CN100385182C - 具有变速风扇的制冷系统 - Google Patents

具有变速风扇的制冷系统 Download PDF

Info

Publication number
CN100385182C
CN100385182C CNB2004800174281A CN200480017428A CN100385182C CN 100385182 C CN100385182 C CN 100385182C CN B2004800174281 A CNB2004800174281 A CN B2004800174281A CN 200480017428 A CN200480017428 A CN 200480017428A CN 100385182 C CN100385182 C CN 100385182C
Authority
CN
China
Prior art keywords
cold
producing medium
temperature
air stream
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800174281A
Other languages
English (en)
Other versions
CN1853075A (zh
Inventor
S·戈帕尔纳拉亚南
Y·陈
T·西内尔
L·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of CN1853075A publication Critical patent/CN1853075A/zh
Application granted granted Critical
Publication of CN100385182C publication Critical patent/CN100385182C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

一种跨临界制冷系统,其包括压缩机(22)、空气冷却器(24)、膨胀装置(26)、和蒸发器(28)。制冷剂经封闭回路系统循环流动。优选地,二氧化碳用来作为制冷剂。风扇(54)使与制冷剂进行热交换的外界空气流过蒸发器(28)。通过调节风扇(54)的转速来调节蒸发器的压力和将蒸发器(28)调整到适应不同的环境条件,以获得最佳的性能系数。在高温环境条件下,降低风扇的转速,会减小系统内的制冷剂质量流率。气体冷却器(24)内单位质量制冷剂的能量交换增大并且风扇(54)做的功减小,从而提高了系统的性能系数。在低温环境条件下,系统的质量流率低,并且在蒸发器(28)的制冷剂侧存在更大的热交换热阻。降低风扇(54)的转速以减小风扇(54)做的功。因此,提高了性能系数。

Description

具有变速风扇的制冷系统
技术领域
本发明总体上涉及一种包括变速风扇的制冷系统,该风扇随着环境条件的变化而改变流过蒸发器的空气流速。
背景技术
含氯制冷剂在世界上大多数国家已经逐渐被淘汰,因为它们破坏臭氧层的可能性。氢氟烃(HFC)已经被用作替代制冷剂,但是这些制冷剂仍然具有使全球变暖的很大可能。“天然的”制冷剂,例如二氧化碳和丙烷,已被推荐作为替代流体。二氧化碳具有低临界点,这将导致大多数利用二氧化碳作为制冷剂的制冷系统部分在临界点以上运行,或者在大多数情况下跨临界地(transcritical)运行。任何亚临界流体的压力都是在饱和状态下温度的函数(当液态和气态同时存在时)。然而,当流体的温度高于临界温度(超临界)时,压力则变成流体密度的函数。
在制冷系统中,制冷剂在压缩机中被压缩到高压。在气体冷却器中,热量从高压制冷剂传递到例如水的流体介质。制冷剂在膨胀装置中被膨胀到低压。接着,制冷剂通过蒸发器并且从环境空气中吸收热量。接着,低压制冷剂再次进入压缩机中以便完成循环。
制冷系统可以具有较宽范围的运行条件。例如,在蒸发器入口的环境空气温度可以从冬季的大约-10°F变化到夏季的大约120°F。因此,制冷剂的蒸发温度可以从大约-20°F变化到大约100°F。因此,夏季的制冷剂质量流率和系统的加热能力可以是冬季加热能力的8倍到10倍,并且夏季系统的加热能力可以是冬季加热能力的4到5倍。气体冷却器和蒸发器能够处理最大和最小的制冷剂流动和加热能力。然而,当在季节的平均条件下运行时,例如在环境空气温度为50°F时,它们总是最优的。
发明内容
一种跨临界制冷系统,其包括压缩机、气体冷却器、膨胀装置、和蒸发器。制冷剂经封闭的回路系统循环流动。优选地,二氧化碳用来作为制冷剂。二氧化碳具有低临界点,并且利用二氧化碳作为制冷剂的系统通常跨临界地运行。
制冷剂在压缩机内被压缩,并且接着在气体冷却器中冷却。制冷剂在气体冷却器中将热量释放给水,以加热水。接着,制冷剂流过膨胀装置并且膨胀到低压。在膨胀后,制冷剂流过蒸发器并且被周围的外界空气加热,以高焓和低压排出蒸发器。接着,制冷剂被压缩,以便完成循环。
风扇使与制冷剂进行热交换的外界空气流经蒸发器。变速驱动器控制风扇的转速。通过变速驱动器来调节风扇的转速和蒸发器压力,从而可调节流过蒸发器的外界空气的空气流速,并且可以调节蒸发器适应不同的环境条件,以获得最佳的性能系数。
温度传感器检测环境空气的温度。在高温环境条件下,进入蒸发器的环境空气的温度高,从而提高了制冷剂的质量流率。高质量流率提高了气体冷却器内制冷剂的趋近温度,降低了系统性能。在高温环境条件下,变速驱动器降低了风扇转速,从而减小了流过蒸发器的空气流率和系统中制冷剂的质量流率。通过减小质量流率,气体冷却器内单位质量制冷剂的能量交换增加。风扇做的功也减少了。因此,该系统的性能系数提高。
在低温环境条件下,该系统的质量流率低并且在蒸发器内存在热传递的热阻。将风扇的转速降低以减小蒸发器内的空气流率和减少风扇做的功。因此,性能系数提高了。
从下面的描述和附图中将最好地理解本发明的这些和其他的特征。
附图说明
通过下面对目前优选实施例的详细描述,本发明的很多特征和优点对于所属领域的技术人员来说将变得很明显。下面将简要说明详细描述附加的附图:
图1示意性地描述了使用变速风扇的制冷系统图;和
图2示意性地描述了正常运行中跨临界制冷系统的热力学图。
具体实施方式
图1示出了制冷系统20,其包括压缩机22、放热式热交换器(在跨临界循环中为气体冷却器)24、膨胀装置26、和蒸发器(蒸发器)28。制冷剂经封闭的回路循环20循环流动。优选地,将二氧化碳用作制冷剂。尽管描述了二氧化碳,但也可以使用其他的制冷剂。因为二氧化碳具有低临界点,利用二氧化碳作为制冷剂的系统通常需要制冷系统20以跨临界方式运行。
当在水加热模式下运行时,制冷剂以高压和高焓排出压缩机22。制冷剂流过气体冷却器24并且散发热量,以低焓和高压排出气体冷却器24。诸如水的一种流体介质流过气体冷却器24的散热装置30,并且与制冷剂进行热交换。水泵32使流体介质流过散热装置30。冷却后的流体34在散热装置入口或返回口36进入散热装置30,并且沿与制冷剂流动方向相反的方向流动。在从制冷剂吸收热量后,被加热后的水38在散热装置出口或供给口40排出。制冷剂在制冷剂入口62进入气体冷却器24,并且在制冷剂出口64排出。
制冷剂在膨胀装置26中被膨胀到低压。膨胀装置26可以是电子膨胀阀(EXV)或者其他类型的膨胀装置26。
在膨胀后,制冷剂流过蒸发器28并且从周围的外界空气中接收热量。外界空气44流过吸热装置46,并且向流经蒸发器28的制冷剂放热。外界空气通过吸热装置入口或者返回口48进入吸热装置46,并且沿与制冷剂流动方向相反的方向流动,或者沿与制冷剂流动方向交叉的方向流动。在与制冷剂进行热交换之后,冷却后的外界空气50通过吸热装置出口或者供给口52排出吸热装置46。制冷剂以高焓和低压排出蒸发器28。该系统20还包括温度传感器60,其用于感应周围空气的温度。
风扇54使周围空气流过蒸发器28,并且控制流过蒸发器28的空气流速。变速驱动器56控制风扇54的转速。通过变速驱动器56调节风扇54的转速,并且因此调节经过过蒸发器28的空气流率,可以使蒸发器28适应不同的环境条件,以获得最佳的性能系数。将性能系数定义为在气体冷却器24中的传热热量除以系统20的能耗量。该系统的能耗量为压缩机22做的功加上风扇54做的功和泵32做的功。
该系统20也可以包括收集器58。收集器58储存从系统20排出的过量制冷剂,以控制系统20的高压,并且因此控制性能系数。
图2示意性地描述了正常运行中制冷系统20的热力学图。制冷剂以高压和高焓排出压缩机22,如点A所示。当制冷剂以高压流过气体冷却器24时,向流体介质传递热量和焓,以低焓和高压排出气体冷却器24,如点B所示。当制冷剂通过膨胀装置26时,压力降低,如点C所示。膨胀后,制冷剂通过蒸发器28并且与外界空气进行热交换,以高焓和低压排出,如点D所示。在制冷剂通过压缩机22之后,制冷剂再次返回高压和高焓的状态,以便完成循环。
在夏季高温环境(high ambient)条件下,进入蒸发器28的环境空气的温度比季节的平均条件高,例如高于80°F,在风扇54恒定的转速下,提高了蒸发器28内的制冷剂温度并且提高了蒸发压力。制冷剂质量流率增加,提高了气体冷却器24内的趋近温度(approach temperature(热流出口与冷流入口的温差))和排出气体冷却器24的制冷剂温度。趋近温度是指在气体冷却器24的制冷剂出口64的制冷剂温度和在气体冷却器24的散热装置入口36的水温之间的温差。排出气体冷却器24的制冷剂温度和气体冷却器24的效率影响跨临界系统20的效率。因此,在高温环境条件下,经制冷剂出口64排出气体冷却器24的制冷剂温度升高,从而降低了气体冷却器24的性能和降低了系统20的性能。
当温度传感器60检测到环境空气的温度比季节平均条件高时,例如高于80°F时,传感器60给变速驱动器56发送信号,以降低风扇54的转速并且减小通过蒸发器28的空气流率。减小流经蒸发器28的空气流率降低了蒸发器的温度和压力,从而减小了在压缩机吸入口68处的制冷剂密度,并减小了该系统20内的制冷剂质量流率。制冷剂通过气体冷却器24的速度更慢,使得气体冷却器24内每单位质量制冷剂的能量交换增加,从而提高了气体冷却器24的性能。
在高温环境条件下降低风扇54的转速,增加了气体冷却器24内的热量传递。每单位制冷剂质量流的压缩机22做的功也由于通过压缩机22的更高压力而增加。然而,当变速驱动器56降低风扇54的转速时,风扇54做的功会减少。因此,当在高温环境温度下降低风扇54的转速时,系统20的性能系数会提高。
在暴露于非常高的环境条件(100°F-120°F)的延长的过程中,当该系统20停止运行时,压缩机吸入口68的制冷剂压力会高于临界压力,因为二氧化碳制冷剂的临界温度是87.8°F。超临界的二氧化碳制冷剂具有液体的特性。如果在压缩机吸入口68的制冷剂压力高于临界压力,压缩机22内的润滑剂会完全溶解到制冷剂中,并且流经该系统20。如果润滑剂在制冷剂中溶解,润滑剂会经系统20循环流动并且离开压缩机22。因此,润滑剂不能润滑压缩机22。
压缩机22的吸入压力必须控制在亚临界压力,以防止润滑剂在制冷剂中溶解。为了将压缩机吸入口68的制冷剂压力降低到亚临界压力,当启动压缩机22时关闭风扇54。降低风扇54的转速以减小流过蒸发器28的空气流率,从而降低蒸发器的温度和压力。其结果是,在压缩机吸入口68的制冷剂密度减小,并且在压缩机吸入口68的压力降低。
当压力传感器66检测到压缩机22的吸入压力降低到低于临界压力时,压力传感器66会传送信号到变速驱动器56,以开启风扇54。接着,通过驱动器56控制和调节风扇54来改变蒸发压力,以优化该系统20的性能并且获得压缩机22的亚临界吸入压力。
当进入蒸发器28的环境空气流温度较低(低于20°F)时,该系统20的质量流率明显低于系统20在高温环境条件下运行的质量流率。随着恒定量的空气流以低质量流率通过蒸发器28时,在蒸发器28的制冷剂侧,空气和制冷剂之间存在更大的热传递热阻。也就是说,热传递的热阻主要是从蒸发管到制冷剂。为了降低空气流率,将风扇54的转速降低。降低风扇54的转速将不会明显地影响蒸发器28中的热传递,因为热传递总热阻的增长是低的。然而,降低风扇54的转速会需要更少的能耗。当该系统20的能耗减小时,会提高系统20的性能。
前面的描述仅仅是本发明原理的示例。按照上面的指导,本发明很多的更改和变化都是可行的。我们已经公开了本发明优选的实施例,然而,所属领域的普通技术人员会认识到本发明范围内的某些更改会出现。因此,可以理解的是,在附加的权利要求范围内,可以实施上面具体描述之外的本发明。因为这个原因,后面的权利要求应被认为是限定了本发明实际的范围和内容。

Claims (15)

1.一种跨临界制冷系统,包括:
压缩装置,其用于将制冷剂压缩到高压;
放热式热交换器,其用于冷却所述制冷剂;
膨胀装置,其用于将所述制冷剂降到低压;
吸热式热交换器,其用于使得所述制冷剂蒸发,并且空气流与所述吸热式热交换器内的所述制冷剂进行热交换;和
变速装置,其使得所述空气流以可变的空气流速移动,其中所述变速装置以一个装置速度来移动;
驱动器,该驱动器用于控制所述变速装置的所述装置速度;
温度传感器,用于感应所述空气流的温度,并且所述驱动器根据所述空气流的温度来调节所述变速装置和所述空气流的可变空气流速。
2.如权利要求1所述的系统,其中所述的制冷剂是二氧化碳。
3.如权利要求1所述的系统,其中所述的变速装置是风扇。
4.如权利要求1所述的系统,其中当所述温度传感器检测到所述空气流的温度高于阈值温度时,所述驱动器降低所述变速装置的装置速度,以减小所述空气流的所述可变空气流速。
5.如权利要求4所述的系统,其中所述的阈值温度是80°F。
6.如权利要求1所述的系统,其中当所述温度传感器检测到所述空气流的温度高于阈值温度时,所述变速装置在启动所述压缩装置之前停止运行。
7.如权利要求6所述的系统,其中所述的阈值温度是100°F。
8.如权利要求6所述的系统,还包括压力传感器,其用于感应在所述压缩装置吸入口处的制冷剂的压力,并且当所述制冷剂的压力传感器感应到在所述压缩装置所述吸入口处的所述压力超过阈值压力时,启动所述变速装置。
9.如权利要求1所述的系统,其中当所述温度传感器检测到所述空气流的温度低于阈值温度时,所述驱动器降低所述变速装置的装置速度,以减小所述空气流的所述可变空气流速。
10.如权利要求9所述的系统,其中所述阈值温度为20°F。
11.如权利要求1所述的系统,其中改变所述变速装置的所述装置速度来优化系统的性能。
12.如权利要求1所述的系统,其中还包括定位在所述吸热式热交换器与所述压缩装置之间的收集器。
13.如权利要求1所述的系统,其中所述空气流为户外空气。
14.如权利要求1所述的系统,其中所述温度传感器感应进入所述吸热式热交换器的所述空气流的温度。
15.一种调控跨临界制冷系统的性能系数的方法,包括下面的步骤:
将制冷剂压缩到高压;
冷却所述制冷剂;
使得所述制冷剂膨胀到低压;
借助在所述制冷剂与具有可变空气流速的空气流之间的热交换,来使得所述制冷剂蒸发;
感应所述空气流的空气流温度;和
根据所述空气流的所述空气流温度来调节所述空气流的可变空气流速。
CNB2004800174281A 2003-06-23 2004-06-17 具有变速风扇的制冷系统 Expired - Fee Related CN100385182C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/602,114 US6968708B2 (en) 2003-06-23 2003-06-23 Refrigeration system having variable speed fan
US10/602,114 2003-06-23

Publications (2)

Publication Number Publication Date
CN1853075A CN1853075A (zh) 2006-10-25
CN100385182C true CN100385182C (zh) 2008-04-30

Family

ID=33518051

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800174281A Expired - Fee Related CN100385182C (zh) 2003-06-23 2004-06-17 具有变速风扇的制冷系统

Country Status (10)

Country Link
US (1) US6968708B2 (zh)
EP (1) EP1646831B1 (zh)
JP (1) JP2007524059A (zh)
KR (1) KR100721889B1 (zh)
CN (1) CN100385182C (zh)
AT (1) ATE429618T1 (zh)
AU (1) AU2004254588B2 (zh)
DE (1) DE602004020772D1 (zh)
MX (1) MXPA05014234A (zh)
WO (1) WO2005003650A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505475B1 (en) 1999-08-20 2003-01-14 Hudson Technologies Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
US6434960B1 (en) 2001-07-02 2002-08-20 Carrier Corporation Variable speed drive chiller system
JP3708536B1 (ja) * 2004-03-31 2005-10-19 松下電器産業株式会社 冷凍サイクル装置およびその制御方法
US7854140B2 (en) * 2004-11-19 2010-12-21 Carrier Corporation Reheat dehumidification system in variable speed applications
US8418486B2 (en) 2005-04-08 2013-04-16 Carrier Corporation Refrigerant system with variable speed compressor and reheat function
US20080314057A1 (en) * 2005-05-04 2008-12-25 Alexander Lifson Refrigerant System With Variable Speed Scroll Compressor and Economizer Circuit
WO2006132638A1 (en) * 2005-06-07 2006-12-14 Carrier Corporation Variable speed compressor motor control for low speed operation
US7481069B2 (en) 2005-07-28 2009-01-27 Carrier Corporation Controlling a voltage-to-frequency ratio for a variable speed drive in refrigerant systems
US7854136B2 (en) 2005-08-09 2010-12-21 Carrier Corporation Automated drive for fan and refrigerant system
WO2007027173A1 (en) * 2005-08-31 2007-03-08 Carrier Corporation Heat pump water heating system using variable speed compressor
WO2007050063A1 (en) * 2005-10-26 2007-05-03 Carrier Corporation Refrigerant system with pulse width modulated components and variable speed compressor
CN101310153B (zh) * 2005-11-16 2010-12-15 开利公司 换热器、空气流动管理系统及管理方法
JP2007139269A (ja) * 2005-11-16 2007-06-07 Denso Corp 超臨界冷凍サイクル
EP2016353A4 (en) * 2006-04-25 2012-10-24 Carrier Corp DETECTION OF DEFECTIVE FAN OR PUMP OPERATION IN A REFRIGERANT SYSTEM
EP1921399A3 (en) * 2006-11-13 2010-03-10 Hussmann Corporation Two stage transcritical refrigeration system
US9151521B2 (en) * 2008-04-22 2015-10-06 Hill Phoenix, Inc. Free cooling cascade arrangement for refrigeration system
US7913506B2 (en) * 2008-04-22 2011-03-29 Hill Phoenix, Inc. Free cooling cascade arrangement for refrigeration system
US7918407B2 (en) * 2008-06-17 2011-04-05 Ronald Harrison Patch Method and apparatus for control of cooling system air quality and energy consumption
US8631666B2 (en) 2008-08-07 2014-01-21 Hill Phoenix, Inc. Modular CO2 refrigeration system
EP2157317B2 (en) * 2008-08-19 2019-07-24 ABB Research LTD Thermoelectric energy storage system and method for storing thermoelectric energy
US20100307174A1 (en) * 2009-04-15 2010-12-09 Kernkamp John H Method and apparatus for controlling certain refrigeration system evaporator fan motors
US8694131B2 (en) * 2009-06-30 2014-04-08 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling operations of vapor compression system
JP5507231B2 (ja) * 2009-12-16 2014-05-28 三洋電機株式会社 空気調和機
DE102010024986A1 (de) * 2010-06-24 2011-12-29 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Steuern einer Wärmepumpeneinheit und Wärmepumpeneinheit
KR101663835B1 (ko) * 2010-08-06 2016-10-14 엘지전자 주식회사 냉장고의 운전 제어 방법
US9664424B2 (en) 2010-11-17 2017-05-30 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9657977B2 (en) 2010-11-17 2017-05-23 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9541311B2 (en) 2010-11-17 2017-01-10 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9970696B2 (en) 2011-07-20 2018-05-15 Thermo King Corporation Defrost for transcritical vapor compression system
US20130081778A1 (en) * 2011-10-03 2013-04-04 Elliptical Mobile Solutions, Llc. Method and apparatus for a close-coupled cooling system
US10690386B2 (en) * 2012-07-20 2020-06-23 Lennox Industries Inc. Controlling metering devices
SG11201501310RA (en) 2012-08-24 2015-04-29 Carrier Corp Transcritical refrigerant vapor compression system high side pressure control
GB201520362D0 (en) * 2015-11-19 2016-01-06 G A H Refrigeration Ltd Refrigeration system and method
EP3187796A1 (en) 2015-12-28 2017-07-05 Thermo King Corporation Cascade heat transfer system
GB2585853B (en) * 2019-07-17 2021-07-14 Ford Global Tech Llc A method of determining suction pressure of a compressor suction valve in a vehicle air conditioning system
JP2022085483A (ja) * 2020-11-27 2022-06-08 富士電機株式会社 冷媒回路装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060906A (zh) * 1990-10-24 1992-05-06 塞梅尔金公司 输送制冷系统
US5568732A (en) * 1994-04-12 1996-10-29 Kabushiki Kaisha Toshiba Air conditioning apparatus and method of controlling same
WO2003036184A1 (fr) * 2001-10-25 2003-05-01 Zexel Valeo Climate Control Corporation Dispositif de commande d'un compresseur a deplacement variable et dispositif de commande a deplacement variable d'un cycle de refrigeration

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410105A (en) * 1967-02-15 1968-11-12 Philco Ford Corp Air conditioner
JPH01181032A (ja) * 1988-01-13 1989-07-19 Toshiba Corp 空気調和機
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
US5271238A (en) * 1990-09-14 1993-12-21 Nartron Corporation Environmental control system
US5488835A (en) * 1993-07-28 1996-02-06 Howenstine; Mervin W. Methods and devices for energy conservation in refrigerated chambers
US5490394A (en) * 1994-09-23 1996-02-13 Multibras S/A Eletrodomesticos Fan control system for the evaporator of refrigerating appliances
JP3404150B2 (ja) * 1994-09-28 2003-05-06 東芝キヤリア株式会社 空気調和機及びその制御方法
US5694783A (en) * 1994-10-26 1997-12-09 Bartlett; Matthew T. Vapor compression refrigeration system
US5657638A (en) * 1995-10-02 1997-08-19 General Electric Company Two speed control circuit for a refrigerator fan
US5782101A (en) * 1997-02-27 1998-07-21 Carrier Corporation Heat pump operating in the heating mode refrigerant pressure control
DE19713197B4 (de) * 1997-03-28 2008-04-24 Behr Gmbh & Co. Kg Verfahren zum Betrieb einer Klimaanlage in einem Kraftfahrzeug sowie Klimaanlage mit einem Kältemittelkreis
US6092378A (en) 1997-12-22 2000-07-25 Carrier Corporation Vapor line pressure control
US6560980B2 (en) * 2000-04-10 2003-05-13 Thermo King Corporation Method and apparatus for controlling evaporator and condenser fans in a refrigeration system
US6415617B1 (en) * 2001-01-10 2002-07-09 Johnson Controls Technology Company Model based economizer control of an air handling unit
JP4756205B2 (ja) * 2001-03-26 2011-08-24 三洋電機株式会社 冷凍装置
US6397610B1 (en) * 2001-05-01 2002-06-04 Cohand Technology Co., Ltd. Method for controlling air conditioner/heater by coil temperature
US7316267B2 (en) 2002-02-12 2008-01-08 Matsushita Electric Industrial Co., Ltd. Heat pump water device
JP4522641B2 (ja) * 2002-05-13 2010-08-11 株式会社デンソー 蒸気圧縮式冷凍機
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
JP2004309027A (ja) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd ヒートポンプ装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060906A (zh) * 1990-10-24 1992-05-06 塞梅尔金公司 输送制冷系统
US5568732A (en) * 1994-04-12 1996-10-29 Kabushiki Kaisha Toshiba Air conditioning apparatus and method of controlling same
WO2003036184A1 (fr) * 2001-10-25 2003-05-01 Zexel Valeo Climate Control Corporation Dispositif de commande d'un compresseur a deplacement variable et dispositif de commande a deplacement variable d'un cycle de refrigeration

Also Published As

Publication number Publication date
EP1646831B1 (en) 2009-04-22
DE602004020772D1 (de) 2009-06-04
US6968708B2 (en) 2005-11-29
WO2005003650A1 (en) 2005-01-13
EP1646831A1 (en) 2006-04-19
US20040255603A1 (en) 2004-12-23
MXPA05014234A (es) 2006-03-09
KR20060026442A (ko) 2006-03-23
AU2004254588A1 (en) 2005-01-13
JP2007524059A (ja) 2007-08-23
KR100721889B1 (ko) 2007-05-28
ATE429618T1 (de) 2009-05-15
CN1853075A (zh) 2006-10-25
AU2004254588B2 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
CN100385182C (zh) 具有变速风扇的制冷系统
CA2492272C (en) Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
JP5613122B2 (ja) 冷媒の圧力および流量を制御する方法
US20080302118A1 (en) Heat Pump Water Heating System Using Variable Speed Compressor
CN100458318C (zh) 用于热泵式水加热系统的除霜方法
CN100363693C (zh) 蒸气压缩系统的超临界压力控制
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
KR20060024438A (ko) 냉각 시스템의 제어
EP1329677B1 (en) Transcritical vapor compression system
JP2007051841A (ja) 冷凍サイクル装置
KR100644407B1 (ko) 이산화탄소 고압 냉매를 이용한 공조냉동사이클
CN102753910A (zh) 冷冻循环装置
JP6388260B2 (ja) 冷凍装置
KR100613502B1 (ko) 히트 펌프식 공기조화기
KR100554566B1 (ko) 극저온용 히트펌프 사이클
CN101253374A (zh) 使用变速压缩机的热泵水加热系统
KR101187286B1 (ko) 공조 시스템
KR20060039340A (ko) 히트펌프의 실외열교환기 리턴회로

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080430

Termination date: 20150617

EXPY Termination of patent right or utility model