CN100558308C - 用于烧蚀身体组织的基于射频的导管系统和中空同轴电缆 - Google Patents

用于烧蚀身体组织的基于射频的导管系统和中空同轴电缆 Download PDF

Info

Publication number
CN100558308C
CN100558308C CNB2006101388062A CN200610138806A CN100558308C CN 100558308 C CN100558308 C CN 100558308C CN B2006101388062 A CNB2006101388062 A CN B2006101388062A CN 200610138806 A CN200610138806 A CN 200610138806A CN 100558308 C CN100558308 C CN 100558308C
Authority
CN
China
Prior art keywords
antenna
conduit
radio
guide
organ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2006101388062A
Other languages
English (en)
Other versions
CN1943523A (zh
Inventor
西奥多C.奥姆斯比
乔治L.勒翁
明-范·劳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1943523A publication Critical patent/CN1943523A/zh
Application granted granted Critical
Publication of CN100558308C publication Critical patent/CN100558308C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1435Spiral
    • A61B2018/1437Spiral whereby the windings of the spiral touch each other such as to create a continuous surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers

Abstract

一种用于烧蚀患者身体器官的生物组织的改进的射频导管系统,包括一个导管(3),一个设置在导管的末端的可伸出天线导向件(36),和一个安装在天线导向件上的射频(“RF”)天线(54)。RF天线包括一个容纳天线导向件的轴向通道,适用于接收和发射用于组织烧蚀的RF能。在伸展时,天线导向件获得一种环形构造,该环形构造建立了与身体器官内部轮廓相符的身体器官的线接触,以便不管身体器官如何运动,都可限定精确的和固定的组织烧蚀路径。天线导向件携带RF天线沿建立的组织烧蚀路径伸出。利用辐射不透明标记和沿天线导向件安装的心内电极方便了环形与希望的组织烧蚀路径对准。可以给导管以及天线提供用于引导通过身体器官通道的导向或偏转机构。本发明还提供了一种传送RF能的中空同轴电缆。

Description

用于烧蚀身体组织的基于射频的导管系统和中空同轴电缆
本申请是申请日为1999年12月8日、申请号为99802890.8、发明名称为“用于切除身体组织的基于射频的导管系统和中空同轴电缆”的中国专利申请的分案申请。
发明背景/领域
本发明一般涉及射频(“RF”)供电的医疗装置和生物组织的烧蚀。更具体地讲,本发明涉及用于烧蚀患者身体器官内生物组织和治疗心律失常的基于导管的RF天线。
近年来医疗界广泛地接受了将医疗装置作为治疗心脏病和其它严重疾病的一种重要方式,这些疾病传统上是用药物或手术治疗的。心脏病治疗中出现了两种基本趋势。第一种趋势是从开心手术治疗向较小侵犯性的和较少花费的导管治疗转变,导管治疗是比较安全的,对身体损害也较小。
第二种趋势是从使用抗心律失常药物向最小侵犯性的导管或其它基于器械的诊疗转变,以缓和不可治愈的心律失常。例如,通常是将自动电复律器-电震发射器植入患有致命室性心律失常患者的体内,以减少猝死的可能性。因此,现在大量的心律失常患者使用射频(“RF”)导管烧蚀。
尽管有这些技术上的进步,心房纤颤(“AF”)仍然是一种严重的问题。AF,一种由非均匀电脉冲诱发的心脏的心房或上腔的快速不规则心律,是中风和心脏病突发的首要原因和主要的健康问题。迄今为止,治疗AF的最有效外科传统方法一直是进行“开心”手术的Maze方法。在Maze手术中,沿心房外部预定线切开,然后再缝合切口。在愈合时,沿切开线形成疤痕,因而形成电脉冲的传导阻碍。通过建立这种阻碍,使AF不能持续,并恢复了正常心律。但是,由于Maze方法涉及包括打开胸腔和切断胸骨的危险和致命的开心手术,因此它不能广泛地适用。
导管射频烧蚀技术代表着一种模仿Maze手术的新方法,其中不是进行手术切开,而是使用导管电极破坏或烧蚀心房腔室内的心脏组织。如医疗领域中通常所做的那样,使导管电极穿过动脉以进入心房。在心房内,通常是借助于x-射线或荧光检查装置使导管电极的尖端定位,并使之与需要烧蚀的恰当位置或点的心脏组织接触。从导管电极产生的电阻热在该点破坏心脏组织。此后,把导管电极重新定位在下一个烧蚀点。因此,一系列的烧蚀点类似于在Maze手术下完成的阻碍电脉冲传导的直线伤痕。
可以认为现有的导管烧蚀手术比“开心”手术的侵入性小。此外,在烧蚀过程中,减小了对心血管功能的破坏。但是,成功的导管射频烧蚀手术通常需要使组织烧蚀点的间隔或者说相邻点之间的最小公差小于2毫米,以防止电脉冲通过。出于这种考虑,精确地定位导管电极的任务是成功手术的关键因素。
这种现有方法的主要缺点在于,在心腔肌肉搏动的同时,在心房内恰当的烧蚀点定位导管电极是一项耗时的任务。心房壁或心肌的运动通常使导管电极难于定位,并可能发生导管电极滑动,因而可能损伤不希望烧蚀的心房部分。结果,不能有效地完成基于导管的RF烧蚀的定位,并且可能需要超过12小时的长的手术时间。此外,在手术过程中,通常使用x-射线或其它放射装置引导和定位导管电极,电生理学规定这要使用沉重的铅防护设备。结果,长的手术时间通常又使这种不便更为突出,这妨碍了导管电极作为一种有效的组织烧蚀装置来使用。
为了减小滑动的危险,例如,第5,741,249号美国专利披露了一种基于导管的微波天线,其中末梢顶端结合在一个天线中,以将其锚固在心房壁上。但是,尽管这种设计减小了每个烧蚀步骤期间的天线或导管电极滑动的可能性,但是它没有消除每个烧蚀步骤中沿希望的烧蚀路径精确定位天线的耗时任务。因此,在每个烧蚀步骤之后,必须把天线重新定位和精确锚固到下一个点,如上所述,该点必须定位在烧蚀路径上的一个空间或最近的公差内。
因此,利用导管烧蚀有效治疗心房纤颤需要在心房的内表面建立长的或重叠的直线或曲线的烧蚀伤痕。这些伤痕可以起到阻碍电脉冲传导的作用,因而防止了心房纤颤。
还认识到对于心房纤颤进行有效的基于导管的烧蚀的关键要求是要把导管和微波天线稳定和锚固在心房腔室内。为了开发最小侵入性的基于导管的心房纤颤治疗方法,需要新的、最好是能够产生长的或重叠的直线或曲线烧蚀伤痕的导管烧蚀系统。
此外,美国专利5,776,176是关于肌体组织的微波热烧蚀的,其披露了一种微波天线,所述的微波天线可以插入进心脏血管导管,并可形成于包含内部导体和内部绝缘体的同轴电缆,其中所述的内部绝缘体具备一段邻近导管末端的缩减直径的部分。
本发明提供了这种导管系统的设计,它不仅可以用于心房纤颤,而且可以用于在其它身体器官中的生物组织的烧蚀。该导管系统包含利用单轨和环形天线导向件的稳定和锚固机构,用于在烧蚀过程中监测不同参数的传感器,和带有控制滑动件以容易地引导和操纵导管的手柄。
发明概述
根据本发明,提供了一种用于烧蚀包括患者的心房在内的身体器官的生物组织的改进的射频导管系统。导管系统包括一个适用于插入身体器官中的导管,和一个设置在导管内腔中的可伸展的天线导向件。在导管的末端提供了一个可伸展的射频天线,以及一个中空同轴电缆,以接收和发射用于组织烧蚀的射频能。在本发明的一个代表性的实施例中,天线包括螺旋线圈,并且具有容纳天线导向件的轴向通道,在它伸展时规定了组织烧蚀的天线的烧蚀路径。天线导向件包括固定于用于定位和伸展控制的控制滑动件的细长部分。天线导向件可以在身体器官内伸展,以形成一个符合身体器官轮廓的环形构造。可以利用辐射不透明标记和沿天线导向件安装的心内电极帮助环形与希望的组织烧蚀路径对准。在身体器官内形成环形之后,使射频天线沿天线导向件伸展,进行组织烧蚀。
在本发明的一个替代实施例中,把天线导向件的细长部分的一端固定于定位控制滑动件,并把另一端固定于导管的末端部分。作为本发明的另一个替代实施例,将天线导向件形成为一个细长挠性元件,其具有终止于一个末梢顶端的附接的末端部分。
本发明的射频导管系统也可以结合各种不同的替代射频天线设计。在本发明的一个这样的替代实施例中,射频天线包括一个设置在导管末端部分的单极珠,用于传送优化辐射图形,同时使反射和电压驻波比最小。在本发明的另一个替代实施例中,提供了一种微带挠性电路。
在应用中,使天线导向件从导管内腔伸展出来,以建立与身体器官内表面的接触。天线导向件的挠性使它能够弯曲成符合身体器官的轮廓,以限定射频天线的烧蚀路径。
即使没有完全避免对现有技术的烧蚀导管电极的反复微小精确定位的需要,本发明也有效地减轻了这一需要。本发明可以方便地沿限定了组织烧蚀路径的天线导向件的轨迹放置射频天线。同时,本发明还确保了连续的烧蚀路径,并且实际上减小了现有技术中烧蚀点之间电脉冲泄漏的危险。因此,本发明实际上在取得曲线形伤痕方面完成Maze方法的目的,而无需开心手术。从以下的详细说明和附图中可以更清楚地了解本发明的这些和其它方面和优点,附图以示例的方式说明了本发明的特征。
附图的简要说明
图1是本发明的射频导管烧蚀系统,连同射频功率模块、计算机控制和数据记录装置的概念图;
图2是本发明的射频导管烧蚀系统的透视图;
图3A是在射频导管烧蚀系统的末端部分伸出状态的天线导向件和射频天线的剖面图;
图3B是在射频导管烧蚀系统的末端部分缩回状态的天线导向件和射频天线的剖面图;
图4A是射频导管烧蚀系统的末端部分的局部剖视图;
图4B是射频导管烧蚀系统的另一个实施例的末端部分的局部剖视图;
图5是射频天线的剖面图和天线导向件的局部视图;
图6是沿图5的6-6线的剖视图;
图7是本发明的另一个实施例的透视图;
图8是导管系统的末端部分的典型横截面图;
图9是用于射频天线和射频能量源之间的电连接的微带的平面图;
图10是图9的微带的正视图;
图11是射频导管烧蚀系统的局部剖视图;
图12是射频导管烧蚀系统中使用的手柄架的局部剖视图;
图13是设置在图12的手柄架中的微带的横截面图;
图14是结合一个单极射频天线设计的本发明的另一个实施例的局部剖视图;
图15是结合一个微带挠性电路射频天线设计的本发明的另一个实施例的局部剖视图;
图16是沿图15的16-16线的微带挠性电路的横截面图;
图17是在射频导管烧蚀系统中使用的本发明的中空电缆的末端部分的局部剖视图;
图18是结合一个或更多的导向线的本发明的导管的末端部分的局部剖视图;
图19是被一个或更多导向线偏转的本发明的导管的末端部分的另一个局部剖视图。
本发明的详细说明
本发明提供了一种在患者身体器官内烧蚀生物组织的改进的射频导管系统。系统包括一个适于插入患者身体器官中的导管。它结合一个用于向治疗部位传送电磁能的可伸展射频天线。提供了一种用于使天线沿希望的烧蚀路径精确定位的单轨导向件。本发明还提供了一种用于传导电磁能的中空同轴电缆。
如图1,2和3中所示,本发明包括一个适用于插入患者的身体器官内的导管3。导管具有一个带有一个近端部分12和一个末端部分14的挠性细长管体10。内腔16从导管的近端部分延伸到带有末端开口18的末端部分(图3和4)。位于导管3近端部分12的是一个用于容纳如下面将更详细说明的必要的导向和定位控制件的手柄架20。结合在导管3近端的是一个用于连接支持烧蚀过程的的各种电极(未示出)的耦合件22。
导管3的尺寸根据适合特定医疗过程的需要适配,这在医疗技术中是已知的。导管的管体10一般是由与身体器官环境生物相容的聚合物材料构成的。这些材料的例子包括,具有不同程度的辐射不透明性、硬度和弹性的,来自德国Autochem公司的Pebax,聚乙烯,聚氨基甲酸乙酯,聚酯,聚酰亚胺和聚酰胺。
在本发明的一个实施例中,导管3是利用一种或多种上述材料的多个段形成的,因而使导管体向其末端逐渐地更具有挠性。通过热粘结、对头连接或粘结剂粘结把各段结合在一起。可以给管体10的外圆周表面加上编织加强层,以使导管获得希望程度的硬度和抗扭强度。这使导管能够前进和穿过患者的身体器官,并使导管能够沿导管的长度从近端部分到末端部分扭转输送。
导管3的末端部分14是由带有很少或没有编织加强物的较软的聚合化合物构成的,以便在操纵导管通过动脉或静脉之类的身体器官的狭窄通道时,提供希望的挠性以容许导管的末端偏转或导向。在本发明中,导管的导向是用一个拉线30实现的,如图11中所示,拉线30从控制手柄架20延伸到导管3的末端部分14。在导管3的末端,用焊接或其它适当的方法把拉线30固定在导管内腔16的内壁上。
拉线30在近端固定在偏转控制操纵杆或按压滑动件32上,按压滑动件32可滑动地啮合于手柄架20的纵向缝隙34。按压滑动件32沿缝隙34的纵向运动结合导管3的扭转运动使医生能够根据需要弯曲或伸直导管3,以便引导导管3通过身体器官的通道。结合于按压滑动件32的是一个用于将操纵杆在缝隙34中的位置的摩擦固定装置。在市场上可以买到许多种类的这种装置。这种装置的例子包括,set-release,压力开关或自锁机构等。
本发明的导管系统1提供了一种用于沿预定烧蚀路径引导组织烧蚀RF天线的有效装置。图1,3A,4A和4B示出了在邻近导管3的末端部分14的延长位置上伸出的天线导向件或单轨36。如图3B中所示,天线导向件或单轨36也可以缩回到导管内腔16中。
在本发明的一个实施例中,单轨36包括一个挠性细长元件,它可以由带状材料构成。作为选择,单轨36也可以如附图中所示的那样由小直径管材制造。单轨36有向近端延伸到导管内腔16中的延长部分42和44(图4A,8-10)。在手柄架20,单轨延长部分固定到各自的控制滑动件46和48。与导管偏转拉线30类似,控制滑动件46和48可滑动地啮合在手柄架20上的纵向缝隙中,如图2中所示,并且可以沿导管3的纵轴向末端或近端运动。因此,通过移动一个或两个控制滑动件,单轨导向件可以建立一个如图2和图3A中所示的伸出位置,或如图3B所示的缩回位置。为了伸出单轨36,将一个或两个控制滑动件46和48相对于手柄架20向末端移动。为了缩回,将控制滑动件向近端方向移动。可以用适当的装置固定控制滑动件的位置,例如,加载弹簧摩擦固定装置等,如同偏转控制或按压滑动件32所用的那些装置。
图3B示出了在完全缩回位置上的单轨36,在这个位置上它在导管3的末端部分14的导管内腔16中被安排为一种压紧的U形状态。单轨36带有一个平的或弯曲的顶端40,从而在缩回位置上,顶端40实际上封闭了导管3的末端开口18,使导管内腔16与生物外界环境隔离。顶端40也使导管成为“无创伤的”,并且给导管提供了一个平滑的末端轮廓,以使它在通过身体器官的通道时减小刺穿身体器官的危险。
顶端40可以用通常用于构成导管的可与生物机体相容的材料制造。此外,它可以加入一种辐射不透明材料,以帮助用x-射线或其它荧光检查装置识别它在身体器官中的位置,如现有技术中通常使用的那样。
单轨36是由具有适当程度的记忆能力、生物相容性和类弹簧结构特性的金属或聚合物组中的材料构成的。这些材料的例子包括:镍钛金属化合物(镍-钛),不锈钢,聚酰胺和聚四氟乙烯(“PTFE”)。根据需要可以对使用的金属材料进行热处理或冷加工,以提供希望的结构特性,例如硬度和挠性。这些结构特性使得可以在导管内腔16中移动单轨36而不皱缩。但是,在导管内腔16外部的它的伸出位置,单轨36是可以挠曲的。
单轨36在身体器官内可以伸出到导管3的末端开口18以外,形成一个实际上连续的环50,如图3A,4A和4B中所示。控制滑动件46和48向导管3的末端的纵向前进,可以使单轨伸出,从而使单轨伸展到导管末端开口18之外,建立与身体器官内壁的接触。在接触时,单轨36的伸出部分将弯曲,获得一种环形构造。根据需要治疗的身体器官的内部轮廓,通过调节控制滑动件的末端位移量可以适配环形50的大小,从而使单轨符合身体器官的轮廓。单轨36的类弹簧特性使环形50的至少一部分能够支撑在身体器官壁上,从而获得与身体器官内壁的线接触,尽管它可能在运动。顶端40进一步帮助单轨36锚固在身体器官内壁上的裂隙或小凹陷处,而没有在身体器官上造成刺穿的危险。
为了当单轨36在身体器官内前进时确定它的位置,可以将一个或多个辐射不透明标记安装在单轨36上。如图1-4中所示,一个辐射不透明标记结合在单轨36的顶端40中。利用辐射不透明材料,顶端40在x-射线或荧光检查下成为不透明的,从而在导管插入或组织烧蚀过程中帮助识别它的位置。这种辐射不透明标记的结构和使用在现有技术中是已知的,这里不再进行详细的说明。
作为一种设计上的变型,可以用末端结合在一起形成一个单轨的两个独立的细长元件构造天线导向件。两个细长元件之间的结合角度可以根据特定应用所需的单轨外形预先确定。因此,例如,在身体器官的窄小内腔内手术使用的小外形(具有超小横截面)导管,细长元件可能需要相对小的结合角度,以便利导轨的缩回和伸出。图4B示出了本发明的另一个实施例,其中单轨导向件36a的一端固定在导管3的靠近末端开口18处。结合一个延伸部分44a的单轨36a的另一端在手柄架连接于一个控制滑动件(未示出)。这个实施例可以在手柄架用一个单一控制滑动件使单轨伸出和缩回。
如图2-7中所示,本发明包括设置在导管3的末端部分14附近的用于组织烧蚀的射频(RF)天线54。在本发明的一个代表性实施例中,RF天线54包括一个以螺旋形式缠绕形成一个螺旋线圈56的导电材料或导线带。如本技术领域中众所周知的,适当的线圈缠绕直径,间距和长度,以及导电材料或导线带的挑选是设计的选择事项,它们根据特定处理过程的要求可以改变。
如图2,3和4A及4B中所示,RF天线54包括螺旋线圈56,它定义了容纳单轨36的轴向通道58。RF天线54可滑动地安装在单轨36上。因此,单轨规定了它的运动。
为了提高形状的整体性,为RF天线54提供了一个管衬或套管60,其具有一个从螺旋线圈56向近端延伸到导管3的近端部分12的可弯曲延长体。套管60是由介电材料构成的,其减小了螺旋线圈56的金属表面与通道58中体液之间的电短路的可能性,并且帮助限制电磁场泄漏到通道之外。
如图5和6中所示,螺旋线圈56在接触点65连接到第一或内导电元件或导体64,导体64又电连接到RF功率控制源5提供的RF能源。在图5,6,11和17所示的实施例中,内导体64由可弯曲网或编织导线结构构成,或是由一个薄膜导电材料构成,内导体64围绕在套管60的外表面62上,并且从螺旋线圈56向近端延伸到手柄架20。在这个实施例中,内导体64呈现为一个细长管形构造。
内导体64沿其外圆周表面和向近端延伸到手柄架涂覆有一个聚合物介电保护涂层68。保护涂层68用作螺旋线圈56和一个第二导电元件或外导体66的基层。保护涂层68也使内导体64与外导体66电绝缘。
如图5和6中所示,螺旋线圈56绕在保护涂层68的外圆周表面上,并且在接触点67连接到外导体66。外导体66又电连接到RF功率控制源5提供的RF能量源。
在图5和6所示的实施例中,外导体66是由围绕介电保护涂层68的导电材料构成的,并从螺旋线圈56向近端延伸到手柄架20。外导体可以由编织导线结构或薄膜导电材料构成。
如图5中所示,螺旋线圈56沿其外圆周表面涂覆了一个聚合物介电密封层70,以保证螺旋线圈的结构整体性,和防止螺旋线圈与生物环境接触。密封层70是由硅或基于聚合物的材料或橡胶化合物之类的适当材料构成的。同样,提供了用类似材料构成的一个外套管72,以封装外导体66,和提供对生物环境的电磁和热隔绝。
如图11中所示,外套管72连接到一个微带80,微带80可滑动地固定于手柄架20,用于在近端部分使RF天线轴向位移,在下面将进行更详细地说明。单轨36的延长部分44在通道58内向近端延伸到导管3的近端部分12。因此,本发明提供了一组电导体,它们的每个都形成在一个细长的管状结构中,并且基本上以同轴对准的相互关系排列,形成了一个从螺旋线圈56向近端延伸到手柄架20的用于传送RF能量的中空电缆。
RF天线54适用于接收和辐射来自一个射频能源(未示出)的电磁能。适当的射频频谱的例子为大约300mHz以上的微波频率范围的频谱。RF天线能够施加由螺旋线圈发射的实际上均匀分布的电磁场能。发射的电磁场的功率实际上垂直于RF天线的纵轴,并且因此产生了环绕天线并以天线定界的均匀能量场。为烧蚀而传送的能量沿天线均匀分布,与天线与被烧蚀组织之间的接触无关。结果,与现有技术的点传导或电阻烧蚀导管相比,本发明减小了烧蚀过程中在器官中和邻近或接触的血液中产生热点的可能性。
在手柄架20,内导体64和外导体66以连接到一个阻抗匹配微带80的各自的连接板74和76为终端(图11-13)。连接板又连接到一个导电体82,例如一个从手柄架20经过接线器22延伸到一个电磁能源(未示出)的实心同轴电缆。在微带,单轨36穿出RF天线的套管60,这使它能够连接到一个控制滑动件。
微带80沿容纳在手柄架20中的装配块92a和92b的相对侧壁88和90上的侧槽84和86可滑动地啮合。为了提供RF天线的轴向运动,可以使电缆82相对于手柄架向末端或近端运动,以伸出或缩回RF天线。作为选择,可以将微带80固定于一个可以沿手柄架20上纵向缝隙移动的定位滑动件(未示出)。
如上所述,通过辐射不透明标记可以帮助恰当地放置导向元件。此外,可以给单轨36提供一个或多个心内心电计(“ECG”)电极96,使医生能够在组织烧蚀之前和之后获得最佳组织贴近度和导电性,以及获得它们活动的反馈信息。这些电极沿单轨36的长度方向固定。图3A示出了一种心内电极96的典型安排,心内电极96电连接于设置在单轨36内的导体,以使其终端连接到导线连接器22中的信号插脚(未示出)。
导管可以通过一个开口插入到患者的身体器官中,在患者的身体器官中使导管贴近要烧蚀的目标组织。在插入导管之前,将导向元件36和RF天线54缩回到导管内腔16中,利用辐射不透明标记40获得一个无创伤的顶端结构,以利于导管平滑地通过。然后,将导管3的末端部分14插入到身体的开口中,并且进行操作以到达需要烧蚀的部位附近。方向控制是通过手柄架上的旋转动作和使用偏转控制件32完成的。
辐射不透明标记40便利于RF天线导向元件或单轨36的放置,如本技术领域中通常使用的,可以用适合的x-射线或荧光装置检测辐射不透明标记40的位置。在把导管3的末端部分14放置在组织烧蚀点附近后,用控制滑动件使单轨向末端方向移动,从而使其伸出导管内腔开口16,获得上述的延长或伸出位置环形构造。
根据身体器官的内部形状和尺寸,可以操纵一个或两个单轨控制滑动件,以获得恰当的单轨环形尺寸或轮廓。用心内ECG电极96进一步帮助取得环形尺寸或轮廓,使医生将RF天线导向件或单轨36对准希望烧蚀的路径。
例如,在心脏的心房情况下,可以调节环形50的尺寸,符合心房内壁的轮廓,以使环形50的至少一部分能够靠在心房壁上,这建立了心房与单轨之间的线接触。单轨36的挠性使环形的至少一部分能够符合身体器官的内部轮廓,并靠在其内壁上。随心房壁的搏动,与心房壁接触的单轨也将一致地运动,因而取得了与希望进行处理的身体器官的固定和稳定的定位关系。
一旦获得了单轨的环形轮廓,并且与希望烧蚀路径平行对准时,将控制滑动件46和48固定在手柄控制器的原位。然后使RF天线54向末端移动,伸出导管的末端开口,并用单轨滑动引导,达到需要烧蚀的精确位置。此后,通过施加射频能可以完成组织烧蚀。根据特定的处理要求,通过使RF天线沿环形的不同位置的定位,然后施加RF能量,可以调节烧蚀的长度。因此,可以建立长而连续的烧蚀线,实际上消除了烧蚀组织路径之间的电脉冲泄漏。根据特定处理要求,可以对心房内其它位置按需要重复上述步骤。
图7示出了本发明的另一个实施例,它结合了天线导向件设计的一种变型。在本实施例中,天线导向件102包括一个具有可分离的末端部分104的细长挠性元件,末端部分104以一个末梢顶端106为终端。末梢顶端106结合有一种辐射不透明材料,以便如上面所述的那样帮助导管的放置。导向件102的另一端向近端延伸到手柄架(未示出),并如前面所述实施例一样的方式固定于一个定位控制滑动件(未示出)。类似地,在其伸展之前,可以将天线导向件102与RF天线110一同缩回到导管100的内腔中。
在使用中,把导管100放置在要烧蚀的组织附近之后,使天线导向件102伸出导管内腔108,使末梢顶端106能够锚固在身体器官表面上的裂隙中。天线导向件102的挠性使它能够弯曲,以附合身体器官的轮廓,和建立导向件102与身体器官之间的线接触。结果,就可以使导向件102与身体器官之间的任何相对运动减至最小。此后,天线导向件102可以携带RF天线110伸展到导管内腔108之外,沿基本上与天线导向件102和身体器官之间的线接触平行对准的路径进行烧蚀。
作为替代实施例,本发明的射频天线可以结合射频天线的各种不同设计。图14示出了一个这样的替代实施例。如图14中所示,作为上述螺旋线圈构造及其替代的替代,给导管系统提供了一个包括一个单极珠122的天线120。单极珠在天线120末端环绕套管60外圆周设置。套管60具有一个内腔58,以容纳导向元件,例如,如上所述的导向元件或单轨36或天线导向件102。
单极珠连接于内导体64,内导体与外导体66电绝缘。如上所述,当给内导体64和外导体66加电时,在单极珠122与天线外部的外导体66之间产生一个电磁场,该电磁场可以用于组织烧蚀。因此,尽管单极珠122与外导体66之间没有物理接触,但可以认为它们被电耦合连接,以产生电磁场。
适当地设计单极珠122的形状和尺寸,以优化辐射图形,同时使反射和电压驻波比(“VSWR”)最小,如在本技术领域中所公知的那样,实现提供了供给RF能量的传输线路与RF能量辐射的介质之间的平稳阻抗过渡的阻抗匹配功能。优选地是适当地设计单极珠122的形状和尺寸,以使天线系统的反射系数最小,因而使得VSWR减小到大约1∶1。例如,单极珠122的直径向其末端方向逐渐增大,并且以减小的直径终止在套管60的末端开口,从而大致形成一个泪滴形,如图14所示。
如上所述,内导体和外导体都适用于连接到一个RF能源。当加电时,产生的电磁场从外导体延伸到正交和全向于单极珠表面的单极珠顶端。发射的电磁场功率实际上垂直于RF天线的纵向轴,因而产生了一个环绕天线并以天线为界的均匀能量场。
作为本发明的再一个替代实施例,射频天线可以结合一个微带挠性电路设计,作为上述螺旋线圈或单极珠的替代。如图15和16中所示,微带挠性电路天线132包括一对设置在介电背衬69上的天线末端的相互间隔的导电微带134和136,背衬69是用作内导体64涂层的介电材料68的部分,或套管60的延长部分。微带134和136分别连接于内导体64和外导体66,因而在加电时能够在两个微带间产生电磁场,该电磁场可以用于组织烧蚀。
适当地确定微带134和136之间的间隔和尺寸,从而可以在技术上取得从导体64和外导体66和被烧蚀的身体器官的实际上平稳的阻抗过渡。因此,最好如技术上所知那样,将微带挠性电路天线设计为使反射VSWR最小。微带导体的尺寸应当足够小,以容许根据组织烧蚀的需要以上述方式弯曲和偏转。
构造单极或微带导体中使用的材料包括生物相容的导电材料,这些材料的例子有铂、金或银,或它们的任意组合,这些材料是生物相容的。作为选择,在形成单极珠或微带导体时,也可以使用涂覆生物相容材料的其它导电材料。
作为选择,如图18和19中所示,可以安装一个或多个导线140与本发明的RF天线138末端部分的一个或多个电极142连接,以提供一种能够在组织烧蚀之前和之后获得最佳组织相邻程度和导电性测量值的装置。
此外,本发明的天线可以包括一个或多个固定在天线末端部分的天线偏转或导向线,以获得更明显的天线形状或曲率。图18和19示出了一个示例实施例,其中一个偏转线144固定于天线138的末端部分146,并在中空同轴电缆内腔中向近端延伸,以便连接到手柄处偏转控制机构(未示出),并且由这个控制机构控制。在天线末端部分146连接偏转线144使得能够在该部位增大天线的偏转,如图19中所示。在使用中,如上所述,可以借助于导向元件或单轨36把带有这种偏转装置的天线138伸入到体腔中。在需要时,可以把导向元件36缩回,然后拉动偏转线144,实现射频天线的增大的偏转。结果,可以用这样的方式使天线变形,以便能够进入用其它方式不能进入的心房或其它身体器官的区域。
从上面的说明中可以了解到,本发明虽然没有消除现有技术的烧蚀导管电极所需要的反复微小精确定位,但也减轻了这一需要。本发明可以方便地沿限定了组织烧蚀路径的天线导向件的轨迹放置RF天线。同时,本发明也保证了连续的烧蚀路径,并实际上减小了现有技术的烧蚀点之间电脉冲泄漏的危险。因此,本发明实际上达到了获得直线伤痕的Maze方法的目的,而又无需开心手术。
尽管本发明是根据本发明的实施例和应用实例说明的,但可以进行各种修改和改进,而不脱离本发明的精神和范围。

Claims (10)

1.一种用于烧蚀患者身体器官内的生物组织的基于射频的导管系统,所述导管系统包括插入患者的身体器官内的导管(3),一可伸展的导向件(36),一用于向所述生物组织传送射频能的射频天线(54),以及一用于在射频能量源与所述射频天线之间传导射频能的中空电缆(10),其中,所述导管(3)用于容纳所述可伸展的导向件(36)、所述射频天线(54)以及所述中空电缆(10),
其中,所述射频能量源连接于所述中空电缆的近端部分,所述射频天线安装在所述中空电缆的远端部分上,并且所述射频天线具有用于使所述可伸展的导向件通过的轴向通道,所述的中空电缆包含:
(a)耦合至所述的射频天线(54)的第一细长导电管状元件(64);
(b)耦合至所述的射频天线(54)的,并且在电缆的整个长度上与第一细长导电管状元件基本同轴地设置的第二细长导电管状元件(66);
(c)设置于所述的第一和第二细长导电管状元件之间的细长管状介电元件(60);以及
(d)轴向内腔(16),在其内部可滑动地接收所述的可伸展导向件,
其中,所述的可伸展的导向件能够从该导管伸展出至目标烧蚀位置,以及,
所述的射频天线(54)和中空电缆能够通过滑动该中空电缆而越过该可伸展的导向件从该导管伸展出。
2.如权利要求1所述的导管系统,其中第一和第二细长导电管状元件(64、66)中的至少一个是由导电线网形成的。
3.如权利要求1所述的导管系统,其中第一和第二细长导电管状元件(64、66)中的至少一个是由导电编织材料形成的。
4.如权利要求1所述的导管系统,其中第一和第二细长导电管状元件(64、66)中的至少一个是由导电薄膜材料形成的。
5.如权利要求1所述的导管系统,其中可伸展的导向件(36)是挠性的,并且在身体器官内伸展后适合于该身体器官的形状。
6.如权利要求1所述的导管系统,其中射频天线(54)包括一环绕管状套管的单极。
7.如权利要求1所述的导管系统,其中射频天线(54)包括一螺旋线圈,该螺旋线圈限定了用于容许所述可伸展的导向件可滑动地从中通过的通道。
8.如权利要求6所述的导管系统,其中射频天线(54)具有泪滴形。
9.如权利要求1所述的导管系统,其中射频天线(54)是具备一对设置在介电背衬(69)上的天线末端的且间隔开的导电微带的微带挠性电路。
10.如权利要求1所述的导管系统,进一步包括阻抗匹配微带(80),所述阻抗匹配微带具有与所述第一细长导电管状元件(64)和所述第二细长导电管状元件(66)分别相连接的并且与射频能量源相连接的连接板。
CNB2006101388062A 1998-12-14 1999-12-08 用于烧蚀身体组织的基于射频的导管系统和中空同轴电缆 Expired - Lifetime CN100558308C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/211,188 US6190382B1 (en) 1998-12-14 1998-12-14 Radio-frequency based catheter system for ablation of body tissues
US09/211,188 1998-12-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB998028908A Division CN1283212C (zh) 1998-12-14 1999-12-08 用于切除身体组织的基于射频的导管系统和中空同轴电缆

Publications (2)

Publication Number Publication Date
CN1943523A CN1943523A (zh) 2007-04-11
CN100558308C true CN100558308C (zh) 2009-11-11

Family

ID=22785906

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB998028908A Expired - Lifetime CN1283212C (zh) 1998-12-14 1999-12-08 用于切除身体组织的基于射频的导管系统和中空同轴电缆
CNB2006101388062A Expired - Lifetime CN100558308C (zh) 1998-12-14 1999-12-08 用于烧蚀身体组织的基于射频的导管系统和中空同轴电缆

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB998028908A Expired - Lifetime CN1283212C (zh) 1998-12-14 1999-12-08 用于切除身体组织的基于射频的导管系统和中空同轴电缆

Country Status (11)

Country Link
US (2) US6190382B1 (zh)
EP (2) EP1568331B1 (zh)
JP (2) JP2002532132A (zh)
KR (1) KR100550164B1 (zh)
CN (2) CN1283212C (zh)
AT (1) ATE297167T1 (zh)
AU (1) AU3115200A (zh)
CA (1) CA2321413C (zh)
DE (2) DE69925715T2 (zh)
HK (1) HK1037313A1 (zh)
WO (1) WO2000035363A1 (zh)

Families Citing this family (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022105B1 (en) * 1996-05-06 2006-04-04 Novasys Medical Inc. Treatment of tissue in sphincters, sinuses and orifices
US8353908B2 (en) * 1996-09-20 2013-01-15 Novasys Medical, Inc. Treatment of tissue in sphincters, sinuses, and orifices
US6702789B1 (en) 1997-03-11 2004-03-09 Alcove Medical, Inc. Catheter having insertion control mechanism and anti-bunching mechanism
US9023031B2 (en) * 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
US6645200B1 (en) * 1997-10-10 2003-11-11 Scimed Life Systems, Inc. Method and apparatus for positioning a diagnostic or therapeutic element within the body and tip electrode for use with same
US20100114087A1 (en) * 1998-02-19 2010-05-06 Edwards Stuart D Methods and devices for treating urinary incontinence
US6245062B1 (en) * 1998-10-23 2001-06-12 Afx, Inc. Directional reflector shield assembly for a microwave ablation instrument
US7070595B2 (en) * 1998-12-14 2006-07-04 Medwaves, Inc. Radio-frequency based catheter system and method for ablating biological tissues
US7594913B2 (en) * 1998-12-14 2009-09-29 Medwaves, Inc. Radio-frequency based catheter system and method for ablating biological tissues
US20070066972A1 (en) * 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US7449019B2 (en) * 1999-01-25 2008-11-11 Smith & Nephew, Inc. Intervertebral decompression
US7226446B1 (en) * 1999-05-04 2007-06-05 Dinesh Mody Surgical microwave ablation assembly
US6277113B1 (en) * 1999-05-28 2001-08-21 Afx, Inc. Monopole tip for ablation catheter and methods for using same
US6529756B1 (en) 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US6613046B1 (en) 1999-11-22 2003-09-02 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US7033352B1 (en) * 2000-01-18 2006-04-25 Afx, Inc. Flexible ablation instrument
US6673068B1 (en) * 2000-04-12 2004-01-06 Afx, Inc. Electrode arrangement for use in a medical instrument
JP4099388B2 (ja) 2000-07-13 2008-06-11 プロリズム,インコーポレイテッド 被治療生物の体内にエネルギーを付与する装置
AU2001273468B2 (en) * 2000-07-13 2005-05-26 Recor Medical, Inc. Energy application with inflatable annular lens
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
KR20010000523A (ko) * 2000-10-04 2001-01-05 김용성 고주파를 이용한 주름 제거 방법
US6916306B1 (en) * 2000-11-10 2005-07-12 Boston Scientific Scimed, Inc. Steerable loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
IL140136A (en) * 2000-12-06 2010-06-16 Intumed Ltd Apparatus for self-guided intubation
US20030163128A1 (en) * 2000-12-29 2003-08-28 Afx, Inc. Tissue ablation system with a sliding ablating device and method
US20020087151A1 (en) * 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
US7439319B2 (en) * 2001-09-14 2008-10-21 Burnham Institute For Medical Research Selective substrates for matrix metalloproteinases
JP2005511135A (ja) * 2001-11-29 2005-04-28 メッドウェイブズ、インコーポレイテッド 偏向機構および操縦機構を改良した高周波ベースのカテーテルシステム
US20040215310A1 (en) * 2002-01-17 2004-10-28 Omar Amirana Stent and delivery method for applying RF energy to a pulmonary vein and the atrial wall around its ostium to eliminate atrial fibrillation while preventing stenosis of the pulmonary vein thereafter
US6814733B2 (en) 2002-01-31 2004-11-09 Biosense, Inc. Radio frequency pulmonary vein isolation
US20050075629A1 (en) * 2002-02-19 2005-04-07 Afx, Inc. Apparatus and method for assessing tissue ablation transmurality
DE10212841B4 (de) * 2002-03-22 2011-02-24 Karl Storz Gmbh & Co. Kg Medizinisches Instrument zur Behandlung von Gewebe mittels Hochfrequenzstrom sowie medizinisches System mit einem derartigen medizinischen Instrument
US9439714B2 (en) * 2003-04-29 2016-09-13 Atricure, Inc. Vacuum coagulation probes
US6893442B2 (en) 2002-06-14 2005-05-17 Ablatrics, Inc. Vacuum coagulation probe for atrial fibrillation treatment
US7572257B2 (en) 2002-06-14 2009-08-11 Ncontact Surgical, Inc. Vacuum coagulation and dissection probes
US8235990B2 (en) 2002-06-14 2012-08-07 Ncontact Surgical, Inc. Vacuum coagulation probes
US7063698B2 (en) * 2002-06-14 2006-06-20 Ncontact Surgical, Inc. Vacuum coagulation probes
US20040106937A1 (en) * 2002-06-21 2004-06-03 Afx, Inc. Clamp accessory and method for an ablation instrument
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US6997924B2 (en) 2002-09-17 2006-02-14 Biosense Inc. Laser pulmonary vein isolation
US20040054350A1 (en) * 2002-09-17 2004-03-18 Shaughnessy Michael C. Enteral feeding unit having a reflux device and reflux method
US7156816B2 (en) * 2002-11-26 2007-01-02 Biosense, Inc. Ultrasound pulmonary vein isolation
US7226410B2 (en) * 2002-12-05 2007-06-05 Ethicon-Endo Surgery, Inc. Locally-propelled, intraluminal device with cable loop track and method of use
US7351202B2 (en) * 2002-12-05 2008-04-01 Ethicon Endo-Surgery, Inc. Medical device with track and method of use
US20040116899A1 (en) * 2002-12-16 2004-06-17 Shaughnessy Michael C. Bolus for non-occluding high flow enteral feeding tube
US20040162507A1 (en) * 2003-02-19 2004-08-19 Assaf Govari Externally-applied high intensity focused ultrasound (HIFU) for therapeutic treatment
US7201749B2 (en) * 2003-02-19 2007-04-10 Biosense, Inc. Externally-applied high intensity focused ultrasound (HIFU) for pulmonary vein isolation
WO2004073505A2 (en) * 2003-02-20 2004-09-02 Prorhythm, Inc. Cardiac ablation devices
CA2521242C (en) * 2003-04-03 2011-12-06 Ethicon Endo-Surgery, Inc. Guide wire structure for insertion into an internal space
GB0307715D0 (en) * 2003-04-03 2003-05-07 Ethicon Endo Surgery Inc Guide wire structure for insertion into an internal space
US7455643B1 (en) * 2003-07-07 2008-11-25 Nellcor Puritan Bennett Ireland Continuous non-invasive blood pressure measurement apparatus and methods providing automatic recalibration
US6973339B2 (en) * 2003-07-29 2005-12-06 Biosense, Inc Lasso for pulmonary vein mapping and ablation
US7367970B2 (en) * 2003-11-11 2008-05-06 Biosense Webster Inc. Externally applied RF for pulmonary vein isolation
US7182762B2 (en) * 2003-12-30 2007-02-27 Smith & Nephew, Inc. Electrosurgical device
US7467015B2 (en) 2004-04-29 2008-12-16 Neuwave Medical, Inc. Segmented catheter for tissue ablation
US7244254B2 (en) * 2004-04-29 2007-07-17 Micrablate Air-core microwave ablation antennas
WO2005113051A2 (en) * 2004-05-14 2005-12-01 Ethicon Endo-Surgery, Inc. Medical instrument having a medical guidewire
US7785269B2 (en) * 2004-05-14 2010-08-31 Ethicon Endo-Surgery, Inc. Medical instrument having a guidewire and an add-to catheter
US8070693B2 (en) * 2004-09-30 2011-12-06 Cook Medical Technologies Llc Articulating steerable wire guide
EP1658818A1 (en) 2004-11-23 2006-05-24 Biosense Webster, Inc. Externally applied rf for pulmonary vein isolation
US20060178638A1 (en) * 2004-12-03 2006-08-10 Reynolds David L Device and method for pharmaceutical mixing and delivery
US7976518B2 (en) * 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US20060217687A1 (en) * 2005-03-24 2006-09-28 Ethicon Endo-Surgery, Inc. Catheter-gripping device which measures insertion force during a medical procedure
WO2006127847A2 (en) * 2005-05-24 2006-11-30 Micrablate, Llc Microwave surgical device
WO2006138382A2 (en) 2005-06-14 2006-12-28 Micrablate, Llc Microwave tissue resection tool
US7536218B2 (en) * 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
US20070060898A1 (en) * 2005-09-07 2007-03-15 Shaughnessy Michael C Enteral medical treatment assembly having a safeguard against erroneous connection with an intravascular treatment system
CA2625162C (en) 2005-10-11 2017-01-17 Carnegie Mellon University Sensor guided catheter navigation system
WO2007055521A1 (en) * 2005-11-09 2007-05-18 Korea University Industrial & Academic Collaboration Foundation Radio frequency ablation electrode for selected tissue removal
US7819802B2 (en) * 2005-11-22 2010-10-26 General Electric Company Catheter tip
US7918850B2 (en) * 2006-02-17 2011-04-05 Biosense Wabster, Inc. Lesion assessment by pacing
WO2007112102A1 (en) 2006-03-24 2007-10-04 Micrablate Center fed dipole for use with tissue ablation systems, devices, and methods
WO2007112081A1 (en) 2006-03-24 2007-10-04 Micrablate Transmission line with heat transfer ability
EP1998699A1 (en) * 2006-03-24 2008-12-10 Neuwave Medical, Inc. Energy delivery system
US8211114B2 (en) 2006-04-24 2012-07-03 Ethicon Endo-Surgery, Inc. Medical instrument having a medical snare
US9138250B2 (en) 2006-04-24 2015-09-22 Ethicon Endo-Surgery, Inc. Medical instrument handle and medical instrument having a handle
US7927327B2 (en) 2006-04-25 2011-04-19 Ethicon Endo-Surgery, Inc. Medical instrument having an articulatable end effector
US7837620B2 (en) 2006-04-25 2010-11-23 Ethicon Endo-Surgery, Inc. Medical tubular assembly
US7959642B2 (en) 2006-05-16 2011-06-14 Ethicon Endo-Surgery, Inc. Medical instrument having a needle knife
US7892166B2 (en) 2006-05-18 2011-02-22 Ethicon Endo-Surgery, Inc. Medical instrument including a catheter having a catheter stiffener and method for using
EP2021846B1 (en) * 2006-05-19 2017-05-03 Koninklijke Philips N.V. Ablation device with optimized input power profile
US20070299403A1 (en) * 2006-06-23 2007-12-27 Crowe John E Directional introducer
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11389235B2 (en) 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
DE102006034389B4 (de) * 2006-07-25 2018-06-07 Siemens Healthcare Gmbh Katheter zum Einsatz bei Magnet-Resonanz-unterstützten interventionellen Verfahren
US20080045863A1 (en) * 2006-08-17 2008-02-21 Ethicon Endo-Surgery, Inc. Guidewire structure including a medical guidewire
US8002714B2 (en) * 2006-08-17 2011-08-23 Ethicon Endo-Surgery, Inc. Guidewire structure including a medical guidewire and method for using a medical instrument
WO2008021321A2 (en) 2006-08-17 2008-02-21 Rjf Holdings Iv, Inc Method and apparatus for plasma incision of cardiovascular tissue
US8715205B2 (en) * 2006-08-25 2014-05-06 Cook Medical Tecnologies Llc Loop tip wire guide
US20080097331A1 (en) * 2006-09-05 2008-04-24 Ethicon Endo-Surgery, Inc. Guidewire structure including a medical guidewire and method for using
US8197494B2 (en) 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US20080064920A1 (en) * 2006-09-08 2008-03-13 Ethicon Endo-Surgery, Inc. Medical drive system for providing motion to at least a portion of a medical apparatus
US20080094228A1 (en) * 2006-10-12 2008-04-24 Welch James P Patient monitor using radio frequency identification tags
EP2136714A4 (en) * 2007-02-06 2013-04-03 Microcube Llc OUTPUT SYSTEM FOR ISSUE OF A MEDICAL DEVICE INTO A PLACE IN THE BODY OF A PATIENT
US10932848B2 (en) 2007-02-06 2021-03-02 Microcube, Llc Delivery system for delivering a medical device to a location within a patient's body
EP2008598A1 (en) * 2007-06-29 2008-12-31 Edward A. Loeser Composite fiber electrosurgical instrument
US8317771B2 (en) * 2007-07-11 2012-11-27 Apollo Endosurgery, Inc. Methods and systems for performing submucosal medical procedures
US20100217151A1 (en) * 2007-07-11 2010-08-26 Zach Gostout Methods and Systems for Performing Submucosal Medical Procedures
US8066689B2 (en) 2007-07-11 2011-11-29 Apollo Endosurgery, Inc. Methods and systems for submucosal implantation of a device for diagnosis and treatment with a therapeutic agent
US8929988B2 (en) 2007-07-11 2015-01-06 Apollo Endosurgery, Inc. Methods and systems for submucosal implantation of a device for diagnosis and treatment of a body
US8128592B2 (en) 2007-07-11 2012-03-06 Apollo Endosurgery, Inc. Methods and systems for performing submucosal medical procedures
US20090082762A1 (en) * 2007-09-20 2009-03-26 Ormsby Theodore C Radio frequency energy transmission device for the ablation of biological tissues
KR100954285B1 (ko) * 2007-12-04 2010-04-23 연세대학교 산학협력단 플렉시블튜브가 구비된 고주파전극수술장치
KR100949996B1 (ko) 2008-02-28 2010-03-26 (주)트리플씨메디칼 고주파 의료용 소작기 및 고주파 치료방법
US20090287045A1 (en) 2008-05-15 2009-11-19 Vladimir Mitelberg Access Systems and Methods of Intra-Abdominal Surgery
US8133222B2 (en) 2008-05-28 2012-03-13 Medwaves, Inc. Tissue ablation apparatus and method using ultrasonic imaging
US8398556B2 (en) * 2008-06-30 2013-03-19 Covidien Lp Systems and methods for non-invasive continuous blood pressure determination
US20090326386A1 (en) * 2008-06-30 2009-12-31 Nellcor Puritan Bennett Ireland Systems and Methods for Non-Invasive Blood Pressure Monitoring
US8660799B2 (en) 2008-06-30 2014-02-25 Nellcor Puritan Bennett Ireland Processing and detecting baseline changes in signals
US8679106B2 (en) * 2008-07-01 2014-03-25 Medwaves, Inc. Angioplasty and tissue ablation apparatus and method
US8506498B2 (en) 2008-07-15 2013-08-13 Nellcor Puritan Bennett Ireland Systems and methods using induced perturbation to determine physiological parameters
US20100016784A1 (en) * 2008-07-17 2010-01-21 Microcube Llc Positionable medical system for positioning medical components on or within a body
US9314168B2 (en) * 2008-09-30 2016-04-19 Nellcor Puritan Bennett Ireland Detecting sleep events using localized blood pressure changes
US9301697B2 (en) * 2008-09-30 2016-04-05 Nellcor Puritan Bennett Ireland Systems and methods for recalibrating a non-invasive blood pressure monitor
US9687161B2 (en) * 2008-09-30 2017-06-27 Nellcor Puritan Bennett Ireland Systems and methods for maintaining blood pressure monitor calibration
US8532751B2 (en) * 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing
US9980774B2 (en) * 2008-10-21 2018-05-29 Microcube, Llc Methods and devices for delivering microwave energy
US11291503B2 (en) * 2008-10-21 2022-04-05 Microcube, Llc Microwave treatment devices and methods
EP2349452B1 (en) 2008-10-21 2016-05-11 Microcube, LLC Microwave treatment devices
JP6083928B2 (ja) * 2008-10-21 2017-02-22 マイクロキューブ, エルエルシー 身体組織にエネルギーに印加する方法および装置
US11219484B2 (en) 2008-10-21 2022-01-11 Microcube, Llc Methods and devices for delivering microwave energy
EP2355738B1 (en) 2008-11-10 2015-08-19 Microcube, LLC Devices for applying energy to bodily tissues
US11376061B2 (en) * 2008-11-11 2022-07-05 Covidien Lp Energy delivery device and methods of use
US8974445B2 (en) * 2009-01-09 2015-03-10 Recor Medical, Inc. Methods and apparatus for treatment of cardiac valve insufficiency
US8216136B2 (en) 2009-03-05 2012-07-10 Nellcor Puritan Bennett Llc Systems and methods for monitoring heart rate and blood pressure correlation
US9326819B2 (en) * 2009-04-15 2016-05-03 Medwaves, Inc. Electrically tunable tissue ablation system and method
US8934989B2 (en) * 2009-04-15 2015-01-13 Medwaves, Inc. Radio frequency based ablation system and method with dielectric transformer
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US20100324431A1 (en) * 2009-06-18 2010-12-23 Nellcor Puritan Bennett Ireland Determining Disease State Using An Induced Load
US9198582B2 (en) * 2009-06-30 2015-12-01 Nellcor Puritan Bennett Ireland Determining a characteristic physiological parameter
US8290730B2 (en) * 2009-06-30 2012-10-16 Nellcor Puritan Bennett Ireland Systems and methods for assessing measurements in physiological monitoring devices
US20110021929A1 (en) * 2009-07-27 2011-01-27 Nellcor Puritan Bennett Ireland Systems and methods for continuous non-invasive blood pressure monitoring
EP2859862B1 (en) 2009-07-28 2017-06-14 Neuwave Medical, Inc. Ablation system
US8628477B2 (en) * 2009-07-31 2014-01-14 Nellcor Puritan Bennett Ireland Systems and methods for non-invasive determination of blood pressure
US9220440B2 (en) * 2009-09-21 2015-12-29 Nellcor Puritan Bennett Ireland Determining a characteristic respiration rate
US9066660B2 (en) 2009-09-29 2015-06-30 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US8463347B2 (en) * 2009-09-30 2013-06-11 Nellcor Puritan Bennett Ireland Systems and methods for normalizing a plethysmograph signal for improved feature analysis
US8409098B2 (en) * 2009-10-14 2013-04-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking
BR112012011021B1 (pt) * 2009-11-10 2022-03-29 Cardea Medsystems (Tianjin) Co., Ltd Aparelho de ablação de cavidade corporal
US10660697B2 (en) 2009-11-10 2020-05-26 Cardea Medsystems (Tianjin) Co., Ltd. Hollow body cavity ablation apparatus
CN102711648B (zh) 2009-11-30 2015-07-29 麦迪威公司 具有跟踪传感器的射频消融系统
US9451887B2 (en) 2010-03-31 2016-09-27 Nellcor Puritan Bennett Ireland Systems and methods for measuring electromechanical delay of the heart
US8898037B2 (en) 2010-04-28 2014-11-25 Nellcor Puritan Bennett Ireland Systems and methods for signal monitoring using Lissajous figures
JP6153865B2 (ja) 2010-05-03 2017-06-28 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. エネルギー送達システム
US9173705B2 (en) * 2010-05-13 2015-11-03 Ncontact Surgical, Inc. Subxyphoid epicardial ablation
US8672933B2 (en) 2010-06-30 2014-03-18 Covidien Lp Microwave antenna having a reactively-loaded loop configuration
EP2640280B1 (en) 2010-11-16 2022-03-16 TVA Medical, Inc. Devices for forming a fistula
US8825428B2 (en) 2010-11-30 2014-09-02 Neilcor Puritan Bennett Ireland Methods and systems for recalibrating a blood pressure monitor with memory
US9357934B2 (en) 2010-12-01 2016-06-07 Nellcor Puritan Bennett Ireland Systems and methods for physiological event marking
US9259160B2 (en) 2010-12-01 2016-02-16 Nellcor Puritan Bennett Ireland Systems and methods for determining when to measure a physiological parameter
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
AU2015202149B2 (en) * 2011-04-08 2016-11-17 Covidien Lp Flexible microwave catheters for natural or artificial lumens
CA2845795A1 (en) * 2011-04-08 2013-07-18 Covidien Lp Flexible microwave catheters for natural or artificial lumens
EP2704657A4 (en) 2011-04-08 2014-12-31 Domain Surgical Inc IMPEDANCE MATCHING CIRCUIT
US8663190B2 (en) 2011-04-22 2014-03-04 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US9259582B2 (en) 2011-04-29 2016-02-16 Cyberonics, Inc. Slot antenna for an implantable device
US9240630B2 (en) 2011-04-29 2016-01-19 Cyberonics, Inc. Antenna shield for an implantable medical device
US9265958B2 (en) 2011-04-29 2016-02-23 Cyberonics, Inc. Implantable medical device antenna
US9089712B2 (en) 2011-04-29 2015-07-28 Cyberonics, Inc. Implantable medical device without antenna feedthrough
WO2012158722A2 (en) 2011-05-16 2012-11-22 Mcnally, David, J. Surgical instrument guide
EP2742893B1 (en) * 2011-08-10 2016-10-19 National University Corporation Shiga University OF Medical Science Microwave surgical instrument
US20130053792A1 (en) * 2011-08-24 2013-02-28 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
CN102397099A (zh) * 2011-08-30 2012-04-04 北京工业大学 动脉瘤介入式热疗装置
CN102319114A (zh) * 2011-09-02 2012-01-18 王宝根 多功能内镜下复位微创剥离刀
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US9060695B2 (en) 2011-11-30 2015-06-23 Covidien Lp Systems and methods for determining differential pulse transit time from the phase difference of two analog plethysmographs
KR102151368B1 (ko) 2011-12-06 2020-09-04 도메인 서지컬, 인크. 수술 기기로의 전원공급 제어 시스템 및 그 방법
JP2015503963A (ja) 2011-12-21 2015-02-05 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. エネルギー供給システムおよびその使用方法
US8403927B1 (en) * 2012-04-05 2013-03-26 William Bruce Shingleton Vasectomy devices and methods
CN104203136A (zh) * 2012-04-16 2014-12-10 波士顿科学西美德公司 用于流体肾脏神经调制的螺旋管装置
US9375249B2 (en) * 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
GB201217781D0 (en) * 2012-10-04 2012-11-14 Gyrus Medical Ltd Electrosurgical apparatus and system
US9486276B2 (en) 2012-10-11 2016-11-08 Tva Medical, Inc. Devices and methods for fistula formation
US10945787B2 (en) 2012-10-29 2021-03-16 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US9526827B2 (en) 2012-10-29 2016-12-27 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US9204921B2 (en) 2012-12-13 2015-12-08 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
US9364277B2 (en) 2012-12-13 2016-06-14 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
EP3566740A1 (en) 2013-03-14 2019-11-13 TVA Medical, Inc. Fistula formulation/formation devices
GB201312416D0 (en) 2013-07-11 2013-08-28 Creo Medical Ltd Electrosurgical Device
CN109846543B (zh) 2013-09-24 2021-09-21 艾达吉欧医疗公司 基于血管内近临界流体的冷冻消融导管及相关方法
US9949652B2 (en) 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US9931046B2 (en) 2013-10-25 2018-04-03 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
US10517666B2 (en) 2013-10-25 2019-12-31 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
EP2881057A1 (en) 2013-12-05 2015-06-10 Region Nordjylland Apparatus for creating linear lesions in body tissue within a body vessel
US10695534B2 (en) 2014-03-14 2020-06-30 Tva Medical, Inc. Fistula formation devices and methods therefor
WO2015160574A1 (en) 2014-04-17 2015-10-22 Adagio Medical, Inc. Endovascular near critical fluid based cryoablation catheter having plurality of preformed treatment shapes
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
FR3023157B1 (fr) * 2014-07-06 2019-01-25 Ab Medica Dispositif pour realiser la resection d'un organe dans une cavite d'un corps vivant
WO2016033374A1 (en) 2014-08-27 2016-03-03 Tva Medical, Inc. Cryolipopysis devices and methods therefor
GB201418474D0 (en) * 2014-10-17 2014-12-03 Creo Medical Ltd Electrosurgical apparatus
WO2016077045A1 (en) 2014-11-13 2016-05-19 Adagio Medical, Inc. Pressure modulated cryoablation system and related methods
US10603040B1 (en) 2015-02-09 2020-03-31 Tva Medical, Inc. Methods for treating hypertension and reducing blood pressure with formation of fistula
EP3753476A1 (en) * 2015-07-08 2020-12-23 The Johns Hopkins University Tissue ablation and assessment system and method of use thereof
WO2017048965A1 (en) 2015-09-18 2017-03-23 Adagio Medical Inc. Tissue contact verification system
CA3003192A1 (en) 2015-10-26 2017-05-04 Neuwave Medical, Inc. A device for delivering microwave energy and uses thereof
GB2545179B (en) * 2015-12-07 2020-09-09 Creo Medical Ltd Electrosurgical instrument
DE102015016060A1 (de) * 2015-12-11 2017-06-14 Olympus Winter & Ibe Gmbh Chirurgische vaporisationselektrode
US10874422B2 (en) 2016-01-15 2020-12-29 Tva Medical, Inc. Systems and methods for increasing blood flow
AU2017207507B2 (en) 2016-01-15 2021-11-11 Tva Medical, Inc. Devices and methods for advancing a wire
JP6894440B2 (ja) 2016-01-15 2021-06-30 ティーブイエー メディカル, インコーポレイテッド 瘻孔を形成するためのデバイスおよび方法
MX2018012563A (es) 2016-04-15 2019-07-08 Neuwave Medical Inc Sistemas de suministro de energía.
CN105963013B (zh) * 2016-06-13 2019-01-04 北京米道斯医疗器械有限公司 一种低温内窥镜血管采集装置及方法
CA3037525A1 (en) 2016-09-25 2018-03-29 Tva Medical, Inc. Vascular stent devices and methods
GB2559604A (en) * 2017-02-13 2018-08-15 Creo Medical Ltd Microwave energy transfer component for electrosurgical apparatus
GB2562110A (en) * 2017-05-05 2018-11-07 Creo Medical Ltd Apparatus for sterilising an instrument channel of a surgical scoping device
CN111225626B (zh) 2017-09-05 2023-11-14 艾达吉欧医疗公司 具有形状记忆探针的消融导管
JP7254081B2 (ja) * 2017-12-11 2023-04-07 コヴィディエン リミテッド パートナーシップ 電気的に強化された血管内腔からの物質の回収
US11058444B2 (en) 2017-12-11 2021-07-13 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
JP7293238B2 (ja) 2018-01-10 2023-06-19 アダージョ メディカル インコーポレイテッド 熱伝導性ライナーを有するアブレーション装置及びアブレーションシステム
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
DE102018203102B3 (de) * 2018-03-01 2019-05-16 Epflex Feinwerktechnik Gmbh Führungsdraht für medizinische MR-Anwendungen
US11090071B2 (en) 2018-06-22 2021-08-17 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
CN112638300A (zh) * 2018-07-19 2021-04-09 悉尼大学 消融病变装置
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery
JP2023511419A (ja) * 2020-01-24 2023-03-17 アフェラ, インコーポレイテッド 心臓アブレーションのためのシステムおよび関連付けられる方法
WO2021205342A1 (en) * 2020-04-09 2021-10-14 Baylis Medical Company Inc. Catheter and perforation system including catheter
KR102346311B1 (ko) * 2020-10-12 2022-01-03 주식회사 밀알 복강경
WO2023211915A1 (en) * 2022-04-26 2023-11-02 CRC EP, Inc. Mapping and ablation system suitable for linear pulsed-field cardiac ablation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309455A (en) * 1964-09-21 1967-03-14 Dow Chemical Co Coaxial cable with insulating conductor supporting layers bonded to the conductors
US4408089A (en) * 1979-11-16 1983-10-04 Nixon Charles E Extremely low-attenuation, extremely low radiation loss flexible coaxial cable for microwave energy in the gigaHertz frequency range
US4583556A (en) 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
EP0548122A1 (en) * 1990-09-14 1993-06-30 American Medical Systems, Inc. Combined hyperthermia and dilation catheter
US5413588A (en) 1992-03-06 1995-05-09 Urologix, Inc. Device and method for asymmetrical thermal therapy with helical dipole microwave antenna
US5298682A (en) * 1992-08-20 1994-03-29 Wireworld By David Salz, Inc. Optimized symmetrical coaxial cable
US5636634A (en) * 1993-03-16 1997-06-10 Ep Technologies, Inc. Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes
US5476495A (en) * 1993-03-16 1995-12-19 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5656796A (en) * 1993-04-26 1997-08-12 Fmc Corp. High energy flexible coaxial cable and connections
US5545193A (en) * 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5730127A (en) * 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
DE4425195C1 (de) * 1994-07-16 1995-11-16 Osypka Peter Katheter mit Mehrfachelektrode
CA2201881C (en) * 1994-10-07 2005-12-06 Sidney D. Fleischman Flexible structures for supporting electrode elements
US5885278A (en) * 1994-10-07 1999-03-23 E.P. Technologies, Inc. Structures for deploying movable electrode elements
US5741294A (en) 1994-11-14 1998-04-21 Stromberg; Brent B. Method of fixsanguination of a limb
IT1278369B1 (it) * 1995-02-14 1997-11-20 Sorin Biomedica Cardio Spa Catetere, particolarmente per il trattamento di aritmie cardiache.
US5683382A (en) 1995-05-15 1997-11-04 Arrow International Investment Corp. Microwave antenna catheter
US5702433A (en) 1995-06-27 1997-12-30 Arrow International Investment Corp. Kink-resistant steerable catheter assembly for microwave ablation
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
US5800482A (en) 1996-03-06 1998-09-01 Cardiac Pathways Corporation Apparatus and method for linear lesion ablation
US6032077A (en) * 1996-03-06 2000-02-29 Cardiac Pathways Corporation Ablation catheter with electrical coupling via foam drenched with a conductive fluid
US5863291A (en) * 1996-04-08 1999-01-26 Cardima, Inc. Linear ablation assembly
US5776176A (en) * 1996-06-17 1998-07-07 Urologix Inc. Microwave antenna for arterial for arterial microwave applicator
US5752951A (en) * 1996-07-02 1998-05-19 Yanik; Gary W. Shielded monopolar electrosurgical apparatus
US5800494A (en) 1996-08-20 1998-09-01 Fidus Medical Technology Corporation Microwave ablation catheters having antennas with distal fire capabilities
US5741249A (en) 1996-10-16 1998-04-21 Fidus Medical Technology Corporation Anchoring tip assembly for microwave ablation catheter
US5785706A (en) * 1996-11-18 1998-07-28 Daig Corporation Nonsurgical mapping and treatment of cardiac arrhythmia using a catheter contained within a guiding introducer containing openings
US5971983A (en) * 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US6014579A (en) * 1997-07-21 2000-01-11 Cardiac Pathways Corp. Endocardial mapping catheter with movable electrode

Also Published As

Publication number Publication date
DE69941308D1 (de) 2009-10-01
EP1054639B8 (en) 2005-08-03
EP1054639B1 (en) 2005-06-08
KR20010040944A (ko) 2001-05-15
WO2000035363A1 (en) 2000-06-22
CA2321413A1 (en) 2000-06-22
DE69925715T2 (de) 2006-03-23
KR100550164B1 (ko) 2006-02-08
EP1054639A4 (en) 2001-11-21
ATE297167T1 (de) 2005-06-15
CA2321413C (en) 2010-08-03
CN1943523A (zh) 2007-04-11
CN1290148A (zh) 2001-04-04
CN1283212C (zh) 2006-11-08
US6663625B1 (en) 2003-12-16
JP2008206994A (ja) 2008-09-11
EP1568331A1 (en) 2005-08-31
AU3115200A (en) 2000-07-03
JP4340320B2 (ja) 2009-10-07
EP1568331B1 (en) 2009-08-19
DE69925715D1 (de) 2005-07-14
EP1054639A1 (en) 2000-11-29
JP2002532132A (ja) 2002-10-02
HK1037313A1 (en) 2002-02-08
US6190382B1 (en) 2001-02-20

Similar Documents

Publication Publication Date Title
CN100558308C (zh) 用于烧蚀身体组织的基于射频的导管系统和中空同轴电缆
US7004938B2 (en) Radio-frequency-based catheter system with improved deflection and steering mechanisms
CN100563594C (zh) 螺旋形电生理导管
EP1669036B1 (en) Surgical microwave ablation assembly
US5895417A (en) Deflectable loop design for a linear lesion ablation apparatus
US8262703B2 (en) Medical device including member that deploys in a spiral-like configuration and method
JP2019213970A (ja) 専用流体経路及び針中心合わせインサートを有するアブレーションカテーテル
US20090157068A1 (en) Intraoperative electrical conduction mapping system
US20070198006A1 (en) Microwave antenna having a curved configuration
US20050090817A1 (en) Bendable endoscopic bipolar device
TW495354B (en) Radio-frequency based co-axial cable and catheter system for ablation of body tissues

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20091111

CX01 Expiry of patent term