。可根据作为整体的系统400、单个风轮机和涡轮机组提供该无功功率。
优化控制器460是接收来自功率调制器470的功率调节信号、来自电压控制器450的风力农场VAR信号、来自旁路电容器/电抗器管理480的VAR调节信号的任意元件。该优化控制器460为每个风轮机计算单个无功功率指令,该无功功率指令使风力农场系统损耗最小或者优化了收集器系统电压分配。优化控制器的一个实施例在下面参考图8进行更详细的描述。
数学上的优化问题通常描述为使满足某些约束条件的目标函数J(u,x)最小。以矩阵符号表示为:
最小J(u,x)
满足:d(u,x)=0
e(u,x)≤0
x:系统变量(如,母线电压,功率因数)
u:控制变量(如,发电机无功功率)
J(u,x):目标函数
d(u,x):等式约束
e(u,x):不等式约束
采样目标函数示于方程式(1)。该函数旨在使满足维持在风力农场PCC上的功率因数的配电线路损耗(PL)最小。其可要求为建立特性体系,以执行节点支路上更紧密的电压公差带。
最小 J = Σ k = 1 n PL k 方程式(1)
满足:系统PF=0.95(过激)
为了进行演示,对于图11的简单网络,图10中示出了简单的优化对比。
某些风力农场应用要求在风力农场中增加开关电容器404和开关电抗器406。旁路电容器/电抗器管理480是将这些开关元件的运行和风轮机410与412的无功功率输出进行协调和优化的任意元件。任一变压器抽头变换器402也可与开关电抗器406、电容器404以及风轮机VAR信号进行协调。
系统400的风轮机从电压控制器450和任意优化控制器460接收功率指令,并且单独对这些指令作出反应。功率调节和VAR指令可通过共享的数据总线分配给风轮机,同时每个风轮机具有地址和其他识别器。可替换地,功率调节和VAR指令可通过每个连接如通过集线器设备分配到风轮机上。
当风轮机对指令作出反应时,每个风轮机的控制系统导致必要的改变(如叶片螺距改变,发电机转矩改变),从而提供由功率指令所指示的有功和无功功率。单个风轮机控制的结果是,PCC420上的有功和无功功率可被动态调节从而提供期望特性,这些特性提高了风轮机系统400的性能及附加好处。这些好处包括,但并不局限于,闪烁减小,电压管理,电力缩小,以及电力系统稳定。
图5是风轮机系统的开环实施例的框图,其中风轮机发电机可单独进行控制从而提供无功功率支持。风轮机系统500包括如上所述的风轮机(410和412)和与公共电网连接的PCC420。与图4的系统400一样,可包括任何数量的风轮机。
系统测量550监测由风轮机提供给PCC420的功率。系统测量550将与PCC420上测得的功率对应的信号提供给滤波器560。滤波器560滤出快速的功率波动,并将与PCC420上的功率对应的滤波信号提供给VAR/Watt传递函数590。在一个实施例中,VAR/Watt传递函数590为恒定功率因数特性曲线。VAR/Watt传递函数逼近电力系统中的一点上的期望电压曲线。VAR/Watt传递函数的一个实施例示于图9中。
VAR/Watt传递函数590比较来自滤波器560的功率信号(P)和VAR/Watt曲线,从而动态地确定由系统500提供的无功功率。
为了进行局部控制,在一个实施例中,两个信号(Q0和dQ/dP)由VAR/Watt传递函数590传送到风轮机(410和412)。该风轮机(410和412)局部控制形式为:
Q0+(dQ/dP)P
其中Q0为在系统中提供给所有风轮机发电机的公共无功功率项,以及
(dQ/dP)
为用于通过风轮机(410和412)局部控制而进行快速动态控制的斜率项。
图6是风轮机发电机的有功和无功功率容量的示意图。该有功功率可在图6所示的界限内进行动态调节。
图4和5的系统结构提供几种重要的特点。系统中作为静态VAR补偿器运行的每个风轮机发电机的容量在图6所示的容量曲线内进行使用。在一个实施例中,当风轮机不运行时,风轮机变频功率变换器的无功功率补偿容量可进行使用。在一个实施例中,电力系统衰减(如功率摆动角,功率摆动角改变的频率和速率)可通过调制在单个发电机电平和系统电平上的有功和无功功率产生而进行控制。
图7是风轮机系统中的单个风轮机的动态功率控制的一实施例的流程图。确定提供给预定位置的期望的公共控制信号(如,电压、功率因数或VAR),710。该预定位置典型的为公共耦合点(PCC);然而,例如,如果风轮机系统位于很远的位置,预定位置可为基于线路电压降补偿算法的计划点。
测量传送给预定位置的风力农场功率或电压输出,720。所测得的输出与期望控制信号进行比较,730。响应该比较,风力农场的控制系统确定需要将期望功率提供给预定位置的任何校正的大小。
该控制系统确定由每个风轮机发电机提供的有功和无功功率,从而将期望控制提供给预定位置。在一个实施例中,每个风轮机发电机可接收指令从而提供有功和无功功率的不同组合。风力农场的物理结构包括,例如,发电机的类型、风轮机的位置、收集器系统设计和风轮机和PCC之间的距离,该风力农场物理结构可用于确定提供给每个风轮机发电机的功率指令,从而改进减少损耗的系统性能和电压曲线。
将功率指令传送给每个风轮机发电机,740。该功率指令可采用本领域中已经公知的任何媒介进行传送,不论是有线的还是无线的。同样,本领域中能在一组电压接收站内将指令传送给每个接收站的任何协议均可使用。如果必要,每个风轮机发电机响应功率指令来调节它们的每个输出,750。
图8是优化控制器的一个实施例的框图。方框810执行风力农场VAR信号和由开关电容器和电抗器产生的VAR之间的误差上的死区(deadband)特性。方框820的时间积分用于建立激励电容器和电抗器组的开关的逆时特性。方框830用于确定哪个电容器和电抗器组进行开关。
说明书中“一个实施例”或“实施例”的标志意味着,结合该实施例描述的特定特征、结构或特点包括在本发明的至少一个实施例中。说明书中不同位置中的短语“一个实施例中”的出现不一定都表示相同的实施例。
在前述的说明书中,本发明已经参考其特定实施例进行描述。然而,明显的是不脱离本发明的更宽的精神和范围可进行各种变形和改变。因此,说明书和附图仅为示意性示出而不是限定性的。

Claims (9)

1.一种变速风轮机发电机系统的网络,包括:
多个发电机,以产生有功和无功功率,其中一个或多个发电机包括控制有功功率和无功功率流的变频功率变换器激励系统,并且其中变频功率变换器激励系统能够与所述多个发电机无关地分配无功功率;以及
与多个发电机连接的系统控制器,从而基于单个发电机的热容量和/或电压极限控制由多个发电机中的单个发电机产生的有功和无功功率,从而使得多个发电机提供要求的有功和无功功率,
其中由风轮机发电机提供的要求的无功功率成分是Q0+(dQ/dP)P的形式,其中Q0为额定VAR运行点,其提供给系统中所有的风轮机发电机,且(dQ/dP)P为风轮机发电机功率乘以无功功率相对于有功功率的增长斜率。
2.根据权利要求1所述的变速风轮机发电机系统的网络,还包括与多个发电机和系统控制器连接的开关功率管理元件,其中该开关功率管理元件由系统控制器进行控制。
3.根据权利要求1所述的变速风轮机发电机系统的网络,其中有功和无功功率指令可由系统控制器从公共电网操作者进行接收。
4.根据权利要求3所述的变速风轮机发电机系统的网络,其中无功功率指令与开关功率管理元件的调节相协调。
5.根据权利要求2所述的变速风轮机发电机系统的网络,其中系统控制器使多个发电机中的所述单个发电机的每个基本上产生相同的无功功率。
6.一种方法,包括:
确定提供给预定位置的功率;
将指令提供给多风轮机系统中的每个风轮机发电机,其中一个或多个发电机包括控制有功和无功功率流的变频功率变换器激励系统,并且其中变频功率变换器激励系统能够与所述多个发电机无关地分配无功功率,该指令基于单个发电机的热容量和/或电压极限控制由多个发电机中的单个发电机产生的有功和无功功率,从而使得多个发电机提供要求的有功和无功功率;以及
响应该指令从风轮机发电机提供功率,
其中单个风轮机发电机的指令包括形式为
Q0+(dQ/dP)P的无功功率成分,其中Q0为额定VAR运行点,其提供给系统中所有的风轮机发电机,且(dQ/qP)P为风轮机发电机功率乘以无功功率相对于有功功率的增长斜率。
7.根据权利要求6所述的方法,其中每个风轮机发电机的指令进一步包括有功和无功功率调制信号,从而基于公共参考指令调节网络功率。
8.根据权利要求6所述的方法,进一步包括控制与多个发电机和系统控制器连接的开关功率管理元件。
9.根据权利要求6所述的方法,其中单个发电机作为静态VAR调节器在任何风力条件下运行。
CNB2004100567649A 2003-08-18 2004-08-18 变速风轮机发电机系统的网络及控制方法 Active CN100375364C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/643297 2003-08-18
US10/643,297 US6924565B2 (en) 2003-08-18 2003-08-18 Continuous reactive power support for wind turbine generators

Publications (2)

Publication Number Publication Date
CN1630157A CN1630157A (zh) 2005-06-22
CN100375364C true CN100375364C (zh) 2008-03-12

Family

ID=34063455

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100567649A Active CN100375364C (zh) 2003-08-18 2004-08-18 变速风轮机发电机系统的网络及控制方法

Country Status (7)

Country Link
US (1) US6924565B2 (zh)
EP (1) EP1508951B1 (zh)
CN (1) CN100375364C (zh)
AU (1) AU2004203836B2 (zh)
BR (1) BRPI0403608B1 (zh)
DK (1) DK1508951T3 (zh)
ES (1) ES2593005T3 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606947A (zh) * 2008-10-09 2014-02-26 通用电气公司 优化包括传输线的个体地方风电场系统的系统损耗的方法

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
US7119452B2 (en) * 2003-09-03 2006-10-10 General Electric Company Voltage control for wind generators
SE526001C2 (sv) * 2003-09-26 2005-06-14 Abb Research Ltd System för överföring av elektrisk kraft
JP4269941B2 (ja) * 2004-01-08 2009-05-27 株式会社日立製作所 風力発電装置およびその制御方法
MX2007006440A (es) * 2004-12-28 2008-03-11 Vestas Wind Sys As Metodo para controlar una turbina eolica conectada a una red de distribucion electrica.
US7215035B2 (en) * 2005-02-22 2007-05-08 Xantrex Technology, Inc. Method and apparatus for converting wind generated electricity to constant frequency electricity for a utility grid
ES2277724B1 (es) * 2005-02-23 2008-06-16 GAMESA INNOVATION & TECHNOLOGY, S.L. Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tension de red.
WO2006120033A2 (en) * 2005-05-13 2006-11-16 Siemens Ag Wind farm power control system
US7239036B2 (en) * 2005-07-29 2007-07-03 General Electric Company System and method for power control in wind turbines
US7345373B2 (en) * 2005-11-29 2008-03-18 General Electric Company System and method for utility and wind turbine control
US7276807B2 (en) * 2006-01-19 2007-10-02 General Electric Company Wind turbine dump load system and method
US7505833B2 (en) * 2006-03-29 2009-03-17 General Electric Company System, method, and article of manufacture for controlling operation of an electrical power generation system
US8032614B2 (en) * 2006-04-30 2011-10-04 General Electric Company Method for configuring a windfarm network
US7312537B1 (en) * 2006-06-19 2007-12-25 General Electric Company Methods and apparatus for supplying and/or absorbing reactive power
DE102006039693A1 (de) * 2006-08-21 2008-03-20 Nordex Energy Gmbh Verfahren zum Betreiben von Windenergieanlagen
US7710693B2 (en) * 2006-09-22 2010-05-04 Schweitzer Engineering Laboratories, Inc. Apparatus and method for providing protection for a synchronous electrical generator in a power system
ES2611131T3 (es) 2006-10-02 2017-05-05 Vestas Wind Systems A/S Método de accionamiento de una turbina eólica conectada a una red de distribución eléctrica durante perturbación de red de distribución eléctrica, turbina eólica y parque eólico
US7983799B2 (en) * 2006-12-15 2011-07-19 General Electric Company System and method for controlling microgrid
US7531911B2 (en) * 2006-12-22 2009-05-12 Ingeteam Energy, S.A. Reactive power control for operating a wind farm
US7622815B2 (en) 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7800349B2 (en) * 2007-02-02 2010-09-21 The Hong Kong Polytechnic University Voltage dip and undervoltage compensator
DE102007017870B4 (de) * 2007-04-13 2022-03-31 Senvion Gmbh Verfahren zum Betreiben einer Windenergieanlage bei Überspannungen im Netz
US9587626B2 (en) 2007-06-01 2017-03-07 Acciona Windpower, S.A. Control system and method for a wind turbine generator
DE102007036444A1 (de) * 2007-08-02 2009-02-05 Nordex Energy Gmbh Windpark mit einer Vielzahl von Windenergieanlagen sowie Verfahren zum Betreiben des Windparks
DE102007044601A1 (de) * 2007-09-19 2009-04-09 Repower Systems Ag Windpark mit Spannungsregelung der Windenergieanlagen und Betriebsverfahren
DE102007057925A1 (de) 2007-12-01 2009-06-04 Nordex Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage mit einer spannungsabhängigen Steuerung einer bereitzustellenden elektrischen Blindgröße
KR101176394B1 (ko) 2007-12-14 2012-08-27 미츠비시 쥬고교 가부시키가이샤 풍력 발전 시스템 및 그 운전 제어 방법
WO2009076955A1 (en) * 2007-12-14 2009-06-25 Vestas Wind Systems A/S Lifetime optimization of a wind turbine generator by controlling the generator temperature
AU2007362449B2 (en) * 2007-12-14 2013-06-27 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and operation control method therefor
WO2009080036A1 (en) * 2007-12-20 2009-07-02 Vestas Wind Systems A/S A method for controlling a common output from at least two wind turbines, a central wind turbine control system, a wind park and a cluster of wind parks
EP2227856B2 (en) * 2007-12-28 2015-10-14 Vestas Wind Systems A/S Apparatus and method for controlling the reactive power from a cluster of wind turbines connected to a utility grid
ES2327484B1 (es) * 2008-01-22 2010-08-03 Acciona Windpower S,A, Sistema y metodo de control de un parque eolico.
US8237301B2 (en) * 2008-01-31 2012-08-07 General Electric Company Power generation stabilization control systems and methods
US7994658B2 (en) 2008-02-28 2011-08-09 General Electric Company Windfarm collector system loss optimization
US7944184B2 (en) * 2008-04-07 2011-05-17 Korea Electric Power Corporation Static compensator apparatus for HVDC system
US7839024B2 (en) * 2008-07-29 2010-11-23 General Electric Company Intra-area master reactive controller for tightly coupled windfarms
WO2010018631A1 (ja) * 2008-08-14 2010-02-18 三菱重工業株式会社 風力発電装置
US8406019B2 (en) 2008-09-15 2013-03-26 General Electric Company Reactive power compensation in solar power system
DE102008048258B4 (de) * 2008-09-22 2016-12-08 Senvion Gmbh Windpark und Verfahren zum Betreiben eines Windparks
US8058753B2 (en) * 2008-10-31 2011-11-15 General Electric Company Wide area transmission control of windfarms
US8143742B2 (en) * 2008-11-26 2012-03-27 Michael A Maloney Power distribution controller and related systems and methods
ES2528595T3 (es) 2009-01-30 2015-02-10 Siemens Aktiengesellschaft Inercia frecuencial de sistema de potencia para sistema de generación eléctrica
EP2219277B1 (en) * 2009-02-12 2012-07-11 Viserge Ltd. AC-connection of an off-shore wind-park to an on-shore electricity grid
ES2382786B1 (es) * 2009-03-17 2013-05-07 Acciona Windpower S.A. Metodo y sistema de control de tension de una central de generacion electrica y parque eolico
AT508182B1 (de) * 2009-04-20 2011-09-15 Hehenberger Gerald Dipl Ing Verfahren zum betreiben einer energiegewinnungsanlage, insbesondere windkraftanlage
WO2010132439A1 (en) 2009-05-12 2010-11-18 Icr Turbine Engine Corporation Gas turbine energy storage and conversion system
US8655495B2 (en) * 2009-06-24 2014-02-18 Vestas Wind Systems A/S Current control of a wind park
EP2299568B1 (en) * 2009-08-21 2016-06-22 Vestas Wind Systems A/S System and method for monitoring power filters and detecting power filter failure in a wind turbine electrical generator
US7750490B2 (en) * 2009-08-28 2010-07-06 General Electric Company Method and system for extracting inertial energy from a wind turbine
US7923862B2 (en) * 2009-10-06 2011-04-12 General Electric Company Reactive power regulation and voltage support for renewable energy plants
US8405940B2 (en) * 2009-10-13 2013-03-26 Schweitzer Engineering Laboratories Inc Systems and methods for generator ground fault protection
US7990743B2 (en) * 2009-10-20 2011-08-02 General Electric Company System and method for decreasing solar collector system losses
US9466984B2 (en) * 2009-10-26 2016-10-11 General Electric Company Power ramp rate control for renewable variable power generation systems
US8283803B2 (en) * 2009-11-04 2012-10-09 Repower Systems Ag Wind farm and method for operation of a wind farm
CN102074969B (zh) * 2009-11-23 2014-03-12 瑞能系统股份公司 风力发电站与风力发电站的运行方法
CN102762850B (zh) 2010-01-14 2015-04-08 耐普迪考股份有限公司 风力涡轮机转子叶片部件及其制造方法
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
JP5320311B2 (ja) 2010-01-18 2013-10-23 三菱重工業株式会社 可変速発電装置及びその制御方法
US9306395B2 (en) * 2010-02-25 2016-04-05 Vestas Wind Systems A/S Wind turbine controller applying differential pole control algorithm
EP2539585B1 (en) 2010-02-25 2020-07-08 Vestas Wind Systems A/S Method and control arrangement for controlling a reactive power source
WO2011109514A1 (en) 2010-03-02 2011-09-09 Icr Turbine Engine Corporatin Dispatchable power from a renewable energy facility
ES2613734T3 (es) 2010-03-31 2017-05-25 Vestas Wind Systems A/S Método de funcionamiento de una turbina eólica, turbina eólica, sistema de control de turbina eólica y sistema de procesamiento
BRPI1004895A2 (pt) * 2010-05-28 2017-01-17 Mitsubishi Heavy Ind Ltd aparelho e método de monitoramento e controle e usina de energia eólica equipada com os mesmos.
CN103004050B (zh) * 2010-06-03 2016-01-20 维斯塔斯风力系统集团公司 用于控制风力发电厂中的中央电容器的方法和控制装置
EP2397689A1 (en) * 2010-06-16 2011-12-21 Siemens Aktiengesellschaft Method and system for controlling a power production entity
EP2397688A1 (en) * 2010-06-16 2011-12-21 Siemens Aktiengesellschaft Electric power control system and electric power facility comprising the electric power control system
WO2011161692A2 (en) 2010-06-21 2011-12-29 Raghunathan V R Reactive power management for wind turbine applications
WO2012000510A1 (en) * 2010-06-29 2012-01-05 Vestas Wind Systems A/S Method and system for monitoring structural health of a filter in a wind turbine, and a wind turbine
EP2589127B1 (en) * 2010-06-30 2014-06-25 ABB Technology AG A multi-terminal dc transmission system and method and means for control thereof
WO2012000515A2 (en) * 2010-06-30 2012-01-05 Vestas Wind Systems A/S Controlling a wind power plant transformer
US8984895B2 (en) 2010-07-09 2015-03-24 Icr Turbine Engine Corporation Metallic ceramic spool for a gas turbine engine
US8664800B2 (en) 2010-08-31 2014-03-04 General Electric Company System and method for distribution of inverter VAR support
AU2011295668A1 (en) 2010-09-03 2013-05-02 Icr Turbine Engine Corporation Gas turbine engine configurations
US8249758B2 (en) 2010-10-12 2012-08-21 American Superconductor Corporation Centralized power conditioning
US20120133209A1 (en) * 2010-11-30 2012-05-31 General Electric Company Integration of renewable power generating technologies with integrated volt/var control systems
US8150641B2 (en) * 2010-12-06 2012-04-03 General Electric Company System, device, and method for estimating possible power output of wind turbines
DE102010054233A1 (de) 2010-12-11 2012-06-14 Adensis Gmbh Energieversorgungsnetz mit Blindleistungsmanagement
CN102074967B (zh) * 2011-01-10 2013-05-22 清华大学 一种具有并网特性的储能型风电场控制方法
CN102624023B (zh) * 2011-01-31 2014-07-09 华锐风电科技(集团)股份有限公司 双馈型机组风电场的无功电压控制系统
DK2482418T3 (en) * 2011-02-01 2018-11-12 Siemens Ag Active desynchronization of switching inverters
EP2485358B2 (en) * 2011-02-07 2021-12-22 Siemens Gamesa Renewable Energy A/S System and method for mitigating an electric unbalance of a three-phase current at a Point of Common Coupling between a wind farm and a power grid
DE102011012695A1 (de) 2011-03-01 2012-09-06 Adensis Gmbh Geographisch beeinflusstes Blindleistungsmanagement
CN102157943B (zh) * 2011-03-09 2014-01-29 深圳市禾望电气有限公司 一种稳定风力发电机组网侧电压的方法
US8531173B2 (en) * 2011-03-31 2013-09-10 General Electric Company System and method for operating a tap changer
US9051873B2 (en) 2011-05-20 2015-06-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine shaft attachment
DE102011112025A1 (de) 2011-08-31 2013-02-28 Repower Systems Se Schnelle Spannungsregelung
US10103661B2 (en) * 2011-09-28 2018-10-16 Vestas Wind Systems A/S Wind power plant and a method for operating thereof
CN102354989B (zh) * 2011-10-22 2013-08-07 东北电力大学 含恒速异步风电机组风电场暂态电压控制方法
US9588557B2 (en) * 2011-11-11 2017-03-07 Thomas Alexander Wilkins Reactive following for distributed generation and loads of other reactive controller(s)
US9252596B2 (en) 2011-11-28 2016-02-02 General Electric Company System and method for reactive power compensation in power networks
EP2605357A1 (en) * 2011-12-15 2013-06-19 Siemens Aktiengesellschaft Control of reactive power output from a wind park
US9046077B2 (en) * 2011-12-28 2015-06-02 General Electric Company Reactive power controller for controlling reactive power in a wind farm
US8848400B2 (en) 2012-02-15 2014-09-30 General Electric Company System and method for reactive power regulation
CN102611118B (zh) * 2012-03-14 2014-04-16 清华大学 一种引入预测信息的风电场综合无功电压控制方法
EP2858199B1 (en) * 2012-05-31 2020-01-01 Mitsubishi Heavy Industries, Ltd. Voltage control device, control method thereof and voltage control program
US10094288B2 (en) 2012-07-24 2018-10-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine volute attachment for a gas turbine engine
DK2700815T3 (en) 2012-08-24 2016-06-06 Siemens Ag Operation of a wind turbine with several temperature sensors
US9371821B2 (en) 2012-08-31 2016-06-21 General Electric Company Voltage control for wind turbine generators
US8669669B1 (en) * 2012-09-13 2014-03-11 General Electric Company Voltage control in a doubly-fed induction generator wind turbine system
US9484850B2 (en) * 2012-10-18 2016-11-01 Regal Beloit America, Inc. Voltage regulator and methods for simulating reactive power in parallel power generation systems
US9680307B2 (en) 2012-12-21 2017-06-13 General Electric Company System and method for voltage regulation of a renewable energy plant
US8941961B2 (en) 2013-03-14 2015-01-27 Boulder Wind Power, Inc. Methods and apparatus for protection in a multi-phase machine
ES2826098T3 (es) * 2013-04-04 2021-05-17 Gen Electric Sistema de generación de potencia eólica de múltiples parques
EP2799944B1 (en) * 2013-04-29 2019-02-20 Siemens Aktiengesellschaft A method for controlling a power generation plant
US9442137B2 (en) * 2013-05-03 2016-09-13 Siemens Aktiengesellschaft Method and arrangement for determining an electrical characteristics at a regulation point
CN103248056B (zh) * 2013-05-25 2015-07-08 国家电网公司 一种风电场集中并网地区的无功电压紧急控制方法
CN105308312B (zh) * 2013-06-03 2020-03-17 维斯塔斯风力系统集团公司 风力发电厂控制器
KR101480533B1 (ko) * 2013-06-28 2015-01-08 한국전력공사 분산전원 전력계통 연계 운전장치 및 방법
EP2851558B1 (en) * 2013-09-18 2017-07-19 Siemens Aktiengesellschaft Method of controlling a wind turbine
DE102013222452A1 (de) 2013-11-05 2015-05-07 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
US10288688B2 (en) 2014-07-24 2019-05-14 Schweitzer Engineering Laboratories, Inc. Systems and methods for monitoring and protecting an electric power generator
CN106795858A (zh) * 2014-10-07 2017-05-31 维斯塔斯风力系统集团公司 来自风力涡轮机设施的无功功率支持
DK201470628A1 (en) * 2014-10-10 2016-04-18 Deif As Utilization of capability of generators
US9496707B2 (en) 2014-12-22 2016-11-15 Schweitzer Engineering Laboratories, Inc. Generator protection element
US9831810B2 (en) 2015-03-10 2017-11-28 General Electric Company System and method for improved reactive power speed-of-response for a wind farm
US10270253B2 (en) 2015-05-14 2019-04-23 Varentec, Inc. System and method for regulating the reactive power flow of one or more inverters coupled to an electrical grid
WO2016206698A1 (en) * 2015-06-26 2016-12-29 Vestas Wind Systems A/S Increasing active power from a wind turbine
DE102015114704A1 (de) * 2015-09-03 2017-03-09 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung
DE102016105662A1 (de) 2016-03-29 2017-10-05 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz mit einem Windpark sowie Windpark
DE102016106215A1 (de) 2016-04-05 2017-10-05 Wobben Properties Gmbh Verfahren sowie Windenergieanlage zum Einspeisen elektrischer Leistung
WO2018103800A1 (en) * 2016-12-09 2018-06-14 Vestas Wind Systems A/S Improvements relating to reactive power support in wind power plants
FR3062750B1 (fr) 2017-02-03 2019-06-07 Moteurs Leroy-Somer Procede de regulation d'alternateurs en parallele pour la repartition de charge reactive
US10756658B2 (en) * 2017-07-06 2020-08-25 General Electric Company Allocating reactive power production for doubly fed induction generator wind turbine system
US10333291B2 (en) 2017-09-25 2019-06-25 Schweitzer Engineering Laboratories, Inc. Multiple generator ground fault detection
US10931097B2 (en) 2017-09-25 2021-02-23 Schweitzer Engineering Laboratories, Inc. Generator stator ground protection using third harmonic
US10570882B2 (en) 2017-11-13 2020-02-25 General Electric Company Dynamic active and reactive power capability for wind farms
EP3729589B1 (en) * 2017-12-20 2022-01-05 Vestas Wind Systems A/S Adaptive active power control in renewable energy power plants
CN108400619A (zh) * 2018-02-06 2018-08-14 北京天润新能投资有限公司 一种基于avc系统的风机调节方法及系统
US10491146B2 (en) 2018-03-30 2019-11-26 General Electric Company System and method for compensating for generator-induced flicker in a wind turbine
EP3788695A1 (en) 2018-05-03 2021-03-10 Vestas Wind Systems A/S Integrated hybrid power plants for off-grid systems
US10797632B2 (en) 2018-08-21 2020-10-06 Schweitzer Engineering Laboratories, Inc. Sensitive directional element for generator protection
US11196369B2 (en) 2018-08-31 2021-12-07 Schweitzer Engineering Laboratories, Inc. Generator loss-of-field protection
US11521771B2 (en) 2019-04-03 2022-12-06 General Electric Company System for quench protection of superconducting machines, such as a superconducting wind turbine generator
US10978943B2 (en) 2019-04-03 2021-04-13 General Electric Company System and method for auto-ramping and energy dump for a superconducting wind turbine generator
US10742149B1 (en) 2019-04-22 2020-08-11 General Electric Company System and method for reactive power control of a wind turbine by varying switching frequency of rotor side converter
US11056884B2 (en) 2019-05-06 2021-07-06 General Electric Company Wind turbine system with integrated reactive power compensation device
US10731628B1 (en) 2019-05-06 2020-08-04 General Electric Company System and method for coordinated control of reactive power from a generator and a reactive power compensation device in a wind turbine system
US10790668B1 (en) 2019-05-06 2020-09-29 General Electric Company Method for reactive power oscillation damping for a wind turbine system with integrated reactive power compensation device
US10581247B1 (en) 2019-05-06 2020-03-03 General Electric Company System and method for reactive power control of wind turbines in a wind farm supported with auxiliary reactive power compensation
US10865773B1 (en) * 2019-05-22 2020-12-15 General Electric Company System and method for mitigating flicker in a power grid from a wind turbine power system
US11316455B2 (en) 2019-08-28 2022-04-26 Schweitzer Engineering Laboratories, Inc. Generator rotor turn-to-turn fault detection using fractional harmonics
US10819261B1 (en) 2019-10-25 2020-10-27 Schweitzer Engineering Laboratories, Inc. Security improvements for electric power generator protection
US11530685B2 (en) 2020-08-20 2022-12-20 General Electric Company System and method for managing output flicker generated by a wind farm
US11631972B2 (en) 2020-12-16 2023-04-18 Schweitzer Engineering Laboratories, Inc. Accurate modeling of equipment overexcitation damage curves
CN112769141A (zh) * 2020-12-30 2021-05-07 西南交通大学 一种采用svg补偿的风电并网运行电压控制方法
NO20220626A1 (en) 2022-05-31 2023-12-01 Wei Hua A method for improving power transmission efficiency
US11946966B1 (en) 2023-02-20 2024-04-02 Schweitzer Engineering Laboratories, Inc. Selective stator ground fault protection using positive-sequence voltage reference

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379524A (zh) * 2001-03-30 2002-11-13 三菱重工业株式会社 功率因数控制装置以及方法
CN1433117A (zh) * 2002-01-07 2003-07-30 中电电能监控技术有限公司 一种新型低压电力电容器组多组分级循环自动投切控制装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083039B1 (en) 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
US5187427A (en) 1991-11-27 1993-02-16 U.S. Windpower, Inc. Static reactive power compensator
US5652485A (en) * 1995-02-06 1997-07-29 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Fuzzy logic integrated electrical control to improve variable speed wind turbine efficiency and performance
WO1997004521A1 (en) * 1995-07-18 1997-02-06 Midwest Research Institute A variable speed wind turbine generator system with zero-sequence filter
US5798631A (en) * 1995-10-02 1998-08-25 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Performance optimization controller and control method for doubly-fed machines
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
DE19844258A1 (de) * 1998-09-26 2000-03-30 Dewind Technik Gmbh Windenergieanlage
US6566764B2 (en) * 2000-05-23 2003-05-20 Vestas Wind Systems A/S, R&D Variable speed wind turbine having a matrix converter
US20040030457A1 (en) * 2001-12-28 2004-02-12 Bayoumi Deia Salah-Eldin On-line control of distributed resources with different dispatching levels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379524A (zh) * 2001-03-30 2002-11-13 三菱重工业株式会社 功率因数控制装置以及方法
CN1433117A (zh) * 2002-01-07 2003-07-30 中电电能监控技术有限公司 一种新型低压电力电容器组多组分级循环自动投切控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Stator flux oriented control of an integrated alternator/activefilter for wind power applications. ABOTHASSANI M T ET AL.CONFERENCE PROCEEDINGS,Vol.1 . 2003 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606947A (zh) * 2008-10-09 2014-02-26 通用电气公司 优化包括传输线的个体地方风电场系统的系统损耗的方法
CN103606947B (zh) * 2008-10-09 2019-04-23 通用电气公司 优化包括传输线的个体地方风电场系统的系统损耗的方法

Also Published As

Publication number Publication date
DK1508951T3 (en) 2016-10-03
CN1630157A (zh) 2005-06-22
EP1508951A1 (en) 2005-02-23
BRPI0403608A (pt) 2005-06-14
AU2004203836B2 (en) 2010-12-16
BRPI0403608B1 (pt) 2016-11-08
AU2004203836A1 (en) 2005-03-10
US20050040655A1 (en) 2005-02-24
US6924565B2 (en) 2005-08-02
ES2593005T3 (es) 2016-12-05
EP1508951B1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
CN100375364C (zh) 变速风轮机发电机系统的网络及控制方法
EP1880459B2 (en) Wind farm power control system
US7948217B2 (en) Distributed generation system and power system stabilizing method
Jovcic Offshore wind farm with a series multiterminal CSI HVDC
DK2688172T3 (en) Method and arrangement for adaptive control of wind turbines in a wind farm
US7692321B2 (en) Power converters
RU2648269C2 (ru) Способ ввода электрической мощности в сеть электроснабжения
CN105830303B (zh) 风力发电站的无功功率回路的重新配置
CN107251360B (zh) 包括连接到电网的变频器的系统的控制方法和发电系统
EP2397688A1 (en) Electric power control system and electric power facility comprising the electric power control system
AU2011260701A1 (en) Method and control arrangement for controlling central capacitors in wind power plants
KR20120018293A (ko) 가변 회전 속력으로 구동되며 일정 출력 주파수를 갖는 전기 에너지 발생 장치, 특히, 풍력 발전 장치
EP2605357A1 (en) Control of reactive power output from a wind park
CN102856923A (zh) 控制器、风电园区和控制方法
Mascarella et al. Flicker mitigation via dynamic volt/var control of power-electronic interfaced WTGs
KR20110137803A (ko) 에너지 발생 장치, 구체적으로, 풍력 발전 장치
EP3326256B1 (en) Method and system for power grid voltage regulation by distributed energy resources
CN107005049B (zh) 功率控制器和功率控制方法
CN108199382B (zh) 基于动态无功约束的双馈风电场风速波动紧急控制方法
Martins et al. Control of distributed power flow controllers using active power from homopolar line currents
Zobaa et al. A comprehensive overview on reactive power compensation technologies for wind power applications
Zhang et al. A comparison of the dynamic performance of FACTS with energy storage to a unified power flow controller
Mahfouz et al. Efficient Utilization of Offshore Wind Energy Generation and Transmission during Normal Speed and Wind Gust through Pitch Control and HVDC Lines
Yang et al. Integration of FACTS and Battery Energy Storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240103

Address after: Barcelona, Spain

Patentee after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Patentee before: General Electric Co.