CN101351258A - 用于氢分离的具有长期稳定性能的复合钯膜 - Google Patents

用于氢分离的具有长期稳定性能的复合钯膜 Download PDF

Info

Publication number
CN101351258A
CN101351258A CNA2005800524006A CN200580052400A CN101351258A CN 101351258 A CN101351258 A CN 101351258A CN A2005800524006 A CNA2005800524006 A CN A2005800524006A CN 200580052400 A CN200580052400 A CN 200580052400A CN 101351258 A CN101351258 A CN 101351258A
Authority
CN
China
Prior art keywords
intermediate layer
compound
diffusion barrier
alloy film
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800524006A
Other languages
English (en)
Inventor
T·H·范德斯普尔特
J·亚马尼斯
C·沃尔克
Z·达达斯
Y·佘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UTC Power Corp
Original Assignee
UTC Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UTC Power Corp filed Critical UTC Power Corp
Publication of CN101351258A publication Critical patent/CN101351258A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production

Abstract

复合H2分离钯膜(10)的相邻的多孔金属基底(12)、氧化物(14)和Pd金属膜(16)层材料具有各自的热膨胀(TEC),其相互差别很小,以抵抗由于热循环的TEC不匹配产生的失效。相邻层的材料之间小于3μm/(m.k)的TEC差值(20,22)通过446不锈钢基底、4wt%氧化钇-氧化锆氧化层和77wt%Pd-23wt%Ag或60wt%Pd-40wt%Cu膜的复合系统获得,所述446不锈钢基质、4wt%氧化钇-氧化锆氧化层和77wt%Pd-23wt%Ag或60wt%Pd-40wt%Cu膜的TECs分别为11,11和13.9μm/(m.k)。氧化物中间层包含的颗粒形成多孔,具有平均孔径小于约0.1微米,厚度小于5微米,优选小于约3微米。

Description

用于氢分离的具有长期稳定性能的复合钯膜
美国政府对本发明具有已付费的权利,有权在一定范围内要求发明所有者根据合理条款拥有其它权利,所述条款由能源部认定的条款(合同No.DE-FC36-02AL67628)提供。
技术领域
本发明涉及选择性气体分离,更具体而言是用于从气流中分离氢气的钯膜。再更具体而言,本发明涉及用于氢气分离的复合钯膜。
背景技术
气体分离和纯化设备用于从含有目标气体和其它气体的混合物中选择性地分离一种或多种目标气体。一个熟知的例子是使用某种膜从气流、流体或区域中选择性的分离氢气(H2),所述气流、流体或区域在与其它气体的混合物中含有氢气。用于H2选择性分离的膜通常是聚合物或金属,而聚合物膜通常被限制在低温环境中使用。对于当膜的使用必须与高温工艺或过程相联系的情况,就必须依赖金属膜。
在一个典型实例中,H2是碳氢燃料的重整和/或水气转移反应的产物,而后H2从其它重整或反应气体中分离后,可以以相对纯净的形式用作燃料电池中熟知的电气化学反应的还原燃料。与重整和/或水气转移反应相关的工艺在很高的温度下进行,例如,反应器入口温度分别为700℃和400℃,使得在或接近这些温度的氢气分离需要使用金属膜。最适合这些需要的金属是钯,其相对于其它可能存在的气体可以选择性的渗透H2,而且对这样的操作温度具有高的耐受力。
复合钯或其合金膜,包含沉积在多孔金属(PM)、抗氧化基质上的钯薄层,当与重整器或水气转移反应器相结合时可以得到需要的渗透通量,并对于系统尺寸和成本降低具有明显的优势。Pd-Ag和Pd-Cu基合金需要分别在无硫或含硫的重整油中具有更长期的膜稳定性,前者对于燃料电池电厂非常重要,因为该电厂需要许多启动和关闭循环。对于由化学电镀(EP)或某些其它技术生成的钯合金膜,在工艺的后续阶段中需要在可控氛围下进行高温热处理,例如在550℃-650℃温度范围。然而,该热处理会引起多孔金属基底组分向Pd相渗透的金属间扩散,从而不利于H2渗透。有效的方法是用前述生产工艺生成Pd金属膜以提供具有陶瓷薄层的钯膜基质,所述陶瓷薄层将作为金属间扩散的壁垒。该项技术可以在下述专利中找到:例如,Y.H.Ma,等的美国专利US6,152,987和美国公开申请US2004/0237779和2004/0244590。在上述实例中,该陶瓷中间层是热生成,即可以作为金属载体的氧化物,也可以是分离相,如来自氮分解物的氮化物或来自含碳气流的碳化物。钯膜载体在空气、氮气或含碳气体中极高温度下且长时间热处理以获得这样的结果。
上述技术的局限性在于Pd合金、陶瓷中间层和PM载体之间的热膨胀系数(以下为TEC)不匹配,这会导致在热循环或启动/关闭过程中膜的突变失效(散裂)。当然,通常的热循环所经历的温度范围,在水气转移反应器中是从环境温度到400℃,如果是在重整反应器中到600℃,特别是如果是重整反应器和/或水气转移反应器,这样的循环频繁进行,因而,PD膜也是用于燃料电池发电装置的燃烧过程系统的一部分,所述燃料电池发电装置会进行频繁的启动和停止,如用于汽车的使用等。
参考图1,其描述了复合H2分离膜110的简易截面图,该膜与前述Y.H.Ma等人的美国专利所描述的现有技术相一致。更具体的,复合膜110由多孔金属基底112,通常为316L不锈钢(SS)、多孔氧化物中间层114和高密度钯或钯合金膜116组成。基于前述美国专利提供的描述,可以认识到316L SS基质112具有的TEC约为17.2μm/(m°K);氧化物中间层114,由载体氧化生成,是Cr2O3、NiO和氧化铁的混合物,Cr2O3是主要相,因此,TEC约为8.5μm/(m°K);膜层116的钯相是11.7-13.9μm/(m.K),取决于合金的组成。如果考虑复合膜110的相邻层112和114、114和116材料的TEC s差(即″Δ″),如分别由括弧120和122所代表,相邻材料的TECs之间存在着明显的差别。
另外,在前述Ma等人的公开申请中,所谓的中间层是由Pd和Ag的转换层所形成,其TECs分别为11.7和20.6μm/(m°K)。从该描述中可以进一步清楚认识到相邻层或次层之间TEC s的差仍然是明显的,说明TECs不匹配。
所需要的是用于频繁和/或极端热循环中的复合H2分离钯膜,其结构稳定、耐用且成本有利。
进一步需要的是以下复合H2分离钯膜:其在热循环或启动/停止过程中能够抵抗或避免膜突变失效(散裂)。
甚至进一步需要的是以下复合H2分离钯膜,其能够避免或最小化Pd合金、陶瓷中间层和钯膜载体之间的热膨胀系数(TEC)的不匹配。
发明内容
本发明涉及提供复合H2分离钯膜,其对于频繁和/或极端热循环操作,结构稳定、耐用且成本有利。这通过在技术可能和经济可行的范围内匹配组成复合膜的多种化合物层材料的热膨胀系数(TECs)来获得。
本发明的复合H2分离膜包括:具有第一个TEC的多孔金属基底、具有第二个TEC的氧化物中间层,其中中间层覆盖在多孔金属基底上、具有第三个TEC的Pd合金层,其中Pd合金层覆盖在中间层上。其中多孔金属基底、氧化物中间层和Pd合金层的选择使得它们各自所述的第一、第二和第三TECs足够相同以能够抵抗由于热循环导致的失效。
更具体而言,每个多孔金属基底、中间层和Pd合金层的热膨胀系数与其相邻的基底、中间层和Pd合金层中的一个热膨胀系数差别小于约3μm/(m.K)。而且,所有三层的累积TECs差别也小于约3μm/(m.K)。在一个优选实例中,多孔金属基底是446不锈钢(商品名为E-Brite),具有TEC约为11μm/(m.K),中间层为非常薄的4wt%Yttria-ZrO2涂层,具有TEC约为11μm/(m.K),Pd合金膜由Pd-Ag或Pd-Cu组成,取决于是否存在硫。如果预期在要加工的重整油中有很少或没有硫,那么膜为Pd-Ag,通常为77wt%Pd-23wt%Ag合金,具有约为13.9μm/(m.K)的理想TEC。另外,如果预期存在硫,那么膜为Pd-Cu,通常为60wt%Pd-40wt%Cu,具有约13.9μm/(m.K)的TEC。
复合膜的耐久性和完整性进一步通过中间层提高,所述中间层是非常薄的,小于约3微米,并具有可控的颗粒尺寸,因而为非常窄的孔径分布。孔径分布范围在约0.02和0.2微米之间,且平均孔径(直径)小于约0.1微米。这有利于进一步应用非常薄的Pd合金膜层(小于10微米),如化学电镀。
根据在附图中图示出的示例性实施例的以下详细描述,本发明的前述特征和优点将变得更加明显。
附图说明
图1是根据现有技术的复合H2分离膜的简易截面图及相关热膨胀系数。
图2是根据本发明的复合H2分离膜的简易截面图及相关热膨胀系数。
本发明的最佳实施方式
参考图2,以简图的形式描述了根据本发明的复合H2分离膜10的部分横截面图。分离膜10可以是平面形式,如这里只是为了方便所描述的;然而优选的结构应当是管状的,以在其内界定重整油的反应流通道或用于分离扩散氢气的收集室。复合H2分离膜10通常由载体或基底层12、氧化物中间薄层14,和Pd合金膜层16组成。
在使用中,含氢气流,由箭头30所示,流过相邻的复合膜10的表面。氢气分离并穿过复合膜10,与反面比较表现为分离的氢气产品,如箭头32所示。包括虚线箭头30’和32’在内,说明了分离气流的路径在复合膜的一面与另一面相反。在这些方面,本发明的H2分离膜与在图1中的现有技术的复合膜110是类似的。
复合H2分离膜10的多个层相互连接在一起,如通过适当的粘结、沉积、电镀和/或其它适合的技术。复合H2分离膜10是目标,并适合用于反应器环境中,如用于燃料电池发电装置的燃烧过程系统,其中操作温度范围通常从环境温度到600℃,特别是如果在汽车应用中,可以经受5次/天频繁的热循环。
为了提供需要的耐久性使寿命延长以及H2分离膜10在这样的操作条件下操作,基底层12、中间层14和Pd合金膜层16需要认真选择以使这些材料和相关的热膨胀系数不但能够提供基本只有氢气通过的所需的选择性,还能提供抵抗热循环和操作条件的耐久力。因此,本发明提供所述三层的每层使用的材料各自的热膨胀系数(TEC)足够相似,特别是相连的层,以抵抗由于热循环造成的失效。更具体而言,本发明规定相邻层材料的TECs相互差值(Δ)小于3μm/(m.K)。极端的,本发明规定所有三层的累计TECs差值小于约3μm/(m.K)。
已经明确的是:相邻层材料的则用相同的TECs相对于现有技术中的复合H2分离膜具有明显长的寿命,所述现有技术如前述Ma等人的专利和已公开的专利申请中所讨论的。对于前述在频繁、显著热循环条件下操作的情况更是如此。
如前述讨论的,在现有技术的图1中的复合膜110,基底112是316L不锈钢,其TEC为17.2μm/(m.K)。与基底112相邻的层114在前述Ma等人的专利中是氧化物,并在公开申请中也是优选的,尽管在这些现有技术在这方面并不明确。膜层116,以及甚至可能成为氧化层和膜层之间的“中间层”,是钯(Pd)银(Ag)合金。钯的TEC通常为11.7μm/(m.K),而银的TEC为20.6μm/(m.K)(见后面表1)。
合金的TEC通过以下公式估算:
TEC=∑TECi*Yi                (1)
其中TECi是合金中元素i的,Yi是这个元素的体积分数,由以下公式定义:
Yi=(Mi/pi)/∑Mii          (2)
其中,Mi是合金中元素i的质量分数,以(wt%/100)表示,i是该元素的密度,gr/cm3
基于前述用于估算合金TEC的系统,可以推算出形成Ma等人氧化物层的Cr2O3、NiO和氧化铁混合物的TEC为约8.5μm/(m.K),其中Cr2O3为主要相。而且,Pd和Ag合金的覆盖层或多层的TEC范围为20.6-16.5,取决于Pd和Ag的相对含量。
回来考虑本发明复合H2分离膜10的材料,如果在基本没有硫存在的情况下操作,Pd合金膜16优选是Pd和Ag合金,而如果在有硫存在的情况下操作,Pd合金膜16优选是Pd和Cu合金。参考下表1,对于温度高达700℃,与本发明和/或Ma等人专利公开相关的多种材料的TEC值列于表1中。
表1
  材料   E-brite(446SS合金)   Y-ZrO2   Cu   Ag   Pd   77%Pd-23%Ag   60%Pd-40%Cu   316L SS合金
  TECμm/(m.K)   11   11   16.5   20.6   11.7   13.9   13.9   17.2
如上所述,Pd和Ag合金的TECs范围应该为11.7-20.6μm/(m.K),取决于Pd和Ag的相对含量。类似的,Pd和Cu合金的TECs范围应该为11.7-16.5μm/(m.K),取决于Pd和Cu的相对含量。已经发现:Pd合金优选具有比Ag或Cu相对高的Pd含量,以提供需要的H2选择性渗透,然而纯钯的成本和/或硫的破坏使得含有Ag或Cu是需要的。以预期在没有硫的环境下操作为例,优选合金为Pd 77wt%-Ag 23wt%。这个合金组成是出于上述理由以及最小化H2脆裂,否则会在发电装置关闭是发生。通过替换公式(1)和(2)中的Pd和Ag的TEC值,可以确定这个优选PdAg膜合金的TEC为13.9μm/(m.K)。对于在有硫的环境下操作,膜合金的组成为60wt%Pd和40wt%Cu被发现是优选的,其TEC确定为也是13.9μm/(m.K)。
通过多种合适工艺的任何一种将膜16施加到基底12上,通常通过氧化物中间层14,非电镀是优选的。膜16通常是通过非电镀工艺施加的多个完整层形成的,随后在通常含有氢气的气体氛围中进行热处理以形Pd合金,温度为450-550℃,时间4-20小时,取决于温度。
进一步根据本发明,基底12是金属,所选择的金属对氢气原子渗透、耐用、成本可接受,特别是TEC与膜16以及氧化物中间层14比较一致。因此,基质12是多孔446不锈钢,也叫作E-Brite。基底12的该446不锈钢具有11.0μm/(m.K)的TEC,以使其与优选Pd合金的膜16,或氧化物中间层14(如后面所示)的TECs值没有大的差别。
基底12的多孔446不锈钢需要涂覆非常薄(<5微米,优选1-3微米)的氧化层14。该氧化层的优选材料是氧化钇(4wt%)-氧化锆(Y-ZrO2)。通过选择用于制备涂覆工艺的浆液的粉末,Y-ZrO2涂层形成的中间层14内的颗粒粒径得到严格控制,以提供0.02-0.2微米的非常窄的孔径(直径)分布,平均孔尺寸小于约0.1微米。这个通过控制颗粒尺寸获得的具有很好可控孔尺寸分布的中间氧化物薄层14对于通过非电镀获得均匀、无缺陷且非常薄(<10微米)的Pd合金覆盖层16是非常关键的,同样对于最小化H2穿过该层的传质阻力也是关键的,即包括传入基底12的多孔金属,也包括从基底12的多孔金属传出。这里选择氧化钇(4wt%)-稳定的氧化锆作为中间层14的材料是为了获得相邻基底12和Pd合金膜16材料的TECs之间任何不匹配的最小化。尤其是,特殊的Y-ZrO2具有11.0μm/(m.K)的TEC,使得其与基底12的446 SS热膨胀特别一致,与Pd合金膜16也是可以接受的。
进一步参考图2,可以看到相邻基底层12和氧化物中间层14的TECs差值(Δ)是零(0),如括号20所示,因此具有理想的热匹配。相邻的氧化物中间层14和Pd合金膜层16的之间的TECs差值(Δ)是约2.9μm/(m.K),如括号22所示。这也是比较小的,可以提供材料间可接收的热匹配。此外,所有三层,12,14和16,的累计TECs差值也小于约3μm/(m.K)。这些值与现有技术的明显大的ΔTEC值,120和122,形成对比,其值分别为8.7和3.2-5.5μm/(m.K)。本发明的复合H2分离钯膜在这些热循环属性方面体现出了明显的优势。
尽管本发明已经用其示范性实例进行了描述和说明,本领域技术人员应当理解可以进行前述和多种其它变化,省略和添加而不背离本发明的本质和范围。

Claims (8)

1、一种复合H2分离膜(10),依次包括:
具有第一热膨胀系数的多孔金属基底(12);
具有第二热膨胀系数的氧化物中间层(14),其中中间层覆盖在多孔金属基底(12)上;
具有第三膨胀系数的Pd合金膜(16),其中Pd合金膜覆盖在中间层(14)上;
其中选择多孔金属基底、中间层和Pd合金膜以使它们各自的所述第一、第二和第三热膨胀系数足够类似,从而能够抵抗由于热循环过程中复合H2分离膜内的热膨胀系数的不匹配产生的失效。
2、权利要求1的复合H2分离膜,其中多孔金属基底、中间层和Pd合金膜各自的所述第一、所述第二和所述第三热膨胀系数与相邻的金属基底、中间层和Pd合金膜的热膨胀系数的差值(20,22)都小于3μm/(m.K)。
3、如权利要求2的复合H2分离膜,其中多孔金属基底、中间层和Pd合金膜各自的所述第一、所述第二和所述第三热膨胀系数累计差值(20,22)不大于3μm/(m.K)。
4、如权利要求3的复合H2分离膜,其中多孔金属基底、中间层和Pd合金膜各自的所述第一、所述第二和所述第三热膨胀系数分别为约11、11、和13.9μm/(m.K)。
5、如权利要求2的复合H2分离膜,其中所述多孔金属基底是不锈钢,中间层是氧化钇-ZrO2,Pd合金膜选自Pd-Ag和Pd-Cu。
6、如权利要求5的复合H2分离膜,其中所述多孔金属基底是446不锈钢,中间层是4wt%氧化钇-ZrO2,Pd合金膜选自77wt%Pd-23wt%Ag和50wt%Pd-40wt%Cu。
7、如权利要求1的复合H2分离膜,其中中间层是氧化物,包括形成孔的颗粒物,其具有平均孔径小于约0.1微米,平均厚度小于约3微米。
8、权利要求7的复合H2分离膜,其中Pd合金膜厚度小于约10微米。
CNA2005800524006A 2005-12-23 2005-12-23 用于氢分离的具有长期稳定性能的复合钯膜 Pending CN101351258A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/047047 WO2007024253A2 (en) 2005-12-23 2005-12-23 Composite palladium membrane having long-term stability for hydrogen separation

Publications (1)

Publication Number Publication Date
CN101351258A true CN101351258A (zh) 2009-01-21

Family

ID=37772046

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800524006A Pending CN101351258A (zh) 2005-12-23 2005-12-23 用于氢分离的具有长期稳定性能的复合钯膜

Country Status (4)

Country Link
US (1) US20090000480A1 (zh)
EP (1) EP1971414A4 (zh)
CN (1) CN101351258A (zh)
WO (1) WO2007024253A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101243B2 (en) * 2002-04-03 2012-01-24 Colorado School Of Mines Method of making sulfur-resistant composite metal membranes
JP2007000858A (ja) * 2005-05-23 2007-01-11 Kobe Steel Ltd 水素透過部材およびその製造方法
US7604771B2 (en) * 2005-08-25 2009-10-20 Uchicago Argonne, Llc Thermal method for fabricating a hydrogen separation membrane on a porous substrate
IL175270A0 (en) * 2006-04-26 2006-09-05 Acktar Ltd Composite inorganic membrane for separation in fluid systems
US8048199B2 (en) 2007-02-20 2011-11-01 Shell Oil Company Method of making a leak stable gas separation membrane system
US9044715B2 (en) * 2007-08-22 2015-06-02 Colorado School Of Mines Unsupported palladium alloy membranes and methods of making same
US8479487B2 (en) * 2009-08-10 2013-07-09 General Electric Company Hybrid multichannel porous structure for hydrogen separation
US8778058B2 (en) 2010-07-16 2014-07-15 Colorado School Of Mines Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same
US9687802B2 (en) 2011-04-04 2017-06-27 Lg Chem, Ltd. Apparatus and method for continuously producing carbon nanotubes
RU2587443C1 (ru) * 2015-04-08 2016-06-20 Общество с ограниченной ответственностью "Инновационная компания "МЕВОДЭНА" Способ изготовления мембраны для выделения водорода из газовых смесей
US20180279562A1 (en) * 2017-03-31 2018-10-04 Chin-Wei Lin Planting cup and planting device
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921415A (en) * 1987-11-27 1990-05-01 General Electric Company Cure monitoring apparatus having high temperature ultrasonic transducers
US5393325A (en) * 1990-08-10 1995-02-28 Bend Research, Inc. Composite hydrogen separation metal membrane
US5498278A (en) * 1990-08-10 1996-03-12 Bend Research, Inc. Composite hydrogen separation element and module
US6537352B2 (en) * 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6152987A (en) * 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
US6383306B1 (en) * 2000-02-28 2002-05-07 General Electric Company Preparation of a nickel-base superalloy article having a decarburized coating containing aluminum and a reactive element
DE10039596C2 (de) * 2000-08-12 2003-03-27 Omg Ag & Co Kg Geträgerte Metallmembran, Verfahren zu ihrer Herstellung und Verwendung
US7306642B2 (en) * 2002-03-13 2007-12-11 Ceramem Corporation High CTE reaction-bonded ceramic membrane supports
DE10222568B4 (de) * 2002-05-17 2007-02-08 W.C. Heraeus Gmbh Kompositmembran und Verfahren zu deren Herstellung
US7255726B2 (en) * 2003-05-02 2007-08-14 Worcester Polytechnic Institute Composite gas separation modules having high Tamman temperature intermediate layers
US7674726B2 (en) * 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
CN100486397C (zh) * 2005-04-19 2009-05-06 皇家飞利浦电子股份有限公司 包括红色发射陶瓷发光转换器的照明系统

Also Published As

Publication number Publication date
WO2007024253A3 (en) 2007-06-28
EP1971414A2 (en) 2008-09-24
WO2007024253A2 (en) 2007-03-01
EP1971414A4 (en) 2009-06-17
US20090000480A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
CN101351258A (zh) 用于氢分离的具有长期稳定性能的复合钯膜
US7229537B2 (en) Composite oxygen ion transport element
AU2005286952B2 (en) Membrane steam reformer
Fasolin et al. Hydrogen separation by thin vanadium-based multi-layered membranes
Kulprathipanja et al. Effects of water gas shift gases on Pd− Cu alloy membrane surface morphology and separation properties
JP2006520687A5 (zh)
US8075958B2 (en) Methods for providing thin hydrogen separation membranes and associated uses
Viano et al. Asymmetric layered vanadium membranes for hydrogen separation
Smorygo et al. Structured catalyst supports and catalysts for the methane indirect internal steam reforming in the intermediate temperature SOFC
US20140298993A1 (en) Hydrogen separation membrane module which have mixing part
Barison et al. PdAg/alumina membranes prepared by high power impulse magnetron sputtering for hydrogen separation
Chen et al. Ultra-thin palladium technologies enable future commercial deployment of PEM fuel cell systems
Iaquaniello et al. Hydrogen palladium selective membranes: an economic perspective
JP4904651B2 (ja) 水素分離装置
KR20080085150A (ko) 수소 분리를 위한 장기 안정성을 가지는 합성 팔라듐멤브레인
US20240033680A1 (en) Membrane attachment technique
Lim et al. Hydrogen perm-selectivity properties of the Pd-Ni-Ag alloy hydrogen separation membranes with various surface nickel composition
KR101270154B1 (ko) 수소 정제 분리막 모듈 및 수소 정제 분리막 모듈에서의 수소분리막의 실링 방법
Shi et al. Microstructure transformation of Pd membrane deposited on a porous Inconel substrate in hydrogen permeation at elevated temperature
Viviente et al. Ultrathin and Thin Film Pd/Ag Membranes for Hydrogen Production
Ma Composite Pd and Pd/alloy membranes
JP2008272605A (ja) 水素透過膜およびその製造方法
Iaquaniello et al. Palladium-based selective membranes for hydrogen production
Patki Coking resistant Pd-Au composite membranes and Cu-based electrodes by electroless plating for H₂ separation and purification
AU2022268645A1 (en) Interconnect for solid oxide cell (soc)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20090121

C20 Patent right or utility model deemed to be abandoned or is abandoned