CN101246907A - 用于具有棋盘式布局的晶体管的栅极金属布线 - Google Patents

用于具有棋盘式布局的晶体管的栅极金属布线 Download PDF

Info

Publication number
CN101246907A
CN101246907A CNA2008100807532A CN200810080753A CN101246907A CN 101246907 A CN101246907 A CN 101246907A CN A2008100807532 A CNA2008100807532 A CN A2008100807532A CN 200810080753 A CN200810080753 A CN 200810080753A CN 101246907 A CN101246907 A CN 101246907A
Authority
CN
China
Prior art keywords
transistor
post
coupled
stub
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100807532A
Other languages
English (en)
Other versions
CN101246907B (zh
Inventor
V·帕塔萨拉蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Integrations Inc
Original Assignee
Power Integrations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Integrations Inc filed Critical Power Integrations Inc
Publication of CN101246907A publication Critical patent/CN101246907A/zh
Application granted granted Critical
Publication of CN101246907B publication Critical patent/CN101246907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out

Abstract

本发明涉及用于具有棋盘式布局的晶体管的栅极金属布线。在一个实施例中,将制造于半导体管芯上的晶体管布置成细长晶体管段的部分。所述部分基本跨越半导体管芯设置成行和列。行或列中的相邻部分被取向成使得所述相邻部分的第一个中的晶体管段的长度沿第一方向延伸,并且所述相邻部分的第二个中的晶体管段的长度沿第二方向延伸,所述第一方向基本正交于所述第二方向。要强调的是,提供该摘要是为了遵守需要摘要的规定以使得检索者或其他读者迅速确定本技术公开的主题。

Description

用于具有棋盘式布局的晶体管的栅极金属布线
技术领域
本发明涉及用于制造高电压晶体管的半导体器件结构和工艺。
背景技术
在半导体领域中高电压场效应晶体管(HVFET)已是公知的。很多HVFET采用的器件结构包括延伸的漏极区,当器件处于“截止”状态时,该延伸的漏极区支持或阻断所施加的高电压(例如几百伏)。在常规的垂直HVFET结构中,半导体材料的台或柱形成用于导通状态中的电流的延伸的漏极或漂移区。在衬底顶部附近、与台的侧壁区域相邻地形成沟槽栅极结构,在台处将本体区设置在延伸的漏极区上方。向栅极施加适当的电压电势沿着本体区的垂直侧壁部分形成导电沟道,使得电流可以垂直流过半导体材料,即,从设置源极区的衬底顶表面向下流到设置漏极区的衬底底部。
在常规布局中,垂直HVFET由长的连续硅柱结构构成,该硅柱结构跨越半导体管芯延伸,并且该柱结构在垂直于柱长度的方向上重复。不过,该布局引起的问题在于,在高温处理步骤期间硅晶片容易产生大的翘曲。在很多工艺中,翘曲是永久性的且足够大,防碍了在下一处理步骤中用工具加工晶片。
发明内容
根据本发明的一个实施例,提供一种晶体管,包括:衬底;被组织成多个部分的多个晶体管段,每个晶体管段具有长度和宽度,每个部分的晶体管段沿宽度被设置成并排关系,所述部分被设置成行和列,每行的部分被设置成使得晶体管段的部分到部分的长度沿第一和第二横向交替对准,第一横向基本垂直于第二横向,每个晶体管段包括:半导体材料柱,所述柱具有设置在衬底的顶表面处或附近的源极区;分别设置在所述柱的相对侧上的第一和第二介电区域,所述第一介电区域由所述柱横向包围,并且所述第二介电区域横向包围所述柱;分别设置在所述第一和第二介电区域中的第一和第二场板;分别设置在邻近本体区的柱的顶部处或附近的第一和第二介电区中的第一和第二栅极元件;以及第一金属层,其包括耦合到每个晶体管段的源极区的源极汇流排、和耦合到每个晶体管段的第一和第二栅极元件的栅极汇流排。
根据本发明的一个实施例,提供一种晶体管,包括:衬底;被组织成多个部分的多个晶体管段,每个晶体管段具有长度和宽度,每个部分的晶体管段沿宽度被设置成并排关系,所述部分被设置成行和列,每行的部分被设置成使得晶体管段的部分到部分的长度沿第一和第二横向交替对准,第一横向基本垂直于第二横向,每个晶体管段包括:半导体材料柱,所述柱具有设置在衬底的顶表面处或附近的源极区;分别设置在所述柱的相对侧上的第一和第二介电区域,所述第一介电区域由所述柱横向包围,并且所述第二介电区域横向包围所述柱;分别设置在所述第一和第二介电区域中的第一和第二场板;分别设置在邻近本体区的柱的顶部处或附近的第一和第二介电区中的第一和第二栅极元件;以及第一金属层,其包括耦合到每个晶体管段的源极区的源极汇流排、和耦合到每个晶体管段的第一和第二栅极元件的栅极汇流排,栅极汇流排包括与每行相关联的顶部和底部线,具有沿第一横向对准的段的长度的部分均具有耦合到顶部线的第一和第二栅极元件中的第一组,并且第一和第二栅极元件中的第二组耦合到底部线。
根据本发明的一个实施例,提供一种晶体管,包括:衬底;被组织成多个部分的多个晶体管段,每个晶体管段具有长度和宽度,每个部分的晶体管段沿宽度被设置成并排关系,所述部分被设置成行和列,每行的部分被设置成使得晶体管段的部分到部分的长度沿第一和第二横向交替对准,第一横向基本垂直于第二横向,每个晶体管段包括:跑道形半导体材料柱,所述柱具有设置在衬底的顶表面处或附近的源极区;分别设置在邻近本体区的柱的相对侧上的第一和第二栅极元件;第一金属层,其包括耦合到每个晶体管段的源极区的源极汇流排、和耦合到每个晶体管段的第一和第二栅极元件的栅极汇流排,栅极汇流排包括与每行相关联的顶部和底部线,源极汇流排在顶部与底部线之间跨越每一行连续延伸。
附图说明
从下面的详细说明和附图将可以更全面地理解本发明,不过,详细说明和附图不应用来将本发明限制到所示的具体实施例,而是仅用于解释和理解。
图1示出了垂直HVFET结构的实例截面侧视图。
图2A示出了图1中所示的垂直HVFET结构的实例布局。
图2B为图2A中所示的实例布局的一部分的放大视图。
图3A示出了图1中所示的垂直HVFET结构的另一实例布局。
图3B为图3A中所示的实例布局的一部分的放大视图。
图4A示出了图1中所示的垂直HVFET结构的又一实例布局。
图4B为图4A中所示的实例布局的一部分的放大视图。
图5示出了具有管芯至管芯棋盘式布置的HVFET的晶片的实例布局。
图6示出了具有管芯至管芯棋盘式布置的分段的HVFET的晶片的实例布局。
图7示出了具有HVFET段的棋盘式块的矩形管芯的实例布局。
图8示出了用于图7中所示的管芯的实例栅极金属布线布局。
图9示出了用于图7中所示的管芯的实例栅极和源极金属布线布局。
图10示出了图9中所示的实例布局的展开部分。
具体实施方式
在下述说明中,为了提供对本发明的透彻理解,给出了具体细节,例如材料类型、尺寸、结构特点、处理步骤等。不过,本领域的普通技术人员将理解,实施本发明可以不需要这些具体细节。还应理解,图中的元件是代表性的,为了清晰起见没有按照比例绘制。
图1示出了垂直HVFET 10的实例截面侧视图,该HVFET 10具有这样的结构,其包括形成于N+掺杂硅衬底11上的N型硅的延伸漏极区12。对衬底11进行重掺杂以使其对流经漏电极的电流的电阻最小化,在完成的器件中漏电极位于衬底的底部上。在一个实施例中,延伸漏极区12为从衬底11延伸到硅晶片的顶表面的外延层的一部分。接近外延层的顶表面形成P型本体区13以及被P型区域16横向分开的N+掺杂的源极区14a和14b。如可以看到的,P型本体区13设置于延伸漏极区12上方且垂直地将延伸漏极区12与N+源极区14a和14b以及P型区域16分开。
在一个实施例中,外延层包括延伸漏极区12的部分的掺杂浓度是线性渐变的,以产生表现出基本均匀的电场分布的延伸漏极区。线性渐变可以在外延层12的顶表面下方的某个点处停止。
在图1的实例垂直晶体管中,延伸漏极区12、本体区13、源极区14a和14b以及P型区域16共同包括硅材料的台或柱17(在本申请中两个术语作为同义词使用)。用介电材料(例如氧化物)层填充形成于柱17的相对侧上的垂直沟槽,所述介电材料形成介电区域15。可以由器件的击穿电压要求决定柱17的高度和宽度以及相邻垂直沟槽之间的间距。在各实施例中,台17的垂直高度(厚度)在大约30μm到120μm厚的范围内。例如,在尺寸大约为1mm×1mm的管芯上形成的HVFET可以具有垂直厚度为大约60μm的柱17。作为另一实例,在每一侧的大约2mm-4mm的管芯上形成的晶体管结构可以具有大约30μm厚的柱结构。在特定实施例中,柱17的横向宽度尽量窄到能可靠制造的程度(例如大约0.4μm到0.8μm宽),以便实现非常高的击穿电压(例如600-800V)。
在另一实施例中,不是跨越柱17的横向宽度在N+源极区14a和14b之间布置P型区域16(如图1所示),而是可以跨越柱17的横向长度在柱17的顶部交替形成N+源极区和P型区域。换句话说,诸如图1中所示的给定的截面图将具有跨越柱17的整个横向宽度延伸的N+源极区14或P型区域16,取决于该截面取自哪里。在这样的实施例中,每个N+源极区14在两侧(沿柱的横向长度)与P型区域16邻接。类似地,每个P型区域16在两侧(沿柱的横向长度)与N+源极区14邻接。
介电区域15a、15b可以包括二氧化硅、氮化硅或其他合适的介电材料。可以使用多种公知方法,包括热生长和化学汽相淀积来形成介电区域15。设置在每个介电层15中并与衬底11和柱17完全绝缘的是场板(field plate)19。用于形成场板19的导电材料可以包括重掺杂的多晶硅、金属(或金属合金)、硅化物或其他适当的材料。在完成的器件结构中,场板19a和19b通常起电容极板的作用,当HVFET处于截止状态时(即当漏极被升高至高电压电势时)所述电容极板可用于耗尽延伸漏极区的电荷。在一个实施例中,将每个场板19与柱17的侧壁分开的氧化物区域15的横向厚度大约为4μm。
垂直HVFET晶体管80的沟槽栅极结构包括栅极元件18a、18b,每个栅极元件分别设置在场板19a、19b和本体区13之间、柱17的相对侧上的氧化物区域15a和15b中。高质量的薄(例如~500)栅极氧化物层将栅极元件18与和本体区13相邻的柱17的侧壁分开。栅极元件18可以包括多晶硅、或某种其他适合的材料。在一个实施例中,每个栅极元件18具有大约1.5μm的横向宽度和大约3.5μm的深度。
本领域的实践人员将会理解,柱17的顶部附近的N+源极区14和P-型本体区13均可以使用普通的淀积、扩散和/或注入处理技术形成。在形成N+源极区38之后,通过利用常规制造方法形成电连接到器件的相应区域/材料(为了清晰图中未示出)的源、漏、栅、和场板电极可以完成HVFET 10。
图2A示出了图1中所示的垂直HVFET结构的实例布局。图2A的顶视图示出了单个分立的HVFET,其包括半导体管芯21上的上部晶体管部分30a和下部晶体管部分30b。由伪硅柱32将这两部分分开。每个部分30包括多个“跑道(racetrack)”形晶体管结构或段,每个晶体管段包括细长环或椭圆,其包括在相对侧由介电区域15a和15b包围的硅柱17。柱17本身在x和y方向上横向延伸以形成连续细长的跑道形环或椭圆。设置在介电区域15a和15b中的是相应的栅极元件18a和18b以及场板19a和19b。场板19a包括单个细长元件,其在圆形指尖(fingertip)区域中终结于任一端。另一方面,场板19b包括环绕柱17的细长环或椭圆。相邻跑道结构的场板19b被示为合并的(merged),从而它们共享在一侧的公共元件。作为参考,图1的截面图可以取自图2A的实例布局的切割线A-A′。
应当理解,在图2A的实例中,每个跑道形晶体管段在y方向上的宽度(即间距)大约为13μm,在x方向上的长度在大约400μm到1000μm的范围内,且柱高度约为60μm。换句话说,包括部分30a和30b的各个跑道形晶体管段的长宽比在大约30直到80的范围内。在一个实施例中,每个跑道形段的长度大于其间距或宽度至少20倍。
本领域的实践人员将理解,在完成的器件结构中,使用图案化金属层来互连各个晶体管段的每个硅柱17。也就是说,在实际实施例中,分别将所有的源极区、栅极元件和场板一起布线至管芯上对应的电极。在图示的实施例中,每个部分30中的晶体管段基本跨越管芯21的宽度沿y方向设置成并排关系。类似地,在x方向上,部分30a和30b的晶体管段的额外长度基本在管芯21的长度上延伸。在图2A的实例布局中,跨越半导体管芯21,分开硅柱的介电区域15的宽度以及场板的宽度是基本均匀的。以均匀的宽度和间隔距离布置晶体管段防止了在用于共形地淀积包括介电区域15和场板19的层的处理步骤之后形成空隙或孔。
图2B为图2A中所示的实例布局的一部分的放大视图。为了清晰起见,仅示出了每个晶体管段的柱17和介电区域15b。图示的伪硅柱32分开相应晶体管段部分30a和30b的介电区域15b的圆端区域。换句话说,在半导体衬底中被蚀刻来限定柱17的深垂直沟槽也限定伪硅柱32。在一个实施例中,使伪硅柱32在x方向上的宽度(即其分开晶体管段部分)小到能被可靠地制造。
将单个管芯HVFET分段成由伪硅柱32分开的部分的目的在于在细长跑道形晶体管段中引入长度方向上(x方向)的应力消除(stressrelief)。将晶体管器件结构分段或断开成两个或更多个部分减轻了跨越管芯长度的机械应力。该应力由位于柱侧面的氧化物区域引起,并且通常集中于每个跑道形段的圆形端处。由此通过将晶体管器件结构分段成两个或更多个部分来减轻机械应力防止了由应力导致的不希望有的硅柱翘曲和对硅的损伤(例如位错)。
要理解的是,在通过高度分段的布局提供的应力消除和导电区域的损失之间存在折衷。更多的分段导致更大的应力减轻,但是以导电区域为代价。通常,柱的垂直高度越大且半导体管芯越大,则需要的晶体管部分或段的数目越大。在一个实施例中,对于具有60μm高的柱的2mm×2mm的管芯,利用包括四个跑道形晶体管部分的布局在导通电阻约为1欧姆的HVFET中提供足够的应力减轻,所述四个跑道形晶体管部分由伪硅柱分开,每个伪硅柱具有大约13μm的间距(y方向)和大约450μm的长度(x方向)。
在另一个实施例中,不是用伪硅柱来分开成对的跑道形晶体管段,每一对位于不同部分中,而是可以用包括不同材料的伪柱。用于伪柱的材料应当具有接近硅的热膨胀系数或充分不同于介电区域的热膨胀系数的热膨胀系数以便减轻由位于硅柱侧面的介电区域引起的长度方向上的应力。
图3A示出了图1所示的垂直HVFET结构的另一实例布局。图3B为图3A中所示的实例布局的一部分的放大图,仅示出了柱17、氧化物区域15b和可选的伪硅柱33。类似于图2A和2B的实施例,图3A和3B示出了半导体管芯21上的单个分立的HVFET,其包括上部晶体管部分30a和下部晶体管部分30b。但是在图3A和3B的实例中,由氧化物区域15b填充的深垂直沟槽以及晶体管部分30a和30b的场板19b重叠,或者被合并,在分段的晶体管部分之间留下小的菱形伪硅柱33。在该实施例中,单个伪柱中心位于两个部分上相邻成对的晶体管段的四个圆形端之间。在所示的实例中,对于包括管芯21的晶体管部分30中的每N个(其中N为大于1的整数)跑道形段或结构,存在总共N-1个伪柱33。
图4A示出了图1所示的垂直HVFET结构的又一实例布局。图4B为图4A中所示的实例布局的一部分的放大图。在图4B的放大图中为了清晰仅示出了柱17和氧化物区域15b。在该实例中,将半导体管芯21的包括HVFET的晶体管段交替移动每个跑道形段的长度的一半,结果形成交替与上部晶体管部分40a和下部晶体管部分40b相关联的跑道形晶体管段。换句话说,一行部分40a的每个晶体管段由部分40b的一对晶体管段分开,该对晶体管段沿x方向设置成端到端的关系。
要理解的是,可以将各段交替移动段长度的任何百分数(fraction)。换句话说,段的移动不限于长度的50%或一半。多种实施例可以包括交替移动了晶体管段的长度的从大于0%到小于100%的任何百分比或百分数的段。
在图4A和4B的实例中,相应部分40a和40b中交替的晶体管段的介电区域15b被合并。在图示的具体实施例中,与不同相邻部分相关联的晶体管段的圆形端重叠或被合并,使得相邻部分的场板19b在各端处(沿x方向)被合并。而且,不同部分的交替晶体管段的场板19b的延伸的直边部分沿着每个段的基本长度被合并。要理解的是,区域15b和19b在相应部分之间有或没有伪柱(或隔离的伪硅柱)的情况下都可以被合并。
图5示出了晶片50的实例布局,其在半导体管芯21a-21d上分别具有管芯至管芯的棋盘式HVFET 10a-10d。HVFET 10的每一个包括如图1所示的多个跑道形晶体管段,它们沿着其宽度并排设置成基本方形的块。在该实例中,HVFET 10a-10d均包括长度基本跨越相应管芯21a-21d的长度延伸的晶体管段。在一个实施例中,每个段的宽度约为13μm,且长度在大约500μm到2000μm的范围内。其他实施例可以具有大于2000μm的长度。段的块或堆叠结构也基本跨越每个管芯的宽度延伸。(注意每个管芯21的有边的方形代表相邻半导体管芯之间划线区域的边缘。)虽然图5示出了两行和两列的HVFET 10,但可以理解的是,可以跨越整个晶片衬底重复所示出的管芯至管芯棋盘式布置。
在图5的实例中,行或列中相邻的管芯被取向为使得一个管芯中的晶体管段的长度在一个方向上延伸,且相邻管芯中的晶体管段的长度沿第二正交方向延伸。例如,HVFET 10a被示为其晶体管段的长度沿x方向取向,而相邻的HVFET 10b和10c。通过跨越晶片50正交地交替每单个管芯21中的晶体管段的取向(即棋盘式布置),将由长介电区域产生的机械应力沿两个正交方向分布,由此减少了晶片50的翘曲。
图6示出了具有分段的HVFET的管芯到管芯棋盘式布置的晶片的另一实例布局。图6的实例使用了与图5相同的方法管芯到管芯地交替晶体管结构的取向;然而,在图6的实施例中,将HVFET结构分段成多个(例如两个)部分。例如,将基本跨越半导体管芯21的长度和宽度延伸的每个HVFET分段成由伪柱32分开的两个部分30a和30b。
对于基本方形的管芯而言,图6中所示的每个半导体管芯21具有与图2所示的相同的布局。类似于图5中所示的实例,相邻管芯具有跨越晶片50正交交替的晶体管段。也就是说,管芯21a和21d的部分30a和30b中的晶体管段具有在x方向上取向的长度,而管芯21b和21c的部分30a和30b中的晶体管段具有在y方向上取向的长度。
可以理解,可以用多个均由一个或多个伪柱分开的晶体管部分,例如大于2个的晶体管部分形成每个管芯21的HVFET。此外,可以将图2A-4B的实例中所示的具有多个晶体管部分的单个管芯布局中的任何一个用在图6中所示的每个管芯21中,且各段的取向跨越晶片50管芯到管芯地交替。
图7示出了管芯25的实例矩形布局,其具有以并排布置的基本方形块或部分36堆叠的跑道形HVFET段的棋盘式块。行或列中的相邻部分被取向成使得一个部分中的晶体管段的长度在一个方向上延伸,且其他相邻部分中的晶体管段的长度在第二正交方向上延伸。例如,管芯25的每个行和列包括取向为细长的晶体管段沿x方向对准(aligned)的晶体管部分36a和取向为细长的晶体管段沿y方向对准的交替的晶体管部分36b。晶体管部分36a和36b之间的空间包括伪硅柱;也就是说,形成伪柱的硅不是有源晶体管区域。
在图示的实施例中,管芯25包括三行和四列的晶体管部分36。图7的实例中所示的棋盘式布局方式可以用来在几乎任何(在可行的限度内)直线形状的管芯上生产单个分立的HVFET。
图8示出了用于图7中所示的管芯的实例栅极金属布线布局。利用单金属层工艺制作图8的栅极金属布线方案,并且源极和栅极金属被设置在相同的平坦水平面上。所示的实例包括在跑道形HVFET段的棋盘式块的每行之间延伸的水平栅极金属汇流线(busline)41a-41d。例如,栅极金属汇流线41a和41b被示为沿图7的棋盘式部分36的第一(上部)行的顶部和底部水平延伸。(应当理解,由于汇流线41b提供到达棋盘式部分的第一和第二行的多晶硅栅极元件的共用导电路径的事实,栅极金属汇流线41b可以是汇流线41a的两倍宽。)
在每行之内,具有沿x方向对准的其晶体管段的长度的部分36具有一半耦合到顶部汇流线的多晶硅栅极元件、和第二半耦合到底部汇流线的多晶硅栅极元件。例如,图8中的上部左手边块或部分36被示为具有由线44a表示的通过接触45a连接到栅极金属汇流线41b的多晶硅栅极元件,而在相同部分中的由线44b表示的多晶硅栅极元件通过接触45b连接到栅极金属汇流线41a。注意,每个线44a或44b实际上表示单个跑道形HVFET段的两个栅极元件18a和18b(见图1)。因此,在相同部分中,线44a表示两个最左边的HVFET段的栅极元件,并且线44b表示两个最右边的HVFET段的栅极元件。进一步要注意的是,每个栅极元件仅在一端连接到汇流线(顶部或底部)。
图8中示出的栅极金属布线图案也包括垂直栅极金属短截线(stubline)42,所述垂直栅极金属短截线42跨越棋盘式块的每一行延伸大约一半长度。在其中HVFET段的长度沿y方向对准的每个部分之内,一半的多晶硅栅极元件耦合到一个短截线,并且另一半的多晶硅栅极元件耦合到另一个短截线。例如,图8的上部行中的第二部分(从左边)示出通过接触45c连接到左侧栅极金属短截线42a的底部一半的栅极元件(由线44c表示),和通过接触45d连接到右侧栅极金属短截线42b的顶部一半的栅极元件(由线44d表示)。类似地,在图8的上部行中的第四部分(最右手边)示出连接到栅极金属短截线42c的底部一半的栅极元件和连接到栅极金属短截线42d的顶部一半的栅极元件。注意,水平对准的段的每一个栅极元件仅在一端连接到短截线(左或右侧)。
栅极金属短截线42跨越那些使其各段沿y方向(即水平地)对准的部分仅延伸一半长度的原因是允许源极金属汇流线跨越每一行延伸并且接触每个晶体管段的源极区。这通过图9的实例示出,其示出具有在顶部和底部栅极金属迹线51之间跨越晶体管部分36的每一行连续延伸的各个源极汇流线61的管芯25。(金属迹线51表示与每一行相关联的合并的金属汇流线41和短截线42。)例如,源极汇流线61a跨越管芯25上的部分的上部行连续延伸以接触在用于该行中的每一个HVFET段的硅柱17的顶部处的源极区14的每一个。在这样做的过程中,源极汇流线61a在短截线42之间和周围、以及在汇流线41之间“曲折前进”,其全部被图案化在相同的单层金属上。
本领域技术人员将理解的是,通过使短截线42跨越每行延伸大约一半长度,每个源极汇流线61的电流控制能力被最大化(即线61的最小开槽)。为了不同地安置它,由于围绕短截线42的线61的开槽,使短截线42跨越每行垂直地(沿x方向)延伸除一半长度以外的距离将不必要地抑制或限制跨越源极汇流线61流动的电流。同样地,应当理解的是,通过将部分中的栅极元件的一半连接到一个栅极金属汇流线(或短截线),以及另一半连接到另一个栅极金属汇流线(或短截线),电迁移和电阻问题被最小化。
图10示出了图9中所示的实例布局的展开部分,其示出用来连接栅极金属迹线51与栅极元件18a和18b的一个可能的方案。在该实例中,示出分别通过接触55a和55b连接迹线51与栅极元件18a和18b的圆形指尖部分。在柱17的顶部处位于栅极元件18a和18b之间的源极区被示为通过接触75连接到源极金属汇流排61。(应当理解,为了清楚起见,仅示出两个接触75。)在替换实施例中,不是接触栅极元件的圆形指尖部分,而是栅极金属迹线51可以沿圆形指尖部分附近的栅极元件18a和18b的直的、线性部分连接。(注意,为了清楚起见,在图10的实例中没有示出场板。)
虽然已经结合具体器件类型描述了以上实施例,但是本领域的普通技术人员将理解多种变型和改变都在本发明的范围内。例如,虽然已经描述了HVFET,但是图示的方法、布局和结构同样适用于其他结构和器件类型,包括肖特基、二极管、IGBT和双极型结构。因此,应当将说明书和附图看作是示例性的而不是限制性的。

Claims (24)

1.一种晶体管,包括:
衬底;
被组织成多个部分的多个晶体管段,每个晶体管段具有长度和宽度,每个部分的晶体管段沿宽度被设置成并排关系,所述部分被设置成行和列,每行的部分被设置成使得晶体管段的部分到部分的长度沿第一和第二横向交替对准,第一横向基本垂直于第二横向,每个晶体管段包括:
半导体材料柱,所述柱具有设置在衬底的顶表面处或附近的源极区;
分别设置在所述柱的相对侧上的第一和第二介电区域,所述第一介电区域由所述柱横向包围,并且所述第二介电区域横向包围所述柱;
分别设置在所述第一和第二介电区域中的第一和第二场板;
分别设置在邻近本体区的柱的顶部处或附近的第一和第二介电区中的第一和第二栅极元件;以及
第一金属层,其包括耦合到每个晶体管段的源极区的源极汇流排、和耦合到每个晶体管段的第一和第二栅极元件的栅极汇流排。
2.根据权利要求1所述的晶体管,其中所述柱沿第一和第二横向延伸以形成跑道形环或椭圆。
3.根据权利要求1所述的晶体管,其中所述柱垂直通过衬底延伸,所述柱进一步包括:
延伸漏极区;以及
垂直地分开源极和延伸漏极区的本体区。
4.根据权利要求1所述的晶体管,其中栅极汇流排包括与每行相关联的顶部和底部线,具有沿第一横向对准的段的长度的部分具有耦合到顶部线的段的第一半的第一和第二栅极元件,并且所述段的第二半的第一和第二栅极元件耦合到底部线。
5.根据权利要求4所述的晶体管,其中栅极汇流排进一步包括一对短截线,其中对所述段的长度沿第二横向对准的每一部分而言,所述段的第一半的第一和第二栅极元件耦合到该对短截线中的第一个,并且所述段的第二半的第一和第二栅极元件耦合到该对短截线中的第二个。
6.根据权利要求5所述的晶体管,其中该对短截线的第一个和第二个沿第一横向跨越每行延伸大约一半长度。
7.根据权利要求5所述的晶体管,其中所述顶部和底部线沿第二横向基本对准,并且所述短截线中的第一和第二个沿第一横向基本对准。
8.根据权利要求4所述的晶体管,其中源极汇流排在顶部与底部线之间跨越每一行连续延伸。
9.根据权利要求5所述的晶体管,其中源极汇流排在顶部与底部线之间跨越每一行、并且围绕该对短截线中的第一个和第二个连续延伸。
10.一种晶体管,包括:
衬底;
被组织成多个部分的多个晶体管段,每个晶体管段具有长度和宽度,每个部分的晶体管段沿宽度被设置成并排关系,所述部分被设置成行和列,每行的部分被设置成使得晶体管段的部分到部分的长度沿第一和第二横向交替对准,第一横向基本垂直于第二横向,每个晶体管段包括:
半导体材料柱,所述柱具有设置在衬底的顶表面处或附近的源极区;
分别设置在所述柱的相对侧上的第一和第二介电区域,所述第一介电区域由所述柱横向包围,并且所述第二介电区域横向包围所述柱;
分别设置在所述第一和第二介电区域中的第一和第二场板;
分别设置在邻近本体区的柱的顶部处或附近的第一和第二介电区中的第一和第二栅极元件;以及
第一金属层,其包括耦合到每个晶体管段的源极区的源极汇流排、和耦合到每个晶体管段的第一和第二栅极元件的栅极汇流排,栅极汇流排包括与每行相关联的顶部和底部线,具有沿第一横向对准的段的长度的部分均具有耦合到顶部线的第一和第二栅极元件中的第一组,并且第一和第二栅极元件中的第二组耦合到底部线。
11.根据权利要求10所述的晶体管,其中所述柱沿第一和第二横向延伸以形成跑道形环或椭圆。
12.根据权利要求10所述的晶体管,其中第一组包括所述段的第一和第二栅极元件的一半。
13.根据权利要求10所述的晶体管,其中所述柱垂直通过衬底延伸,所述柱进一步包括:
延伸漏极区;以及
垂直地分开源极和延伸漏极区的本体区。
14.根据权利要求10所述的晶体管,其中栅极汇流排进一步包括一对短截线,其中对所述段的长度沿第二横向对准的每一部分而言,第一和第二栅极元件中的第三组耦合到该对短截线中的第一个,并且第一和第二栅极元件中的第四组耦合到该对短截线中的第二个。
15.根据权利要求14所述的晶体管,其中该对短截线中的第一个耦合到顶部线,并且该对短截线中的第二个耦合到底部线。
16.根据权利要求15所述的晶体管,其中所述第三组包括所述段的第一和第二栅极元件的一半。
17.根据权利要求10所述的晶体管,其中源极汇流排在顶部与底部线之间跨越每一行连续延伸。
18.根据权利要求14所述的晶体管,其中源极汇流排在顶部与底部线之间跨越每一行、并且围绕该对短截线中的第一个和第二个连续延伸。
19.一种晶体管,包括:
衬底;
被组织成多个部分的多个晶体管段,每个晶体管段具有长度和宽度,每个部分的晶体管段沿宽度被设置成并排关系,所述部分被设置成行和列,每行的部分被设置成使得晶体管段的部分到部分的长度沿第一和第二横向交替对准,第一横向基本垂直于第二横向,每个晶体管段包括:
跑道形半导体材料柱,所述柱具有设置在衬底的顶表面处或附近的源极区;
分别设置在邻近本体区的柱的相对侧上的第一和第二栅极元件;
第一金属层,其包括耦合到每个晶体管段的源极区的源极汇流排、和耦合到每个晶体管段的第一和第二栅极元件的栅极汇流排,栅极汇流排包括与每行相关联的顶部和底部线,源极汇流排在顶部与底部线之间跨越每一行连续延伸。
20.根据权利要求19所述的晶体管,其中具有沿第一横向对准的段的长度的部分均具有耦合到顶部线的第一和第二栅极元件中的第一组,并且第一和第二栅极元件中的第二组耦合到底部线。
21.根据权利要求19所述的晶体管,其中栅极汇流排进一步包括一对短截线,其中对所述段的长度沿第二横向对准的每一部分而言,第一和第二栅极元件中的第三组耦合到该对短截线中的第一个,并且第一和第二栅极元件中的第四组耦合到该对短截线中的第二个。
22.根据权利要求21所述的晶体管,其中该对短截线中的第一个耦合到顶部线,并且该对短截线中的第二个耦合到底部线。
23.根据权利要求21所述的晶体管,其中所述第三组包括所述段的第一和第二栅极元件的一半。
24.根据权利要求19所述的晶体管,其中每个组进一步包括:
分别设置在所述柱的相对侧的第一和第二介电区域,第一介电区域被柱横向包围,并且第二介电区域横向包围所述柱;以及
分别设置在第一和第二介电区域中的第一和第二场板。
CN2008100807532A 2007-02-16 2008-02-18 用于具有棋盘式布局的晶体管的栅极金属布线 Active CN101246907B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/707403 2007-02-16
US11/707,403 US7468536B2 (en) 2007-02-16 2007-02-16 Gate metal routing for transistor with checkerboarded layout

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201110119758.3A Division CN102201344B (zh) 2007-02-16 2008-02-18 一种晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN101246907A true CN101246907A (zh) 2008-08-20
CN101246907B CN101246907B (zh) 2011-06-22

Family

ID=39322666

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201110119758.3A Expired - Fee Related CN102201344B (zh) 2007-02-16 2008-02-18 一种晶体管及其制备方法
CN2008100807532A Active CN101246907B (zh) 2007-02-16 2008-02-18 用于具有棋盘式布局的晶体管的栅极金属布线

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201110119758.3A Expired - Fee Related CN102201344B (zh) 2007-02-16 2008-02-18 一种晶体管及其制备方法

Country Status (5)

Country Link
US (2) US7468536B2 (zh)
EP (3) EP1959500B1 (zh)
JP (2) JP2008205484A (zh)
CN (2) CN102201344B (zh)
AT (1) ATE513315T1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710591B (zh) * 2008-09-18 2013-09-18 电力集成公司 具有不同宽度硅柱的高压垂直晶体管

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US7135748B2 (en) * 2004-10-26 2006-11-14 Power Integrations, Inc. Integrated circuit with multi-length output transistor segment
US8093621B2 (en) 2008-12-23 2012-01-10 Power Integrations, Inc. VTS insulated gate bipolar transistor
US7468536B2 (en) * 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US7557406B2 (en) * 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7595523B2 (en) 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US7859037B2 (en) 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US8653583B2 (en) 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7875962B2 (en) * 2007-10-15 2011-01-25 Power Integrations, Inc. Package for a power semiconductor device
US20100155831A1 (en) * 2008-12-20 2010-06-24 Power Integrations, Inc. Deep trench insulated gate bipolar transistor
US7871882B2 (en) 2008-12-20 2011-01-18 Power Integrations, Inc. Method of fabricating a deep trench insulated gate bipolar transistor
US8207455B2 (en) * 2009-07-31 2012-06-26 Power Integrations, Inc. Power semiconductor package with bottom surface protrusions
US8115457B2 (en) * 2009-07-31 2012-02-14 Power Integrations, Inc. Method and apparatus for implementing a power converter input terminal voltage discharge circuit
US8207577B2 (en) * 2009-09-29 2012-06-26 Power Integrations, Inc. High-voltage transistor structure with reduced gate capacitance
US7893754B1 (en) 2009-10-02 2011-02-22 Power Integrations, Inc. Temperature independent reference circuit
US8634218B2 (en) * 2009-10-06 2014-01-21 Power Integrations, Inc. Monolithic AC/DC converter for generating DC supply voltage
US9306056B2 (en) 2009-10-30 2016-04-05 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
US8310845B2 (en) 2010-02-10 2012-11-13 Power Integrations, Inc. Power supply circuit with a control terminal for different functional modes of operation
JP2012204529A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 半導体装置及びその製造方法
US8653600B2 (en) 2012-06-01 2014-02-18 Power Integrations, Inc. High-voltage monolithic schottky device structure
US9455621B2 (en) 2013-08-28 2016-09-27 Power Integrations, Inc. Controller IC with zero-crossing detector and capacitor discharge switching element
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
US9667154B2 (en) 2015-09-18 2017-05-30 Power Integrations, Inc. Demand-controlled, low standby power linear shunt regulator
US9973183B2 (en) 2015-09-28 2018-05-15 Power Integrations, Inc. Field-effect transistor device with partial finger current sensing FETs
US9602009B1 (en) 2015-12-08 2017-03-21 Power Integrations, Inc. Low voltage, closed loop controlled energy storage circuit
US9629218B1 (en) 2015-12-28 2017-04-18 Power Integrations, Inc. Thermal protection for LED bleeder in fault condition
US9983239B2 (en) 2016-05-13 2018-05-29 Power Integrations, Inc. Integrated linear current sense circuitry for semiconductor transistor devices
WO2018030990A1 (en) 2016-08-08 2018-02-15 Power Integrations, Inc. Integrated circuit fast temperature sensing of a semiconductor switching device
US10622476B2 (en) 2017-12-27 2020-04-14 Samsung Electronics Co., Ltd. Vertical field effect transistor having two-dimensional channel structure
US10957599B2 (en) 2018-11-07 2021-03-23 International Business Machines Corporation Integrating extra gate VFET with single gate VFET
US11018250B2 (en) 2019-05-06 2021-05-25 Infineon Technologies Ag Semiconductor device with multi-branch gate contact structure
GB2587646B (en) * 2019-10-03 2022-08-03 Mqsemi Ag Semiconductor device with dual trench structure
DE112022000700T5 (de) * 2021-03-22 2023-11-09 Rohm Co., Ltd. Halbleiterbauteil

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343015A (en) 1980-05-14 1982-08-03 General Electric Company Vertical channel field effect transistor
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
US4626879A (en) 1982-12-21 1986-12-02 North American Philips Corporation Lateral double-diffused MOS transistor devices suitable for source-follower applications
JPS59155144A (ja) * 1983-02-24 1984-09-04 Toshiba Corp 半導体集積回路装置
US4738936A (en) 1983-07-01 1988-04-19 Acrian, Inc. Method of fabrication lateral FET structure having a substrate to source contact
US4626789A (en) 1983-08-19 1986-12-02 Hitachi, Ltd. Demodulating circuit for data signal
US4531173A (en) 1983-11-02 1985-07-23 Motorola, Inc. Protective power foldback circuit for a power semiconductor
US4618541A (en) 1984-12-21 1986-10-21 Advanced Micro Devices, Inc. Method of forming a silicon nitride film transparent to ultraviolet radiation and resulting article
JPS61168253A (ja) 1985-01-19 1986-07-29 Sharp Corp 高耐圧mos電界効果半導体装置
US4665426A (en) 1985-02-01 1987-05-12 Advanced Micro Devices, Inc. EPROM with ultraviolet radiation transparent silicon nitride passivation layer
US4963951A (en) 1985-11-29 1990-10-16 General Electric Company Lateral insulated gate bipolar transistors with improved latch-up immunity
US4764800A (en) 1986-05-07 1988-08-16 Advanced Micro Devices, Inc. Seal structure for an integrated circuit
US4796070A (en) 1987-01-15 1989-01-03 General Electric Company Lateral charge control semiconductor device and method of fabrication
US5010024A (en) 1987-03-04 1991-04-23 Advanced Micro Devices, Inc. Passivation for integrated circuit structures
US4811075A (en) 1987-04-24 1989-03-07 Power Integrations, Inc. High voltage MOS transistors
US4890144A (en) 1987-09-14 1989-12-26 Motorola, Inc. Integrated circuit trench cell
JPS63314847A (ja) * 1987-06-17 1988-12-22 Nec Corp マスタ−スライス型半導体装置
JPH01112764A (ja) 1987-10-27 1989-05-01 Nec Corp 半導体装置
US4926074A (en) 1987-10-30 1990-05-15 North American Philips Corporation Semiconductor switch with parallel lateral double diffused MOS transistor and lateral insulated gate transistor
US4939566A (en) 1987-10-30 1990-07-03 North American Philips Corporation Semiconductor switch with parallel DMOS and IGT
US4890146A (en) 1987-12-16 1989-12-26 Siliconix Incorporated High voltage level shift semiconductor device
US4922327A (en) 1987-12-24 1990-05-01 University Of Toronto Innovations Foundation Semiconductor LDMOS device with upper and lower passages
US4929987A (en) 1988-02-01 1990-05-29 General Instrument Corporation Method for setting the threshold voltage of a power mosfet
US5025296A (en) 1988-02-29 1991-06-18 Motorola, Inc. Center tapped FET
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5237193A (en) 1988-06-24 1993-08-17 Siliconix Incorporated Lightly doped drain MOSFET with reduced on-resistance
EP0371785B1 (en) 1988-11-29 1996-05-01 Kabushiki Kaisha Toshiba Lateral conductivity modulated MOSFET
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
JP2597412B2 (ja) 1990-03-20 1997-04-09 三菱電機株式会社 半導体装置およびその製造方法
US5040045A (en) 1990-05-17 1991-08-13 U.S. Philips Corporation High voltage MOS transistor having shielded crossover path for a high voltage connection bus
US5122848A (en) 1991-04-08 1992-06-16 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
US5386136A (en) 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5146298A (en) 1991-08-16 1992-09-08 Eklund Klas H Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US5258636A (en) 1991-12-12 1993-11-02 Power Integrations, Inc. Narrow radius tips for high voltage semiconductor devices with interdigitated source and drain electrodes
US5270264A (en) 1991-12-20 1993-12-14 Intel Corporation Process for filling submicron spaces with dielectric
JP2748072B2 (ja) * 1992-07-03 1998-05-06 三菱電機株式会社 半導体装置およびその製造方法
JP3435173B2 (ja) 1992-07-10 2003-08-11 株式会社日立製作所 半導体装置
US5294824A (en) 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US5326711A (en) 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
US5313082A (en) 1993-02-16 1994-05-17 Power Integrations, Inc. High voltage MOS transistor with a low on-resistance
DE4309764C2 (de) 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
US5349225A (en) 1993-04-12 1994-09-20 Texas Instruments Incorporated Field effect transistor with a lightly doped drain
US5324683A (en) 1993-06-02 1994-06-28 Motorola, Inc. Method of forming a semiconductor structure having an air region
BE1007283A3 (nl) 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
DE69322963T2 (de) 1993-09-17 1999-06-24 Cons Ric Microelettronica Eine integrierte Vorrichtung mit einem bipolaren Transistor und einem MOSFET Transistor in Emittorschaltungsanordnung
US5523604A (en) 1994-05-13 1996-06-04 International Rectifier Corporation Amorphous silicon layer for top surface of semiconductor device
US5494853A (en) 1994-07-25 1996-02-27 United Microelectronics Corporation Method to solve holes in passivation by metal layout
US5521105A (en) 1994-08-12 1996-05-28 United Microelectronics Corporation Method of forming counter-doped island in power MOSFET
US5550405A (en) 1994-12-21 1996-08-27 Advanced Micro Devices, Incorporated Processing techniques for achieving production-worthy, low dielectric, low interconnect resistance and high performance ICS
US5656543A (en) 1995-02-03 1997-08-12 National Semiconductor Corporation Fabrication of integrated circuits with borderless vias
DE69602114T2 (de) 1995-02-10 1999-08-19 Siliconix Inc Graben-Feldeffekttransistor mit PN-Verarmungsschicht-Barriere
JP3291958B2 (ja) 1995-02-21 2002-06-17 富士電機株式会社 バックソースmosfet
US5670828A (en) 1995-02-21 1997-09-23 Advanced Micro Devices, Inc. Tunneling technology for reducing intra-conductive layer capacitance
US5798554A (en) * 1995-02-24 1998-08-25 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
US6049108A (en) 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US6204533B1 (en) * 1995-06-02 2001-03-20 Siliconix Incorporated Vertical trench-gated power MOSFET having stripe geometry and high cell density
US5659201A (en) 1995-06-05 1997-08-19 Advanced Micro Devices, Inc. High conductivity interconnection line
KR100188096B1 (ko) 1995-09-14 1999-06-01 김광호 반도체 장치 및 그 제조 방법
US5637898A (en) 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US6097063A (en) 1996-01-22 2000-08-01 Fuji Electric Co., Ltd. Semiconductor device having a plurality of parallel drift regions
JP4047384B2 (ja) 1996-02-05 2008-02-13 シーメンス アクチエンゲゼルシヤフト 電界効果により制御可能の半導体デバイス
DE19611045C1 (de) 1996-03-20 1997-05-22 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement
AU3724197A (en) 1996-07-19 1998-02-10 Siliconix Incorporated High density trench dmos transistor with trench bottom implant
US5841166A (en) 1996-09-10 1998-11-24 Spectrian, Inc. Lateral DMOS transistor for RF/microwave applications
US6207994B1 (en) 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
KR100228331B1 (ko) 1996-12-30 1999-11-01 김영환 반도체 소자의 삼중웰 제조 방법
DE69728852D1 (de) 1997-01-31 2004-06-03 St Microelectronics Srl Verfahren zur Herstellung von einer morphologischen Randstruktur um ein integriertes elektronisches Bauelement zu versiegeln, sowie ein entsprechendes Bauelement
JP3393544B2 (ja) 1997-02-26 2003-04-07 シャープ株式会社 半導体装置の製造方法
US6133607A (en) 1997-05-22 2000-10-17 Kabushiki Kaisha Toshiba Semiconductor device
US5869875A (en) 1997-06-10 1999-02-09 Spectrian Lateral diffused MOS transistor with trench source contact
US6054752A (en) 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
US6194283B1 (en) 1997-10-29 2001-02-27 Advanced Micro Devices, Inc. High density trench fill due to new spacer fill method including isotropically etching silicon nitride spacers
US6316807B1 (en) 1997-12-05 2001-11-13 Naoto Fujishima Low on-resistance trench lateral MISFET with better switching characteristics and method for manufacturing same
JP3410949B2 (ja) * 1998-02-12 2003-05-26 株式会社東芝 半導体装置
US6362064B2 (en) 1998-04-21 2002-03-26 National Semiconductor Corporation Elimination of walkout in high voltage trench isolated devices
EP0961325B1 (en) * 1998-05-26 2008-05-07 STMicroelectronics S.r.l. High integration density MOS technology power device
US6037631A (en) * 1998-09-18 2000-03-14 Siemens Aktiengesellschaft Semiconductor component with a high-voltage endurance edge structure
US5998833A (en) 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6621121B2 (en) 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US6084277A (en) 1999-02-18 2000-07-04 Power Integrations, Inc. Lateral power MOSFET with improved gate design
JP2000252465A (ja) 1999-03-03 2000-09-14 Sony Corp 半導体装置およびその製造方法
US6331455B1 (en) * 1999-04-01 2001-12-18 Advanced Power Devices, Inc. Power rectifier device and method of fabricating power rectifier devices
US6191447B1 (en) 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
GB9917099D0 (en) 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
JP3971062B2 (ja) 1999-07-29 2007-09-05 株式会社東芝 高耐圧半導体装置
US6365932B1 (en) 1999-08-20 2002-04-02 Denso Corporation Power MOS transistor
US6127703A (en) 1999-08-31 2000-10-03 Philips Electronics North America Corporation Lateral thin-film silicon-on-insulator (SOI) PMOS device having a drain extension region
JP4491875B2 (ja) * 1999-12-13 2010-06-30 富士電機システムズ株式会社 トレンチ型mos半導体装置
GB0003185D0 (en) 2000-02-12 2000-04-05 Koninkl Philips Electronics Nv An insulated gate field effect device
US6781194B2 (en) 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
CA2360031C (en) 2000-10-30 2006-06-20 Thomas & Betts International, Inc. Capacitive test point voltage and phasing detector
US6653691B2 (en) 2000-11-16 2003-11-25 Silicon Semiconductor Corporation Radio frequency (RF) power devices having faraday shield layers therein
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6468847B1 (en) 2000-11-27 2002-10-22 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6683346B2 (en) 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
JP4421144B2 (ja) 2001-06-29 2010-02-24 株式会社東芝 半導体装置
JP4993824B2 (ja) * 2001-07-03 2012-08-08 ルネサスエレクトロニクス株式会社 半導体装置
US6573558B2 (en) 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6555873B2 (en) 2001-09-07 2003-04-29 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US7786533B2 (en) * 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6683344B2 (en) * 2001-09-07 2004-01-27 Ixys Corporation Rugged and fast power MOSFET and IGBT
US6555883B1 (en) 2001-10-29 2003-04-29 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US6552597B1 (en) 2001-11-02 2003-04-22 Power Integrations, Inc. Integrated circuit with closely coupled high voltage output and offline transistor pair
JP2004022700A (ja) 2002-06-14 2004-01-22 Sanyo Electric Co Ltd 半導体装置
US7352036B2 (en) * 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
JP5011843B2 (ja) * 2006-06-22 2012-08-29 株式会社デンソー 半導体装置
US7595523B2 (en) * 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US8653583B2 (en) * 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7859037B2 (en) * 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US7468536B2 (en) * 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US7557406B2 (en) * 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710591B (zh) * 2008-09-18 2013-09-18 电力集成公司 具有不同宽度硅柱的高压垂直晶体管
CN103500759A (zh) * 2008-09-18 2014-01-08 电力集成公司 具有不同宽度硅柱的高压垂直晶体管
CN103500759B (zh) * 2008-09-18 2016-05-18 电力集成公司 具有不同宽度硅柱的高压垂直晶体管

Also Published As

Publication number Publication date
ATE513315T1 (de) 2011-07-15
CN102201344A (zh) 2011-09-28
EP2365533A2 (en) 2011-09-14
US20090072302A1 (en) 2009-03-19
EP1959500A2 (en) 2008-08-20
EP2365533A3 (en) 2011-09-28
EP1959500B1 (en) 2011-06-15
JP2008205484A (ja) 2008-09-04
EP2587545A1 (en) 2013-05-01
JP2013080976A (ja) 2013-05-02
US7468536B2 (en) 2008-12-23
EP1959500A3 (en) 2009-06-03
JP5637571B2 (ja) 2014-12-10
US7732860B2 (en) 2010-06-08
US20080197396A1 (en) 2008-08-21
CN101246907B (zh) 2011-06-22
CN102201344B (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN101246907B (zh) 用于具有棋盘式布局的晶体管的栅极金属布线
CN101246905B (zh) 棋盘式高电压垂直晶体管布局
CN101246906B (zh) 在高压晶体管结构的端处的栅极回拉
CN102222696B (zh) 高电压垂直晶体管的分段式柱布局
CN101246887B (zh) 与高压垂直晶体管集成的感测fet

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant