CN100423447C - 具有基于预存储相位信息的发射机链相位调整的发射机 - Google Patents

具有基于预存储相位信息的发射机链相位调整的发射机 Download PDF

Info

Publication number
CN100423447C
CN100423447C CNB028226100A CN02822610A CN100423447C CN 100423447 C CN100423447 C CN 100423447C CN B028226100 A CNB028226100 A CN B028226100A CN 02822610 A CN02822610 A CN 02822610A CN 100423447 C CN100423447 C CN 100423447C
Authority
CN
China
Prior art keywords
phase
variable gain
transmitter
gain
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028226100A
Other languages
English (en)
Other versions
CN1586036A (zh
Inventor
D·B·杜佩拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Wireless
ST Ericsson SA
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1586036A publication Critical patent/CN1586036A/zh
Application granted granted Critical
Publication of CN100423447C publication Critical patent/CN100423447C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/38Angle modulation by converting amplitude modulation to angle modulation
    • H03C3/40Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated
    • H03C3/403Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated using two quadrature frequency conversion stages in cascade
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/38Angle modulation by converting amplitude modulation to angle modulation
    • H03C3/40Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated
    • H03C3/406Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated using a feedback loop containing mixers or demodulators

Abstract

一种发射机链包括一个正交调制器,一个可变增益放大器,一个上变频器,和一个可变增益功率放大器。发射机链的总相位基于预先存储的相位信息来调整,该相位信息反映至少由于可变增益放大器和可变增益功率放大器的增益的同时增益变化而引起的相位变化。

Description

具有基于预存储相位信息的发射机链相位调整的发射机
技术领域
本发明涉及一种发射机,具体而言涉及发射机链的相位调整,该发射机链包括一个正交调制器,一个可变增益放大器,一个上变频器,和一个可变增益功率放大器.
本发明进一步涉及一种相位调整器,一种调整发射机链的总相位的方法,以及一种在发射机链内具有相位调整器的通信设备.
这样的一种发射机可以是一种在全双工直接序列扩频CDMA系统,或任何其他具有高动态范围发射机输出信号的合适的系统中的发射机.
背景技术
全双工CDMA系统是已知的,其中发射机具有高动态范围输出信号,典型的,其动态范围高于70dB.较新的CDMA系统,以及其它系统,被称为是线性调制系统,其中信息在振幅和相位上被传送.在这样的系统中不能采用非线性放大器,因为调制信号的振幅在一个宽的范围内变化,也就是说,经调制的峰值信号包络呈现大的起伏.因此,发射机链中的放大器需要是完全线性的.特别对于可变增益功率放大器,其放大高频,比如在GHZ频带内,的上变频信号在一个宽范围内满足线性要求是不容易的.典型地,这样的可变增益功率放大器在最大信号输出上具有最优的效率,但在低信号输出上具有低的效率.
发明内容
本发明的目的在于提供一种在发射机链内具有调整发射机链的总相位的相位调整器的发射机,由此最低限度考虑可变增益放大器和可变增益功率放大器的增益的同时增益变化.
本发明的另一个目的是提供这样的相位调整,其大量使用这种发射机链的特性的先验信息,比如它的相位和增益特性.
根据本发明,提供了一种发射机,包括:
一个正交调制器,用来提供将一对正交基带信号调制后的正交调制信号;
一个可变增益放大器,提供放大的正交调制信号;
一个上变频器,将所述的放大正交调制信号上变频为一个更高频率的信号;
一个可变增益功率放大器,用于提供将所述更高频率的信号放大后得到的经过放大的更高频率信号,所述经过放大的更高频率信号包括振幅和相位信息;和
相位调整装置,用于通过在调制之前对所述正交基带信号进行相位旋转来调整包括所述的正交调制器,所述的可变增益放大器,所述的上变频器,所述的可变增益功率放大器在内的发射机链的总相位,所述的总相位基于预存储的相位信息被调整,所述相位信息反映至少由于所述可变增益放大器和所述可变增益功率放大器的增益的同时增益变化而引起的相位变化。
本发明基于这样一种认识,当通过减少在无线频率操作的可变增益功率放大器的增益来提高整个发射机效率,并且由此同时增加在中频操作的可变增益放大器的增益时,需要在发射机链内进行相位调整。本发明进一步基于甚至当发射机链的总增益从一个增益状态到另一个增益状态保持恒定时,进行这样相位调整这种认识。本发明进一步基于下面这种认识,通常,不需要全相位补偿,因为发射机根据允许预定的最大相位在信号的动态范围上变化和随着频率变化的标准来工作。从这方面来看,相位变化不应该太大,因为,当从一个便携式通信设备发射到一个系统的基站时,这样的相位变化可能导致基站不良的误码率,并且甚至导致呼叫丢失。基于这些认识,本发明的发明人已经考虑到了基于预存储信息的总相位调整是可行的,而其他人或许认为这样一种总相位调整可能是不切实际的甚至是不可能实际实现的。
在一个实施例中,预存储信息被存储在查找表中,并且,根据可变增益功率放大器的增益状态变化,来自查找表信息内相应的表目的信息被用来决定可变增益放大器的增益,及相位调整值。
在一个实施例中,通过在调制前相位旋转正交基带信号来调整发射机链的总相位。在发射机链的恒定增益,这样的相位调整有效地旋转所谓的IQ星座图(IQ-constellation)。IQ星座图的旋转在现有技术中同样是已知的,比如,美国专利No.5,892,774,其内容援引于此以作参考.具体而言,在No.5,982,774中,相位旋转在图3中示出,并在第6栏第30-40行进行了描述,其中公开了一个相位编码器将一个(XI,XQ)对旋转角度Φn[k]以在其输出端产生信号(YI,YQ)。
在不同的实施例中,发射机可以包括一个温度传感器,一个电池电压传感器,和一个信号电平传感器,用于提供直流信号,指示可变增益功率放大器的输出信号的振幅。在这样的实施例中,查找表可以做成多维的以便反映在不同温度,不同电池电压,和射频输出信号的不同振幅的发射机链的特征。在另一个维数中,查找表可以反映在不同频率发射机链的特征。
在一个实施例中,查找表也可以包括用于包含在发射机链中的射频滤波器或用于包含在发射机链中的其它元件的相位特征数据。
附图说明
图1示出了根据本发明的一个与基站通信的发射机的实施例。
图2示出了根据本发明的发射机的另一个实施例。
图3示出了在恒定信号振幅的IQ星座图的旋转。
图4示出的根据本发明的一个查找表。
图5示出了根据本发明,说明相位调整值计算的流程图。
贯穿附图,相同的参考数字被用于相同的特征。
具体实施方式
图1示出了根据本发明,与基站2通信的发射机1的实施例.发射机1包括一个包含乘法器4和5,和一个加法器6,一个正交移相器7和一个振荡器8在内的正交调制器3。正交调制器3调制一对正交基带信号Tx_I和Tx_Q。发射机1进一步包括一个可变增益放大器9,用于放大来自正交调制器3的中频输出信号,和一个包含混频器11和12,一个加法器13,一个移相器14和一个振荡器15在内的上变频器10.上变频器10向射频滤波器16提供一个射频信号。发射机1进一步包括一个可变增益放大器17,其经由一个双工器19被耦合到天线18。配置双工器19,以便包含发射机1和另一个接收机Rx(在这里未详细示出)的通信设备在全双工模式下工作。根据本发明,发射机1进一步包括一个基带单元20,其包含一个处理器和存储单元21,数模转换器23和一个包含查找表(LUT)的存储器24。基带单元20提供控制信号C1,C2和C3以至少控制可变增益放大器9和可变增益功率放大器17的增益。在一个实施例中,发射机1包括一个产生指示已发射的射频信号的振幅的直流输出信号的射频信号电平检测器25,一个温度传感器26,和一个电池电压传感器27。从查找表24中包含的信息中,处理器单元21计算所需相位变化并控制一个正交相位旋转器28,以便IQ星座图被旋转。在给出的实施例中,调制器3以硬件方式实现。
图2示出了根据本发明,发射机1的另一实施例。在这个实施例中,调制器3以软件方式实现,并且从而处理器单元被编程。一旦调制器的功能被指定,这样的编程是简单的。已编程的调制器具有与调制器3相同的功能。并且在这里,先于调制的相位旋转以软件方式实现。
图3示出了恒定信号振幅的IQ星座图的旋转。在第一状态,在可变增益功率放大器17的输出端的已发射射频信号具有振幅A,并具有瞬时同相和正交的成分I(t)和Q(t),t是时间。在第二状态,已发射的射频信号具有振幅A’=A,但具有不同的相位。在第一及第二状态中,发射机链的总增益是恒定的,但是可变增益放大器9和可变增益功率放大器17的增益是不同的。第一状态在可变增益功率放大器17的输出端表现出高输出功率,第二状态在可变增益功率放大器17的输出端表现出低输出功率。根据本发明,由增益变化引起的相位变化ΔΦ通过在ΔΦ上在相反的方向旋转IQ星座图来补偿,所以,理想的,第二状态变得与第一状态相同。因为在第二状态,可变增益功率放大器17以减少的功率操作,整个发射机效率提高了。因为标准允许预定的相位变化,补偿不必是全补偿。老化或类似的影响在发射机1的设计阶段,比如通过仿真来分析。通过这样的仿真,可以确定随着发射机1寿命的逝去,由于老化引起的相位变化将保持在这样标准的规范内。
图4示出了根据本发明的查找表24。查找表24包括用于可变增益功率放大器17,可变增益放大器9,和射频带通滤波器16的增益状态ST1,ST2,...,STn的表目。对于可变增益功率放大器17,可变增益放大器9,射频带通滤波器16示出在状态ST1的各个增益G1PA,G1VGA和G1BPI和各个相位Φ1PA,Φ1VGA和Φ1BPI。同样的,在状态ST2的各个增益G2PA,G2VGA和G2BPI和各个相位Φ2PA,Φ2VGA和Φ2BPI也被分别示出,并且,在状态STn的各个增益GnPA,GnVGA和GnBPI及各个相位ΦnPA,ΦnVGA和ΦBPI也被分别示出。随着发射机状态从ST1变化到ST2,可变增益放大器9的增益变成(G1VGA×G1PA)/G2PA,以便整个发射机增益保持恒定,并且ΔΦ变成∑Φ21-∑Φ11,∑是求和运算符,并且i表示查找表24的特定表目中所有相位的连续变化。在查找表中进一步指示的是‘IEMP’26,‘BATTERY VOLTAGE’27,和‘FREQUENCY’28,指示查找表在温度,电压和频率中可以是多维的。
数据可以在制造阶段被输入查找表24,并可以通过仿真,通过向量分析器的测量,通过设计工程师的信息等等获得。因为在实际中不需要全相位补偿,这样的数据可以被获得用于示范性的发射机,而无需对每个发射机进行测量,至少不必进行广泛的,大大超过通常的IC测试的测量。甚至随着工艺的扩展,技术要求可以适当地处于在标准设置的需求范围内。
图5示出了一个流程图,说明了根据本发明相位调整值ΔΦ的计算。在方框30,计算开始,在方框31,处理器21由此利用输入变量‘RF-LEVEL’,‘TEMPERATURE’,‘BATTERY VOLTAGE’和‘FREQUBNCY’来计算ΔΦ。在方框32中,处理器21输出所计算的ΔΦ,并且在方框33中,相位补偿停止。
考虑到前述内容,很显然对于本领域的技术人员,在此后在所附的权利要求所定义的本发明的精神和范围内可以进行各种修改,并且本发明并不限于所给出的实施例。单词“包括”不排除权利要求所列出的内容之外的其它元件或步骤的存在。

Claims (14)

1. 一种发射机包括:
一个正交调制器,用来提供将一对正交基带信号调制后的正交调制信号;
一个可变增益放大器,提供放大的正交调制信号;
一个上变频器,将所述的放大正交调制信号上变频为一个更高频率的信号;
一个可变增益功率放大器,用于提供将所述更高频率的信号放大后得到的经过放大的更高频率信号,所述经过放大的更高频率信号包括振幅和相位信息;和
相位调整装置,用于通过在调制之前对所述正交基带信号进行相位旋转来调整包括所述的正交调制器,所述的可变增益放大器,所述的上变频器,所述的可变增益功率放大器在内的发射机链的总相位,所述的总相位基于预存储的相位信息被调整,所述相位信息反映至少由于所述可变增益放大器和所述可变增益功率放大器的增益的同时增益变化而引起的相位变化。
2. 如权利要求1所述的发射机,其中所述发射机被配置以根据给出的标准工作,该标准要求所述的相位变化不超过预定值,所述相位调整装置被配置为保持所述的相位低于所述的预定值来变化。
3. 如权利要求1所述的发射机,其中所述发射机链具有基本恒定的总增益。
4. 如权利要求1所述的发射机,其中所述相位调整装置包括处理装置,并且所述预存储相位信息被存储在查找表中,所述处理装置被配置为根据所述可变增益功率放大器的所述增益的增益变化从所述查找表的表目中的增益和相位信息计算所述总相位的相位调整值。
5. 如权利要求4所述的发射机,其中所述相位调整装置是一个基带正交相位旋转器,在调制之前旋转所述正交基带信号。
6. 如权利要求4所述的发射机,其中所述发射机进一步包括一个提供温度值的温度传感器,所述查找表包括对于不同温度的所述预存储相位信息,并且所述处理器也根据所述温度值来计算所述相位调整值。
7. 如权利要求4所述的发射机,其中所述发射机进一步包括一个提供电池电压值的电池电压传感器,所述查找表包括对于不同电池电压的所述预存储相位信息,并且所述处理器也根据所述电池电压值来计算所述相位调整值。
8. 一种用于包含一个发射机链的发射机的相位调整器,所述发射机链包括一个正交调制器,一个耦合到所述正交调制器的可变增益放大器,一个耦合到所述可变增益放大器的上变频器,及一个耦合到所述上变频器的可变增益功率放大器,所述相位调整器被安排为通过基于预存储相位信息在调制之前对所述正交基带信号进行相位旋转来调整所述发射机链的总相位,所述相位信息反映由于至少所述可变增益放大器和所述可变增益功率放大器的增益的同时增益变化而引起的相位变化。
9. 如权利要求8所述的相位调整器,对于发射机,其被配置为根据给出的标准工作,该标准要求所述的相位变化不超过预定值,所述相位调整装置被配置为保持所述的相位低于所述的预定值来变化。
10. 如权利要求8所述的相位调整器,进一步包括处理装置,和一个查找表,所述预存储相位信息被存储在所述查找表中,所述处理装置被配置为根据所述可变增益功率放大器的所述增益的增益变化从所述查找表的表目中的增益和相位信息计算所述总相位的相位调整值.
11. 一种调整发射机链总相位的方法,该发射机链包括一个正交调制器,一个耦合到所述正交调制器的可变增益放大器,一个耦合到所述可变增益放大器的上变频器,和一个耦合到所述上变频器的可变增益功率放大器,所述方法包括:
通过基于预先存储的相位信息在调制之前对所述正交基带信号进行相位旋转来调整所述发射机链的总相位,所述相位信息反映至少由于所述可变增益放大器和所述可变增益功率放大器的增益的同时增益变化而引起的相位变化。
12. 如权利要求11所述的方法,其中所述发射机链进一步包括一个可变增益带通滤波器,所述可变增益带通滤波器被设置在所述上变频器和所述可变增益功率放大器之间,所述方法进一步包括通过考虑所述可变增益代替滤波器的增益变化来调整所述总相位。
13. 如权利要求11所述的方法,其中所述预先存储的相位信息反映至少由于所述可变增益放大器和所述可变增益功率放大器的同时增益变化而引起的不同频率处的相位变化。
14. 一种通信设备,包括一个发射机,所述发射机包括:
一个正交调制器,用来提供将一对正交基带信号调制后的正交调制信号;
一个可变增益放大器,提供放大的正交调制信号;
一个上变频器,将所述的放大正交调制信号上变频为一个更高频率的信号;
一个可变增益功率放大器,用于提供将所述更高频率的信号放大后得到的经过放大的更高频率信号,所述经过放大的更高频率信号包括振幅和相位信息;和
相位调整装置,用于通过在调制之前对所述正交基带信号进行相位旋转来调整包括所述的正交调制器,所述的可变增益放大器,所述的上变频器,所述的可变增益功率放大器在内的发射机链的总相位,所述的总相位基于预存储的相位信息被调整,所述的相位信息反映至少由于所述可变增益放大器和所述可变增益功率放大器的增益的同时增益变化而引起的相位变化。
CNB028226100A 2001-11-16 2002-10-30 具有基于预存储相位信息的发射机链相位调整的发射机 Expired - Fee Related CN100423447C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/993,985 2001-11-16
US09/993,985 US7058139B2 (en) 2001-11-16 2001-11-16 Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information

Publications (2)

Publication Number Publication Date
CN1586036A CN1586036A (zh) 2005-02-23
CN100423447C true CN100423447C (zh) 2008-10-01

Family

ID=25540155

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028226100A Expired - Fee Related CN100423447C (zh) 2001-11-16 2002-10-30 具有基于预存储相位信息的发射机链相位调整的发射机

Country Status (6)

Country Link
US (1) US7058139B2 (zh)
EP (1) EP1449296A2 (zh)
JP (1) JP2005510105A (zh)
CN (1) CN100423447C (zh)
AU (1) AU2002348958A1 (zh)
WO (1) WO2003043179A2 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079588B1 (en) * 2001-12-21 2006-07-18 Raytheon Company Method and apparatus for processing signals in an array antenna system
US6985704B2 (en) * 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication
US8380143B2 (en) 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US8472897B1 (en) 2006-12-22 2013-06-25 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus
GB0212740D0 (en) * 2002-05-31 2002-07-10 Hitachi Ltd Transmitter and wireless communication apparatus using the transmitter
US7340007B2 (en) * 2003-09-16 2008-03-04 M/A-Com, Inc. Apparatus, methods and articles of manufacture for pre-emphasis filtering of a modulated signal
US7298854B2 (en) * 2002-12-04 2007-11-20 M/A-Com, Inc. Apparatus, methods and articles of manufacture for noise reduction in electromagnetic signal processing
US7254195B2 (en) * 2003-08-25 2007-08-07 M/A-Com, Inc. Apparatus, methods and articles of manufacture for dynamic differential delay correction
US20060183451A1 (en) * 2003-06-06 2006-08-17 Interdigital Technology Corporation Method and system for continuously compensating for phase variations introduced into a communication signal by automatic gain control adjustments
US7412008B2 (en) * 2003-06-30 2008-08-12 Freescale Semiconductor, Inc. Programmable phase mapping and phase rotation modulator and method
JP3978433B2 (ja) * 2004-02-12 2007-09-19 松下電器産業株式会社 送信電力制御装置
US7400864B2 (en) * 2004-04-15 2008-07-15 Interdigital Technology Corporation Method and apparatus for compensating for phase variations caused by activation of an amplifier
KR100810322B1 (ko) * 2004-10-29 2008-03-07 삼성전자주식회사 이동 통신용 고효율 전력 증폭 장치 및 방법
ATE436119T1 (de) * 2004-11-18 2009-07-15 Research In Motion Ltd Verfahren und vorrichtung zur präzisen abstimmung in offener schleife der referenzfrequenz innerhalb einer drahtlosen einrichtung
US7426372B2 (en) * 2005-03-31 2008-09-16 M/A-Com Eurotec B.V. Piecewise linearizer circuit for radio frequency amplification
US7436339B2 (en) * 2005-07-20 2008-10-14 M/A-Com, Inc. Method and apparatus to emulate a filter using digital elements
US7307570B2 (en) * 2005-07-20 2007-12-11 M/A-Com, Inc. Method and apparatus to emulate a filter
US7653147B2 (en) * 2005-08-17 2010-01-26 Intel Corporation Transmitter control
US7599418B2 (en) 2006-02-16 2009-10-06 Pine Valley Investments, Inc. Method and apparatus for a frequency hopper
DE102006008790A1 (de) * 2006-02-24 2007-09-06 Infineon Technologies Ag Modulationseinrichtung für einen Sendepfad, Verfahren zur Signalverarbeitung in einem Sendepfad und Sendepfad mit der Modulationseinrichtung
CN101479956B (zh) 2006-04-28 2013-07-31 大力系统有限公司 用于无线通信的高效率线性化功率放大器
CN102017553B (zh) 2006-12-26 2014-10-15 大力系统有限公司 用于多信道宽带通信系统中的基带预失真线性化的方法和系统
US9026067B2 (en) * 2007-04-23 2015-05-05 Dali Systems Co. Ltd. Remotely reconfigurable power amplifier system and method
US8050783B2 (en) * 2007-03-12 2011-11-01 Pine Valley Investments, Inc. System and method for pre-distorting a device input
US7869543B2 (en) * 2007-03-13 2011-01-11 Pine Valley Investments, Inc. System and method for synchronization, power control, calibration, and modulation in communication transmitters
US8009765B2 (en) * 2007-03-13 2011-08-30 Pine Valley Investments, Inc. Digital polar transmitter
KR101484796B1 (ko) * 2007-04-23 2015-01-20 달리 시스템즈 씨오. 엘티디. N-웨이 도허티 분산형 전력 증폭기
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
US7941110B2 (en) * 2007-07-23 2011-05-10 Freescale Semiconductor, Inc. RF circuit with control unit to reduce signal power under appropriate conditions
US8750414B2 (en) * 2007-07-31 2014-06-10 Broadcom Corporation Method and system for polar modulation with discontinuous phase
US8224266B2 (en) * 2007-08-30 2012-07-17 Dali Systems Co., Ltd. Power amplifier predistortion methods and apparatus using envelope and phase detector
US8081710B2 (en) * 2007-11-08 2011-12-20 Pine Valley Investments, Inc. System and method for corrected modulation with nonlinear power amplification
US8213884B2 (en) * 2007-12-07 2012-07-03 Dali System Co. Ltd. Baseband-derived RF digital predistortion
US7983359B2 (en) * 2008-02-07 2011-07-19 Pine Valley Investments, Inc. Synchronization techniques for polar transmitters
US8233852B2 (en) * 2008-04-04 2012-07-31 Pine Valley Investments, Inc. Calibration techniques for non-linear devices
KR101133747B1 (ko) * 2009-11-23 2012-04-09 한국전자통신연구원 위성 통신 시스템의 단말기에서 데이터를 송신하기 위한 장치 및 방법
EP2517353B1 (en) 2009-12-21 2016-04-20 Dali Systems Co. Ltd. Modulation agnostic digital hybrid mode power amplifier system and method
KR102136940B1 (ko) 2010-09-14 2020-07-23 달리 시스템즈 씨오. 엘티디. 원격으로 재구성가능한 분산 안테나 시스템 및 방법
CN102683768A (zh) * 2012-05-08 2012-09-19 武汉滨湖电子有限责任公司 一种随温度、频率自适应相位补偿移相器及方法
US10240456B2 (en) * 2013-03-15 2019-03-26 Merlin Technology, Inc. Inground device with advanced transmit power control and associated methods
US9425619B2 (en) 2013-03-15 2016-08-23 Merlin Technology, Inc. Advanced inground device power control and associated methods
US9876501B2 (en) * 2013-05-21 2018-01-23 Mediatek Inc. Switching power amplifier and method for controlling the switching power amplifier
KR20170034408A (ko) * 2014-07-22 2017-03-28 닛본 덴끼 가부시끼가이샤 무선 송신 장치 및 무선 송신 방법
US9871574B2 (en) * 2016-04-05 2018-01-16 Getac Technology Corporation Antenna signal transmission apparatus and antenna signal transmission method
US10637460B2 (en) 2016-06-14 2020-04-28 Macom Technology Solutions Holdings, Inc. Circuits and operating methods thereof for monitoring and protecting a device
US20180109228A1 (en) 2016-10-14 2018-04-19 MACOM Technology Solution Holdings, Inc. Phase shifters for gallium nitride amplifiers and related methods
US20190028066A1 (en) 2017-07-24 2019-01-24 Macom Technology Solutions Holdings, Inc. Fet operational temperature determination by field plate resistance thermometry
US20190028065A1 (en) 2017-07-24 2019-01-24 Macom Technology Solutions Holdings, Inc. Fet operational temperature determination by gate structure resistance thermometry
US10469109B2 (en) * 2017-09-19 2019-11-05 Qualcomm Incorporated Predistortion for transmitter with array
CN107968680B (zh) * 2017-12-01 2019-11-22 清华大学 一种光学非线性效应的补偿方法和装置
US11177847B2 (en) * 2019-03-22 2021-11-16 Mediatek Singapore Pte. Ltd. Method for compensating for degradation of signal during transmission of the signal and transmitter utilizing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266906A (en) * 1991-10-29 1993-11-30 Nec Corporation Linear amplifier performing distortion compensation control
EP0648012A1 (en) * 1993-09-29 1995-04-12 Linear Modulation Technology Ltd Power control for cartesian amplifiers
US5732333A (en) * 1996-02-14 1998-03-24 Glenayre Electronics, Inc. Linear transmitter using predistortion
US5892774A (en) * 1996-12-12 1999-04-06 Qualcomm Incorporated Phase shift encoded subchannel
EP1026833A2 (en) * 1999-02-05 2000-08-09 Fujitsu Limited Portable mobile terminal and transmission unit with power control
US6246286B1 (en) * 1999-10-26 2001-06-12 Telefonaktiebolaget Lm Ericsson Adaptive linearization of power amplifiers
US6295442B1 (en) * 1998-12-07 2001-09-25 Ericsson Inc. Amplitude modulation to phase modulation cancellation method in an RF amplifier

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194200A (en) * 1977-05-31 1980-03-18 The United States Of America As Represented By The Secretary Of The Air Force Combined receiver protector, AGC attenuator and sensitivity time control device
US4291277A (en) * 1979-05-16 1981-09-22 Harris Corporation Adaptive predistortion technique for linearizing a power amplifier for digital data systems
CA1290407C (en) * 1986-12-23 1991-10-08 Shigeki Saito Frequency synthesizer
US5123031A (en) * 1989-02-08 1992-06-16 Nokia-Mobira Oy Control voltage generator in a transmitter arrangement for digitally modulated signals
US5220557A (en) * 1991-09-23 1993-06-15 Hughes Aircraft Company Multiple use digital transmitter/transceiver with time multiplexing
US5396217A (en) * 1993-02-01 1995-03-07 General Motors Corporation Phase shift analysis for vehicle intrusion detection
JPH07212421A (ja) * 1994-01-19 1995-08-11 Toshiba Corp Afc回路
ZA965340B (en) * 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US5867065A (en) * 1997-05-07 1999-02-02 Glenayre Electronics, Inc. Frequency selective predistortion in a linear transmitter
US5933767A (en) * 1997-09-15 1999-08-03 Motorola, Inc. Apparatus and method for tuning the gain of a transmitter utilizing cartesian feedback
WO1999023761A1 (en) * 1997-11-03 1999-05-14 Harris Corporation A field programmable radio frequency communications equipment including a configurable if circuit and method therefor
US6288610B1 (en) * 1998-03-19 2001-09-11 Fujitsu Limited Method and apparatus for correcting signals, apparatus for compensating for distortion, apparatus for preparing distortion compensating data, and transmitter
GB9811381D0 (en) 1998-05-27 1998-07-22 Nokia Mobile Phones Ltd Predistortion control for power reduction
US6404823B1 (en) * 1998-07-01 2002-06-11 Conexant Systems, Inc. Envelope feedforward technique with power control for efficient linear RF power amplification
JP3570898B2 (ja) * 1998-08-24 2004-09-29 日本電気株式会社 プレディストーション回路
JP3772031B2 (ja) * 1998-09-02 2006-05-10 富士通株式会社 増幅器のプリディストータと増幅装置
JP3214463B2 (ja) * 1998-10-21 2001-10-02 日本電気株式会社 無線通信装置
US6046649A (en) * 1998-11-27 2000-04-04 Lockheed Martin Corporation Communication system employing paired power amplifiers and drift compensation feedback control loops
US6853690B1 (en) * 1999-04-16 2005-02-08 Parkervision, Inc. Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments
GB9906417D0 (en) 1999-03-19 1999-05-12 Simoco Int Ltd Radio transmitters
FI107100B (fi) 1999-03-26 2001-05-31 Nokia Networks Oy I/Q-modulaattorin vaihe- ja amplitudiepäbalanssin korjaus
EP1181768B1 (en) 1999-05-25 2004-11-24 Nokia Corporation Linearisation and modulation device
US6614854B1 (en) * 1999-05-28 2003-09-02 Carriercomm, Inc. System and method for adaptive predistortion
JP3533351B2 (ja) * 1999-12-28 2004-05-31 日本無線株式会社 フィードフォワード増幅器及びその制御回路
US6831954B1 (en) * 2000-02-01 2004-12-14 Nokia Corporation Apparatus, and associated method, for compensating for distortion introduced upon a send signal by an amplifier
FR2807252B1 (fr) * 2000-03-31 2003-01-10 Matra Nortel Communications Dispositif de production d'un signal radiofrequence module en phase et en amplitude
US6304140B1 (en) * 2000-06-12 2001-10-16 Motorola, Inc. Digital predistortion for amplifiers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266906A (en) * 1991-10-29 1993-11-30 Nec Corporation Linear amplifier performing distortion compensation control
EP0648012A1 (en) * 1993-09-29 1995-04-12 Linear Modulation Technology Ltd Power control for cartesian amplifiers
US5732333A (en) * 1996-02-14 1998-03-24 Glenayre Electronics, Inc. Linear transmitter using predistortion
US5892774A (en) * 1996-12-12 1999-04-06 Qualcomm Incorporated Phase shift encoded subchannel
US6295442B1 (en) * 1998-12-07 2001-09-25 Ericsson Inc. Amplitude modulation to phase modulation cancellation method in an RF amplifier
EP1026833A2 (en) * 1999-02-05 2000-08-09 Fujitsu Limited Portable mobile terminal and transmission unit with power control
US6246286B1 (en) * 1999-10-26 2001-06-12 Telefonaktiebolaget Lm Ericsson Adaptive linearization of power amplifiers

Also Published As

Publication number Publication date
EP1449296A2 (en) 2004-08-25
WO2003043179A3 (en) 2003-11-27
US7058139B2 (en) 2006-06-06
WO2003043179A2 (en) 2003-05-22
US20030095608A1 (en) 2003-05-22
AU2002348958A1 (en) 2003-05-26
CN1586036A (zh) 2005-02-23
JP2005510105A (ja) 2005-04-14

Similar Documents

Publication Publication Date Title
CN100423447C (zh) 具有基于预存储相位信息的发射机链相位调整的发射机
US7565119B2 (en) Predistortion correction loop-back based on high linearity and low linearity modes
US7440731B2 (en) Power amplifier with VSWR detection and correction feature
US8081711B2 (en) Predistortion methods and apparatus for polar modulation transmitters
JP3805221B2 (ja) 歪み補償装置
US8577311B2 (en) Predistortion of amplifier input signals
US7868696B2 (en) Method and system for a highly efficient power amplifier utilizing dynamic baising and predistortion
US6633199B2 (en) Amplifier circuit, radio transmitter, method and use
US8831543B2 (en) Method and system for a linearized transmitter including a power amplifier
US7792214B2 (en) Polar modulation transmitter circuit and communications device
JP2003124821A (ja) 送信電力制御回路
EP1652294B1 (en) Cartesian loop transmitter and method of adjusting an output level of such transmitter
WO2014160841A1 (en) Power amplifier signal compensation
US20080139144A1 (en) Method and system for mitigating a voltage standing wave ratio
EP1639700B1 (en) Cartesian loop transmitter and method of adjusting an output level of such transmitter
US7095988B2 (en) Apparatus for linear transmitter with improved loop gain stabilization
US7209715B2 (en) Power amplifying method, power amplifier, and communication apparatus
EP1643636B1 (en) A method for assessing a capability of an amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NXP CO., LTD.

Free format text: FORMER OWNER: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Effective date: 20070817

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070817

Address after: Holland Ian Deho Finn

Applicant after: NXP B.V.

Address before: Holland Ian Deho Finn

Applicant before: Koninklijke Philips Electronics N.V.

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NXP BV

Free format text: FORMER OWNER: KONINKL PHILIPS ELECTRONICS NV

Effective date: 20101210

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: ST-ERICSSON CO., LTD.

Free format text: FORMER NAME: NXP BV

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: EINDHOVEN, NETHERLANDS TO: PLAN-LES-OUATES, SWITZERLAND

CP01 Change in the name or title of a patent holder

Address after: Swiss Prang Eli Ute

Patentee after: ST-ERICSSON S.A.

Address before: Swiss Prang Eli Ute

Patentee before: ST Wireless

TR01 Transfer of patent right

Effective date of registration: 20101210

Address after: Swiss Prang Eli Ute

Patentee after: ST Wireless

Address before: Holland Ian Deho Finn

Patentee before: NXP B.V.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081001

Termination date: 20181030

CF01 Termination of patent right due to non-payment of annual fee