CN102089031A - 使治疗调整与患者姿势状态相关联 - Google Patents

使治疗调整与患者姿势状态相关联 Download PDF

Info

Publication number
CN102089031A
CN102089031A CN2009801280223A CN200980128022A CN102089031A CN 102089031 A CN102089031 A CN 102089031A CN 2009801280223 A CN2009801280223 A CN 2009801280223A CN 200980128022 A CN200980128022 A CN 200980128022A CN 102089031 A CN102089031 A CN 102089031A
Authority
CN
China
Prior art keywords
posture state
treatment
patient
adjustment
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801280223A
Other languages
English (en)
Other versions
CN102089031B (zh
Inventor
D·M·斯凯尔顿
J·P·戴维斯
S·格卡达斯
E·J·潘肯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN102089031A publication Critical patent/CN102089031A/zh
Application granted granted Critical
Publication of CN102089031B publication Critical patent/CN102089031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • A61N1/37247User interfaces, e.g. input or presentation means
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36535Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body position or posture

Abstract

本发明提供了用于使检测的治疗调整与姿势状态相关联并将储存该关联与对于该姿势状态的多个关联的方法。在记录模式中,可植入的医疗装置被配置成储存对于每种姿势状态的治疗调整并允许用户基于审阅治疗期间作出的关联寻找有效治疗。系统可通过姿势搜索计时器和姿势稳定性计时器的实现方式来确定关联。当患者预期姿势改变时,通过在采取所需姿势状态之前调整治疗,这些计时器允许系统正确关联治疗调整与姿势状态。外置编程装置可呈递对于每种姿势状态的治疗调整的范围以允许用户查阅治疗期间作出的治疗调整。

Description

使治疗调整与患者姿势状态相关联
背景技术
许多医疗装置可用于对患有各种病症的患者进行慢性(例如长期)递送治疗,所述病症包括例如慢性疼痛、震颤、帕金森病、癫痫、尿失禁或大便失禁、性功能障碍、肥胖或胃轻瘫。例如,可采用电刺激发生器进行电刺激治疗的慢性递送,例如心脏起搏、神经刺激、肌肉刺激等。可采用泵或其他流体递送装置实现治疗剂,例如药物的慢性递送。通常,这种装置根据程序内含的参数连续或周期性地提供治疗。程序可包括临床医师指定的多种参数相应的值。
在一些情况下,可允许患者激活和/或调节由医疗装置所递送的治疗。例如,可向患者提供患者编程装置。患者编程装置与医疗装置连通以允许患者激活治疗和/或调节治疗参数。例如,可植入医疗装置(IMD),例如可植入神经刺激器可伴随有外部患者编程装置,允许患者激活和停止神经刺激治疗和/或调节递送的神经刺激的强度。患者编程装置可通过无线遥测技术与IMD连通以控制IMD和/或从IMD检索信息。
发明概述
一般来说,本发明提供了使检测的患者治疗调整与姿势状态相关联并储存该关联的方法。该系统可通过实时追踪治疗调整和姿势状态改变的姿势搜索计时器和姿势稳定性计时器的实现方式来确定患者预期的关联。由于一些患者在改变至不同的姿势状态的预期中作出治疗调整而不是一旦处于所需姿势状态作出改变,这些计时器可允许系统在患者采取该姿势状态或当前的姿势状态之前作出治疗调整与姿势状态的正确关联。
治疗调整与姿势状态的关联在记录模式中可用于后续审阅。可植入的医疗装置(IMD)或外部编程装置可被配置成存储每种姿势状态的多个治疗调整并允许用户基于审阅为每种姿势状态储存的关联寻找有效治疗。记录的治疗调整可以各种治疗参数的形式呈现以使用户关注每种姿势状态可接受的治疗参数。以这种方式,患者和/或内科医师能够微调患者的刺激治疗。
治疗调整与姿势状态的关联也可允许用户用单一动作,例如在用户界面的输入装置上的一次点击确认输入设定多个程序的标称治疗参数。标称治疗参数可以是支持有效治疗的治疗参数的先前调整的值。单一动作,例如一次点击确认能避免用户必需分别设定每个姿势状态中每个组的每种程序的治疗参数。
而且,在一些实施例中,系统可基于包括所述关联的治疗调整信息提供对于多种单独的程序中的每一个的建议的治疗参数。系统可实现指导编程过程,该指导编程过程用于产生建议的治疗参数和限制临床医师所需的编程时间。
此外,该系统能够仅仅关联对于仅仅一种特定姿势状态的患者预期的治疗调整。如果该系统识别到接收的治疗调整处于先前储存的治疗调整的历史范围之外,则系统可以不对治疗调整与该姿势状态进行关联。然而,系统可提示用户确认关联并仅对接受确认的情况建立关联。
在一个实施例中,本发明提供了一种方法,该方法包括检测在感应的姿势状态的多个情况期间递送至患者的电刺激治疗的多个患者调整,使所述检测的患者调整与所述感应的患者姿势状态相关联,和将所述检测的患者调整与所述感应的姿势状态的关联储存在存储器中。
在另一个实施例中,本发明提供了一种系统,该系统包括:输入装置,输入装置接收在感应的姿势状态的多个情况期间递送至患者的电刺激治疗的多个患者调整;处理器,处理器使接收的患者调整与感应的患者姿势状态相关联;和存储器,存储器将接收的患者调整与感应的姿势状态的关联储存在存储器中。
在另一个实施例中,本发明提供了一种用于可植入医疗装置的外置编程装置,所述编程装置包括:输入装置,输入装置接收感应的姿势状态的多个情况期间由所述可植入医疗装置递送至患者的电刺激治疗的多个患者调整;遥测界面,遥测界面接收来自所述可植入医疗装置的感应的姿势状态并将接收的患者调整传送至可植入医疗装置;处理器,处理器使接收的患者调整与感应的患者姿势状态相关联;和存储器,存储器将接收的调整与感应的姿势状态的关联储存在存储器中。
在另一个实施例中,本发明提供了一种可植入的医疗装置,其包括:刺激发生器,刺激发生器将电刺激治疗递送至患者;姿势感应模块,姿势感应模块感应患者的姿势状态;遥测界面,遥测界面在感应的姿势状态的多个情况期间接收来自外置编程装置的对电刺激治疗的患者调整;处理器,处理器使接收的调整与感应的患者姿势状态相关联;存储器,存储器将接收的调整与感应的姿势状态的关联储存在存储器中。
在另一个实施例中,本发明提供了一种方法,该方法包括:检测递送至患者的电刺激治疗的患者调整;感应患者的姿势状态;和如果在检测所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段期间所述感应的姿势状态不改变,使检测的调整与感应的姿势状态相关联。
在另一个实施例中,本发明提供了一种系统,该系统包括:用户界面,用户界面被配置成检测递送至患者的电刺激治疗的患者调整;姿势状态模块,姿势状态模块感应患者的姿势状态;处理器,如果在检测所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段期间所述感应的姿势状态不改变,处理器使检测的调整与感应的姿势状态相关联。
在另一个实施例中,本发明提供了一种用于可植入医疗装置的外置编程装置,其包括:用户界面,用户界面接收由所述可植入医疗装置递送至患者的电刺激治疗的患者调整;遥测界面,遥测界面接收来自所述可植入医疗装置的感应的姿势状态并将接收的调整传送至可植入医疗装置;处理器,如果在检测所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段期间所述感应的姿势状态不改变,处理器使检测的调整与感应的姿势状态相关联;存储器,存储器将接收的调整与感应的姿势状态的关联储存在存储器中。
在另一个实施例中,本发明提供了一种可植入的医疗装置,其包括:刺激发生器,刺激发生器向患者递送电刺激治疗;遥测界面,遥测界面接收来自外置编程装置的对电刺激治疗的患者调整;姿势感应模块,姿势感应模块感应患者的姿势状态;处理器,如果在接收调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段期间所述感应的姿势状态不改变,处理器使接收的调整与感应的姿势状态相关联;存储器,存储器将接收的调整与感应的姿势状态的关联储存在存储器中。
在另一个实施例中,本发明提供了一种方法,该方法包括:经用户界面向用户呈递治疗调整信息,其中所述治疗调整信息包括患者对于一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的一个或多个治疗调整;接收来自用户的基于治疗调整信息选择对于每个治疗程序和每种姿势状态的一个或多个标称治疗参数的输入;和对于每个治疗程序和姿势状态设定选择的标称治疗参数用于向患者递送刺激治疗。
在另一个实施例中,本发明提供了一种系统,该系统包括:存储器,存储器储存治疗调整信息,治疗调整信息包括患者对于一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的一个或多个治疗调整;用户界面,用户界面向用户呈递治疗调整信息并接收来自用户的基于治疗调整信息选择对于每个治疗程序和每种姿势状态的一个或多个标称治疗参数的输入;和处理器,处理器对于每个治疗程序和姿势状态设定选择的标称治疗参数用于向患者递送刺激治疗。
在另一个实施例中,本发明提供了一种用于可植入医疗装置的外置编程装置,其包括:用户界面,用户界面经用户界面向用户呈递治疗调整信息,其中所述治疗调整信息包括患者对于一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的一个或多个治疗调整,和接收来自用户的基于治疗调整信息选择对于每个治疗程序和每种姿势状态的一个或多个标称治疗参数的输入;和处理器,处理器对于每个治疗程序和姿势状态设定选择的标称治疗参数用于向患者递送刺激治疗。
在另一实施例中,本发明提供了一种方法,该方法包括:接收治疗调整信息,所述治疗调整信息包括患者对于一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种参数作出的一个或多个治疗调整;基于治疗调整信息产生对于一个或多个刺激治疗程序的一个或多个建议的治疗参数;和向用户呈递该建议的治疗参数。
在另一个实施例中,本发明提供了一种用于可植入医疗装置的编程装置,该编程装置包括:处理器,处理器被配置成基于治疗调整信息产生对于由可植入医疗装置递送的一个或多个刺激治疗程序的一个或多个建议的治疗参数,其中所述治疗调整信息包括患者对于一种或多种患者姿势状态的各刺激治疗程序的至少一种参数作出的治疗调整;用户界面,用户界面向用户呈递建议的治疗参数和接收来自用户的选择建议的治疗参数中至少一些的输入,其中处理器设定选择的建议的治疗参数以至少部分地限定相应姿势状态的相应治疗程序。
在另一实施例中,本发明提供了一种方法,该方法包括:接收对于限定递送至患者的电刺激治疗的治疗程序的参数的患者治疗调整;识别患者的姿势状态;和当患者治疗调整在基于对于识别的姿势状态储存的调整信息所确定的范围内时,使患者治疗调整与所述姿势状态相关联。
在另一实施例中,本发明提供一种系统,该系统包括:用户界面,用户界面接收限定递送至患者的电刺激治疗的治疗程序的参数的患者治疗调整;和处理器,处理器识别患者的姿势状态,并当患者治疗调整在基于对于识别的姿势状态储存的调整信息所确定的范围内时,使患者治疗调整与姿势状态相关联。
在附图和下述描述中详细描述了本发明的一个或多个方面。通过说明书、附图和权利要求书,不难了解其它的特征、目的和优点。
附图简要说明
图1A的概念图显示了包括两根可植入的刺激导线的可植入刺激系统。
图1B的概念图显示了包括三根可植入的刺激导线的可植入刺激系统。
图1B的概念图显示了包括递送导管的可植入的药物递送系统。
图2的概念图显示了一种示例性患者编程装置,该装置用于编程可植入医疗装置递送的刺激治疗。
图3的概念图显示了一种示例性临床医师编程装置,该装置用于编程可植入医疗装置递送的刺激治疗。
图4的功能框图显示了可植入电刺激器的各个组件。
图5的功能框图显示了可植入药物泵的各个组件。
图6的功能框图显示了用于可植入医疗装置的外置编程装置的各个组件。
图7的框图显示了一种示例性的系统,该系统包括外置装置,例如服务器,以及通过网络耦联于图1A-1C所示可植入医疗装置和外置编程装置的一个或多个计算装置。
图8A-8C是可基于姿势状态传感器所感应的信号限定患者姿势状态的姿势锥的概念图。
图9的概念图显示了用于向患者递送治疗信息的患者编程装置的示例性用户界面。
图10的概念图显示了用于向患者递送包括姿势信息的治疗信息的患者编程装置的示例性用户界面。
图11A和11B的概念图显示了在可植入医疗装置的诊断或治疗应用之前使可植入装置与患者姿势状态定向的示例性用户界面。
图12A和12B的概念图显示了一种示例性用户界面,以确定可植入医疗装置的定向而不要求对每种姿势状态进行定向。
图13的概念图显示了只有一种姿势状态的示例性姿势搜索计时器和姿势稳定性计时器。
图14的概念图显示了姿势状态改变一次的示例性姿势搜索计时器和姿势稳定性计时器。
图15的概念图显示了姿势状态改变两次的示例性姿势搜索计时器和姿势稳定性计时器。
图16的概念图显示了最终的姿势状态改变在姿势搜索计时器之外发生的示例性姿势搜索计时器和姿势稳定性计时器。
图17的流程图显示了使接收的治疗调整与姿势状态相关联的示例性方法。
图18A的概念图显示了用于启动储存每种姿势状态的治疗调整的记录模式的示例性用户界面。
图19的概念图显示了一种示例性的用户界面,显示了储存的调整信息并允许一次点击编程。
图20的概念图显示了一种示例性的用户界面,显示了程序组的用户选择。
图21的概念图显示了一种示例性的用户界面,显示了姿势状态的用户选择。
图22的概念图显示了一种示例性的用户界面,显示了允许一次点击编程的对于程序组的所有姿势状态储存的调整信息。
图23的概念图显示了一种示例性的用户界面,显示了与图22相关的详细调整信息。
图24A和24B的概念图显示了示例性的用户界面,显示了与每种姿势状态相关的最大和最小治疗调整。
图25A的概念图显示了一种示例性的用户界面,显示了对于每种姿势状态的量化治疗调整。
图25B的概念图显示了一种示例性的用户界面,显示了所有组和指定组中对于每种姿势状态量化的治疗调整。
图26的概念图显示了一种示例性的用户界面,显示了允许一次点击编程的对于程序组的所有姿势状态储存的调整信息。
图27的流程图显示了在记录模式期间使治疗调整与姿势状态相关联的示例性方法。
图28的流程图显示了用于显示建议的参数和接收来自用户的确认输入用于一次点击编程的示例性方法。
图29的概念图显示了呈递在指导编程中针对程序组的每个程序建议的治疗参数的示例性的用户界面。
图30的概念图显示了示例性的用户界面,显示了可由用户选择用于指导编程的不同的指导算法。
图31的流程图显示了用于产生每个治疗程序建议的治疗参数和接收来自用户的确认输入的示例性方法。
图32的流程图显示了用于校正与非预期的姿势状态相关的治疗调整的示例性方法。
具体实施方式
在递送电刺激治疗的一些医疗装置中,治疗功效可随着患者不同姿势状态之间的变化而变化。一般来说,姿势状态是指患者姿势或姿势和活动的组合。例如,一些姿势状态,例如直立姿势状态可细分为直立活动或直立不活动。其他姿势状态,例如躺下姿势状态可以具有或不具有活动分量。一般来说,功效表示单独的症状,或者症状与一定程度的不良反应的组合得到的完全或部分缓解的组合。
姿势状态的改变可导致功效改变,因为电极或其它治疗递送元件之间的距离发生改变,例如由于与患者不同的姿势相关的力或应力导致的导线或导管的暂时迁移,或者由于不同姿势状态下患者组织的压缩改变。并且,姿势状态改变可导致症状或症状水平(例如疼痛水平)的改变。为维持治疗功效,需要基于患者不同的姿势和/或活动调整治疗参数以维持有效的刺激治疗。治疗参数可单独且直接地调整,或者通过选择限定不同治疗参数集合的不同程序或程序组进行调整。
由于姿势状态改变导致的功效改变可能需要患者频繁操控治疗,包括手动调整某些治疗参数,例如幅度、脉冲频率、脉冲宽度、电极组合或电极极性,或者选择不同的治疗程序以实现在许多不同的姿势状态下更有效的治疗。在一些情况下,医疗装置可采用姿势状态检测器检测患者姿势状态。然后,医疗装置响应不同的姿势状态调整治疗参数。响应不同的姿势状态的治疗调整可以是完全自动的,在用户提供建议改变的提议的意义上半自动,或者在患者基于姿势状态指示手动调整治疗的意义上是用户导向的。
可以向患者提供刺激治疗以缓解各种病症和疾病导致的症状。递送刺激治疗的可植入医疗装置(IMD)也可采用姿势状态传感器,它被配置成能够感应患者的姿势状态。然后,感应的姿势状态可以在感应的姿势状态或多个感应的姿势状态的情况期间与患者手动进行的治疗调整相关联,即与患者调整相关联,以允许用户检查该关联和修改刺激参数以更好地治疗患者。
当患者进行患者治疗调整时,即改变限定刺激治疗的刺激参数之一时,治疗调整针对具体的姿势状态。虽然大多数治疗调整可针对患者当前采取的姿势状态进行,有时患者可预期下一姿势状态而在移动到预期的姿势状态之前进行手动患者调整。因此,系统必需在治疗调整与患者想要采取的预期的姿势状态之间建立关联。
为实现这种关联,系统可实施针对每种感应的姿势状态的情况,即针对每次感应到的姿势状态的姿势搜索计时器。姿势搜索计时器可具有搜索阶段,姿势稳定性计时器可具有稳定性阶段,一起使用时,能允许系统将治疗调整关联到后续的姿势状态。如果最终的姿势状态在姿势状态计时器的搜索阶段内感应到并持续至少姿势稳定性计时器的稳定性阶段,则治疗调整只与最终的姿势状态相关联。在该意义上,系统可正确关联治疗参数与患者预期的姿势状态而不进行不想要的关联。
在另一实施例中,系统可进入记录模式,储存治疗调整与姿势状态之间的关联。记录模式能够在一段时间内监测针对多种姿势状态的患者治疗调整以助于选择在递送姿势响应性治疗中使用的自动化治疗调整。即使针对已进行治疗调整的治疗程序和姿势状态进行治疗调整时,所有先前存储的治疗调整可保持在储存器中以构成在记录模式中使用的治疗调整信息。治疗调整与姿势状态相关联可允许用户识别患者想要进行治疗调整的姿势状态。
外置编程装置如临床医师编程装置可通过用户界面的输出装置向用户呈递治疗调整信息。例如,呈递的治疗调整信息可包括治疗调整的最小和/或最大幅度值,治疗调整的平均幅度值,或针对每种姿势状态下每种治疗程序的治疗调整的量化数字。然后用户可基于呈递的信息修改用于一种或多种程序或程序组的治疗参数。
在其它实施例中,治疗调整与姿势状态的关联也可允许用户快速编程用于治疗的刺激参数。外置编程装置(例如临床医师编程装置)的用户界面的输出装置可呈递针对多种治疗调整的治疗程序中的每一个的刺激参数,或标称治疗参数。标称治疗参数可以是从储存在IMD中的治疗调整选择的治疗参数。标称治疗调整可不根据算法加权或计算。然后,用户界面的输入装置通过接受仅一次来自用户的确认输入即允许用户对所有治疗程序设定所呈递的标称治疗参数。标称治疗参数可以例如是治疗调整或使用的最终治疗调整的最小幅度。
用户界面的输出装置也可基于针对各种治疗程序中的每一种的治疗调整呈递建议的治疗参数。然后,用户可通过用户界面的输入装置一次确认输入选择或确认针对所有的各种治疗程序的建议的治疗参数。具体说,建议的治疗参数可由用于找出患者最有效治疗的引导算法产生,而不仅仅是储存在IMD中的治疗调整。引导算法可实施加权平均、治疗调整趋势、保护对抗过度刺激的安全保卫或者任何其它因素中的一种或多种。以这种方式,临床医师可不再承担找出患者最有效治疗参数的时间,且每次患者进入不同的姿势状态,治疗程序将递送具有最合适的治疗参数的治疗。
输入装置和输出装置可统称为用户界面。在一些情况下,输入和输出装置可与不同的装置相连。例如,在一些情况下,治疗调整可由患者通过与患者编程装置相关联的用户界面进行。一些信息,例如与治疗调整、姿势等相关的信息可通过临床医师编程装置或其它装置呈递给用户。在其它情况下,输入和输出装置可与同一编程装置相连。例如,临床医师编程装置可通过输出装置呈递与治疗调整和姿势相关的信息并通过输入装置接收来自用户的编程信息。
此外,编程装置能够使患者想要的治疗调整仅与具体的姿势状态相关联。如果编程装置识别到接收的治疗调整处于先前存储的治疗调整的历史范围之外,编程装置可不进行治疗调整与姿势状态的关联。然而,编程装置可提示用户确认该关联并仅在接收确认之后进行关联。
本发明所述技术的各个方面体现在可植入医疗装置(IMD)中、IMD的外置编程装置中或其组合中。例如,可植入医疗装置和外置编程装置的处理器可执行各种功能如记录与具体的程序和姿势状态相关的治疗调整。
在IMD执行关联的情况下,治疗调整可由编程装置传送至IMD,不仅用于调节由IMD递送的治疗,而且在将调整与恰当程序和姿势状态关联时被IMD利用以支持用于收集这种关联的记录模式。在由外置编程装置执行关联的情况下,感应的姿势状态可由IMD传送至编程装置,不仅用于记录和呈递姿势状态,而且在将调整与恰当程序和姿势状态关联时被程序装置利用以支持收集这种关联的记录模式。
因此,在许多情况下,本发明所述的功能可由IMD、编程装置或两种的组合来执行。因此,描述IMD或编程装置具体功能的实施例不应理解为技术、装置和系统的限制,如本发明广义描述的那样。
图1A的示意图显示了一种可植入的刺激系统10,其包括刺激导线16A和16B形式的一对可植入电极阵列。虽然本发明所述的技术通常可应用于各种医疗装置,包括外置和可植入医疗装置(IMD),本发明将示例性地描述这些技术对IMD的应用,更具体说是对可植入电刺激器如神经刺激器的应用。更具体说,本发明将示例性地描述可植入的脊髓刺激(SCS)系统,但并不限制其它类型的医疗装置。
如图1A所示,系统10包括示出与患者12联接的IMD14和外置编程装置20。在图1A所示实施例中,IMD14是可植入电刺激器,它被构造用于脊髓刺激(SCS),例如用于缓解慢性疼痛或其它症状。同样,虽然图1A显示了可植入医疗装置,但其它实施方式可包括例如具有经皮植入的导线的外置刺激器。刺激能量通过可植入导线16A和16B(统称为“导线16”)的一个或多个电极由IMD14递送至患者12的脊髓18。在一些应用中,例如脊髓刺激(SCS)用于治疗慢性疼痛,相邻的可植入导线16可具有相互间基本上平行的纵轴线。
虽然图1A涉及SCS治疗,但系统10可替代地涉及能够受益于刺激治疗的任何其它病症。例如,系统10可用于治疗震颤、帕金森病、癫痫、尿失禁或大便失禁、性功能障碍、肥胖或胃轻瘫。在这种方式中,系统10可配置成提供深部脑刺激(DBS)、骨盆底刺激、胃刺激形式的治疗或任何其它刺激治疗。此外,患者12是普通人类患者。
各个导线16可包括电极(图1中未示出),且用于控制IMD14刺激治疗的递送的程序的参数可包括识别根据刺激程序哪个电极被选择用于递送刺激,选择的电极的极性,即该程序的电极构造,以及电极递送的刺激的电压或电流幅度、脉冲频率和脉冲宽度等信息。将示例性地描述刺激脉冲的递送。然而,刺激可以诸如连续波形等其它形式递送。控制IMD14其它治疗递送的程序可包括其它参数,例如用于药物递送的剂量、频率等。
在图1A所示实施例中,导线16可负载邻近脊髓靶组织设置的一个或多个电极。一个或多个电极可位于导线16的远端和/或沿导线中间点的其它位置。导线16可植入并耦联于IMD 14。或者,如上所述,导线16可例如通过经皮端口植入并耦联于外置刺激器。在一些情况下,外置刺激器可以是试验或筛选刺激,在暂时基础上使用以评价潜在功效,以助于患者的长期植入的考虑。在其它实施方式中,IMD14可以是无导线刺激器,具有布置在刺激器外壳上的一个或多个阵列的电极而不是从外壳延伸的导线。
刺激可通过由一个或多个导线16所负载的选择的电极组合来递送。靶组织可以是受例如电刺激脉冲或波形的电刺激能量影响的任何组织。这些组织包括神经、平滑肌和骨骼肌。在图1A所示实施例中,靶组织是脊髓18。脊髓18的刺激可例如阻止疼痛信号行进通过脊髓而到达患者脑部。患者12可因为疼痛减轻而察觉到疼痛信号的中断,因而具有有效的治疗结果。
将示例性地描述经导线16的电极的部署,但可以不同方式部署电极阵列。例如,与无导线刺激器相关的外壳可负载电极阵列,例如成行和/或成列(或其它式样),并可对其施加切换操作。这些电极可排列成表面电极、环电极或凸起。作为另一可选形式,电极阵列可以由在一个或多个桨形导线上多行和/或多列电极形成。在一些实施方式中,电极阵列可包括电极段,电极段可排列成位于沿导线外周的各个位置,例如围绕圆柱形导线的圆周一个或多个分段环的形式。
在图1A所示实施例中,刺激能量由IMD14递送至脊髓18以减轻患者12感知的疼痛的量。如上所述,IMD 14可与各种不同的疼痛治疗联用,例如外周神经刺激(PNS)、外周神经阈刺激(PNFS)、DBS、皮质刺激(CS)、骨盆底刺激、胃刺激等。IMD 14递送的电刺激可采取电刺激脉冲或连续刺激波形的形式,且特征是受控的电压水平或受控的电流水平以及在刺激脉冲的情况下脉冲宽度和脉冲频率。
在一些情况下,IMD 14可根据一种或多种程序递送刺激治疗。程序限定一个或多个参数,这些参数限定根据该程序由IMD14递送的治疗的一方面。例如,控制脉冲形式的IMD14刺激的递送的程序可限定电压或电流脉冲幅度,脉冲宽度、脉冲频率,用于根据该程序由IMD14递送刺激脉冲。而且,治疗可根据多个程序递送,其中多个程序包含在多个组的每一个内。
每个程序组可支持患者12可选择的替代治疗,IMD14可根据多个程序递送治疗。IMD 14在递送刺激时可轮用该组的多个程序,从而治疗患者12的各种病症。例如,在一些情况下,根据不同程序限定的参数制定的刺激脉冲可以时间交错地递送。例如,一组可包括涉及腿部疼痛的程序,涉及下背部疼痛的程序和涉及腹部疼痛的程序。以这种方式,IMD 14可以基本上同时治疗不同的症状。
使用IMD 14治疗患者12期间,患者12在不同姿势状态间的移动可能影响IMD14递送一致的有效治疗的能力。例如,当患者12弯曲时导线16可能朝IMD14迁移,导致电极移位和可能的有效治疗递送的中断。由于电极迁移,传递至靶组织的刺激能量可能降低,导致缓解诸如疼痛等症状方面的功效降低。在另一个例子中,当患者12躺下时导线16可朝脊髓18压缩。这种压缩可导致传递至靶组织的刺激能量的量增加。在这种情况下,可能需要降低刺激治疗的幅度以避免引起患者12额外的疼痛或异常感觉,这些可视作损害总体功效的不良反应。
并且,姿势状态改变可能导致症状或症状水平,例如疼痛水平的改变。在一些实施例中,为了避免有效治疗的中断,IMD 14可包括检测患者姿势状态的姿势状态模块。IMD根据检测的姿势状态自动调节刺激。例如,姿势状态模块可包括一个或多个加速度计,检测患者12何时采取适合降低刺激幅度的姿势,例如患者12何时躺下。IMD可自动降低刺激幅度,因而患者12无需手动这样做。示例性的姿势状态可包括“直立”、“直立活动”、“躺下”等等。
如下文更详细所述,在一些实施例中,IMD14可配置成当其检测到患者12躺下时自动降低刺激幅度。幅度调整可配置成以适合防止不良反应(例如当患者12躺下时由于导线16朝脊髓18压缩导致的反应)的速率降低。在一些实施例中,IMD 14可被配置成一旦IMD14检测到患者12躺下基本上立即降低刺激幅度至合适的幅度值。在其它实施例中,IMD14不会在检测到患者12躺下时基本上立即降低刺激幅度,相反IMD14以适合防止患者12发生不良的刺激反应(例如在改变的解剖学位置中由于刺激能量的传递增加导致的反应)的改变速率下将刺激幅度降低至合适的幅度水平。在一些实施例中,当IMD检测到患者12躺下时,IMD 14可基本上瞬时将刺激幅度降至合适的幅度值。
刺激能量与靶组织的耦联增加或耦联降低导致的功效降低的许多其它例子可能因为与患者姿势状态相关的姿势和/或活动水平的改变而发生的。为了避免或降低由于姿势状态改变导致的有效治疗的可能中断,IMD 14可包括姿势状态模块,检测患者12的姿势状态并使IMD 14根据检测的姿势状态自动调节刺激。例如,姿势状态模块可包括姿势状态传感器,例如加速度计,检测患者12何时躺下、站起来或者以其它方式改变姿势。
响应于姿势状态模块产生的姿势状态指示,IMD14可改变程序组、程序、刺激幅度、脉冲宽度、脉冲频率和/或一种或多种其它参数、多个组或多个程序以维持治疗功效。例如,当患者躺下时,IMD14可自动降低刺激幅度,因而患者12无需手动降低刺激幅度。在一些情况下,IMD 14可连通外置编程装置20以呈递响应于姿势状态改变而建议的刺激改变,并在自动应用治疗改变之前接收用户(例如患者12或临床医师)下达的对改变的批准或拒绝。在一些实施例中,姿势状态检测也可用于提供通知,例如经无线链接向护理人员提供患者可能经历跌倒的通知。
仍然参考图1A,用户(例如临床医师或患者12)可与外置编程装置20的用户界面相互作用以编程IMD14。用户界面可包括用于呈递信息的输出装置和用于接收用户输入的输入装置。IMD14的编程通常是指命令、程序或其它信息的产生和传递以控制IMD14的运行。例如,外置编程装置20例如可通过无线遥测传送程序、参数调整、程序选择、组选择或其它信息以控制IMD 14的运行。在一个例子中,外置编程装置20可传送由于患者12姿势改变导致的参数调整以支持治疗改变。在另一个例子中,用户可选择程序或程序组。同样,传送的特征为电极组合、电极极性、电压或电流幅度、脉冲宽度、脉冲频率和/或持续时间。组的特征为同时或者在交叉或轮换地递送多个程序。
在刺激治疗的递送期间,患者12可进行患者治疗调整,即通过编程装置用户界面的输入装置对治疗的一个或多个参数进行患者调整,以在患者12移动至不同的姿势状态之后或者在预期下一姿势状态时定制治疗。在IMD14处于记录模式以存储与具体的姿势状态相关联的所有患者治疗调整的实施例中,IMD14可实现能够确保在进行治疗调整时患者治疗调整与患者12所预期的正确的姿势状态相关联的方法。患者12可多次采取该姿势状态,因而存在该感应姿势状态的多个情况。
每次患者12采取该姿势状态,患者可输入一个或多个治疗调整。因此,在感应的姿势状态的多个情况中,即患者在一段时间间隔内采取该姿势状态的多个不同的时间点,可获得多个治疗调整,并且与姿势状态相关联。IMD 14可以在任何治疗调整之后使用具有搜索阶段的姿势搜索计时器和具有稳定性阶段的姿势稳定性计时器以将治疗调整与合适的姿势状态匹配。只有当最终姿势状态在姿势搜索计时器的搜索阶段开始并持续超过姿势稳定性计时器的稳定性阶段时,治疗调整才与最终姿势状态相关联。以这种方式,治疗调整不与不能保持恒定或者不能在治疗调整后很快不采取的姿势状态相关联。
在一些情况下,当主要预期由内科医师或临床医师使用时,外置编程装置20的特征为内科医师或临床医师编程装置。在其它情况下,当主要预期由患者使用,例如由患者输入以指定针对一个或多个治疗参数的患者调整时,外置编程装置20的特征为患者编程装置。患者编程装置通常由患者12访问,并且在许多情况下,可以是便携装置,可以在患者的整个日常生活中陪伴患者。通常,内科医师或临床医师编程装置可支持临床医师对刺激器14使用的程序的选择和产生,而患者编程装置可支持平常使用期间患者对该程序的调整和选择,不论是手动还是通过其他用户输入介质都是如此。
外置编程装置20可呈递来自检测的患者12的姿势状态的存储在IMD14中的姿势状态数据。姿势状态数据可由外置编程装置20获取以产生姿势状态信息,例如治疗调整信息。IMD 14也可储存记录模式期间治疗调整与治疗调整所针对的姿势状态之间的任何关联,即治疗调整信息。通过记录每种姿势状态下针对程序进行的所有治疗调整(包括感应的姿势状态的多个情况中的每一个),外置编程装置20能够向用户呈递治疗调整信息,基于参数应用指示患者12所需的刺激参数。例如,用户能够识别患者12所需的大多数近期的刺激参数,最小和最大允许的幅度,或者甚至治疗调整的量化数字,以指示患者12对程序满意或者不能容易地找出针对程序和许多治疗调整合适的参数。
记录模式期间存储的治疗调整信息可以许多不同的方式呈递。例如,用户界面的输出装置可呈递一组中各个程序和相应次数的治疗调整以及治疗调整所限定的幅度范围。或者,用户界面的输出装置也可呈递由患者12使用的每个程序递送治疗的最终(即最新近的)幅度。在任何方式中,治疗调整信息可以在外置编程装置20上以图表、数字或文本模式呈递。在其它实施例中,用户能够定制治疗调整信息的呈递。
在一些实施例中,外置编程装置20可采用治疗调整与姿势状态的关联以进一步最小化编程所有治疗程序所需的时间。当呈递针对每种治疗程序的治疗调整幅度范围时,用户能够提供对所有程序的幅度设定到一些标称治疗参数的单一确认输入。标称治疗参数可以是与程序和姿势状态相关联的最小幅度、与程序和姿势状态相关联的最终幅度、或者与各个治疗程序和姿势状态相关联的已经由IMD14储存的一些其它治疗参数。在治疗参数表示为描述值的名称的参数值而不是特定的绝对参数值的含义上,治疗参数可称为标称的。在程序不与任何治疗调整相关联的情况下,程序中不编程新的刺激参数。
在其他实施例中,外置编程装置20可基于治疗调整信息和引导算法产生建议的治疗参数。建议的治疗参数可以是用户可见的具体治疗参数值,但表示为由引导算法建议。引导算法可以是方程、方程组、查找表或用于产生限定对患者12有效的刺激治疗的建议的治疗参数的其他技术。在这种方式中,外置编程装置20分析匹配用户需要的最合适的刺激参数的治疗调整信息。引导算法可产生低或高的加权平均,使过度刺激几率最小化的安全平均,加权更新近患者调整至大于较老的治疗调整的治疗的趋势目标,或者甚至是在提供刺激治疗的不同组中查找治疗调整程序的组间平均。在任何情况下,用户能够选择单次确认输入,用每个建议的治疗参数编程多种程序。
IMD 14可用生物相容性外壳构建,例如钛或不锈钢,或聚合材料如硅酮或聚氨酯,在患者12的骨盆附近处外科手术植入。IMD 14也可以在患者12最不易引人注意的位置植入患者12。或者,IMD 14可通过经皮植入的导线外置。对于SCS,IMD 14可位于下腹部、下背部、上臀部或其他位置以固定IMD14。导线16可由IMD14通道传输通过组织到达邻近脊髓18的靶组织用于刺激递送。
在导线16的远端是一个或多个电极(未示出),将来自导线的电刺激传递至组织。电极可以是桨形导线上的电极垫、围绕导线16主体的圆形(例如环形)电极、符合电极、C形电极(cuff electrodes)、分段电极、或能够形成用于治疗的单极、双极或多极电极配置的任何其它类型的电极。通常,将在示意性地描述排列在导线16远端的不同轴线位置的环形电极。
图1B概念图显示了包括三根可植入的刺激导线16A、16B、16C(统称为16)的可植入刺激系统22。系统22通常符合图1A的系统10,但包括沿脊髓18的第三导线。因此,IMD 14可以通过所有三根导线16或者三根导线的子集所负载的电极的组合递送刺激。第三根导线,例如导线16C可包括比导线16A和16B更多数量的电极,且位于导线16A和16B之间或者在导线16A或16B的一侧。外置编程装置20可首先告诉导线16的数量和配置以适当对刺激治疗编程。
例如,导线16A和16B可包括四个电极,而导线16C包括八个或十六个电极,从而形成所谓的4-8-4或4-16-4导线配置。其他导线配置,例如8-16-8、8-4-8、16-8-16、16-4-16也是可能的。在一些情况下,导线16C上的电极可以比导线16A或16B的电极尺寸更小和/或更接近。在一些实例中,患者12改变活动或姿势导致的导线16C的移动比导线16A或16B的移动更严重地影响刺激功效。患者12可进一步受益于IMD14检测姿势状态和相关改变并自动调整刺激治疗以维持三导线系统22的治疗功效的能力。
图1C的概念图显示了一种可植入的药物递送系统24,其包括耦联于IMD26的一个递送导管28。如图1C的实施例所示,药物递送系统24基本上类似于系统10和22。然而,药物递送系统24通过药物刺激治疗而非电刺激治疗的递送执行类似的治疗功能。在图1C所示实施例中IMD 26用作药物泵,IMD 26与外置编程装置20连通以启动治疗或在运行期间修改治疗。此外,IMD 26可重复填充以允许慢性药物递送。
虽然所示IMD 26耦联于沿脊髓18定位的仅一个导管,但其他导管也可耦联于IMD26。多个导管可将药物或其他治疗剂递送至相同的解剖学位置或相同的组织或器官。或者,每个导管可将治疗递送至患者12体内不同组织,用于治疗多种症状或病症。在一些实施方式中,IMD 26可以是外置装置,其包括经皮导管,经皮导管形成导管28或者例如通过流体耦联器耦联于导管28。在其他实施方式中,IMD 26可包括如IMD14所述的电刺激和药物递送治疗。
IMD 26也可采用限定药物递送方法的参数来运行。IMD 26可包括限定用于患者12的不同递送方法的程序或程序组。例如,控制药物或其他治疗剂递送的程序可包括控制推注递送时间选择的滴定速率或信息。患者12可采用外置编程装置20来调整程序或程序组以调控治疗递送。
类似于IMD 14,IMD 26可包括监测患者12姿势状态并相应地调整治疗的姿势状态模块。例如,姿势状态模块可指示患者12从躺下到站起来的转变。如果指示患者12站立时疼痛增加,则IMD 26可自动增加递送给处于站立位置的患者12的药物的速率。这种基于姿势状态的自动治疗调整可以根据IMD26所采用的所有或仅一部分的程序激活以递送治疗。
图2的概念图显示了一种示例性患者编程装置30,该装置用于对可植入医疗装置递送的刺激治疗编程。患者编程装置30是图1A、1B和1C所示外置编程装置20的一个示例性实施方式并且可以与IMD14或IMD26联用。在可选的实施方式中,患者编程装置30可以与外置医疗装置联用。如图2所示,患者编程装置30向使用者(例如患者12)提供了用户界面(未示出)以操控和编程刺激治疗。患者编程装置30受外壳32的保护,外壳32包裹患者编程装置30运行所必需的电路。
患者编程装置30还包括显示器36(显示器36形成用户界面输出装置的一部分),电源按钮38,上调按钮52,下调按钮50,同步按钮58,刺激打开按钮54和刺激关闭按钮56。覆盖层34保护显示器36以避免在患者编程装置30使用期间受损。患者编程装置30还包括控制垫40,控制垫40形成用户界面输入装置的一部分并允许用户沿箭头42、44、46和48的方向通过显示器36上显示的项目进行导航。在一些实施方式中,按钮和控制垫40可采取软键盘的形式(例如,具有显示器36上指示的功能和内容),例如其功能可基于目前的编程操作或用户偏好而改变。在替代实施方式中,显示器36可以是触摸屏,其中患者12能够与显示器36直接相互作用而不需要使用控制垫40或者甚至是上调按钮52和下调按钮50。
在所示实施方式中,患者编程装置30是手持式装置。患者编程装置30可以在整个日常生活中陪伴患者12。在一些情况下,当患者12在医院或诊所问诊时,可由临床医师使用患者编程装置30。在其他实施方式中,患者编程装置30可以是保留在临床医师处或诊所的临床医师编程装置,当患者在诊所时由临床医师和/或患者12使用。在临床医师编程装置的情况下,小尺寸和便携性的重要性降低。因此,临床医师编程装置可以比患者编程装置的尺寸更大,可提供更全面特征编程的较大屏幕。
外壳32可以由适合保护和容纳患者编程装置30的各个组件的聚合物、金属合金、复合材料或组合材料构成。此外,外壳32可部分或完全密封,因而流体、气体或其他元素不能穿透外壳而影响其内部的组件。电源按钮38可以按照患者12需要打开或关闭患者编程装置30。患者12可以使用控制垫40通过用户界面进行导航来控制显示器36照度水平或者背景光水平,或用下调和上调按钮50和52增加或降低照度水平。在一些实施方式中,可以顺时针或逆时针转动旋钮以控制患者编程装置30运行状态和显示器36照度来控制照度。遥测期间可以用IMD14或其他装置阻止患者编程装置30关闭,以防止传送数据的损失或正常运行的停止。或者,患者编程装置30和IMD14可包括处理可能的未计划的遥测中断,例如电池失效或装置无意关闭的指令。
显示器36可以是液晶显示器(LCD)、点矩阵显示器、有机发光二极管(OLED)显示器、触摸屏、或能够向患者12提供可视信息的类似的单色或颜色显示器。显示器36可提供关于当前刺激治疗、姿势状态信息的用户界面,提供用于接受来自患者12的反馈或药物输入的用户界面,显示刺激程序的活动组,以及显示患者编程装置30或IMD14或26的运行状态。例如,患者编程装置30可以通过显示器36提供各组的滚动列表和每个组内各程序的滚动列表。
显示器36可呈递可视姿势状态的指示。此外,显示器36可以呈递在IMD14的记录模式期间储存的治疗调整信息,甚至是呈递多个程序的标称或建议的治疗参数。然后,患者12可以通过单次确认输入选择性地将多个程序设定为相应的标称或建议的治疗参数。如本文所述,患者编程装置30可被配置成能够执行关于临床医师编程装置60(下文参考图3所述)或其他外置编程装置20所述的任何任务。
控制垫40允许患者12通过显示器36上显示项目进行导航。患者12可以在箭头42、44、46和48所示的任意方向上按下控制垫40,以移动至显示器36上的另一项目或者移动至目前显示器上未显示的另一屏幕。在一些实施方式中,按下控制垫40的中部可选择在显示器36中突出显示的任何项目。在其他实施方式中,滚动条、滚动轮、单独的按钮或操纵杆可执行控制垫40的部分或全部功能。在可选的实施方式中,控制垫40可以是触摸垫,允许患者12在显示器36上显示的用户界面内移动光标来操控治疗或审阅姿势状态信息。
下调按钮50和上调按钮52为患者12提供了输入机构。通常,下调按钮50可以在每次按下下调按钮时降低突出显示的刺激参数的值。相反,上调按钮52可以在每次按下上调按钮时增加突出显示的刺激参数的值。虽然按钮50和52可用于控制任何刺激参数的值,按钮50和52也可控制患者反馈输入。当选择按钮50和52之一时,患者编程装置30可启动与IMD14或26的通信来相应地改变治疗。
当患者12按下打开刺激按钮54时,引导编程装置30产生与IMD14的通信的命令,该命令打开刺激治疗。当患者12按下关闭刺激按钮56时关闭刺激治疗。同步按钮58迫使患者编程装置30与IMD 14通信。当患者12进入用户界面的自动姿势响应屏幕时,按下同步按钮58打开自动姿势响应,以使IMD14根据患者12的姿势状态自动改变治疗。同样,当显示自动姿势响应屏幕时,按下同步按钮58可关闭自动姿势响应。在图2所示实施例中,患者12可使用控制垫40来调节患者编程装置30的音量、对比度、照度、时间和测量单位。
在一些实施方式中,按钮54和56可被配置成能够执行与刺激治疗或患者编程装置30的使用相关的操作功能。例如,按钮54和56可控制编程装置20产生的可听声的音量,其中按钮54增加音量而按钮56降低音量。可按下按钮58以进入操作菜单,允许患者12将患者编程装置30的用户界面配置成患者12的需要。例如,患者12能够选择语言、背景光延迟时间、显示器36的亮度和对比度或其他类似的选项。在可选的实施方式中,按钮50和52可控制所有操作和选择功能,例如与刺激治疗或声音音量相关的那些功能。
患者编程装置30可采取本文未描述的其他形状或尺寸。例如,患者编程装置30可采取蛤壳形状的形式,类似于一些手机设计。当患者编程装置30关闭时,用户界面的一些或所有元素被保护在编程装置内。当患者编程装置30打开时,编程装置的一侧可包含显示器而另一侧可包含输入机构。在任何形状中,患者编程装置30能够执行本文所述的需求。患者编程装置30可选的实施方式可包括其他输入机构,例如键盘、麦克风、相机镜头或允许用户与患者编程装置30提供的用户界面相互作用的任何其他介质。
在其他实施方式中,患者编程装置30的按钮可执行与作为一个实施例的图2所示功能不同的功能。此外,患者编程装置30的其他实施方式可包括不同的按钮布局或不同数量的按钮。例如,患者编程装置30甚至可包括单一的触摸屏,囊括了所有的用户界面功能,具有一组有限的按钮或无其他按钮。
图3的示意图显示了一种示例性临床医师编程装置60,该装置用于对可植入医疗装置递送的刺激治疗编程。临床医师编程装置60是图1A、1B和1C所示外置编程装置20的一个示例性实施方式并且可以与IMD14或IMD26联用。在可选的实施方式中,临床医师编程装置60可以与外置医疗装置联用。如图3所示,临床医师编程装置60向使用者(例如临床医师、内科医师、技术人员或护士)提供了用户界面(未示出)以操控和编程刺激治疗。此外,临床医师编程装置60可用于审阅客观的姿势状态信息以监测患者12的进程和治疗功效。临床医师编程装置60受外壳62的保护,外壳32包裹临床医师编程装置60运行所必需电路。
临床医师编程装置60由临床医师或其他用户使用以修改和审阅患者12的治疗。临床医师可限定针对限定刺激治疗的各个程序的每个治疗参数的值。治疗参数(例如幅度)可根据治疗期间患者12采取的各个姿势状态具体限定。此外,临床医师可通过使用本文所示的姿势椎或用于使姿势状态传感器输出与患者12的姿势状态相关联的一些其他技术,使用临床医师编程装置60来限定患者12的各个姿势状态。
临床医师编程装置60包括显示器64和电源按钮66。在图3所示实施例中,显示器64是触摸屏,接受用户通过触摸显示器64内的某些区域产生的输入。用户可使用指示笔68来触摸显示器64和选择虚拟的按钮、滑动块、键盘、拨号或显示器64显示的用户界面呈递的其他表示。在一些实施方式中,用户能够用手指、钢笔或任何其他点击设备触摸显示器64。在可选的实施方式中,临床医师编程装置60可包括一个或多个按钮、键盘、控制垫、触摸垫或接受用户输入的其他装置,类似于患者编程装置30。
在所示实施方式中,临床医师编程装置60是手持式装置。临床医师编程装置60可以在诊所内或在内部患者呼叫时使用。临床医师编程装置60可用于与不同患者体内的多个IMD14和26通信。以这种方式,临床医师编程装置60能够与不同的装置进行通信并独立保留不同患者的数据。在一些实施方式中,临床医师编程装置60可以是便携性较低的较大的装置,例如笔记本电脑、工作站或者甚至是通过远程遥测装置与IMD14或26通信的远程电脑。
大部分(如果不是全部)的临床医师编程装置60功能可通过显示器64的触摸屏完成。用户可编程刺激治疗,修改程序或组,检索储存的治疗数据,检索姿势状态信息,限定姿势状态和其他活动信息,改变显示器64的对比度和背景光,或者任何其他治疗相关的功能。此外,临床医师编程装置60能够与网络服务器通信以发送或接收电子邮件或其他消息,检索编程指令,访问帮助说明,发送错误消息,或者执行有利于即时治疗的任何其他功能。
临床医师编程装置60也可允许临床医师观察治疗期间储存在IMD14内的治疗调整历史信息。如上所述,治疗调整信息包括递送自动姿势响应刺激的每个程序中治疗参数值调整和姿势状态之间产生的任何关联。临床医师使IMD 14面向患者12并使IMD14的记录模式能够储存治疗调整信息等任何关联。然后,临床医师编程装置60可从IMD14获取治疗调整信息并向临床医师呈递信息以允许继续有效的治疗修改。
在一些实施例中,临床医师编程装置60也可允许临床医师调整姿势搜索计时器的搜索阶段和姿势稳定性计时器的稳定性阶段。姿势搜索计时器和姿势稳定性计时器使IMD 14能够确定治疗调整应当关联的姿势状态。根据患者12的状况或临床医师的偏好,临床医师可能希望调整搜索阶段和稳定性阶段以最精确地反映患者12的意图。例如,如果患者12具有在改变姿势状态之前很长时间调整治疗的习惯或者患者12需要较长时间来摆出所需的姿势状态,则临床医师可能希望增加搜索阶段和稳定性阶段以使治疗调整与预期的姿势状态适当关联。在一些实施例中,临床医师编程装置60可为诊断患有可能阻碍其运动或者在决定最终的姿势状态之前涉及姿势状态的多次摆动的具体病症的患者建议合适的搜索阶段和稳定性阶段。
此外,临床医师编程装置60可基于IMD14中储存的治疗调整信息向临床医师呈递标称和建议的治疗参数。在一个实施例中,临床医师编程装置60可简单地呈递每个程序和姿势状态下治疗调整确定的幅度范围。然后,临床医师可将每个程序的幅度设定为临床医师编程装置60的显示器64上呈递的标称治疗参数。例如,标称治疗参数可以是每个程序患者12使用的最小幅度。或者,临床医师编程装置60可呈递每个程序和姿势状态最终的治疗调整,或者平均治疗调整。然后,临床医师编程装置60可用来自临床医师的单次确认输入为所有显示的程序设定治疗参数。该单次输入可减少临床医师编程时间和总体编程复杂性。
而且,临床医师编程装置60可呈递给临床医师基于治疗调整信息的针对每个程序和姿势状态建议的治疗参数。建议的治疗参数可以是或不是由治疗调整使用的参数。临床医师编程装置60可利用尝试产生建议的治疗参数的引导算法,这样临床医师不再需要手动确定每个程序的最佳治疗参数。临床医师编程装置60可利用定制临床医师编程装置60如何产生建议的治疗参数的一种算法或接受来自临床医师的引导算法输入。例如,临床医师编程装置60可使用权重更多新近的治疗调整的目标趋势引导算法,这样建议的治疗参数更贴切地表示患者12对刺激治疗的新近反应。
在一些情况下,所有处理可以在IMD14中执行并分布至临床医师编程装置60仅用于呈递给临床医师。或者,IMD 14、临床医师编程装置60、患者编程装置30或其他计算装置在治疗调整信息和任何其他数据的处理任务中共享,然后将该信息呈递到临床医师编程装置60上。在其他实施方式中,IMD 14可简单地将原始数据传送至执行本文所述任务所必需的外置编程装置20或其他用于数据处理的计算装置。因此,本发明描述的方法可以在IMD14、编程装置30、编程装置60、或这些组件的组合内实现。
外壳62可以由适合保护和容纳临床医师编程装置60的各个组件的聚合物、金属合金、复合材料或组合材料构成。此外,外壳62可部分或完全密封,因而流体、气体或其他元素不能穿透外壳而影响其内部的组件。电源按钮66可以按照使用者需要打开或关闭临床医师编程装置60。临床医师编程装置60可能要求在使用者能够使用临床医师编程装置60之前输入密码、生物测定输入或其他安全措施并被接受。
临床医师编程装置60可采取本文未描述的其他形状或尺寸。例如,临床医师编程装置60可采取蛤壳形状的形式,类似于一些手机设计。当临床医师编程装置60关闭时,至少一部分的显示器64被保护在外壳62内。当临床医师编程装置60打开时,编程装置的一侧可包含显示器而另一侧可包含输入机构。在任何形状中,临床医师编程装置60能够执行本文所述的需求。
图4的功能框图显示了IMD 14的各个组件。在图4所示实施例中,IMD14包括处理器80、存储器82、刺激发生器84、姿势状态模块86、遥测电路88和电源90。刺激发生器84形成治疗递送模块。存储器82可储存处理器80执行的指令、刺激治疗数据、姿势状态信息、姿势状态指示以及任何其他关于治疗或患者12的信息。治疗信息可记录后长期储存并由使用者检索,治疗信息可包括IMD14产生或储存的任何数据。存储器82可包括用于储存指令、姿势状态信息、指令调整信息、程序历史以及可能受益于单独的物理储存模块的任何其他数据的单独存储器。
处理器80控制刺激发生器84,经一个或多个电极阵列中的电极形成的电极组合递送电刺激。例如,刺激发生器84例如以刺激脉冲或连续波形的形式通过一根或多根导线16上的电极递送电刺激治疗。IMD14、外置编程装置20或本发明所述的任何其他装置内用作处理器的组件可各自包括一个或多个处理器,例如一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程的逻辑电路等,单独使用或以任何合适的组合联用。
刺激发生器84可包括刺激发生电路和开关电路,刺激发生电路产生刺激脉冲或波形,而开关电路能够例如响应处理器80的控制而开关跨越不同的电极组合的刺激。具体说,处理器80可以在选择性基础上控制开关电路,使刺激发生器84向选定的电极组合递送电刺激并且在治疗必需递送至患者12体内不同位置时沿第一方向或第二方向将电刺激切换至不同的电极组合。在其他实施方式中,刺激发生器84可包括多个电流源以同时驱动超过一个电极组合。在这种情况下,刺激发生器84可降低至第一电极组合的电流并且同时增加至第二电极组合的电流以切换刺激治疗。
电极配置,例如电极组合和相关的电极极性,可由储存在IMD14的存储器位置(例如,存储器82)中的数据表示。处理器80可访问存储器位置以确定电极组合和控制刺激发生器84通过指定的电极组合递送电刺激。为了调整电极组合、幅度、脉冲频率或脉冲宽度,处理器80可命令刺激发生器84根据存储器82内的指令适当地改变治疗并重写存储器位置以指示改变的治疗。在其他实施方式中,处理器80可利用两个或更多个存储器位置而不是重写单一的存储器位置。激活刺激时,处理器80不仅可以访问指定电极组合的存储器位置,而且可以访问指定诸如电压或电流幅度、脉冲宽度和脉冲频率等各种刺激参数的其他存储器位置。例如在处理器80的控制下,刺激发生器84可利用电极组合和参数来向患者12制定和递送电刺激。
根据本文所述的实施例,可基于检测的患者12的姿势状态调整这种刺激参数以修改IMD14递送的刺激治疗。在一些实施例中,处理器80可通过姿势状态模块86检测患者12的姿势状态,姿势状态模块86例如根据储存在存储器82中的指令指示刺激治疗的修改是合适的。处理器80可访问基于患者12的姿势状态修改刺激治疗的指令,例如通过从适用于前一种姿势状态的刺激程序改变为适用于患者当前姿势状态的刺激程序。
下面列出了例如应用于脊髓18时,可能在治疗慢性疼痛中有效的电刺激参数的示例性范围。虽然描述了刺激脉冲,但刺激信号可以是各种形式中的任何形式,例如正弦波等。
1.脉冲频率:约为0.5-1200Hz,更优选约5-250Hz,甚至更优选约30-130Hz。
2.幅度:约为0.1-50伏,更优选约0.5-20伏,甚至更优选约1-10伏。在其他实施方式中,电流幅度可以限定为递送的电压中的生物负载。例如,电流幅度的范围可以约为0.1-50mA。
3.脉冲宽度:约为10-5000微秒,更优选约100-1000微秒,甚至更优选约180-450微秒。
在其他应用中,可使用参数值的不同范围。例如,对于深部脑刺激(DBS),缓解或减轻与帕金森病、特发性震颤、癫痫或其他病症有关的症状可利用脉冲频率约为0.5-1200Hz,更优选5-250Hz,甚至更优选30-185Hz;脉冲宽度约为10-5000微秒,更优选约60-1000微秒,甚至更优选约60-450微秒,甚至更优选约60-150微秒的刺激。针对不同的DBS应用,可使用例如上文参照SCS描述的幅度范围或其他幅度范围。
处理器80访问存储器82中例如程序和程序组形式的刺激参数。一旦选择具体的程序组,处理器80可控制刺激发生器84,根据各组中的程序同时或者时间交错地递送刺激。组可包括单个程序或多个程序。如上所述,每个程序可指定一组刺激参数,例如幅度、脉冲宽度和脉冲频率。此外,每个程序可指定用于递送刺激的具体的电极组合。同样,电极组合可指定例如在单根导线或多根导线中的单个阵列或多个阵列中具体的电极。处理器80也可控制遥测电流88以向外置编程装置20发送信息或接收来自外置编程装置20的信息。例如,遥测电路88向患者编程装置30发送信息或接收来自患者编程装置30的信息。
姿势状态模块86允许IMD 14感应患者姿势状态,例如患者12的姿势、活动或任何其他静态位置或运动。在图4所示实施例中,姿势状态模块86可包括能够在三维中检测静态定向或向量的一个或多个姿势状态传感器,例如一个或多个加速度计如三轴加速度计。示例性的加速度计可包括微机电加速度计。在其他实施例中,姿势状态模块86可替代地或额外地包括一个或多个陀螺仪、压力换能器或感应患者12姿势状态的其他传感器。姿势状态模块86和处理器80产生的姿势状态信息可对应于患者12经历的活动、姿势、或姿势和活动,或者物理活动的总体水平,例如基于脚步等活动计数。
来自姿势状态模块86的姿势状态信息可储存在存储器82中由临床医师随后审阅,用于调整以姿势状态指示的形式呈递给患者12的治疗,或者其中的一些组合。例如,处理器80可记录三轴加速度计的姿势状态参数值或者输出,并将姿势状态参数值分配给该姿势状态参数值所指示的某些预定的姿势。以这种方式,IMD14能够追踪患者12每隔多久保持存储器82内限定的某一姿势。IMD 14也可储存当患者12处于感应姿势时使用了哪一组或哪个程序来递送治疗。而且,当姿势状态模块86指示患者12实际上改变了姿势时,处理器80也可针对新的姿势调整治疗。因此,IMD 14可被配置成向患者12提供姿势状态响应性刺激治疗。响应姿势状态的刺激调整可以是自动的或者半自动的(需患者批准)。在许多情况下,可能需要完全自动的调整,使得IMD14能够对姿势状态的改变更快作出反应。
如本文所述,姿势状态数据或姿势状态信息的原始数据可通过系统10储存,以备后续使用。当用户希望查看与患者12采取的姿势状态相关的更详细的信息时,除了治疗调整信息外,还可使用姿势状态信息。存储器82可储存治疗期间或IMD14的使用期间检测到的所有姿势状态数据,或者存储器82可将姿势状态数据定期卸载至临床医师编程装置60或不同的外置编程装置20或装置。在其他实施例中,存储器82可保留一部分的存储器以存储容易被处理器80访问进行分析的新近的姿势状态数据。此外,较老的姿势状态数据可以在存储器82内进行压缩以减小储存空间一直到后续外置编程装置20或处理器80需要这些数据为止。
姿势状态模块86中指示患者12的姿势状态的姿势状态参数值可以在患者12的状态日常活动期间不断变化。然而,某些活动(例如,走路、跑步或骑自行车)或姿势(例如站立、坐下或躺下)可包括在姿势状态模块86中的多个姿势状态参数值。以这种方式,姿势状态可包括宽泛范围的姿势状态参数值。存储器82可包括对患者12的每个姿势状态的定义。在一个实施例中,可以在三维空间中以圆锥形式显示每个姿势状态的定义。只要来自姿势状态模块86的三轴加速度计的姿势状态参数值,例如感应的坐标向量位于预定的圆锥内,则处理器80指示患者12处于圆锥的姿势状态。在其他实施例中,可将来自三轴加速度计的姿势状态参数值与查找表或方程进行比较以确定患者12当前所处的姿势状态。
响应姿势状态的刺激可允许IMD14在治疗调整中实现一定水平的自动化。自动调整刺激使得患者12不再需要每次当患者12改变姿势或开始和停止某一姿势状态时手动调整治疗参数。刺激参数的这种手动调整会是乏味的,需要患者12在患者姿势状态期间多次按下患者编程装置30的一个或多个按键以维持适当的症状控制。或者,患者编程装置30不可用或者患者12专注于其他事情时,患者12可能不能手动调整治疗。在一些实施方式中,患者12可能最终能够享受响应姿势状态的刺激治疗而不需要继续通过患者编程装置30对不同的姿势作出改变。相反,患者12可能基于姿势状态立即过渡或者经过一定时间过渡至完全自动的调整。
虽然描述的姿势状态模块86包括三轴加速度计,但姿势状态模块86也可包括多个单轴加速度计、双轴加速度计、三轴加速度计、或它们的一些组合。在一些实施例中,加速度计或其他传感器可位于IMD14内或IMD14上,导线16之一上(例如在远端稍部或中间位置),位于患者12体内某一位置的另一传感器导线上,独立的可植入传感器内,或者甚至由患者12配戴。例如,可将一个或多个微传感器植入患者12体内,与IMD14无线通信姿势状态信息。以这种方式,可由在患者12身体上或体内各个位置设置的多个姿势状态传感器确定患者12的姿势状态。
在其他实施例中,姿势状态模块86可额外地或替代地被配置成感应患者12的一种或多种生理学参数。例如,生理学参数可包括心率、肌电图(EMG)、脑电图(EEG)、心电图(ECG)、体温、呼吸率或pH。在一些实施方式中,这些生理学参数被处理器80可用以确认或拒绝可能由于震动、患者旅行(例如在飞机、汽车或火车上)或者一些其他姿势状态的假阳性导致的感应的姿势状态的改变。
在一些实施方式中,处理器80处理姿势状态模块86中姿势状态传感器的模拟输出以确定活动和/或姿势数据。例如,如果姿势状态传感器包括加速度计,则处理器80或姿势状态模块86的处理器可处理姿势状态传感器提供的原始信号以确定活动计数。在一些实施方式中,处理器80可处理姿势状态传感器提供的信号以确定沿各个轴的运动速率信息。
在一个实施例中,姿势状态传感器提供的每个x、y和z信号具有DC分量和AC分量。DC分量描述了传感器上产生的重力,因而可用于确定地球重力场内传感器的定向。假定传感器的定向相对于患者相对固定,则可利用x、y和z信号的DC分量来确定重力场内患者的定向,因而确定患者的姿势。
x、y和z信号的AC分量产生关于患者运动的信息。具体说,可利用信号的AC分量得到描述患者运动的活动或活动的值。该活动可涉及运动的水平、方向、或患者的加速度。
一种用于确定活动的方法是活动计数。活动计数可用于指示患者12的活动或活动水平。例如,信号处理器可合计N个连续样品的加速度计信号的AC部分的幅度。例如,假定在25Hz取样,则N可以设定为25,计数逻辑提供了在一秒内获得的样品的总和。该总和可称为“活动计数”。需要时,可由处理器基于当前的姿势状态选择连续样品的数量“N”。活动计数可以是添加到姿势部分的活动参数值的活动部分。然后,将所得活动参数值结合到活动和姿势中以产生患者12运动的精确指示。
作为另一个例子,可限定活动参数值描述运动方向。该活动参数值可与向量及相关公差相关联,公差可以离开向量一定距离。活动参数值的另一个例子涉及加速度。量化在特定方向上运动随时间改变水平的值可以与活动参数值中引用的参数相关联。
处理器80可监测患者12的姿势状态并与患者12对患者12当前采取的姿势状态进行的任何治疗调整相关联。然而,当患者12根据改变姿势状态的预期进行治疗调整的情况下,处理器80也可采用允许治疗调整与后续姿势状态相关联的技术。患者12可能希望进行这种强制(preemptory)调整以避免当患者采取新的姿势状态时的过度刺激或刺激不足。
处理器80可采用多个计时器来监测治疗调整以及何时发生姿势状态过渡导致的新的姿势状态。处理器80可使用具有搜索阶段的姿势搜索计时器,其中搜索计时器在检测到治疗调整时开始并在搜索阶段流逝时届满。姿势搜索计时器允许患者12经过一定量的时间,或者搜索阶段,最终采取预期的姿势状态。此外,处理器80还使用姿势稳定性计时器,所述姿势稳定性计时器在感应到不同的姿势状态时开始并且需要一定量的时间(即稳定期阶段)过程,在该姿势状态可以被视作最终的姿势状态之前患者12处于相同的姿势状态。在搜索阶段届满并且最终的姿势状态持续至少和稳定性阶段一样长之前,当最终的姿势状态开始时,即稳定性计时器开始时,治疗调整仅仅与姿势状态相关。根据储存在存储器82中的指令,任何其他治疗调整与进行指令调整时最初患者12采取的姿势状态相关,或者不与任何姿势状态相关。
虽然外置编程装置20可对治疗调整信息(例如治疗调整与姿势状态的关联性)执行任何处理,但IMD14的处理器80可配置成分析信息和产生所需的信息。例如,处理器80可基于储存在存储器82中的治疗调整信息产生标称治疗参数或建议的治疗参数。以这种方式,IMD 14可将标称或建议的治疗参数直接发送至外置编程装置20呈递给用户。也考虑了IMD14和外置编程装置20之间的任何其他共享处理。
IMD 14中与外置编程装置20(例如,患者编程装置30或临床医师编程装置60)或其他装置的无线遥测可通过IMD14与外置编程装置20之间的射频(RF)通信或近端感应交互作用实现。遥测电路88可以在连续的基础上、以周期性间隔、以非周期性间隔、或者根据刺激器或编程装置的要求向外置编程装置20发送信息和从外置编程装置20接收信息。为支持RF通信,遥测电路88可包括合适的电子元件,例如放大器、过滤器、混合器、编码器、解码器等。
电源90向IMD14的各组件递送工作功率。电源90可包括小型可再充电或不可再充电的电池或功率发生电路以产生工作功率。再充电可以通过外置充电器和IMD14内感应充电线圈之间的近端感应交互作用来实现。在一些实施方式中,功率需要量可足够小以允许IMD14利用患者运动和实现动态能量清除装置对可再充电的电池进行点滴式充电。在其他实施方式中,可使用传统电池维持有限的时间。作为另一个替代方式,需要或希望时,外置感应电源可经皮对IMD14供电。
图5的功能框图显示了作为药物泵的IMD26的各个组件。IMD 26是一种药物泵,其运行基本上类似于图4的IMD14。IMD 26包括处理器92、存储器94、泵模块96、姿势状态模块98、遥测电路100和电源102。相对于IMD14的刺激发生器84,IMD 26包括泵模块96,其经导管28递送药物或一些其他的治疗剂。泵模块96可包括用于容纳药物的储器和迫使药物经导管28进入患者12的泵机构。
处理器92可根据储存在存储器94内的治疗指令控制泵模块96。例如,存储器94可含有限定患者12的药物递送治疗的程序或程序组。程序可指示药物的推注量或流速,处理器92可相应地递送治疗。处理器92也可使用来自姿势状态模块98的姿势状态信息在患者12改变姿势状态(例如调整他或她的姿势)时调整药物递送治疗。在替代的实施方式中,可植入的医疗装置可采用系统10,作为IMD14和IMD26的组合同时通过电刺激治疗和药物递送治疗进行递送治疗。
图6的功能框图显示了IMD14或26的外置编程装置20的各个组件。如图6所示,外置编程装置20包括处理器104、存储器108、遥测电路110、用户界面106和电源112。外置编程装置20可表现为患者编程装置30或临床医师编程装置60。临床医师或患者12与用户界面106相互作用以手动改变程序的刺激参数,改变组内的程序,打开或关闭姿势响应性刺激,查看治疗信息,查看姿势状态信息,或者以其他方式与IMD14或26通信。
用户界面106可包括显示屏以及一个或多个输入按钮,例如在患者编程装置30的实施例中所述,允许外置编程装置20接受来自用户的输入。或者,用户界面106可额外地或仅利用触摸屏显示器,例如临床医师编程装置60的实施例中所述。显示屏可以是液晶显示器(LCD)、点矩阵显示器、有机发光二极管(OLED)显示器、触摸屏、或能够递送和/或接受信息的任何其他装置。对于可视的姿势状态指示,显示屏已足够。对于听觉和/或触觉姿势状态指示,编程装置20可还包括一个或多个音频扬声器、声音合成器芯片、压电蜂鸣器等。
用户界面106的输入按钮可包括触摸垫、上调和下调按钮、紧急关闭按钮以及控制刺激治疗所需的其他按钮,如上文参照患者编程装置30所述。处理器104控制用户界面106、从存储器108检索数据并将数据储存在存储器108内。处理器104还控制数据通过遥测电路110至IMD14或26的传输。存储器108包括处理器104的操作指令以及与患者12治疗相关的数据。
用户界面106被配置成向用户呈递治疗调整信息用于监测患者12作出的调整并允许用户单次输入和指导的编程选项。IMD 14使治疗调整与姿势状态相关联之后,外置编程装置20的用户界面106可向用户呈递关联性,这些关联性包括一定范围的治疗调整、调整参数的最大和最小值、作出的最新调整、对每个程序和姿势状态作出的调整的次数、或者任何其他关联性的细节的形式。当患者可能多次采取每一种姿势状态时,可根据整个治疗期间患者12作出的调整的累积数量记录患者治疗调整的次数。具体说,调整次数可以是感应的姿势状态的多个情况中调整的累积次数,即患者采取该姿势状态的多次。此外,用户界面106可显示治疗调整信息,例如以图形直方图或表、数字电子数据表的形式、或能够显示信息的任何其他方式。而且,用户界面106可呈递标称或建议的治疗参数,使得用户通过对用户界面106作出一次确认输入即可对所有程序接受这些参数。
治疗调整信息也可以在治疗期间定期储存在存储器108内,外置编程装置20在任何时候与IMD14内通信,或者只有在用户希望使用治疗调整信息时与IMD14内通信。与其他姿势状态信息或操作指令相对,存储器108可包括单独的用于治疗调整信息的存储器。此外,如果存储器108储存来自患者12的姿势状态信息,则存储器108可使用一种或多种硬件或软件安全措施来保护患者12的身份。例如,存储器108可对每位患者具有单独的物理存储器,或者可要求用户输入密码以访问各患者的姿势状态数据。
遥测电路110允许数据从和向IMD 14或IMD 26传递。遥测电路110可以在规划的时间或者当遥测电路检测到刺激器靠近时与IMD14自动通信。或者,遥测电路110可以在用户通过用户界面106发出信号时与IMD14通信。为支持RF通信,遥测电路110可包括合适的电子元件,例如放大器、过滤器、混合器、编码器、解码器等。电源112可以是可再充电的电池,例如锂离子或镍金属氢化物电池。也可使用其他可再充电或常规的电池。在一些情况下,在直接或通过AC/DC适配器耦联于交流电(AC)出口,即AC线路功率时,可使用外置编程装置20。
在一些实施例中,外置编程装置20可被配置成除了编程IMD14之外还能对IMD14再充电。或者,再充电装置可能够与IMD14通信。那么,再充电装置可能能够将编程信息、数据或本文所述的任何其他信息传递至IMD 14。以这种方式,再充电装置可能能够用作外置编程装置20和IMD 14之间的中介通信装置。本文所述的技术可以在IMD14与能够和IMD14通信的任何类型的外置装置之间进行通信。
图7的框图显示了一种示例性的系统120,其包括外置装置,例如服务器122,以及通过网络126耦联于图1A-1C所示IMD14和外置编程装置20的一个或多个计算装置124A-124N。在该实施例中,IMD 14可使用其遥测电路88通过第一无线连接与外置编程装置20通信,通过第二无线连接与接入点128通信。在其他实施例中,也可使用IMD 26代替IMD14,外置编程装置20可以是患者编程装置30或临床医师编程装置60。
在图7所示实施例中,接入点128、外置编程装置20、服务器122和计算装置124A-124N互连,并且能够通过网络126相互通信。在一些情况下,接入点128、外置编程装置20、服务器122和计算装置124A-124N中的一个或多个可通过一个或多个无线连接与网络126耦联。IMD14、外置编程装置20、服务器122和计算装置124A-124N可各自包括一个或多个处理,例如一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程的逻辑电路等,它们可执行各种功能和操作,例如本说明书中描述的那些。
接入点128可包括诸如家用监测装置的装置,通过各种连接中的任一种,例如电话拨号、数字用户线(DSL)或电缆调制解调器连接与网络126相连。在其他实施方式中,接入点128可通过不同形式的连接,包括有线或无线连接,耦联于网络126。
运行期间,IMD 14可收集并储存各种形式的数据。例如,IMD 14可收集治疗期间感应的姿势状态信息,指示患者12每天如何运动。在一些情况下,IMD 14可直接分析收集的数据以评价患者12的姿势状态,例如患者12处于每种标识的姿势中的时间百分比。然而,在其他情况下,IMD 14可以无线方式或通过接入点128和网络126将储存的姿势状态信息相关的数据发送至外置编程装置20和/或服务器122,用于远程处理和分析。例如,IMD 14可感应、处理、倾向和评价感应的姿势状态信息。这种通信可实时发生,并且网络126允许远程临床医师通过在远程显示器(例如计算装置124A)上接收姿势状态指示的呈递审阅当前的患者姿势状态。或者,处理、趋向和评价功能可分配给其他装置如外置编程装置20或服务器122,这些装置与网络126耦联。此外,姿势状态信息可由任何这种装置存档,例如用于临床医师的后续检索和分析。
在一些情况下,IMD 14、外置编程装置20或服务器122可处理姿势状态信息或原始数据和/或治疗形成可显示的姿势状态报告,通过外置编程装置20或计算装置124A-124N中的一个显示。姿势状态报告可包含由临床医师进行评价的趋势数据,例如通过图形数据的视觉检查。在一些情况下,基于IMD14、外置编程装置20或服务器122自动执行的分析和评价,姿势状态报告可包括:患者12进行的活动的次数,患者12处于每种姿势状态的时间百分比,患者12连续处于一姿势状态的平均时间,每种活动期间使用了哪个组或哪个程序来递送治疗,每个相应的姿势状态期间治疗调整的次数,或者与或者12治疗相关的任何其他信息。临床医师或其他经培训的专业人员可审阅和/或评注姿势状态报告,可能地识别出应该解决的治疗的任何问题。而且,服务器122可处理治疗调整信息,并基于治疗调整信息产生对于每种程序和姿势状态建议的治疗参数。如果指导算法计算密集,服务器122最适合产生治疗的必需参数。
采用图7的系统120,临床医师、内科医师、技师、甚至是患者12可审阅来自IMD14的记录模块的治疗调整信息。用户可远程监测患者12的进程和趋势,限制患者12可能需要物理访问临床医师的次数。该监测通过允许临床医师更频繁地监测患者12如何使用患者编程装置30和必需作出治疗改变的频率,也可减少寻找有效治疗参数所需的时间。参照患者编程装置30或临床医师编程装置60本文描述的用户界面中的任一种也可通过计算装置124A-124N中的任一个呈递。
在一些实施方式中,服务器122可配置成提供从IMD14和/或外置编程装置20收集的姿势状态信息存档的安全储存位点。网络126可包括局域网、广域网或全球网络,例如英特网。在一些情况下,外置编程装置20或服务器122可以在网页或其他文件中汇编姿势状态信息,由经培训的专业人员(例如临床医师)通过查看与计算装置124A-124N相关的终端查看。在一些方面,系统120可用类似于明尼苏达州明尼阿波利斯的麦德托尼克有限公司(Medtronic,Inc.,Minneapolis,MN.)开发的Medtronic CareLink网络提供的通用网络技术和功能来实现。
虽然说明书的一些实施例可能涉及姿势状态信息和数据,但也可采用系统120来分发与患者12的治疗以及与其相关的任何装置的运行相关的任何信息。例如,系统120能够将治疗错误或装置错误立即报告给临床医师。此外,系统120允许临床医师远程干预治疗和对IMD14、患者编程装置30重新编程或与患者12通信。在另一实施例中,临床医师可利用系统120来监测多位患者并与其他临床医师共享数据,协作努力加快患者有效治疗的进展。而且,姿势状态检测也可用于提供通知,例如经无线链接向护理人员提供患者可能已经历跌倒的通知。
而且,虽然参照SCS治疗描述了本发明,但这种技术也可应用于传递其中姿势状态信息非常重要的其他治疗的IMD,例如DBS、骨盆底刺激、胃刺激、枕骨刺激、功能性电刺激等。并且,在一些方面,本发明所述用于评价姿势状态信息的技术可应用于通常致力于感应或监测但不包括刺激或其他治疗组件的IMD。例如,可植入的监测装置可与可植入的刺激装置联合植入,并被配置成根据可植入刺激装置递送刺激引发的感应信号来评价与可植入的监测装置相关的导线或电极的感应完整性。
图8A-8C是姿势状态空间140、152、155的概念图示,其中姿势状态参考数据可限定患者12的姿势状态。姿势状态参考数据可限定相应的姿势状态空间140、152、155内与患者12特定姿势状态相关的某些区域。一个或多个姿势状态传感器的输出可由姿势状态模块86相对于姿势状态空间140、152、155进行分析以确定患者12的姿势状态。例如,如果一个或多个姿势状态传感器的输出位于姿势状态参考数据限定的特定姿势区域内,则姿势状态模块86可确定患者12处于与相应的姿势状态区域相关的姿势状态内。
在一些情况下,一个或多个姿势状态区域可限定为姿势状态圆锥。根据用于姿势状态检测的一个示例性方法,可利用姿势状态圆锥基于来自姿势状态的姿势状态传感器的输出限定患者12的姿势状态。姿势状态圆锥可关于对应于特定姿势状态的姿势状态参考坐标向量定中心。在图8A和8B所示的实施例中,IMD 14或IMD26的姿势状态模块86可利用能够提供指示患者12的姿势状态的数据的姿势状态传感器,例如三轴加速度计来感应姿势向量。
虽然感应的数据可指示任何姿势状态,但患者12的姿势通常将如下使用以示出姿势圆锥概念。如图8A所示,姿势状态空间140表示从左侧到后侧划分患者12的垂直面,或矢状面。可利用来自两个轴的姿势状态传感器的姿势状态参数值根据姿势状态空间140确定患者12当前的姿势状态。姿势状态数据可包括x、y和z坐标值。
姿势圆锥可通过给定姿势状态的参考坐标向量结合限定围绕姿势参考坐标向量的圆锥内的一定范围的坐标向量的距离或角度进行限定。或者,姿势圆锥可通过参考坐标向量以及采用参考坐标向量作为邻接向量、圆锥的最外侧向量中的任一个作为斜边向量计算的余弦值范围进行限定。如果感应的姿势状态向量位于参考坐标向量的可应用角度或距离内,或者如果感应的姿势状态向量和参考坐标向量产生在指定余弦范围内的余弦值,则可确定该姿势状态向量处于参考坐标向量限定的姿势圆锥内。
将姿势状态空间140分割成指示患者12的某一姿势状态的不同的姿势圆锥。在图8A所示的实施例中,直立圆锥142指示患者12竖直站立或坐下,仰卧圆锥148指示患者12仰卧,俯卧圆锥144指示患者12胸部向下横卧,倒圆锥146指示患者12处于倒立姿势。可提供其他圆锥,例如指示患者12右侧或左侧卧。例如,右侧卧姿势圆锥和左侧卧姿势圆锥可位于图8A所示矢状面之外。具体说,右侧卧和左侧卧姿势圆锥可位于大致垂直于图8A所示矢状面的冠状平面中。为便于说明,图8A未示出右侧卧和左侧卧圆锥。
提供垂直轴141和水平轴143用于姿势状态区域140的定向,为说明的目的显示为正交。然而,在一些情况下,姿势圆锥可具有相应的非正交的姿势参考坐标向量。例如,圆锥142和146的各个参考坐标向量可不共享相同的轴,圆锥144和148的参考坐标向量可不共享相同的轴。并且,圆锥144和148的参考坐标向量可以与圆锥142、146的参考坐标向量正交或不正交。而且,参考坐标向量无需位于相同的平面内。因此,虽然为了说明的目的在图8A中显示了正交的轴,但相应的姿势圆锥可通过对该圆锥个性化的参考坐标向量进行限定。
IMD 14可监测姿势状态传感器的姿势状态参数值以产生感应的坐标向量,并且通过识别姿势状态传感器模块86感应的坐标向量位于哪个圆锥内来识别患者12当前的姿势。例如,如果姿势状态参数值对应于落在俯卧圆锥144内感应的坐标向量,则IMD14可确定患者12胸部向下横卧。IMD14可以储存来自姿势状态传感器的测定的姿势状态或原始输出形式的姿势信息,根据姿势改变治疗,或者这两种功能。此外,IMD 14可将姿势信息通信至患者编程装置30,使得患者编程装置能够向患者12呈递姿势状态指示。
此外,姿势状态区域140可包括滞后区150A、150B、150C和150D(统称为“滞后区150”)。各滞后区150位于其中未限定姿势圆锥的姿势状态区域140内。当IMD14利用姿势状态信息和姿势圆锥自动调节治疗时滞后区150尤其有用。如果姿势状态传感器指示患者患者12位于直立圆锥142中,则IMD 14将一直到姿势状态参数值指示不同的姿势圆锥才检测患者12进入新的姿势圆锥。例如,如果IMD 14确定患者12从直立圆锥142移动至滞后区150A内,则IMD14保持姿势为直立。以这种方式,IMD 14到患者12完全进入不同的姿势圆锥才会改变对应的治疗。当患者12的姿势状态保留在姿势圆锥边界附近时,滞后区150可防止IMD 14在不同的治疗之间连续摆动。
每个姿势圆锥142、144、146、148可通过与为相应的姿势圆锥所限定的参考坐标向量相关的角度进行限定。或者,一些姿势圆锥可通过相对于另一姿势圆锥的参考坐标向量的角度进行限定。例如,横卧姿势可通过相对于直立姿势圆锥的参考坐标向量的角度进行限定。在每种情况下,如下详细所述,每个姿势圆锥可通过与为特定姿势状态限定的参考坐标姿势向量相关的角度进行限定。当患者12采取需要用参考坐标向量进行限定的特定姿势状态时,则参考坐标向量可基于姿势状态传感器产生的姿势传感器数据进行限定。例如,可要求患者采取一定姿势,使得能够对相应的姿势感应参考坐标向量。以这种方式,可根据患者的实际定向指定垂直轴141。然后,可使用参考坐标向量作为圆锥中心限定姿势圆锥。
图8A中的垂直轴141可对应于当患者采取直立姿势状态时感应的参考坐标向量。类似的,水平轴143可对应于当患者采取横卧姿势状态时感应的参考坐标向量。姿势圆锥可相对于参考坐标向量进行限定。虽然,显示了延伸穿过直立圆锥和倒圆锥142、146的单一轴,显示了延伸穿过俯卧和仰卧圆锥144、148的另一单一轴,但根据姿势圆锥所获得的参考坐标向量之间的差异,对于相应的圆锥可使用单独的参考坐标向量,并且参考坐标向量可不共享相同的轴。
姿势圆锥可通过关于各个轴对称、或关于各个轴不对称的相同或不同的角度进行限定。例如,直立圆锥142可具有80度的角,相对于正垂直轴141的+40度到-40度。在一些情况下,横卧圆锥可相对于直立圆锥142的参考坐标向量进行限定。例如,仰卧圆锥148可具有80度的角,相对于正垂直轴141的-50度到-130度。倒圆锥146可具有80度的角,相对于垂直轴141的-140度到+140度。此外,俯卧圆锥144可具有80度的角,相对于正垂直轴141的+50度到+130度。在其他实施例中,每个姿势圆锥可具有变化的角度定义,角度可以在治疗递送期间改变以实现对患者12最有效的治疗。
替代地或另外地,姿势圆锥144、146、148、148可通过与垂直轴141、水平轴143或一些其他轴(例如对于相应的圆锥的单独的参考坐标向量)相关的余弦值或余弦值范围而非角度进行限定。例如,姿势圆锥可通过采用参考坐标向量以及姿势状态传感器在任何点及时感应的相应的坐标向量计算的限定最小余弦值的余弦值限定。在余弦计算中,值(邻边/斜边)可采用坐标参考向量的幅度作为邻边,圆锥最外侧的向量作为斜边以限定与圆锥外边界一致的余弦值范围进行计算。
对于直立圆锥142,余弦范围可从对应于匹配直立圆锥的参考坐标向量的感应向量的最大余弦值1.0,延伸到对应于直立圆锥外限处感应向量的最小余弦值。作为另一实施例,对于俯卧圆锥144,余弦范围可从对应于匹配俯卧圆锥的参考坐标向量的感应向量的最大余弦值1.0,延伸到对应于俯卧圆锥外限处感应向量的最小余弦值。或者,俯卧圆锥144可相对于直立圆锥142进行限定,使得余弦范围可以在相对于直立圆锥的参考坐标向量确定的最大和最小值之间延伸。
在其他实施例中,姿势状态区域140可包括除图8A所示之外的姿势圆锥。例如,斜躺圆锥可位于直立圆锥142和仰卧圆锥148之间以指示何时患者12斜躺(例如,沿背部方向)。在该位置中,患者12可能需要不同的治疗以有效治疗症状。当患者12处于直立姿势(例如,在直立圆锥142内)、仰卧姿势(例如在仰卧圆锥148内)和斜躺姿势中的每一种姿势时,不同的治疗程序可向患者12提供有效的治疗。因此,限定斜躺的姿势圆锥对于向患者12提供有效的姿势响应性治疗是有用的。在其他实施例中,姿势状态区域140可包括比图8A所示圆锥142、144、146、148更少的姿势圆锥。例如,倒圆锥146可以被更大的仰卧圆锥148和俯卧圆锥144代替。
图8B显示了处于三维空间中的示例性姿势状态空间152,其中来自姿势状态传感器的姿势状态参数值相对于姿势圆锥设置。姿势状态空间152基本上类似于图8A所示的姿势状态区域140。然而,可采用从三轴加速度计的所有三个轴导出的姿势状态参数值来精确确定患者12的姿势状态。在图8B所示实施例中,姿势状态空间152包括直立圆锥154、仰卧圆锥156和俯卧圆锥158。类似于姿势状态区域140,姿势状态空间152也包括滞后区(未示出)。在图8B所示实施例中,滞后区是未被姿势圆锥,例如直立圆锥154、仰卧圆锥156和俯卧圆锥158占据的空间。
姿势圆锥154、156和158也可通过相应的中心线153A、153B或153C及相关的圆锥角A、B或C限定。例如,直立圆锥154由延伸穿过直立圆锥154的中心的中心线153A限定。中心线153A可对应于姿势状态传感器的轴或一些其他校准向量的轴。在一些实施方式中,每条中心线153A、153B、153C可对应于相应的姿势(例如直立姿势)所限定的姿势参考坐标向量。例如,假定患者12站立,姿势状态模块86的姿势状态传感器检测的x、y和z信号的DC部分限定对应于中心线153A的姿势向量。当已知患者12处于指定位置(例如站立)时测量x、y和z信号,并可将测得的向量与直立姿势状态相关联。此后,当姿势状态传感器信号的DC部分位于例如姿势参考坐标向量(即中心线153A)的角度、距离或余弦值限定的某一预定的圆锥容差或近似范围内时,可确定患者12处于直立姿势。以这种方式,先基于姿势状态模块86的一个或多个姿势状态传感器的输出测量与姿势状态(例如直立)有关的感应的姿势坐标向量作为参考坐标向量,然后用于检测患者的姿势状态。
如上所述,可能希望允许一些容差与限定的姿势状态有关,从而限定姿势圆锥或其他体积。例如,对于直立姿势状态,可能理想的是确定直立但稍微斜靠的患者仍然处于相同的直立姿势状态。因此,姿势状态的定义通常不仅包括姿势参考坐标向量(例如中心线153A),而且包括指定的容差。指定容差的一种方式是通过提供角度,例如相对于坐标参考向量153A的圆锥角A,其导致本文所述的姿势圆锥154。圆锥角A是直立圆锥154的偏转角或半径。每个姿势圆锥跨过的总角度是圆锥角的两倍。圆锥角A、B和C通常在约1度到约70度之间。在其他实施例中,圆锥角A、B和C可以在约10度到30度之间。在图8B的实施例中,圆锥角A、B和C约为20度。圆锥角A、B和C可以不同,中心线153A、153B和153C可以不是相互正交。
在其他实施例中,容差可以通过余弦值或余弦值的范围进行指定。在一些情况下,使用余弦值可提供相当的处理效率。如上所述,例如,用参考坐标向量作为邻边、感应的坐标向量作为斜边测定的最小余弦值指示了圆锥内的向量范围。如果结合姿势圆锥的参考坐标向量,感应的坐标向量产生的余弦值小于姿势圆锥的最小余弦值,则感应的坐标向量不位于相关的姿势圆锥内。以这种方式,最小余弦值可限定部分地由参考坐标向量限定的特定姿势圆锥内余弦值范围的外侧边界。
虽然图8B中分别显示每个姿势圆锥154、156、158的中心线153A、153B、153C相互间大致正交,但在其他实施例中,中心线153A、153B和153C相互不是正交,甚至无需位于相同的平面内。同样,中心线153A、153B、153C的相对定向可取决于当患者12采取相应的姿势时IMD 14的姿势状态模块86的姿势状态传感器的实际参考坐标向量输出。
在一些情况下,所有姿势圆锥可基于实际参考坐标向量单独限定。或者,在一些情况下,一些姿势圆锥可参照一个或多个其他姿势圆锥的一个或多个参考坐标向量进行限定。例如,可假定横卧参考坐标向量与直立参考坐标向量正交。或者,可基于当患者处于相应的横卧姿势时感应的坐标向量单独确定横卧参考坐标向量。因此,不同姿势的实际参考坐标向量可以相互正交或非正交,并且无需位于相同的平面内。
除了直立圆锥154、仰卧圆锥156和俯卧圆锥158之外,姿势状态空间152还可包括其他姿势圆锥。例如,可提供右侧卧圆锥以限定当患者12靠其右侧横卧时的患者姿势,提供左侧卧圆锥以限定当患者12靠其左侧横卧时的患者姿势。在一些情况下,右侧卧圆锥和左侧卧圆锥可与直立圆锥154大致正交定位,与仰卧圆锥156和俯卧圆锥158大致位于相同的平面内。而且,姿势状态空间152可包括与直立圆锥154大致相反定位的倒圆锥。这种圆锥指示患者姿势从直立姿势倒转,例如倒立。
在一些实施例中,为检测患者的姿势状态,IMD14的姿势状态模块86可基于一个或多个姿势状态传感器产生的姿势传感器数据确定感应的坐标向量,然后相对于图8B的姿势圆锥154、156、158分析感应的坐标向量。例如,在由参考坐标向量和容差角(例如容差角“A”)限定姿势圆锥的情况下,姿势状态模块86可以通过计算感应的坐标向量与参考坐标向量之间的角度确定感应的坐标向量是否位于直立姿势圆锥154内,然后确定角度是否小于容差角度“A”。如果是这样,则姿势状态模块86可确定感应的坐标向量位于直立姿势圆锥154内并检测患者12处于直立姿势。如果姿势状态模块86确定感应的坐标向量不位于直立姿势圆锥154内,则姿势状态模块86检测患者12不处于直立姿势。
姿势状态模块86可以相对于各个单独限定的姿势圆锥,例如姿势圆锥156和158在姿势状态空间152中分析感应的坐标向量,从而确定患者12的姿势状态。例如,姿势状态模块86可确定感应的坐标向量和对姿势状态限定的单独的姿势圆锥的参考坐标向量之间的角度,并将测定角与对相应的姿势圆锥所限定的容差角进行比较。以这种方式,可针对每个姿势圆锥评价感应的坐标向量直到检测到匹配,即直到发现感应的坐标向量位于姿势圆锥之一中为止。因此,一个个圆锥分析是姿势检测一个选项。
在其他实施例中,可采用不同的姿势检测分析技术。例如,采用分阶段方法而不是在一个个圆锥的基础上针对姿势圆锥测定感应的坐标向量,在分阶段方法中将感应的坐标向量分为直立或非直立。在这种情况下,如果感应的坐标向量不位于直立圆锥中,则姿势状态模块86可针对单独的横卧姿势圆锥测定感应的坐标向量或者针对通用的横卧姿势容积(例如包括所有横卧姿势的类似环形或圆环面的容积)测定感应的坐标向量,确定感应的坐标向量是否处于横卧姿势,采用相对于直立向量,或者相对于如下所述修正的或虚拟的直立向量的角或余弦范围进行限定。在一些情况下,如果横卧姿势由圆锥限定,则横卧容积可限定为类似环形或圆环面的容积和横卧姿势圆锥的容积的逻辑OR。如果圆锥较大使得一些部分延伸超出横卧容积,则可利用类似逻辑OR的操作将那些部分添加到横卧容积内。
如果感应的坐标向量位于类似环形或圆环面的横卧容积内,则可针对横卧容积中的多个横卧姿势圆锥中的每一个测定感应的坐标向量。或者,姿势检测技术可不使用横卧圆锥。相反,姿势检测技术可依赖于感应的坐标向量与相应的横卧姿势的参考坐标向量中的每一个之间的接近度测试。接近度测试可依赖于角度、余弦值或距离以确定哪个横卧姿势参考坐标向量最接近感应的坐标向量。例如,感应的坐标向量作为斜边,参考坐标向量作为邻边,产生最大余弦值的参考坐标向量是最接近的参考坐标向量。在这种情况下,与产生最大余弦值的参考坐标向量相关的横卧姿势是检测的姿势。因此,有各种方法来检测姿势,例如使用姿势圆锥,使用具有横卧容积的直立姿势圆锥和横卧姿势圆锥测试,或者使用具有横卧容积的直立姿势圆锥和横卧向量接近度测试。
作为示例性的姿势检测技术的另一个示例,姿势状态模块86可首先通过相对于直立姿势状态的轴153A分析姿势状态空间152中感应的坐标向量以确定患者12是大致处于横卧姿势状态或是直立姿势状态。轴153A可对应于直立参考坐标向量。例如,角“A”可用于限定直立姿势圆锥154,如上所述,角“D”和“E”可用于限定大致认为患者12处于横卧姿势状态时的感应的坐标向量落入的向量空间,而与具体的姿势状态圆锥,例如俯卧圆锥158、仰卧圆锥156、右侧卧圆锥(未示出)、左侧卧圆锥(未示出)无关。
如果确定感应的坐标向量不在轴153A的角A之内,则可确定该患者不处于直立姿势圆锥所指示的直立姿势。在这种情况下,接着确定感应的坐标向量是否大致位于横卧姿势空间容积中,该横卧姿势空间容积在一定程度可视作类似环形或圆环面,并相对于直立参考坐标向量153A进行限定。如图所示,角“D”和“E”分别限定感应的向量可相对于患者12的轴153A形成的最小和最大角度值,用于确定患者大致处于横卧姿势状态。同样,可使用余弦值而非角度来确定感应的坐标向量相对于姿势圆锥或其他姿势容积,或者相对于参考坐标向量的位置。
如图所示,角“D”和“E”可相对于垂直轴153A(对应于直立参考坐标向量)进行限定,该垂直轴153A是直立姿势圆锥的参考坐标向量,而不是相对于横卧姿势状态圆锥的参考坐标向量进行限定。如果感应的向量相对于轴153A位于D到E的角度范围内,则姿势状态模块86可确定患者大致处于横卧姿势。或者,在一些实施例中,可根据大致水平的轴153C(对应于横卧参考坐标向量之一)限定角C。在这种情况下,如果感应的向量位于轴153C的角C之内,则姿势状态模块86可确定患者处于横卧姿势。在每种情况下,大致限定横卧姿势状态的区域可称为姿势环形或姿势圆环面而不是姿势圆锥。姿势环形通常可包括认为代表各种躺下姿势的向量范围。
作为一种替代方式,姿势状态模块86可依赖于余弦值或余弦值范围以相对于轴153A限定姿势环形或圆环面。如果感应的向量落在轴153A和角“D”和“E”限定的向量空间之内,或者相对于坐标向量153A产生的余弦值在规定的范围内,则姿势状态模块86可确定患者12大致处于横卧姿势状态。例如,如果感应的向量和参考坐标向量153产生的余弦值在第一范围内,则姿势为直立。如果余弦值在第二范围内,姿势为横卧。如果余弦值在第一和第二范围之外,则姿势不确定。第一范围可对应于角A限定的姿势圆锥154中向量产生的余弦值范围,第二范围可对应于角D和E限定的姿势环形中向量产生的余弦值。
当感应的向量落在轴153A和角“D ”和“E”限定的向量空间内时,如角或余弦值指示的那样,则姿势状态模块86可确定患者12采取的具体横卧姿势状态,例如俯卧、仰卧、右侧卧或左侧卧。为确定患者12采取的具体横卧姿势状态,姿势状态模块86可采用前文所述的一种或多种技术,例如角度或余弦技术,相对于针对单独的横卧姿势状态圆锥的参考坐标向量分析感应的向量,所述横卧姿势状态圆锥包括例如俯卧圆锥156、仰卧圆锥158、右侧卧圆锥(未示出)和左侧卧圆锥(未示出)。例如,姿势状态模块86可确定感应的坐标向量是否位于横卧姿势状态圆锥之一内,如果是的话,则选择对应于该圆锥的姿势状态作为检测的姿势状态。
图8C显示了一个示例性的姿势状态空间155,该空间是基本上类似于图8B所示姿势状态空间152的三维空间。姿势状态空间155包括参考坐标向量167限定直立姿势圆锥157。限定相对于参考坐标向量167的直立姿势圆锥157的容差可包括容差角或余弦值,如上所述。与确定感应的坐标向量是否位于横卧圆锥中不同,图8C显示了基于感应的坐标向量与横卧姿势的参考坐标向量之一的接近度来检测横卧姿势的一种方法。
如图8C所示,姿势状态空间155包括四个参考坐标向量159、161、163、165,它们分别与左侧卧、右侧卧、俯卧和仰卧姿势状态相关。姿势状态模块86可基于当患者12采取相应的姿势状态中的每一种时一个或多个姿势传感器的输出来限定四个参考坐标向量159、161、163、165中的每一个。与图8B的实施例中俯卧和仰卧姿势圆锥158、156不同,对应于参考向量159、161、163、165的四个限定的姿势状态的姿势状态参考数据无需包括以限定姿势圆锥的方式相对于相应的参考向量限定的角。相反,如下所述,可基于各余弦值相对于彼此分析相应的姿势状态参考向量以确定哪个具体的参考坐标向量最接近感应的坐标向量。
在一些实施例中,为确定患者12的姿势状态,姿势状态模块85可通过根据相对于直立姿势参考坐标向量167限定的容差角或余弦值分析感应的坐标向量以确定感应的坐标向量是否在直立姿势圆锥157内,或者感应的向量是否在相对于直立姿势参考坐标向量167的角(如图B所示)或余弦值范围限定的姿势环形或圆环面内,在该情况下姿势状态模块86可确定患者12大致处于横卧姿势状态。
如果姿势状态模块86确定患者12采取大致横卧姿势状态,则姿势状态模块86可计算感应的坐标向量相对于每个横卧参考坐标向量159、161、163、165的余弦值。在这种情况下,姿势状态模块86基于哪个余弦值是四个余弦值中最大的来确定患者12的具体横卧姿势状态,即左侧卧、右侧卧、俯卧、仰卧。例如,如果用感应的向量作为斜边、俯卧参考向量163作为邻边向量计算的余弦值是四个余弦值中最大值,则可认为感应的向量在所有四个参考向量159、161、163、165中最接近俯卧参考向量。因此,姿势状态模块85可确定患者12采取俯卧姿势状态。
在一些实施例中,姿势状态模块86可根据感应的向量与直立参考向量167的关系来确定患者12是否大致处于横卧姿势状态。例如,如上所述,例如可采用图8B中的角D和E,相对于直立姿势参考向量167限定横卧姿势环形圆环面。当横卧姿势参考向量159、161、163、165限定与直立姿势参考向量167大致正交的共用平面时,这种技术可能是恰当的。然而,横卧姿势参考向量159、161、163、165事实上可能不与直立参考坐标向量167正交。并且,横卧姿势参考向量159、161、163、165可能不在相同的平面内。
在其他实施例中,为说明非正交参考向量,可相对于修正或虚拟的直立参考向量169而非实际直立姿势参考向量167限定横卧姿势环形或圆环面。同样,当横卧参考向量159、161、163、165不在共用平面中,或者参考向量159、161、163、165的共用平面与直立参考向量167不是大致正交的情况下,可使用这种技术。然而,示例性技术的使用并不限于上述情况。
为限定虚拟的直立参考向量169,姿势状态模块86可计算横卧参考向量159、161、163、165的各种组合的叉积和平均叉积值。在图8C的实施例中,姿势状态模块86可计算四个叉积并对四个叉积向量取平均以得到虚拟的直立向量。可根据以下方法进行叉积运算:左侧卧向量159×仰卧向量165,仰卧向量165×右侧卧向量161,右侧卧向量161×俯卧向量163和俯卧向量163×左侧卧向量159。每个叉积产生与叉积的两个横卧参考向量正交的向量。对每个叉积向量取平均产生与大致由横卧参考向量159、161、163、165形成的横卧平面171正交的虚拟直立参考向量。
采用虚拟直立参考向量169,姿势状态模块86可以类似于参照直立参考向量167所述的方式,但相对于虚拟直立参考向量169限定横卧姿势环形或圆环面。具体说,当姿势状态模块86确定患者不是直立姿势时,则姿势状态模块基于相对于虚拟直立参考向量169的角或余弦值确定患者是否处于横卧姿势。
姿势状态模块86仍然可使用直立姿势圆锥157确定患者12是否处于直立姿势状态。如果姿势状态模块86基于感应的坐标向量相对于虚拟直立参考向量169的分析确定患者12采取大致横卧姿势状态,则姿势状态模块86可计算感应的坐标向量(作为斜边)相对于每个横卧参考坐标向量159、161、163、165(作为邻边)的余弦值。
在这种情况下,姿势状态模块86基于四个余弦值中哪个余弦值最大来确定患者12的具体横卧姿势状态,即左侧卧、右侧卧、俯卧、仰卧。例如,如果用俯卧参考向量163计算的余弦值是四个余弦中值中最大的值,则可认为感应的向量最接近所有四个参考向量159、161、163、165中的俯卧参考向量。因此,姿势状态模块85可确定患者12采取俯卧姿势状态。
此外,姿势状态定义并不限于姿势圆锥。例如,姿势状态的定义可涉及姿势向量和容差,例如离开姿势向量的最大距离。只要检测的姿势向量在姿势状态定义所包括的姿势向量的最大距离内,患者12就可归类为该姿势状态。该替代方法无需计算角度即可检测姿势状态,如上文参照姿势圆锥的讨论中所述。
而且,可限定专用于特定患者活动和/或职业的姿势状态。例如,银行出纳员可能花费大部分的工作时间以一定角度前倾。可限定包括该角度的患者专用的“前倾”姿势状态。选择用于该姿势状态的圆锥角或其他容差值可专用于该患者特定的姿势状态定义。以这种方式,可基于具体的用户调整限定的姿势状态,无需在IMD中“硬编码”。
在一些实施例中,单独的姿势状态可连接在一起,从而将姿势状态绑定至一组共同的姿势参考数据和一组共同的治疗参数值。事实上,这可合并多个姿势圆锥,用于基于姿势状态的选择治疗参数值的目的。例如,采用与参照图8B和8C描述的限定环形、圆环面或其他容积的内容相同或相似的技术,将所有横卧姿势状态圆锥(仰卧、俯卧、左侧卧、右侧卧)视作一个圆锥或环形/圆环面。根据姿势状态的连接状态,经外置编程装置20指导,一个程序组或一组共同的治疗参数值可应用于同一合并圆锥中的所有姿势状态。
合并姿势圆锥或以其他方式将多个姿势状态连接在一起例如可用于一组共同的治疗参数值为患者12提供对多个姿势状态有效的治疗的情况。在所述实施例中,将多个姿势状态连接在一起有助于降低向患者12提供姿势响应性治疗所需的功率消耗,因为当多个姿势状态连接在一起时追踪患者姿势状态并提供响应性治疗调整所需的消耗最小。
连接各姿势状态还能允许同时在与多个姿势状态相关的一个姿势状态中进行治疗参数值调整。例如,一个或多个程序相同的幅度水平可应用于姿势状态连接组中所有的姿势状态。或者,躺下姿势状态均可位于“环形”或圆环面内而非例如单独的圆锥156和158中。与单独的圆锥不同,圆环面可划分成部分区段,每个区段对应于不同的姿势状态,例如仰卧、俯卧、右侧卧、左侧卧。在这种情况下,不同的姿势参考数据和治疗参数值可指派给圆环面的不同部分区段。
图9的概念图显示了用于向患者12递送治疗信息的患者编程装置30的示例性的用户界面168。在其他实施例中,也可以在临床医师编程装置60上显示类似于用户界面168的用户界面。在图9的实施例中,患者编程装置30的显示器36通过显示屏170向用户(例如患者12)提供用户界面168。显示屏170包括刺激图标174、IMD电池图标176、编程装置电池图标178、导航箭头180、自动姿势响应图标182、组选择图标184、组标识符186、程序标识符188、幅度表190和选择框192。用户界面168向患者12提供关于组、程序、幅度和自动姿势响应状态的信息。用户界面168是可配置的,按照临床医师或患者12的要求可以向患者12提供更多或更少的信息。
选择框192允许患者12使用导航箭头180导航至其他显示屏、组或程序以操控治疗。在该显示屏170的实施例中,设置选择框192,使得患者12可使用箭头44和48移动至患者编程装置30的自动姿势响应显示屏、音量显示屏、对比度或照度显示屏、时间显示屏以及测量单元显示屏。在这些显示屏中,患者12能够控制自动姿势响应特征的使用和调整患者编程装置30特征。患者12可仅调整选择框192围住的特征。
组标识符186指示可选择用于递送至患者12的几个可能的程序组之一。组选择图标184指示显示的组(例如在图9中是组B)是否是实际选择用于递送至患者12的组。如果选择当前显示的组,则组选择图标184包括具有选中标记的框。如果不选择当前显示的组,则组选择图标184包括不具有选中标记的框。为在各程序组间导航,用户可使用控制垫40移动选择框192来选择组标识符186,然后使用控制垫40在各组,例如A、B、C等间滚动。可对IMD 14编程以支持少量组或大量组,其中每个组包括同时、相继或在时间交错地递送的少量程序或大量程序。
对于每个组,组选择图标184指示合适的状态。对于给定组,程序标识符188指示与该组相关的程序之一。在图9的实施例中,程序标识符188中未指示程序编号,因为在幅度表190的每个条中显示了所有的程序幅度。条的实心部分指示当前IMD14用于向患者12递送刺激治疗的相对幅度,而条的空心部分指示每个程序可利用的剩余幅度。在一些实施方式中,附加于幅度表190或代替幅度表190还可显示每个程序幅度的数值。在专用于IMD26的药物递送的用户界面168的其他实施方式中,幅度表190可显示递送至患者12的药物流速和推注频率。该信息也可以数字格式显示。患者12可操纵组选择图标184和选择框192,在选择组的不同程序间滚动。
自动姿势响应图标182指示IMD 14大致激活至根据姿势状态模块86检测的姿势状态自动改变患者12的治疗。具体说,自动姿势响应性治疗可涉及基于患者检测姿势状态调整一个或多个治疗参数值,选择不同的程序或选择不同的程序组。然而,自动姿势响应图标182并不位于组标识符186旁边。因此,组“B”不具有激活用于组“B”内任意程序的自动姿势响应性治疗。
一些组或组中单独的程序可支持自动姿势响应性治疗。例如,可根据临床医师,或者可能的患者12输入的设置,选择性激活或禁用响应姿势状态指示的一个或多个治疗参数的自动调整。因此,一些程序或组可被配置成与姿势响应性治疗联用,而另一些程序或组可不被配置成与姿势响应性治疗联用。在一些情况下,如果需要自动姿势响应特征支持的姿势响应性治疗,患者12可能需要将治疗切换至具有激活用于IMD14的自动姿势响应性治疗的不同的组,从而根据患者12的姿势状态调整治疗。
图10的概念图显示了用于向患者递送包括姿势信息的治疗信息的患者编程装置30的示例性的用户界面168。在其他实施例中,也可以在临床医师编程装置60上显示用户界面168。在图10的实施例中,患者编程装置30的显示器36通过显示屏194向用户(例如患者12)提供用户界面168。类似于图9的显示器170,显示屏194包括刺激图标174、IMD电池图标176、编程装置电池图标178和自动姿势响应图标182。此外,显示屏194包括组选择图标184、组标识符186、辅助姿势状态指示202、程序标识符196、姿势状态指示200、幅度值204、选择框192和选择箭头180。用户界面168向患者12提供关于组、程序、幅度、自动姿势响应状态和姿势状态信息的信息。根据临床医师或患者12的要求,可向患者12提供更多或更少信息。
组标识符186指示组“B”被激活,自动姿势响应图标182指示组“B”(包括一个或多个程序)被激活以使IMD14根据患者12的姿势状态自动调整治疗。具体说,患者12的姿势状态是图10所示实施例中的姿势状态。程序标识符196说明在显示屏194上显示关于组“B”的程序“1”的信息,例如说明程序“1”的当前电压幅度为2.85伏的幅度值204。患者12可以通过控制垫40的箭头44和48使用导航箭头180在该组的不同程序间滚动。
此外,姿势状态指示200显示IMD 14检测到患者12处于直立或站立姿势。辅助姿势状态指示202通过以文字方式向患者12说明IMD14的姿势状态模块86检测的准确姿势来补充姿势状态指示200。姿势状态指示200和辅助姿势状态指示202根据IMD14感应或检测的姿势状态而改变。当IMD14检测到姿势变化时立即,或者由IMD14单向周期性地或非周期性地或者一旦接收到来自编程装置20的要求将姿势状态通信至外置编程装置20。因此,姿势状态指示200和/或辅助姿势状态指示202可表示当前、到目前这一分钟为止的状态,或者来自IMD14的姿势状态的最新通信的状态。姿势状态指示200显示为图形表示,但姿势状态指示可替代地也可以象征性图标、文字、字母、数字、箭头或姿势状态的任何其他表示的形式呈现。在一些情况下,可呈递姿势状态指示200而没有辅助姿势状态指示202。
选择框192指示患者12使用选择箭头208查看组“B”内的其他程序。可用控制垫40移动选择框192来选择其他显示屏水平,从而在其他刺激组或治疗的可调整元素中导航。当患者12用控制垫40选择不同的程序时,程序标识符196将改变编号至正确标识显示屏194上显示的当前程序。
除了姿势状态的图形、文字或其他可视指示之外,外置编程装置还可通过各种听觉或触觉输出介质呈递姿势状态的听觉和/或触觉指示。听觉指示可以是说明姿势状态的口语单词,或者不同的声调、不同的声调次数、或编程装置产生的用于指示姿势状态的其他听觉信息。触觉指示可以是,例如,连续递送的不同的振动脉冲数或不同长度、幅度或频率的振动脉冲。
图11A的概念图显示了用于在诊断或治疗使用之前定向可植入的医疗装置的示例性用户界面208。用户界面208描述为通常由临床医师编程装置60显示。然而,用户界面208也可由患者编程装置30或一些其他的外置编程装置20或远程装置显示。在任何情况下,用户界面208显示与感应姿势状态、自动姿势响应、审阅记录的治疗调整信息和建议的治疗参数有关以提高治疗功效的信息。
在图11A的实施例中,用户界面208的显示屏210呈递定向信息236、操作菜单224、网络图标214、打印机图标216、IMD通信图标218、编程装置电池图标220、刺激状态图标222、患者数据图标226、数据记录图标228、装置状态图标230、编程图标232和数据报告图标234。此外,显示屏210包括姿势状态选择238A、238B、238C、238D和238E(通常为“姿势状态选择238”)、复位按钮240、帮助按钮242和定向按钮244。通过选择编程图标232打开下拉菜单,让用户选择多个不同的显示屏之一,可访问显示屏210。用户可选择“定向装置”或象征访问启动IMD14内的姿势状态传感器的定向的过程的一些其他文字或图标。
显示屏210包括与用户界面208的其他显示屏共用的多个菜单和图标。操作菜单224是用户可选择查看能够由用户进行选择的多个选项或偏好的按钮。操作菜单224可提供临床医师编程装置60的偏好而不是治疗专用信息。网络图标214变成灰色以指示临床医师编程装置60当前没有连接到网络。当网络图标214完全显示时,临床医师编程装置60连接到网络。打印机图标216指示何时临床医师编程装置60连接打印机。如果如图11A所示打印机图标216变灰,则没有打印机连接到临床医师编程装置60。
而且,显示IMD通信图标218指示临床医师编程装置没有与IMD 14通信,因为该图标包括划过IMD14表示的斜杠。当临床医师编程装置60与IMD14建立通信链接时斜杠消失。此外,编程装置电池图标220指示临床医师编程装置60内包含的电池的当前充电水平。刺激状态图标222指示用户何时向患者12递送刺激。当前没有递送刺激,但在递送刺激时刺激状态图标222可包括通过IMD表示的电螺栓。
显示屏210也提供与患者12的刺激治疗相关的菜单选项。患者数据图标226允许用户进入和审阅与患者12的状态和病症有关的数据。数据记录图标228允许用户导航至其他显示屏,进入记录偏好的数据和审阅储存的数据。装置状态图标230允许用户查看IMD14的例如电极、导线、电池各组件的操作状态,以及任何发现的问题。编程图标232允许用户导航至限定用于向患者12递送刺激的刺激治疗参数的编程显示屏。此外,数据报告图标234允许用户查看和打印患者12进程和其他治疗信息的报告。
用户界面208的显示屏210所特有的是,通过帮助患者12采取姿势状态选择238中的每一个和将姿势状态传感器的输出设置成该具体的姿势状态选择,临床医师可启动IMD14的姿势状态传感器的定向。提供定向信息236以指导临床医师如何根据患者12定向IMD14,虽然并非在所有实施例中都是必需的。例如,图11A显示临床医师选择了姿势状态选择238A。一旦患者12采取站立姿势,临床医师将选择定向按钮244以使IMD 14将姿势状态传感器输出设定成站立姿势状态。临床医师可以临床医师选择的任何顺序针对每个姿势状态选择238重复该过程。在其他实施例中,临床医师可无需将IMD 14定向成五种姿势状态选择238中的每一种。IMD 14可仅要求三种姿势状态选择,例如站立、仰卧或俯卧之一以及左侧卧和右侧卧中的一个。
使IMD 14定向的步骤在IMD14能够准确感应或检测患者12采取的任何姿势状态之前是必需的。因此,用户界面208可例如阻止临床医师进入IMD14的记录模式,除非临床医师已经根据患者12定向IMD14。以这种方式,恰当地完成了治疗调整和姿势状态或自动姿势响应治疗之间的任何记录的关联。
图11B的概念图显示了一种示例性用户界面208,显示用户完成了可植入医疗装置的定向。如图11B所示,用户界面208的显示屏246向临床医师指示已经完成了针对图11A中所述每一种姿势状态选择238的IMD14的定向。在显示屏246的右侧每一种姿势状态选择238具有划过图形姿势状态指示的选中标记以指示每种姿势状态选择238已经定向。而且,定向按钮244变灰导致临床医师不能再选择该按钮。一旦临床医师编程装置60呈递显示屏246,临床医师可继续启动记录模式,设定每种姿势状态的程序,或者要求感应患者12的姿势状态的任何其他编程任务。在替代的实施例中,一旦IMD14根据患者12定向,则临床医师编程装置60可自动开始记录模式和任何其他姿势状态相关的应用。例如,一旦完成了定向过程,对象化和记录模式可自动启动。
图12A和12B的概念图显示了一种示例性用户界面,以确定可植入医疗装置的定向而不要求患者采取每一种姿势状态进行定向。图12A和12B显示了基本上类似于图11A和11B的显示屏210和246的用户界面208的示例性显示屏211和247。然而,图12A和12B的实施例仅仅要求患者12采取可能的五种姿势状态中的四种姿势状态以根据患者12定向IMD14。
如图12A所示,用户界面208的显示屏211呈递定向信息237,姿势状态选择239A、239B、239C、239D和239E(统称为“姿势状态选择239”),位置按钮241和定向按钮245。用户可选择“定向装置”或象征访问启动IMD 14内的姿势状态传感器的定向的过程的一些其他文字或图标。
通过帮助患者12采取IMD 14可检测的一些可能的姿势状态,显示屏211允许临床医师启动IMD14的姿势状态传感器的定向。一旦患者12采取姿势状态选择239所指示的合适类型的姿势状态,则IMD14的姿势状态传感器将根据相关的参考坐标向量定向或校准,如本发明所述起作用。
对于一些姿势检测技术,可使用参考坐标向量限定不同的姿势状态的姿势圆锥。在一些实施例中,可使用参考坐标向量限定直立圆锥,每一种横卧姿势状态的横卧参考坐标向量可用于限定横卧姿势圆锥,或者在一些姿势检测技术中简单地直接用作基于余弦或角的接近度测试的向量。
在图12A的实施例中,临床医师尚未选择患者12首先采取的姿势状态。虽然共有五种可能的姿势状态,显示屏211只要求患者12采取五种姿势状态中的四种。以任何特定的顺序,临床医师使IMD 14定向成姿势状态选择239A所指示的直立位置,姿势状态选择239B和239C所指示的仰卧或俯卧姿势状态之一,姿势状态选择239D所指示的左侧卧姿势状态和姿势状态选择239E所指示的右侧卧姿势状态。
临床医师可通过点击合适的姿势状态选择239定向这些姿势状态中的每一种,确保患者12采取该特定的姿势状态并选择定向按钮245。然后,根据本发明所述姿势检测技术中的任一种,将感应的坐标向量指派给姿势状态选择作为用于姿势检测的参考坐标向量。在任何时间,临床医师可通过选择位置按钮241选中IMD14以何种姿势状态检测患者12。一旦选择位置按钮241,用户界面208可提供患者12当前姿势状态的指示。一旦这些姿势状态中的每一种均已定向,则如本发明所述进行治疗。
如图12B所示,用户界面208的显示屏247向临床指示医师已经完成了针对图12A中所述每一种姿势状态选择239的IMD14的定向。在显示屏247的右侧每一种姿势状态选择239具有划过图形姿势状态指示的选中标记以指示每种姿势状态选择239已经定向。应注意,在仰卧姿势状态与俯卧姿势状态“相对”的实施例中,一旦定向仰卧或俯卧姿势状态,则这两种姿势状态选择239B和239C均已完成。
具体说,在仰卧和俯卧姿势状态的参考坐标向量处于相互精确相对方向的实施例中,一旦获得俯卧或仰卧姿势状态之一的参考坐标向量,则该参考坐标向量的倒数可用于俯卧或仰卧姿势状态中的另一个。例如,如果获得俯卧姿势状态的参考坐标向量,则仰卧姿势状态的参考坐标向量即俯卧参考坐标向量的倒数,无需获得俯卧姿势状态的实际参考坐标向量。而且,如图12B所示,定向按钮245变灰导致临床医师不能再选择该按钮。
一旦临床医师编程装置60呈递显示屏247,则临床医师可继续启动记录模式,设定每种姿势状态的程序,或者要求感应患者12的姿势状态的任何其他编程任务。在替代的实施例中,一旦IMD14根据患者12定向,则临床医师编程装置60可自动开始记录模式和任何其他姿势状态相关的应用。例如,一旦完成了定向过程,对象化和记录模式可自动启动。
图13的概念图显示了当患者12保持一种姿势状态时的示例性的姿势搜索计时器250和姿势稳定性计时器252。如本文所述,IMD 14必须能够在进行治疗调整时使每种治疗调整和治疗参数与患者12预期的姿势状态准确关联。例如,患者12可在患者12移动至不同的姿势状态之后或者预期下一姿势状态时作出治疗调整以定制治疗。IMD 14可采用姿势搜索计时器250和姿势稳定性计时器252追踪治疗调整和患者12的当前姿势状态。虽然IMD 14可使任何治疗参数的治疗调整与姿势状态相关联,但IMD14的一些实施例可能仅仅允许幅度改变的关联。以这种方式,患者12可改变不同的治疗参数,例如脉冲宽度、脉冲频率、或电极配置,但在一些实施例中IMD14将不会储存这些与任何姿势状态相关联的治疗调整。
在搜索阶段届满之前,姿势搜索计时器250具有搜索阶段,即当姿势搜索计时器250开始时作出治疗调整的时间到最终姿势状态必须开始时患者12具有的固定量的时间。换言之,治疗调整不与搜索阶段届满后进入的姿势状态相关联。此外,姿势稳定性计时器252具有稳定性阶段,即患者12必须保持在最终姿势状态内用于作出与最终姿势状态相关的治疗调整的固定量的时间。任何时候患者12改变姿势状态,姿势稳定性计时器252重启。为了使治疗调整与姿势状态相关联,姿势状态的稳定性计时器必须在搜索阶段结束之前开始,并且在稳定性阶段期间姿势状态必须不变。因此,搜索阶段和稳定性阶段必须重叠,使治疗调整与作出治疗调整时患者12当前不处于的姿势状态相关联。
在图13的实施例中,患者12在T0时间对治疗参数之一,例如电压或电流幅度作出治疗调整。因此,姿势搜索计时器250在T0开始并运行整个预定的搜索阶段直到时间T1。在作出治疗调整时,姿势稳定性计时器252也在患者12处于当前姿势状态的时间T0开始并运行整个稳定性阶段。在图13的实施例中,稳定性阶段与搜索阶段相同。由于患者12在时间T0和T1之间没有改变至任何其他的姿势状态,所以稳定性阶段也在T1结束。患者12在时间T0作出的治疗调整与时间T0和T1之间感应的姿势状态相关联,因为搜索阶段和稳定性阶段重叠。在图13的实施例中,可能不需要姿势搜索计时器250和姿势稳定性计时器252,但其目的在以下实施例中变得更加清晰。
姿势搜索计时器250的搜索阶段可以是装置生产商希望的任何时间范围,可以允许或不允许临床医师将搜索阶段设定成所需的值或在预定的搜索范围内。通常,搜索阶段在约30秒到30分钟之间,但也可设定成任何所需的时间,包括在该范围之外的时间。更具体说,搜索阶段可以在约30秒到5分钟之间,或者更优选2分钟到4分钟以为患者12位于最终所需的姿势状态提供合理的时间量。在一些实施例中,如图13-17的实施例所述,搜索阶段约为3分钟。在其他情况下,可使用较短的搜索阶段,例如约1秒到60秒,例如约5秒到20秒。
此外,姿势稳定性计时器252的稳定性阶段可以是生产商或临床医师希望的任何时间范围,其中可以允许或不允许临床医师来设定稳定性阶段。通常,稳定性阶段在约30秒到30分钟之间,但也可设定成任何所需的时间,包括在该范围之外的时间。更具体说,搜索阶段可以在约30秒到5分钟之间,或者更优选2分钟到4分钟,从而确保患者12位于最终所需的姿势状态中保持合理的时间量并且最终的姿势状态不仅仅是一些过渡或暂时的姿势状态。在一些实施例中,如图13-17的实施例所述,稳定性阶段约为3分钟。虽然搜索阶段和稳定性阶段可具有相同的持续时间,在其他实施例中它们也可以不同。在其他情况下,可使用较短的稳定性阶段,例如约1秒到60秒,或者约5秒到20秒。
作为一个示例,采用约10-30分钟的搜索阶段以及约2-4分钟,更优选约3分钟的稳定性阶段可实现可靠的关联结果。在这些范围内的搜索和稳定性阶段应能有效支持患者治疗调整与一系列典型的患者行为内的姿势状态可靠的关联性。然而,可采用稳定性阶段和搜索阶段的其他范围,在一些情况下,可针对单独的患者定制搜索和稳定性计时器范围。
如本文所述,使治疗调整与预期的姿势状态相关联允许用户审阅采取、或过渡到每个姿势状态时患者12作出的治疗调整的类型。然而,关联也可用于更新程序和组使用的治疗参数以限定递送至患者12的刺激治疗,来代替简单地储存多个关联以备后续审阅或者作为储存储存多个关联以备后续审阅的补充。例如,IMD 14可确定患者12作出的增加当前程序的幅度的治疗调整与患者12采取的下一姿势状态相关联。然后,IMD 14可根据关联的治疗参数更新并设定程序。
在该情况下,下一次患者12采取与该关联相同的姿势状态时,IMD 14将由于关联根据患者12作出的增加的幅度递送刺激治疗。因此,IMD 14可使用姿势搜索计时器252和姿势稳定性计时器254来学习或更新程序治疗参数,使得IMD14记得根据采取的姿势状态用于后续递送的治疗递送的先前治疗参数。通常,一旦监测到递送至患者的电刺激治疗的患者调整以及感应到患者姿势状态,如果在检测调整之后搜索阶段内感应得到感应的姿势状态,并且如果在感应到感应的姿势状态之后感应的姿势状态在稳定性阶段期间不变,则调整与感应的姿势状态相关联。
图14的概念图显示了姿势状态发生一次改变的示例性姿势搜索计时器254和姿势稳定性计时器256。如图14所示,患者12针对患者12目前并未采取的下一姿势状态作出预期的治疗调整。换言之,患者12作出患者可能相信在即将来临或近期的基础上在过渡到该姿势的预期中针对给定姿势需要的治疗调整。当患者12针对在时间T0采取的当前姿势状态作出治疗调整时,姿势搜索计时器254和姿势稳定性计时器256在时间T0开始。在时间T1,患者12改变至不同于时间T0所采取的初始姿势状态的第二种姿势状态。因此,姿势稳定性计时器256在时间T1重启,改变至新的姿势状态,仍然在姿势搜索计时器254的搜索持续时间内。
通常,患者在搜索阶段期间接受的治疗调整在搜索阶段重启。结果,时间上紧密输入的一系列患者治疗调整事实上群聚在一起,使得中间调整不与姿势状态相关联。相反,一系列(时间上)紧密间隔的调整中的最终的调整可与代表最终调整的姿势状态相关联,将参数设定为患者12认为对于给定姿势状态合适的水平或值。例如如果搜索阶段是三分钟,患者12在相互的三分钟内对电压幅度作出四次调整,例如4.6伏到4.8伏,4.8伏到5.0伏,5.0伏到5.1伏,5.1伏到5.3伏,则5.3伏的最终调整值可与姿势状态相关联。搜索阶段内每次输入新的调整,搜索阶段重新设定。然而,一旦作出最终调整,如果在另一三分钟内没有进一步的调整,且稳定性阶段对检测的姿势状态满意,则最终的调整与该姿势状态相关联。
时间T2指示姿势搜索计时器254的结束。因此,只要第二种姿势状态满足姿势稳定性计时器256的稳定性阶段,即患者采取第二种姿势状态保持稳定性阶段,IMD14的处理器80使得与治疗调整关联的唯一姿势状态是第二种姿势状态。在时间T3,当稳定性阶段结束时,患者12仍然处于第二种姿势状态,则治疗调整与第二种姿势状态相关联,因为稳定性阶段与搜索阶段重叠。
应注意,患者12在搜索阶段内作出额外的治疗调整。如果是这样,在搜索阶段或稳定性阶段完成之前作出的任何先前的治疗调整不与任何姿势状态相关联。因此,搜索阶段和稳定性阶段必须流逝,即届满,以使治疗调整与姿势状态相关联。然而,在一些实施例中,只要搜索阶段流逝或者搜索阶段期间没有感应到不同的姿势状态,IMD 14就可允许治疗调整与姿势状态相关联。
图15的概念图显示了姿势状态发生两次改变的示例性姿势搜索计时器258和姿势稳定性计时器260。如图15所示,患者12作出预期的治疗调整,但在固定成最终的姿势状态之前采取中间姿势状态。当患者12针对在时间T0采取的当前姿势状态作出治疗调整时,姿势搜索计时器258和姿势稳定性计时器260均在时间T0开始。
在时间T1,患者12改变至不同于时间T0所采取的初始姿势状态的第二种姿势状态或中间姿势状态。因此,姿势稳定性计时器260在时间T1重启,仍然在姿势搜索计时器258的搜索持续时间内。在时间T2,患者12改变至第三种姿势状态,姿势稳定性计时器260再次重启。时间T3指示姿势搜索计时器258的结束,因此,只要第三种姿势状态满足姿势稳定性计时器260的稳定性阶段,IMD14的处理器80使得与治疗调整相关联的唯一姿势状态是在时间T2开始的第三种姿势状态。在时间T4,当稳定性阶段结束时患者12仍然处于第三种姿势状态,则治疗调整与第三种最终的姿势状态相关联,因为第三种姿势状态的稳定性阶段与搜索阶段重叠。
图16的概念图显示了最终的姿势状态改变在姿势搜索计时器之外发生的示例性姿势搜索计时器262和姿势稳定性计时器264。如图16所示,患者12作出预期的治疗调整,但在固定成使得治疗调整与任何姿势状态相关联的最终的姿势状态很久之前采取中间姿势状态。当患者12针对在时间T0采取的当前姿势状态作出治疗调整时,姿势搜索计时器262和姿势稳定性计时器264均在时间T0开始。在时间T1,患者12改变至不同于时间T0所采取的初始姿势状态的第二种姿势状态或中间姿势状态。因此,姿势稳定性计时器264在时间T1重启,仍然在姿势搜索计时器262的搜索持续时间内。
然而,搜索计时器在时间T2届满,T2在患者12在时间T3改变至第三种姿势状态之前,在时间T3姿势稳定性计时器264再次重启。然后第三种姿势状态的稳定性阶段在时间T4届满。由于第三种姿势状态在搜索阶段在时间T2届满之前尚未开始,搜索阶段和稳定性阶段不重叠,从时间T0的治疗调整不与任何姿势状态相关联。在其他实施例中,即使搜索阶段和最终的稳定性阶段不重叠,治疗调整仍然可与时间T0所采取的姿势状态相关联。
以下是图16所述实施例的进一步说明,将该实施例置于示例性患者情形中。当患者12在时间T0作出治疗调整时,患者12可采取直立姿势状态。在该实施例中,搜索持续时间是三分钟,稳定性持续时间也是三分钟。2分钟之后,或者在时间T1,患者12转变至左侧卧姿势,导致IMD14的处理器80重启姿势稳定性计时器260。
如果患者12保持在左侧卧姿势持续稳定性持续时间的全部三分钟,则治疗调整与左侧卧姿势相关联。然而,在搜索持续时间之外的仅仅2分钟后,或者在时间T3,患者12放弃左侧卧姿势。此时,在时间T0作出的治疗幅度不再与患者12的下一姿势状态相关联。因此,下一姿势状态可能是仰卧姿势状态。一旦IMD 14感应到仰卧姿势状态,因为IMD 14在自动姿势响应模式下运行,所以IMD 14可根据与仰卧姿势相关联的治疗参数改变治疗。在图16的实施例中不作出与治疗调整的新的关联。
图17的流程图显示了使接受的治疗调整与姿势状态相关联的示例性方法。通常,在记录模式中,IMD14或外置编程装置20检测感应的姿势状态的多个情况期间递送至患者的电刺激治疗的患者调整,并使检测的患者调整与感应的患者姿势状态相关联。关联可储存在存储器中用于后续检索以查看关联和/或支持用于对针对姿势状态响应性治疗的治疗参数编程的各种编程技术。虽然将参照患者编程装置30和IMD14描述图17的实施例,但该技术可应用于任何外置编程装置20和IMD或其他计算装置中。如图17所示,用户界面106接受来自患者12的治疗调整(266),IMD14的处理器80立即启动姿势搜索计时器(268)和姿势稳定性计时器(270)。
如果患者12的姿势状态不改变(272),则处理器80检查确定稳定性阶段是否届满(276)。如果稳定性届满尚未届满(276),则处理器80继续感应姿势状态改变(272)。如果稳定性阶段已届满(276),则处理器80采用最终的姿势状态,即当前感应的姿势状态,选择治疗参数以递送治疗(282)。然后,处理器80使治疗调整与最终的姿势状态相关联并保留当前治疗的治疗调整(284)。
如果处理器80感应到姿势状态改变(272),则处理器80确定搜索阶段是否届满(274)。如果搜索阶段尚未届满(274),则处理器80重启姿势稳定性计时器(270)。如果搜索阶段已届满(274),则处理器80根据当前的姿势状态将治疗递送至患者12(278)。处理器80保留治疗调整并且不使治疗调整与最终的姿势状态相关联,因为搜索阶段不与稳定性阶段重叠(280)。采用搜索和稳定性计时器,如果在监测到调整之后搜索阶段内感应到感应的姿势状态,并且如果感应的姿势状态在感应到感应的姿势状态之后的稳定性阶段期间不改变,每个检测的调整与感应的姿势状态相关联。
在一些实施例中,作为替代方式,采用姿势稳定性计时器而不使用姿势搜索计时器。如参照姿势稳定性计时器260所述,姿势稳定性计时器可在治疗调整之后启动,并在每次患者12在姿势稳定性计时器届满之前改变姿势状态时重新设定。当姿势稳定性计时器260届满时,治疗调整可与此时患者12所采取的姿势状态相关联。以这种方式,治疗调整可与治疗调整之后第一种稳定的姿势状态相关联,即与在姿势稳定性计时器的持续时间内保持稳定的第一种姿势状态相关联,而与自从治疗调整开始后经过的时间无关。因此,在一些实现方式中,处理器80可仅仅采用稳定性计时器而没有搜索计时器。在一些情况下,仅仅使用稳定性计时器而没有搜索计时器可通过将搜索计时器值设定成较大的值,例如24小时进行模拟。非常大的搜索计时器值的作用是仅用稳定性计时器运行。
应注意,在示例性实现方式中,处理器80可以在任何时间不改变患者12的治疗直到稳定性阶段届满为止。换言之,姿势稳定性计时器可独立于总是追踪独立于治疗调整的姿势状态的姿势搜索计时器运行。因此,IMD14可以不执行任何自动姿势状态响应性刺激,直到患者12的姿势状态稳定且稳定性阶段届满为止。以这种方式,在多个姿势状态间转变时患者12不会经历快速改变的治疗。或者,IMD 14可采用单独的姿势稳定性计时器,用于在自动姿势响应期间改变治疗,不同于本文所述的治疗调整相关的姿势稳定性计时器。
图18A的概念图显示了用于启动储存每种姿势状态的治疗调整的记录模式的示例性用户界面208。如图18所示,用户界面208的显示屏286允许临床医师启动记录模式,使治疗调整与姿势状态相关联并将该关联储存在IMD14和/或外置编程装置20内。图18是临床医师编程装置60的一个例子,显示了用户界面208,但也可使用任何编程装置20。选中记录模式选择288以显示临床医师希望启动记录模式。临床医师在显示屏286中还具有启动和储存与姿势状态信息相关的对象化数据的机会。如前所说,对象化数据可以自动储存,除非临床医师关闭该应用。例如,一旦对象过程完成,对象化和/或记录模式可以自动打开。
显示屏286还允许临床医师通过选择姿势按钮292来检查IMD14的姿势状态传感器的定向。然后在姿势字段294中显示当前的姿势。在一些实施例中,患者12的姿势状态可以患者身体的图片或图标、姿势状态、所用姿势圆锥、显示患者12身体相对于圆锥位置的二维或三维向量、或者简单地姿势状态传感器的当前输出坐标的形式呈现。临床医师也能够用姿势控制按钮296打开或挂起基于感应的患者12的姿势状态改变治疗的自动姿势响应性刺激。临床医师选中启动记录模式选择288之后,临床医师可选择程序按钮300来启动记录模式。或者,临床医师可选择清除按钮298来擦除显示屏286上的任何选择。
图19-26涉及临床医师编程装置60,但也可涉及任何其他的外置编程装置20。图19的概念图显示了一种示例性用户界面208,显示储存的调整信息并允许用单一的确认输入进行编程,即一次点击编程。如图19所示,用户界面208的显示屏302除了允许临床医师用单一确认输入设定多个程序的标称治疗参数外还呈递相关治疗调整信息。显示屏302包括组菜单304、姿势状态菜单306、治疗调整信息308、确认按钮318和概述按钮320。
通常,显示屏302向用户呈递治疗调整信息。治疗调整信息包括患者针对一种或多种患者姿势状态对一种或多种刺激治疗程序的至少一种刺激参数作出的一种或多种治疗调整。一旦从用户接受基于治疗调整信息选择针对每种治疗程序和针对每种姿势状态的一种或多种标称治疗参数的输入,编程装置就对每种治疗程序和姿势状态设定选择的标称治疗参数,用于向患者递送刺激治疗。
组菜单304允许临床医师选择所需的要在显示屏302上显示的程序组。组菜单304中呈递的组可能是在临床医师的编程会话期间静态且不可改变的。然而,用户界面208的一些实施例可允许在更新的组菜单304中显示新增加或删除的组。此外,组菜单304可以仅仅显示自动姿势响应当前是工作的组。如果询问具有可组A、B和C的装置,并然后在编程会话期间添加组D和E,则在编程装置和IMD的一些配置中组列表可以不更新。然而,在其他实施例中,组列表可以自动更新。列表可基于针对姿势响应性治疗启动哪个组而不启动哪些组进行过滤。
当前,在图19的实施例中,因为在组字母周围的引号,临床医师已选择程序组“C ”,也是当前选择的递送刺激治疗的组。或者,该活动的组可以用该组目前递送治疗的任何其他指示表示进行指示。姿势状态菜单306也允许临床医师选择所需姿势状态,使得呈递的治疗调整信息与选择的姿势状态相关。具体说,可显示治疗调整信息,指示当采取具体姿势状态时患者对具体程序作出的调整。在图19中,临床医师在姿势状态菜单306中已选择直立姿势状态,在组菜单304中已选择组C。结果,编程装置60的显示屏302呈递当患者采取直立姿势状态时,患者针对组C中的各单独程序选择的最小和最大值。
治疗调整信息308包括多个字段,包括由储存在IMD14、患者编程装置30或临床医师编程装置60内的治疗调整信息得到的数据。程序字段310呈递选择的组(C)的每个程序(C1,C2,C3)。调整字段312呈递针对给定姿势状态(例如,在图19中是直立)患者12对每种程序作出的调整的量化数值(#调整)。调整次数可以是具体的时间间隔,例如小时、天、周或月,或者在开放端时间间隔上的总数或均值,开放端时间间隔例如在连续编程会话之间的治疗会话,其可以是在诊所中或远程编程会话,其中用更新的程序参数对IMD14编程。
最小值字段314呈递患者12对每种程序进行调整的最小幅度,最大值字段316呈递患者12对每种程序进行调整的最大幅度。因此,最小值字段314和最大值字段316提供了采取特定姿势时每种程序的幅度范围,患者12在该幅度范围内接受刺激治疗。例如,当采取相关姿势状态(例如在图19中直立)时在相关时间间隔中采用程序C1递送幅度在5.5伏(V)到5.9V之间的刺激治疗,其中5.5伏是患者选择的最小幅度,5.9V是患者选择的最大幅度。幅度以伏的形式提供,但IMD 14替代地可递送恒定电流形式的刺激。然而,如果IMD 14以恒定电流递送刺激,则幅度可以是以安培表示的电流幅度指示。
利用呈递给临床医师的治疗调整信息308,显示屏302也允许临床医师对显示屏302上显示的每种程序的治疗参数作出改变。在图19的实施例中,程序的标称治疗参数是对该姿势状态记录的治疗调整的最小幅度。临床医师可能希望通过选择确认按钮318,仅仅一次确认输入即将组“C”的所有程序设定为给定姿势下的最小幅度。标称治疗参数可以是从储存在IMD中的治疗调整选择的治疗参数。换言之,在该实施例中,标称治疗调整不根据算法加权或计算。以这种方式,因为临床医师能够获得用于编程的治疗参数,对于给定姿势状态的多个程序的编程可以用仅仅一次点击确认按钮318来完成,从而缩短了编程时间。一旦选择概述按钮320,临床医师编程装置60将呈递额外的姿势状态信息或治疗调整信息,例如与每种姿势状态相关的治疗调整的总数,如图24所示。
如图19所示及如上所述,通过经组菜单304选择程序组和经姿势状态菜单306选择姿势状态,用户能够查看对于程序组中的程序C1-C3和进行调整的具体姿势状态,患者的调整次数312,患者选择的最小值314,患者选择的最大值。因此,用户可查看不同程序组和不同姿势状态的信息,然后例如经确认按钮318将相关的最小幅度作为相应的程序和姿势状态的标称幅度。然后,当姿势响应性治疗运行时,当患者采用相应的程序同时采取相应的姿势状态时,IMD14将以相关的最小幅度递送刺激。
显示屏302仅呈递与每个程序的每种姿势状态相关的记录的幅度,可以不显示脉冲宽度、脉冲频率和电极配置。然而,显示屏302可替代地被配置成除了幅度之外还显示其他刺激治疗参数值,或者向用户提供查看其它的治疗参数的链接。虽然在实施例中,仅针对幅度的治疗调整建立关联并储存在IMD14中,但在其他实施例中也可记录其他治疗参数调整。可以对限定每个程序的治疗参数值中的任一种或多种执行治疗调整的关联,甚至是非关联的治疗参数值也可通过用户界面208呈递给用户。如果仅仅使用幅度调整,则意味着每次幅度调整采取恒定的脉冲宽度、脉冲频率和电极配置。在其他实施例中,如果患者12在治疗期间对脉冲宽度、脉冲频率或电极配置作出改变,因为幅度的关联不再基于作出关联时使用的原始治疗参数,可擦除该改变的程序的任何关联的幅度。
此外,显示屏302可以不总是允许临床医师确认删除或新增的组或程序的治疗参数改变,因为治疗参数是关联的。换言之,如果治疗采用的组和程序是一致的,则使用期间患者12作出关联的组和程序只可采用储存的治疗调整进行调节。而且,在电刺激的情况下,如果任何导线被重新配置用于治疗,用户界面208可阻止临床医师采用确认按钮318对治疗参数作出任何改变。这些对治疗进行改变的限制是理想的,能够防止临床医师对治疗作出不恰当的改变。
虽然显示屏302在一个时间仅显示一个组的程序以及在一个时间显示一种姿势状态,但用户界面208的替代实施例可在一个时间提供超过一个组的程序和超过一种的姿势状态。这样,临床医师能够用单次点击确认按钮318设定多个程序组的更多治疗参数。在其他实施例中,临床医师能够选择全局确认按钮(未示出),用单次点击全局确认按钮设定IMD14内每个程序的标称治疗参数。
同样,隐含的是记录和显示的幅度具有恒定的脉冲宽度、脉冲频率和电极配置。编程会话的过程期间,如果用户改变电极配置、脉冲宽度、脉冲频率或该显示屏上未列出的任何参数(因为是隐含的),确认按钮318可以仅对该组变灰,因为记录的幅度仅仅与隐含的脉冲宽度、频率和电极配置联合时是有效的。如果删除组然后重新增加(例如,删除B,然后重建),确认按钮318可以对该组变灰。如果在一个组中增加或删除程序,则确认按钮318可以对该组变灰。如果导线配置改变,确认按钮318可以对用于治疗的所有组变灰。
图20的概念图显示了一种示例性的用户界面208,显示了程序组的用户选择。如图20所示,显示屏302呈递来自记录模式的治疗调整信息。具体说,组菜单304显示为下拉形式,允许临床医师选择在显示屏302上显示哪个程序组。在图20的实施例中,可利用的组是A、B、C、D、E和F,但组菜单304可具有更多或更少的组,取决于临床医师如何对刺激治疗编程。在其他实施例中,组菜单304可以是可滚动的列表、让临床医师输入所需的组的文字字段、或者是允许临床医师选择所需的组的一些其他菜单。替代地,临床医师能够一次选择组菜单304的多个组。
图21的概念图显示了一种示例性的用户界面208,显示了姿势状态的用户选择。在图21的实施例中,显示屏302的姿势状态菜单306处于下拉形式,允许临床医师选择将要呈递的治疗调整信息所针对的所需姿势状态。可利用姿势状态是直立、直立且活动、仰卧、俯卧、右侧卧和左侧卧。在一些实施例中,如果对于选择的组的任何程序,任何姿势状态不具有关联的治疗调整,则该姿势状态可以变灰或者在姿势状态菜单306中缺失。而且,当显示屏302上呈递多个姿势状态时,用户界面208允许从姿势状态菜单306选择多个姿势状态。在其他实施例中,姿势状态菜单306可以是可滚动的列表、让临床医师输入所需的姿势状态的文字字段、或者是允许临床医师选择将要呈递的所需姿势状态的一些其他菜单。
图22的概念图显示了一种示例性用户界面208,显示了允许一次点击编程的对于所有姿势状态和程序组的所有程序储存的治疗调整信息323。图22是图19-21中所示治疗调整信息的替代呈递。如图22所示,用户界面208的显示屏322呈递在治疗记录模式期间储存的治疗调整信息323。显示屏322包括组菜单324、姿势状态326A、326B、326C、326D、326E和326F(统称为“姿势状态选择326”)、最小幅度328、编程信息330、详情按钮332、概述按钮334和确认按钮336。
组菜单324中已选择组“C”,因而显示了该组所有四个程序C1、C2、C3和C4。治疗调整信息323包括患者12根据每个姿势状态选择326针对选择的组的每个程序调整的最小幅度328。例如,当患者采取直立、直立且活动、仰卧、俯卧姿势状态时,程序C1中显示最小患者选择的幅度分别为8.0、9.7、2.2和3.8伏。治疗调整信息323中变灰的最小幅度,例如右侧卧姿势状态选择326E中的所有最小幅度指示患者12不能作出治疗调整以针对该姿势状态和该组设定最小幅度。以这种方式,临床医师能够识别患者12作出治疗调整的姿势状态。在替代的实施例中,显示屏322可呈递不同于最小幅度328的标称治疗参数。例如,显示屏322可呈递最大幅度或最终使用的幅度。
编程信息330向临床医师提供了关于如何设定所有程序的最小幅度328的标称治疗参数的信息。具体说,临床医师仅需点击确认按钮336,用呈递的针对每种姿势状态的最小幅度对程序C1-C4中的每一个编程。这种单次点击显著降低了对每种姿势状态中每个程序新的刺激参数正常编程所需的时间。此外,临床医师可选择详情按钮332以查看治疗调整详情,如图23所示,选择概述按钮334以查看每种姿势状态治疗调整的总数,如图24所示。
图23的概念图显示了一种示例性的用户界面208,显示了与图22相关的详细调整信息。如图23所示,由临床医师通过选择显示屏322的详情按钮332或用户界面208的一些其他菜单选项,导航至用户界面208的显示屏338。显示屏338呈递记录模式期间储存在IMD14内的治疗调整信息339。临床医师可以通过组菜单340选择查看哪个组,通过选择返回按钮352回到显示屏322。
对于选择的组的每个程序,显示屏338呈递姿势状态342A、342B、342C、342D、342E和342F(统称为“姿势状态选择342”)。并且,对于每个程序和每种姿势状态选择342,向临床医师呈递最小幅度344、最大幅度346和最终使用的幅度348。因此,除了最终使用的幅度外,临床医师还可审阅患者12采用的整个幅度范围,指示治疗进程的方向。如标记350所示,变灰的幅度可指示它们没有被患者12调整过。在其他实施例中,,显示屏338还可呈递每个姿势状态下每个程序的治疗调整的次数来附加于或代替最终使用幅度348。在显示屏338的替代实施例中,也可呈递与治疗调整和姿势状态信息相关的其他信息。
在其他实施例中,治疗调整信息可以在显示屏338上以不同方式排布。例如,可以从显示屏338去除任何未调整的姿势状态,因为患者12没有使用那些姿势状态。或者,治疗调整信息可包括针对每个程序和姿势状态选择342的中值或中位幅度。而且,一旦在治疗调整信息339内选择幅度,用户界面208可显示额外的数据,例如每个治疗调整,每次调整的时间和数据戳,最后的周、月、年或整个治疗期间每天的平均调整,或者任何其他详细的幅度信息。在一些实施例中,治疗信息可提供其他治疗参数的调整,例如脉冲宽度、脉冲频率或电极配置。当然,如果采用药物递送代替或者补充电刺激治疗,可向临床医师呈递与药物递送治疗和IMD26相关的任何治疗调整信息。
图24A和24B的概念图显示了示例性的用户界面208,显示屏337中提供了与每种姿势状态相关的最大和最小治疗调整。图24A的显示屏337类似于图23的显示屏336。如图24A所示,显示屏337提供了与图22相关的详细调整信息。如图23所示,由临床医师通过选择显示屏322的详情按钮332或用户界面208的一些其他菜单选项,访问用户界面208的显示屏337。显示屏337呈递记录模式期间储存在IMD14内的治疗调整信息335,包括用户选择的最小和最大幅度设定,作为当患者采取特定姿势状态时具体治疗程序的调整。临床医师可以通过组菜单341选择查看哪个组,通过选择返回按钮353回到显示屏322。返回按钮353也用显示屏337中显示的选择的治疗值对刺激治疗编程。
在图24A的实施例中,对于选择的程序组(C)的每个程序(C1、C2、C3),显示屏337呈递姿势状态343A(直立)、343B(直立且可动)、343C(仰卧)、343D(俯卧)、343E(右侧卧)和343F(左侧卧),统称为姿势状态选择343。直立且可动可类似于在本发明的其他部分所述的直立且活动的姿势状态或与之相同。对于选择的组中的每个程序和每种姿势状态选择343A-343F,向临床医师呈递最小幅度347和最大幅度349。因此,临时医师可审阅当患者采取特定姿势状态时患者12对特定程序使用的幅度范围。如标记351所示,提醒用户选择返回按钮353,采用幅度设定相应的最小值启动显示屏337的每种选择的姿势状态的姿势响应性刺激。在其他实施例中,显示屏337可呈递每个姿势状态下每个程序的治疗调整次数。在显示屏337的可选实施例中,也可呈递与治疗调整和姿势状态信息相关的其他信息。如果在给定程序中未作出治疗调整,则在治疗调整信息335中将不提供最小和最大幅度值。
如图所示,采用显示屏337,用户可查看对于一些姿势状态的每一个,选择的组C中每个程序C1-C3的最小和最大电压(最小V和最大V)。通过选择姿势状态,例如通过选中框,例如直立姿势的框345,用户可指示姿势响应性刺激(自适应刺激)是否应当用该姿势状态和程序所指示的最小V幅度设定进行递送。如果患者通过选中框345来选择直立,然后选择按钮353,当患者确定为直立姿势状态时将以每个程序C1-C3所指示的最小V幅度设定来递送姿势响应性治疗。通过选中所有的姿势状态,当患者确定处于相关的姿势状态时将以每个程序C1-C3相关的最小V幅度设定进行递送。
如果用户选择直立姿势状态,然后激活按钮353,则IMD14将被编程成当患者处于直立姿势状态且选择的程序组是组C时,以C1程序0.8伏,C2程序1.05伏,C3程序0.8伏的电压幅度递送刺激。类似地,对于用户选择的任何其他姿势,一旦激活按钮353,编程装置将被配置成将IMD14编程成当患者处于指定的姿势状态时递送选择的组中各程序可应用的最小电压幅度。同样,以这种方式,此后当采用该程序组并且患者再次位于该姿势状态时,将采用患者针对特定的姿势状态采用特定的程序组时选择的最小电压设定。因此,每种姿势状态在不同的程序组中针对各程序具有其自身的幅度设定,基于当患者处于该姿势状态时针对该程序患者手动输入的最小设定选择该幅度设定。
在其他实施例中,治疗调整信息可以在显示屏337中以不同方式排布。例如,可以从显示屏337去除任何未调整的姿势状态,因为患者12没有使用那些姿势状态。或者,治疗调整信息可包括针对每个程序和姿势状态选择343的中值或中位幅度。而且,一旦在治疗调整信息335内选择幅度,用户界面208可显示额外的数据,例如每个治疗调整,每次调整的时间和数据戳,最后的周、月、年或整个治疗期间每天的平均调整,或者任何其他详细的幅度信息。在一些实施例中,治疗调整信息335可提供其他治疗参数,例如脉冲宽度、脉冲频率或电极配置的调整。当然,如果采用药物递送代替或者补充电刺激治疗,可向临床医师呈递与药物递送治疗和IMD26相关的任何治疗调整信息335。
图24B显示了用户如何在用户界面208的显示屏337内选择所需治疗程序的组。一旦选择组菜单341的下拉箭头,则用户界面208将提供所有可利用治疗组(例如A、B、C等)的列表。如图24B所示,组C标识为限定刺激治疗的当前组。一旦从组菜单341选择所需的组,显示屏337改变至显示与该选择的组相关的治疗调整信息,包括当患者采取不同姿势状态时该选择的组中各程序的最小和最大电压设定。
图25A的概念图显示了一种示例性的用户界面208,显示了每种姿势状态358的量化治疗调整356。虽然治疗调整356以所有治疗程序的累积形式显示,但在其他实施例中,显示屏354可仅仅呈递显示屏354上指示的指定治疗组中各程序的调整。因此,用户界面208可呈递当患者处于该姿势状态时递送的所有程序中每种姿势状态下调整的总数,或者显示当患者处于该姿势状态时递送的每个程序组中每种姿势状态下调整的总数。如图25A所示,由临床医师通过选择显示屏302的概述按钮320,显示屏322的详情按钮332,或用户界面208提供的一些其他菜单选项,导航至用户界面208的显示屏354。显示屏354包括量化的治疗调整356,包括姿势状态358和相应的调整值360。
对于每种姿势状态358,临床医师可能希望查看在前一时间间隔或前一治疗会话期间作出了多少治疗调整。因此,调整值360提供了与IMD14感应到的每种姿势状态相关的治疗调整的总数。调整值360可以是治疗期间的调整总数,或者是每小时、每天、每周、每个月或任何其他的时间间隔内临床医师能选择或不能选择的调整的平均数。此外,调整值360可以通过估计感兴趣的治疗会话期间的天数或周数在某一时间范围内取平均。在图25A的实施例中,在给定的时间范围内,直立、直立且活动、仰卧、俯卧、右侧卧和左侧卧姿势状态下的调整次数分别为38、11、19、41、21和14。
量化治疗调整356在确定患者12必须更加频繁地手动调整的姿势状态358中对于临床医师是有用的。较少的调整可指示患者12常常手动发现有效的治疗,而较大的调整可指示患者12在手动发现限定有效治疗的治疗参数中遇到困难。当治疗调整范围指示大的调整范围,例如大的电压或电流幅度范围时,这是合理推断。当调整值360所指示的调整量化数值较高时,临床医师可能希望修正一个或多个程序以寻找能更好地治疗患者12的治疗参数的不同集合,包括诸如脉冲宽度、脉冲频率、电极组合和电极极性等参数。在这种情况下,仅仅幅度调整对于提供有效治疗而言是不足的。此外,显示屏354可提供显示患者12随时间是否作出更多或更少调整的趋势信息。例如,显示屏354可呈递趋势数据的图形或数字表示。然后,临床医师相应地调整程序治疗参数。一旦临床医师完成查看显示屏354,选择返回按钮362可将临床医师带回先前的显示屏或者带回至临床医师编程装置60的主显示屏或主菜单。
如上所述,当调整范围较大时大的调整次数可指示缺乏功效。当患者接受非姿势状态响应性的刺激时,在小的调整范围内大的调整次数可指示应激活患者的姿势状态响应性刺激的情况。具体说,如果没有启动姿势状态响应性刺激,规则刺激递送期间患者治疗调整的次数较大而患者治疗调整的范围小,患者12可能是递送姿势状态响应性刺激治疗非常好的候选者。如图所示,如果对于给定姿势状态患者12在4.8-5.2的窄电压幅度范围内作出多次调整,则可能需要针对该姿势状态的姿势状态响应性治疗的递送。
图25B的概念图显示了一种示例性的用户界面355,分别显示了所有组和指定组中对每种姿势状态量化的治疗调整357和363。治疗调整357是根据所有程序组在治疗期间作出的调整的累积值。因此,调整361提供了当患者12采取每一种姿势状态359时作出的调整次数的值,与用于递送治疗的程序无关。调整361提供的值可以是最新近会话中的调整次数,例如自从前一次临床医师访问,或者任何其他时间阶段期间。治疗调整357可允许临床医师识别患者12在寻找合适的刺激治疗参数中遇到困难的姿势状态359。同样,在大范围内的大的调整次数可指示患者12在调节针对该姿势的刺激中遇到困难,而小范围内的大的调整次数可指示姿势状态响应性治疗与患者的给定姿势状态匹配良好。
量化治疗调整363呈递患者12仅在通过组菜单371中显示的选择的程序组递送的治疗期间作出的调整。如图25B所示,显示屏355显示了对每种姿势状态367的调整次数369。用户可以通过选择组菜单371中不同的组来查看其他程序组的治疗调整。治疗调整363可允许临床医师通过识别最小的调整次数而识别出哪个组最适合治疗患者12。调整369可提供标准化为每个组中患者12接受治疗的时间长度的值,使得临床医师能够在各个程序组间作出比较。在其他实施方式中,显示屏355可立即呈递最多调整369的组,使得临床医师可以开始补救无效治疗,例如通过对治疗参数作出调整。
如上所述,患者治疗调整的次数可以聚类,例如通过采用搜索计时器,从而在时间上紧密间隔的治疗调整重新设定搜索计时器并导致单一最终的治疗调整,该治疗调整与姿势状态相关联。以这种方式,以单一编程干预事件的形式呈递许多紧密间隔的调整。如果调整的值也相互接近,单一编程干预事件形式的聚类调整的治疗尤其合适。在一些实现形式中,可能希望使所有单独的患者治疗调整与姿势状态相关联,即时调整暂时相互接近,而不是使用搜索计时器或其他技术聚类在时间上紧密接受的治疗调整。因此,一些实现形式可提供患者治疗调整的聚类,而另一些实现不是这样。
图26的概念图显示了一种示例性的用户界面208,显示了允许一次点击编程的程序组的所有姿势状态的量化治疗调整信息。图26是图19-21或图22-25中所示治疗调整信息的可选呈递。如图26所示,用户界面208的显示屏364呈递在治疗记录模式期间储存的治疗调整信息365。显示屏365包括组菜单366、姿势状态368A、368B、368C、368D、368E和368F(统称为“姿势状态选择368”)、调整值370、最小幅度372、编程信息374和确认按钮376。
一旦临床医师在组菜单366中选择了所需的程序组(例如,组C),显示屏364呈递相应的治疗调整信息365。具体说,显示屏364提供了每个程序和姿势状态选择368的调整值370和最小幅度372。同样,最小幅度372表示当调整针对特定姿势状态的程序的幅度时患者指定的最小值。调整值370是患者12针对特定的程序和姿势状态调整治疗的次数,任何非调整用零指示并且最小幅度372变灰。通过单次点击确认按钮376,临床医师可以将最小幅度设定为对于治疗期间相继使用的每个相应的程序和姿势状态组合将要递送的标称刺激参数。治疗信息374提醒临床医师关于如何用确认按钮376对治疗编程。
图27的流程图显示了在记录模式期间使治疗调整与姿势状态相关联的示例性方法。如图27所示,临床医师使用临床医师编程装置60将IMD中的姿势状态传感器定向成患者12的姿势状态(378)。例如,可获得多个姿势状态中每一个的感应向量,单独用作参考坐标向量或者用于限定姿势状态圆锥或其他容积,例如横卧姿势类似环形或圆环面的容积,如本申请所述。然后,临床医师编程装置60接受输入以启动姿势状态记录模式,该模式使患者作出的治疗调整与姿势状态相关联(380)。例如,当感应的向量例如通过参照圆锥、向量等指示具体的姿势状态时,患者作出治疗调整,该治疗调整与指定的姿势状态相关联。所有其他编程完成之后,IMD14根据以程序组形式储存的治疗参数向患者12递送治疗(382)。
如果IMD 14没有从患者12经患者编程装置30接受治疗调整(384),IMD14继续向患者12递送治疗(382)。然而,如果IMD 14经患者编程装置30从患者接受治疗调整(384),IMD14的处理器80根据姿势搜索计时器和姿势稳定性计时器,或者在其他实施例中仅仅姿势稳定性计时器使治疗调整与合适的姿势状态相关联(386)。此外,IMD 14可基于患者治疗调整立即修正治疗并向患者12递送治疗。然后处理器80将该关联性以及同一姿势状态下作出的任何其他关联性储存在IMD14的存储器82中(388)。储存的关联性可由用户(例如临床医师)通过外置编程装置检索查看,例如用于分析治疗功效和IMD的编程。然后IMD 14向患者12继续递送治疗(382)。或者,患者编程装置30可代替IMD14执行关联性和/或储存该关联性。临床医师编程装置60可以从患者编程装置30检索该关联性。
作为记录模式期间使治疗调整与姿势状态相关联的过程的细化,IMD14和/或外置编程装置20可被配置成应用更严格的姿势状态检测要求。姿势状态检测过程可基于本申请中描述的任何过程检测姿势状态,包括参照图8A-8C所述的那些。例如,如果感应的坐标向量位于针对具体姿势状态的具体参考坐标向量的指定角度、余弦值或距离内,可检测姿势状态。然而,使治疗调整与姿势状态相关联的过程可能要求感应的坐标向量更接近参考坐标向量定位。在这种情况下,即使基于感应的坐标向量在参考坐标向量的第一容差范围内检测具体的姿势,只有当感应的坐标向量位于参考坐标向量的第二更严谨的容差范围内时患者治疗调整与检测姿势状态相关联。用于关联的第二范围比用于检测的第一范围小,要求感应的坐标向量更接近用于作出关联的参考坐标向量。
因此,在可选的实现方式中,如果符合更严格的姿势检测标准,IMD14或编程装置20作出患者治疗调整与姿势状态间的关联。例如,在基于圆锥的姿势检测方案的实施例中,由限定容差角的参考坐标向量和圆锥限定每种姿势状态,如果患者离开面朝上圆锥的参考坐标向量正或负30度,则患者测定为面朝上的姿势状态。然而,为使患者治疗调整与姿势状态相关联的目的,只有当患者检测为面朝上的姿势状态,并且患者离开面朝上的姿势状态圆锥的坐标参考向量正或负15度时,IMD14或编程装置20作出关联。
在基于圆环面的检测方案中,如果例如离开直立参考坐标向量或者虚拟的直立参考坐标向量大于60度,则患者可归类为横卧。然而,为使患者治疗调整与姿势状态相关联的目的,IMD14或编程装置20可被配置成只有当患者例如离开直立坐参考坐标向量或者虚拟的直立参考坐标向量大于75度时使治疗调整与横卧姿势状态相关联。在每一个这种实施例中,确定患者治疗调整是否与姿势状态相关联时,IMD14或编程装置20采用比通常的姿势状态检测更保守的容差标准,得到特异性更高的关联标准或逻辑。
图28的流程图显示了用于显示建议的参数和接受来自用户的确认输入用于一次点击编程的示例性方法。虽然参照图28描述了临床医师编程装置60,也可使用任何外置编程装置20。如图28所示,临床医师编程装置60首先从IMD14或患者编程装置30获取治疗调整信息,包括记录模式期间与姿势状态相关的参数值(390)。每个参数值表示患者作出治疗调整后的参数值。然后,临床医师编程装置60的用户界面208接受来自用户界面208上呈递的组菜单的组输入(392)。然后,处理器104命令用户界面208基于患者12作出的治疗调整呈递在选择的组中每个执行和姿势状态下的标称治疗参数(394)。如本文所述,标称治疗参数可以是最小幅度、最大幅度、最终使用的幅度、或者从治疗调整信息选择的一些其他参数。
如果用户界面208接受来自临床医师的对所有程序设定为标称刺激参数的确认输入(396),则处理器104根据标称治疗参数设定选择的组中的所有程序用于递送自动姿势响应性刺激期间进一步使用(398)。如果用户界面208接受导航输入(400),则处理器104命令用户界面208离开编程显示屏(404)并继续编程。否则,如果临床医师没有选择新的组(402),或者用户界面208检测到临床医师希望进行新的组选择(402)并接受来自组菜单的组输入(392),用户界面208再次呈递标称治疗参数(394)。通过呈递组中每个程序和每种姿势状态的标称值,当患者再次采取相关姿势状态而IMD14正在递送相关程序组时,临床医师能够快速选择和应用标称值用于姿势响应性治疗。
图29的概念图显示了呈递在指导编程中针对程序组的每个程序建议的治疗参数的示例性的用户界面208。通常,编程装置接受治疗调整信息,包括患者对一种或多种患者姿势状态下一个或多个刺激治疗程序的至少一个参数作出的治疗调整,并基于治疗调整信息产生针对一个或多个刺激治疗程序的一个或多个建议的治疗参数。向用户呈递建议的治疗参数用于选择,从而编程姿势状态的治疗参数值以支持姿势状态响应性治疗。
图29类似于图19,但图29的显示屏406向临床医师呈递建议的治疗参数。描述了临床医师编程装置60,但任何外置编程装置20可向用户提供显示屏406。示例性的用户界面208显示了组中每个程序建议的治疗参数并允许用单次确认输入指导编程。如图29所示,基于储存在IMD14中并由临床医师编程装置60检索的治疗调整信息,用户界面208的显示屏406呈递每个程序的建议治疗参数。显示屏406也包括组菜单408、姿势状态菜单410、程序412、建议的治疗参数414、确认按钮416和概述按钮418。
组菜单408允许临床医师选择所需的程序组在显示屏406上显示。当前,因为在组字母周围的引号,临床医师已选择程序组“C”,也是当前选择的(即活动的)递送刺激治疗的组。姿势状态菜单410也允许临床医师选择所需姿势状态,使得呈递的治疗调整信息与选择的姿势状态相关联。在图29中,临床医师在姿势状态菜单410中已选择直立姿势状态。
为每个程序412(C1,C2和C3)呈递可用于为每个程序412编程的建议的治疗参数414。建议的治疗参数414可由编程装置基于储存的治疗调整信息和用于计算患者12最合适的治疗参数的指导算法产生。指导算法可由生产商预先编程在临床医师编程装置60的存储器108中或者由临床医师预先选择以最佳匹配患者12。指导算法可利用治疗调整信息简单地计算建议的治疗参数414作为与程序和姿势状态相关的治疗调整的中值幅度、中位幅度或者最频繁使用的幅度,或者指导算法可执行更复杂的计算。例如,处理器104可计算权重低的幅度值以尝试产生能够提供有效刺激而不会过度刺激患者12的建议的治疗参数。下面参照图30进一步描述这些和其他指导算法。
如图所示,对于给定的程序(例如,C1)和给定的姿势状态(例如直立),编程装置60可计算患者针对程序C1选择的所有幅度的中值幅度作为当患者处于该姿势状态时的治疗调整。如果当患者处于直立姿势状态时在给定的治疗会话中程序C1存在四次患者调整,导致程序C1的电压幅度为5.0伏、5.2伏、6.0伏和6.2伏,则可选择5.6伏的中值电压幅度作为当检测患者处于直立姿势状态而采用程序C1时自动递送的建议的幅度。除了中值之外,编程装置60可显示最小和最大值,即使用户仅允许选择中值。以这种方式,用户可选择中值作为建议的或指导的值,但仍然能够方便的观察最小和最大值以理解指导值落在最小-最大范围内。
如图所示,对于给定的程序(例如,C1)和给定的姿势状态(例如直立),编程装置60可确定患者针对程序C1选择的所有幅度的最频繁选择幅度作为当患者处于该姿势状态时的治疗调整。如果当患者处于直立姿势状态时在给定的治疗会话中程序C1存在10次患者调整,导致程序C1的电压幅度为5.0伏、5.2伏、6.0伏、6.0伏、6.0伏、5.8伏、4.8伏、5.5伏、6.0伏和6.2伏,则可选择6.0伏的最频繁选择的电压幅度作为当检测患者处于直立姿势状态而采用程序C1时自动递送的建议的幅度。
利用呈递给临床医师的建议的治疗参数414,显示屏406也允许临床医师对显示屏406上显示的每种程序的治疗参数作出改变。在图29的实施例中,建议的治疗参数是与该姿势状态下记录的治疗调整相关的值的中值幅度。临床医师可能希望通过选择确认按钮416(“接受指导值”),仅仅一次确认输入即将组“C”的所有程序设定为其中值幅度。以这种方式,因为临床医师仅需一次点击确认按钮416,降低了编程时间和编程工作。或者,临床医师可接受各个程序而非同时接受所有程序的指导值。通过选择概述按钮418,临床医师编程装置60将通过用户界面208呈递额外的姿势状态信息或治疗调整信息。额外的姿势状态信息可包括与每个姿势状态相关的治疗调整的总数,如图25A和25B所示。
虽然显示屏406一次仅显示了一个组的程序,用户界面208的可选实施例可以一次呈递大于一个组的程序。这样,临床医师能够用单次点击确认按钮416设定多个程序组的更多建议的治疗参数。在其他实施例中,临床医师能够选择全局确认按钮(未示出),用单次点击全局确认按钮设定IMD14内每个程序的建议治疗参数。
图30的概念图显示了示例性的用户界面208,显示了可由用户选择的不同的指导算法用于指导编程。显示屏420类似于图29的显示屏406,但显示屏420允许临床医师选择指导算法。如图30所示,显示屏420包括组菜单422、姿势状态菜单424、指导算法菜单426和确认按钮428。未示出程序和建议治疗参数,因为它们被指导算法菜单426的下拉部分所覆盖。如上所述,组菜单422允许选择程序组,姿势状态菜单424允许选择姿势状态。此外,一旦产生建议的治疗参数,临床医师可以通过单次选择确认按钮428将所有程序设定为相应的建议的治疗参数。然而,指导算法菜单426也允许临床医师定制用于产生建议的治疗参数的方法。
指导算法菜单426可以由生产商、技术人员或临床医师用产生建议的治疗参数的通用指导算法进行填充。指导算法菜单426可包括一个或多个指导算法。通常,只能选择指导算法中的一个来产生每组的建议的治疗参数。虽然临床医师可选择相同的指导算法来设定每个程序组的治疗参数,需要时临床医师也可以对不同的组使用不同的指导算法。
可能的指导算法包括中值、中位、安全平均、低权重平均、高权重平均、最频繁的治疗参数、趋势目标和最新近使用的参数。安全平均可以是治疗参数最低一半的平均以防止过度刺激。低权重平均可以对使用的所有治疗参数取平均,但例如第三最低参数权重加倍。相反,高权重平均可以对使用的所有参数取平均,但例如第三最高参数权重加倍。最频繁的治疗参数正是患者12最常用的参数,而最新近的参数仅仅是每个程序中最后使用的参数。
趋势目标的指导算法可以使用权重更新近使用的治疗参数同时甚至拒绝在某一时间范围内没有被使用的治疗参数的平均。趋势目标可以对使用的每个治疗参数取平均,但只有在每个参数的权重减去过去使用的比例天数之后。例如,过去每天记录治疗参数,取平均之前从该参数减去一个权重百分比。以这种方式,与该天有关的治疗参数可具有完全权重,但与50天前有关的治疗参数仅具有一半权重。因此,产生的建议的治疗参数将最类似患者12作出的更新近的治疗调整。最新近使用的参数算法可简单地产生与最新近接受的患者治疗调整相关的参数值作为建议的治疗参数。
在可选的实施方式中,用户界面208提供的显示屏可允许临床医师产生新的指导算法或修正目前储存的指导算法。指导算法可以储存在临床医师编程装置60、患者编程装置30、IMD 14或任何其他装置中。在一些实施例中,临床医师编程装置60甚至能够通过网络下载生产商、技术人员或其他临床医师产生的新的指导算法。
图31的流程图显示了用于产生每个治疗程序建议的治疗参数和接受来自用户的确认输入的示例性方法。虽然参照图31描述了临床医师编程装置60,任何外置编程装置20具有类似功能。如图31所示,临床医师要求时临床医师编程装置60进入指导编程(432)。然后,临床医师编程装置60的用户界面106接受选择所需的程序组和姿势状态的姿势状态和组输入(434)。然后,处理器104分析记录模式期间储存的对每种姿势状态和程序储存的治疗调整信息(436)。在一些实施例中,用户界面106也可以从临床医师接受选择处理器104采用哪个指导算法来产生建议的治疗参数的指导算法输入。
基于生产商设定或者临床医师选择的指导算法,处理器104针对多个程序的每一个产生建议的治疗参数(438)。然后,用户界面106向临床医师呈递建议的治疗参数(440)。如果用户界面106从临床医师接受对各程序设定建议的治疗参数的确认输入(442),则处理器104用建议的治疗参数设定所有程序(446)并确认临床医师是否需要其他建议(448)。如果用户界面106没有从临床医师接受确认输入(442),则处理器104等待观察临床医师是否需要其他建议(448)。如果临床医师需要更多建议的治疗参数(448),则用户界面106等待接受来自临床医师的姿势状态输入和组输入(434)。否则,处理器104退出指导编程显示屏(450)。
图32的流程图显示了用于校正与非预期的姿势状态相关的治疗调整的示例性方法。通常,一旦接受对限定递送至患者的电刺激治疗的治疗程序参数的患者治疗调整并识别患者的姿势状态,当患者治疗调整在基于储存的针对该识别的姿势状态储存的调整信息确定的范围内时编程装置可使患者治疗调整与姿势状态相关联。
患者12可以对治疗参数作出调整,使该调整针对指定的姿势状态。然而,治疗调整也可不与所需的姿势状态相关联,因为姿势状态之间的过渡导致稳定性阶段或搜索阶段没能捕获所需的姿势状态。在这种情况下,结果是治疗调整可与非预期的姿势相关联。IMD 14和/或患者编程装置30能够操作该例外以限制或防止这种非预期的治疗调整关联。IMD 14可自动确定治疗调整是否应与识别的姿势状态相关联,或者IMD14可与患者编程装置30通信以提示用户确认该关联是患者12预期的并且是正确的。
在图32的实施例中,IMD14向患者12递送治疗(460)并继续递送治疗除非患者编程装置30接受来自患者12的对治疗程序的治疗参数进行的治疗调整(462)。如果患者编程装置30的处理器104接收到治疗调整,处理器104根据调整改变治疗参数,然后一旦稳定性阶段届满即识别患者12的姿势状态(464)。在一些实施例中,如果在稳定性阶段届满之前搜索阶段届满,患者编程装置30的处理器104可以删除任何关联,如本文所述。
一旦识别患者12的姿势状态,处理器104在存储器108中检索储存的调整信息用于治疗程序和识别的姿势状态(466)。然后,处理器104分析储存的调整信息,如果处理器104确定接收的治疗调整在储存的调整信息的历史范围内(468),则处理器104使治疗调整与识别的姿势状态相关联(470)并继续递送治疗(460)。历史范围可以由各种方法确定。
如果接收的治疗调整在对于该识别的姿势状态的调整的历史范围之外(468),则处理器104提示患者12确认针对该识别的姿势状态的治疗调整的关联(472)。如果患者12确认该关联是正确的(474),则处理器104使治疗调整与姿势状态相关联(470)并继续递送治疗(460)。如果患者12不确认该关联或者拒绝该关联(474),则处理器104在继续递送治疗(460)之前不使治疗调整与识别的姿势状态相关联(476)。
处理器104使用的用于确定接收的治疗调整是否应与姿势状态相关联的历史范围可以基于患者12的治疗或者临床医师的需要而变化。历史范围可以是基于该识别的姿势状态储存的先前调整的任何范围或阈值。例如,历史范围可以简单地由调整参数的最高和最低参数值来界定。在其他实施例中,历史范围可包括阈值上限和阈值下限以防止在启动姿势响应性刺激时可能导致不舒服、甚至痛苦的刺激的非预期的参数值关联。
或者,历史范围可以是相对于该姿势状态下患者12作出的调整信息的较老的参数调整,权重更多新近的参数调整的计算的历史范围。例如,先前的患者调整可以分成较低的患者调整集合和较高的患者调整集合,例如通过与这种调整相关的参数值(例如,电压或电流幅度)确定。
范围上限可根据较高的患者治疗调整集合的平均值设定,范围下限可根据较低的患者调整集合的平均值设定。如果先前的患者治疗调整包括例如幅度值4.0、4.2、4.4、5.0、5.2、5.6、6.0和6.2伏,则上限可根据四个较高值(5.2、5.6、6.0、6.2)的平均进行计算而下限可根据四个较低值(4.0、4.2、4.4、5.0)的平均进行计算。在一些情况下,可权重较低和较高的患者治疗调整,从而在计算范围的上下限时相对于不太新近的患者治疗调整,更新近的患者治疗调整权重更多。这种权重的历史范围可以将历史范围基本上限制到患者12使用的更新近的参数值。在每种情况下,范围可以至少包括针对该程序和姿势先前的患者治疗调整的子集,但在避免离群值非预期的关联中是有效的。
作为另一实施例,范围可以通过确定先前的患者治疗调整的平均、中位或中值,然后建立该平均、中位或均值之上和之下的阈值边界进行确定。阈值可以围绕平均、中位或均值是对称的,或是不对称的。例如,如果平均电压幅度为5.0伏,阈值下限和阈值上限可以是4.0和6.0伏,超出该范围的患者治疗调整可以忽略并且不与相关的程序和姿势状态相关联。在这种情况下,阈值上限和阈值下限围绕平均值对称设置。或者,上下边界可不对称设置,使得一个边界比另一个边界更接近平均值。
在一些情况下,阈值边界可以计算为平均值的百分比。在上述实施例中,6.0伏的上限和4.0伏的下限是5.0伏平均值的正/负20%。如上所述,在一些情况下,平均值可以是权重值的平均,使得在计算平均值时更新近的或者治疗调整比不太新近的或者治疗调整权重更多,并最终得到范围的上下限,该上下限以平均值为中心或者不以其为中心。同样,这种权重的历史范围可以将历史范围限制到患者12使用的更新近的参数值。
而且,该历史范围可以至少部分地通过临床医师预先确定的患者12的参数的感知阈和痛苦阈来确定。例如,可将上限设定为痛苦阈以下,将下限设定为感知阈以上。在这种情况下,可能在诊所建立的每个导致参数值低于感知阈或者高于痛苦阈的患者治疗调整可以忽略或者例如在该患者治疗调整并非预期与姿势状态相关联的基础上,不与特定的程序和姿势状态相关联。
在建立关联之前可使用任何类型的范围由患者12触发确认,该范围可以在治疗初始化时设定或者在向患者12递送刺激治疗期间改变。在任何情况下,处理器104计算的历史范围包括具体识别的姿势状态可接受的治疗调整。例如,范围可至少包括对于该程序和姿势状态的先前的治疗调整的子集。在一些情况下,范围甚至可允许在先前患者治疗调整之外的预定界限内的患者治疗调整。可不接受的治疗调整是患者12不希望和/或储存作为治疗调整信息的先前使用的治疗参数值之外的那些治疗调整。
如上所述,可以计算机计算、计算或以各种其他方式确定范围以避免与程序和姿势状态的非预期关联。并且,一旦接受了新的患者治疗调整,范围可以更新以考虑新的患者治疗调整的值。在一些情况下,即使新的患者治疗调整落在当前范围之外,因而不与程序和姿势状态相关联(或者至少需要患者确认以作出关联),新的患者治疗调整仍然可用于更新当前的范围,即作为用于产生平均值、权重平均值或其他范围计算的值之一。
在其他实施例中,IMD14和/或患者编程装置30可自动去除非预期的治疗调整关联而不需要患者12的任何输入。如果接受的治疗调整在历史范围之外,处理器104可例如简单地阻止该调整与当前的程序和识别的姿势状态相关联而不需要患者12进行确认。以这种方式,患者12不再承担与患者编程装置30不断地相互作用。或者,确定为非预期的治疗调整可以储存在单独的类别中,使得当临床医师审阅治疗功效时可访问该非预期的治疗调整。而且,在一定数量的非预期关联或高频率的非预期关联之后,患者编程装置30可提示患者12审阅如何调整治疗或者访问临床医师。
本申请可向用户提供多种特征。例如,实现姿势搜索计时器和姿势稳定性计时器允许系统正确关联治疗调整与姿势状态,即使在患者采取预期的姿势状态时不作出治疗调整。而且,当患者调整刺激治疗时,储存治疗调整与姿势状态的每个关联允许临床医师审阅。该信息可允许临床医师修正刺激治疗以寻找最有效的治疗。
此外,本发明提供了一种系统,该系统可使用治疗调整和姿势状态之间的关联以助于临床医师快速编程程序组中多个治疗程序的刺激参数。例如,系统可允许用户通过一次确定将所有治疗程序设定为刺激治疗期间患者使用的最小幅度。而且,用户界面可基于关联和指导算法呈递每个治疗程序的建议的参数值。以这种方式,用户可以用一次确认输入选择确认所有建议的参数值,减少编程或修正刺激治疗所需的时间。
本发明所述的技术可至少部分地用硬件、软件、固件或其任何组合来实现。例如,技术的各个方面可以在一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或任何其他等价集成或独立逻辑电路中以及这些组件的任意组合来实现,表现在编程装置(例如临床医师或患者编程装置)、刺激器或其他装置中。术语“处理器”或“处理电路”通常表示任何上述逻辑电路,单独使用或与其他逻辑电路或者任何其他等价电路组合。
用软件实现时,归属于本发明所述系统和装置的功能可以表现为计算机可读介质上的指令,所述计算机可读介质包括例如随机存取存储器(RAM)、只读存储器(ROM)、非易失性随机存取存储器(NVRAM)、电可擦除可编程只读存储器(EEPROM)、FLASH存储器、磁性介质、光学介质等。可执行指令以使一个或多个处理器支持本发明所述功能的一个或多个方面。
此外,应理解本文所述的系统并不限于治疗人类患者。在可选的实施方式中,执行系统可以在非人类患者中实现,例如灵长类、犬齿类、马、猪和猫。这些动物可经历可能受益于本发明主题的临床或研究治疗。
描述了许多本发明的实施方式。可进行各种改进而不背离权利要求的范围。这些和其他实施方式包括在所附权利要求书的范围内。

Claims (157)

1.一种方法,包括:
检测在感应的姿势状态的多个情况期间对递送至患者的电刺激治疗的多个患者调整;
使所述检测的患者调整与所述感应的患者姿势状态相关联;和
将所述检测的患者调整与所述感应的姿势状态的所述关联储存在存储器中。
2.如权利要求1所述的方法,其特征在于,所述方法还包括:
检测在多个感应的姿势状态的多个情况期间对递送至患者的电刺激治疗的多个患者调整;
使所述检测的患者调整中的一些与所述感应的姿势状态中的每一种相关联;和
将所述检测的调整与相应的感应的姿势状态的所述关联储存在所述存储器中。
3.如权利要求2所述的方法,其特征在于,还包括对所述姿势状态的每一种限定所述检测的调整的范围,并通过输出装置将用于所述感应的姿势状态中的至少一种的所述调整范围呈递给用户。
4.如权利要求2所述的方法,其特征在于,还包括通过输出装置呈递用于所述感应的姿势状态的每一种的所述检测的调整的最大和最小值,其中所述检测的调整包括刺激幅度。
5.如权利要求2所述的方法,其特征在于,还包括:
使与所述感应的姿势状态中的每一种相关联的多个所述检测的调整量化;和
通过输出装置将与所述感应的姿势状态中的每一种相关联的所述检测的调整的量化数值呈递给用户。
6.如权利要求2所述的方法,其特征在于,所述存储器位于将电刺激递送至患者的可植入医疗装置或者接收所述检测的调整并控制所述可植入医疗装置的外置编程装置中的至少一种内。
7.如权利要求2所述的方法,其特征在于,还包括通过递送所述电刺激的所述可植入医疗装置感应姿势状态,其中检测调整包括通过所述可植入医疗装置的外置编程装置检测调整,关联包括通过可植入医疗装置或外置编程装置之一使所述检测的调整与所述感应的患者姿势状态相关联。
8.如权利要求2所述的方法,其特征在于,使每个所述检测的调整与所述感应的姿势状态之一相关联包括如果在检测调整之后的第一阶段内感应感应的姿势状态并且如果所述感应的姿势状态在感应所述感应的姿势状态之后的第二阶段期间不改变,则使每个所述检测的调整与所述感应的姿势状态相关联。
9.如权利要求8所述的方法,其特征在于,还包括:
启动姿势搜索计时器以响应于每个调整的检测对所述第一阶段计时;和
启动姿势稳定性计时器以响应于每个姿势状态的感应对所述第二阶段计时。
10.如权利要求2所述的方法,其特征在于,所述患者调整包括对与以程序组形式递送至患者的多个程序相关联的电刺激治疗参数的调整,其中关联还包括使所述检测的患者调整与所述感应的姿势状态之一和所述程序之一相关联。
11.如权利要求2所述的方法,其特征在于,还包括通过可植入医疗装置递送电刺激,和经控制所述可植入医疗装置的外置编程装置从患者接收调整。
12.一种系统,包括:
输入装置,其接收在感应的姿势状态的多个情况期间对递送至患者的电刺激治疗的多个患者调整;
处理器,其使得所述接收的患者调整与所述感应的患者姿势状态相关联;和
存储器,其将所述接收的患者调整与所述感应的姿势状态的关联储存在存储器中。
13.如权利要求12所述的系统,其特征在于,
所述输入装置接收在多个感应的姿势状态的多个情况期间对递送至患者的电刺激治疗的多个患者调整;
所述处理器使所述接收的患者调整中的一些与所述感应的姿势状态中的每一种相关联;和
所述存储器将所述接收的患者调整与相应的感应的姿势状态的关联储存在所述存储器中。
14.如权利要求12所述的系统,其特征在于,所述处理器对所述姿势状态每一种限定所述接受的调整的范围,所述系统还包括输出装置,其将用于所述感应的姿势状态中的至少一种的所述调整范围呈递给用户。
15.如权利要求12所述的系统,其特征在于,所述输出装置呈递用于所述感应的姿势状态的每一种的所述接受的调整的最大和最小值,其中所述接受的调整包括刺激幅度。
16.如权利要求12述的系统,其特征在于,所述处理器使与所述感应的姿势状态的每一种相关联的多个所述接收的调整的量化,所述输出装置通过用户界面向用户呈递与所述感应的姿势状态的每一种相关联的所述接收的调整的量化数值。
17.如权利要求12所述的系统,其特征在于,还包括可植入医疗装置和外置编程装置,所述可植入医疗装置将所述电刺激递送至患者,所述外置编程装置包括所述输出装置,其中所述存储器位于所述可植入医疗装置和所述外置编程装置中的至少一个内。
18.如权利要求12所述的系统,其特征在于,还包括可植入医疗装置和外置编程装置,所述可植入医疗装置被配置成向所述患者递送所述电刺激,所述外置编程装置包括所述用户界面,其中所述可植入医疗装置感应所述姿势状态,所述外置编程装置接收所述调整,使所述接收的调整与所述感应的姿势状态相关联的所述处理器位于所述可植入医疗装置或所述外置编程装置之一中。
19.如权利要求12所述的系统,其特征在于,如果在接收所述调整之后的第一阶段内感应所述感应的姿势状态并且如果所述感应的姿势状态在所述感应的姿势状态的所述感应之后的第二阶段内不改变,则所述处理器使所述调整的每一个与所述感应的姿势状态相关联。
20.如权利要求19所述的系统,其特征在于,所述处理器启动姿势搜索计时器以响应于接收所述调整对所述第一阶段计时并启动姿势稳定性计时器以响应于所述姿势状态的感应对所述第二阶段计时。
21.如权利要求12所述的系统,其特征在于,所述患者调整包括对与以程序组形式递送至患者的多个程序相关联的电刺激治疗参数的调整,其中所述处理器使所述接收的患者调整与所述感应的姿势状态之一和所述程序之一相关联。
22.如权利要求12所述的系统,其特征在于,还包括递送所述电刺激的可植入医疗装置和将所述调整传送至所述可植入医疗装置的外置编程装置。
23.一种系统,包括:
用于检测在感应的姿势状态的多个情况期间对递送至患者的电刺激治疗的多个患者调整的装置;
用于使所述检测的患者调整与所述感应的患者姿势状态相关联的装置;和
将所述检测的患者调整与所述感应的姿势状态的所述关联储存在存储器中的装置。
24.如权利要求23所述的系统,其特征在于,还包括:
用于检测在多个感应的姿势状态的多个情况期间对递送至患者的电刺激治疗的多个患者调整的装置;
用于使所述检测的患者调整中的一些与所述感应的姿势状态中的每一种相关联的装置;
用于将所述检测的调整与相应的感应的姿势状态的所述关联储存在所述存储器中的装置。
25.如权利要求24所述的系统,其特征在于,还包括基于与所述相应的感应姿势状态相关联的所述检测的调整限定用于所述姿势状态的每一种的所述检测的调整的范围的装置,和用于向用户呈递用于所述感应的姿势状态中至少一种的调整范围的装置。
26.如权利要求24所述的系统,其特征在于,还包括用于呈递用于所述感应的姿势状态的每一种的所述检测的调整的最大和最小值的装置,其中所述检测的调整包括刺激幅度。
27.如权利要求24所述的系统,其特征在于,还包括:
使与所述感应的姿势状态中的每一种相关联的多个所述检测的调整量化的装置;和
用于向用户呈递与所述感应的姿势状态中的每一种相关联的所述检测的调整的量化数值的装置。
28.如权利要求24所述的系统,其特征在于,所述用于使每个所述检测的调整与所述感应的姿势状态之一相关联的装置包括如果在检测调整之后的第一阶段内感应所述感应的姿势状态并且如果所述感应的姿势状态在感应所述感应的姿势状态之后的第二阶段期间不改变,用于使每个所述检测的调整与所述感应的姿势状态相关联的装置。
29.如权利要求28所述的系统,其特征在于,还包括:
用于启动姿势搜索计时器以响应于所述调整的检测对第一阶段计时的装置;和
启动姿势稳定性计时器以响应于所述姿势状态的感应对第二阶段计时的装置。
30.一种用于可植入医疗装置的外置编程装置,所述编程装置包括:
输入装置,其接收在感应的姿势状态的多个情况期间对通过所述可植入医疗装置递送至患者的电刺激治疗的多个患者调整;
遥测界面,其接收来自所述可植入医疗装置的感应的姿势状态并将所述接收的患者调整传送至所述可植入医疗装置;
处理器,其使得所述接收的患者调整与所述感应的患者姿势状态相关联;和
存储器,其将所述接收的调整与所述感应的姿势状态的关联储存在存储器中。
31.一种可植入医疗装置,包括:
刺激发生器,其向患者递送电刺激治疗;
姿势感应模块,其感应所述患者的姿势状态;
遥测界面,其接收在多个感应的姿势状态的多个情况期间对来自外置编程装置的电刺激治疗的患者调整;
处理器,其使得所述接收的患者调整与所述感应的患者姿势状态相关联;和
存储器,其将所述接收的调整与所述感应的姿势状态的关联储存在存储器中。
32.一种方法,包括:
接收治疗调整信息,所述治疗调整信息包括患者对一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的治疗调整;
基于所述治疗调整信息产生一种或多种刺激治疗程序的一个或多个建议的治疗参数;和
向用户呈递所述建议的治疗参数。
33.如权利要求32所述的方法,其特征在于,还包括:
接收来自用户的选择所述建议的治疗参数中至少一些的输入;和
设定所述选择的建议的治疗参数以至少部分地限定相应姿势状态的相应治疗程序。
34.如权利要求33所述的方法,其特征在于,还包括:
感应所述姿势状态之一;和
根据所述治疗程序之一和所述用户对所述相应治疗程序和所述相应姿势状态选择的所述建议的治疗参数来递送刺激治疗。
35.如权利要求33所述的方法,其特征在于,所述来自用户的输入包括选择所述姿势状态中的至少一些,和选择对于所述治疗程序的每一个和所述选择的姿势状态建议的治疗参数。
36.如权利要求35所述的方法,其特征在于,所述来自用户的输入包括选择包括一个或多个治疗程序的程序组,和选择对于所述选择的组中的所述治疗程序的每一个和所述选择的姿势状态的标称治疗参数。
37.如权利要求33所述的方法,其特征在于,接收来自用户的确认输入包括接收来自用户的对于多个治疗程序和多种姿势状态的建议的参数的单次确认输入。
38.如权利要求32所述的方法,其特征在于,还包括:
提示用户从通过用户界面呈递给所述用户的指导编程算法菜单中选择多个指导编程算法之一;
接收来自用户的对所述指导编程算法之一的选择;和
基于所述选择的指导编程算法产生所述建议的治疗参数。
39.如权利要求38所述的方法,其特征在于,所述指导编程算法包括以下至少一种:
安全平均算法,该算法基于具有最低值的所述患者作出的治疗调整的一部分的平均值产生所述建议的治疗参数;
低权重平均算法,该算法基于对所述治疗调整的最低部分应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;
高权重平均算法,该算法基于对所述治疗调整的最高部分应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;
最频繁治疗参数算法,该算法基于与所述患者最频繁的治疗调整相关联的参数值产生所述建议的治疗参数;
趋势目标算法,该算法基于对更新近治疗调整应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;和
最新近使用的算法,该算法基于最新近的治疗调整产生所述建议的治疗参数。
40.如权利要求32所述的方法,其特征在于,所述相应的治疗程序和姿势状态中每一个的所述建议的治疗参数中的每一个是电流幅度或电压幅度中至少一个。
41.如权利要求32所述的方法,其特征在于,所述治疗程序组织成多个程序组,其中所述组的每一个包括一个或多个治疗程序,任意所述组中的所述治疗程序的每一个与所述相应组中的其他治疗程序被递送至所述患者。
42.一种用于可植入医疗装置的编程装置,所述编程装置包括:
处理器,其被配置成基于治疗调整信息产生由所述可植入医疗装置递送的一个或多个刺激治疗程序的一个或多个建议的治疗参数,其中所述治疗调整信息包括由患者作出的对一种或多种患者姿势状态的刺激治疗程序的至少一种参数的治疗调整;和
用户界面,其向用户呈递所述建议的治疗参数并接收来自所述用户的选择所述建议的治疗参数中至少一些的输入,
其中,所述处理器设定所述选择的建议的治疗参数以至少部分地限定用于相应姿势状态的相应治疗程序。
43.如权利要求42所述的装置,其特征在于,还包括遥测界面,其被配置成向所述可植入医疗装置传送涉及所述选择的建议治疗参数的编程信息,所述编程信息被配置成控制所述可植入医疗装置以感应所述姿势状态之一,并根据所述治疗程序之一和所述用户对于相应的治疗程序和相应的姿势状态选择的所述建议治疗参数递送刺激治疗。
44.如权利要求43所述的装置,其特征在于,所述来自用户的输入包括选择所述姿势状态中的至少一些,和选择对于所述治疗程序的每一个和所述选择的姿势状态的建议的治疗参数。
45.如权利要求44所述的装置,其特征在于,所述来自用户的输入包括选择包括一个或多个治疗程序的程序组,和选择对于所述选择的组中的所述治疗程序的每一个和所述选择的姿势状态的标称治疗参数。
46.如权利要求43所述的装置,其特征在于,所述用户界面被配置成接收来自所述用户的单次确认输入以选择对于多个治疗程序和多个姿势状态的建议的治疗参数。
47.如权利要求43所述的装置,其特征在于,所述处理器控制所述用户界面以提示所述用户从通过用户界面呈递给所述用户的指导编程算法菜单选择多个指导编程算法之一,和接收来自用户的对指导编程算法之一的选择,其中,所述处理器基于所述选择的指导编程算法产生所述建议的治疗参数。
48.如权利要求47所述的装置,其特征在于,所述指导编程算法包括以下至少一种:
安全平均算法,该算法基于具有最低值的所述患者作出的治疗调整的一部分的平均值产生所述建议的治疗参数;
低权重平均算法,该算法基于对所述治疗调整的最低部分应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;
高权重平均算法,该算法基于对所述治疗调整的最高部分应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;
最频繁治疗参数算法,该算法基于与所述患者最频繁的治疗调整相关联的参数值产生所述建议的治疗参数;
趋势目标算法,该算法基于对更新近治疗调整应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;和
最新近使用的算法,该算法基于最新近的治疗调整产生所述建议的治疗参数。
49.如权利要求42所述的装置,其特征在于,所述相应的治疗程序和姿势状态中每一个的所述建议的治疗参数中的每一个是电流幅度或电压幅度中至少一个。
50.如权利要求42所述的装置,其特征在于,所述治疗程序组织成多个程序组,其中所述组的每一个包括一个或多个治疗程序,任意所述组中的所述治疗程序的每一个与所述相应组中的其他治疗程序被递送至所述患者。
51.一种用于可植入医疗装置的编程装置,所述编程装置包括:
用于接收治疗调整信息的装置,所述治疗调整信息包括患者对一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的治疗调整;
基于所述治疗调整信息产生一种或多种刺激治疗程序的一个或多个建议的治疗参数的装置;和
用于向用户呈递所述建议的治疗参数的装置。
52.如权利要求51所述的编程装置,其特征在于,还包括:
用于接收来自用户的选择所述建议的治疗参数中至少一些的输入的装置;和
用于设定所述选择的建议的治疗参数以至少部分地限定相应姿势状态的相应治疗程序的装置。
53.如权利要求52所述的编程装置,其特征在于,还包括:
用于感应所述姿势状态之一的装置;和
根据所述治疗程序之一和所述用户对所述相应治疗程序和所述相应姿势状态选择的所述建议的治疗参数递送刺激治疗的装置。
54.如权利要求52所述的编程装置,其特征在于,所述来自用户的输入包括选择所述姿势状态中的至少一些,和选择对于所述治疗程序的每一个和所述选择的姿势状态建议的治疗参数。
55.如权利要求54所述的编程装置,其特征在于,所述来自用户的输入包括选择包括一个或多个治疗程序的程序组,和选择对于所述选择的组中的所述治疗程序的每一个和所述选择的姿势状态的标称治疗参数。
56.如权利要求52所述的编程装置,其特征在于,接收用户的确认输入包括接收来自用户的对于多个治疗程序和多种姿势状态的建议的参数的单次确认输入。
57.如权利要求51所述的编程装置,其特征在于,还包括:
用于提示用户从通过用户界面呈递给所述用户的指导编程算法菜单中选择多个指导编程算法之一的装置;
用于接收来自用户的对所述指导编程算法之一的选择的装置;和
基于所述选择的指导编程算法产生所述建议的治疗参数的装置。
58.如权利要求57所述的编程装置,其特征在于,所述指导编程算法包括以下至少一种:
安全平均算法,该算法基于具有最低值的所述患者作出的治疗调整的一部分的平均值产生所述建议的治疗参数;
低权重平均算法,该算法基于对所述治疗调整的最低部分应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;
高权重平均算法,该算法基于对所述治疗调整的最高部分应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;
最频繁治疗参数算法,该算法基于与所述患者最频繁的治疗调整相关联的参数值产生所述建议的治疗参数;
趋势目标算法,该算法基于对更新近治疗调整应用权重的所述患者的所述治疗调整的平均值产生所述建议的治疗参数;和
最新近使用的算法,该算法基于最新近的治疗调整产生所述建议的治疗参数。
59.如权利要求51所述的编程装置,其特征在于,所述相应的治疗程序的每一个和姿势状态的所述建议的治疗参数中的每一个是电流幅度或电压幅度中至少一个。
60.如权利要求51所述的编程装置,其特征在于,所述治疗程序组织成多个程序组,其中所述组的每一个包括一个或多个治疗程序,任意所述组中的所述治疗程序的每一个与所述相应组中的其他治疗程序被递送至所述患者。
61.一种方法,包括:
通过用户界面向用户呈递治疗调整信息,其中,所述治疗调整信息包括患者对一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的一种或多种治疗调整;
接收来自所述用户的基于所述治疗调整信息选择对于所述治疗程序的每一个和对于所述姿势状态的每一个的一个或多个标称治疗参数的输入;和
对于向所述患者递送刺激治疗中使用的所述治疗程序和的每一个姿势状态设定所述选择的标称治疗参数。
62.如权利要求61所述的方法,其特征在于,所述标称治疗参数的每一个是对于所述治疗程序的每一个和所述姿势状态的每一个的最小幅度值或最大幅度值之一。
63.如权利要求61所述的方法,其特征在于,所述治疗调整信息包括对于所述治疗程序的每一个和所述姿势状态的每一个的最小幅度值和最大幅度值。
64.如权利要求61所述的方法,其特征在于,还包括:
使与所述治疗程序的每一个和姿势状态相关联的多个治疗调整量化;和
呈递对于所述治疗程序的每一个和姿势状态的治疗调整的量化数值。
65.如权利要求61所述的方法,其特征在于,还包括:
感应所述多个姿势状态之一;和
根据所述治疗程序之一和对所述相应治疗程序和所述相应姿势状态设定的所述标称治疗参数递送刺激治疗。
66.如权利要求65所述的方法,其特征在于,所述治疗程序组织成多个程序组,其中所述组的每一个包括一个或多个治疗程序,任意所述组中的所述治疗程序的每一个与所述相应组中的其他治疗程序被递送至所述患者。
67.如权利要求61所述的方法,其特征在于,所述来自用户的输入包括对于所述治疗程序的每一个和对于所述姿势状态的每一个指定选择所述标称治疗参数的单次输入。
68.如权利要求61所述的方法,其特征在于,所述来自用户的输入包括选择所述姿势状态中的至少一些,和选择对于所述治疗程序的每一个和所述选择的姿势状态的所述标称治疗参数。
69.如权利要求68所述的方法,其特征在于,所述来自用户的输入包括选择包括一个或多个程序的程序组,和选择对于所述选择的组中的所述治疗程序的每一个和所述选择的姿势状态的标称治疗参数。
70.如权利要求68所述的方法,其特征在于,所述来自用户的输入包括对于所述选择的程序组中的所述治疗程序的每一个和所述选择的姿势状态指定选择所述标称治疗参数的单次输入。
71.一种系统,包括:
存储器,其储存治疗调整信息,所述治疗调整信息包括患者对于一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的一种或多种治疗调整;
用户界面,其向用户呈递所述治疗调整信息并接收来自用户的基于所述治疗调整信息选择对于所述治疗程序的每一个和对于所述姿势状态的每一个的一个或多个标称治疗参数的输入;和
处理器,其对于向所述患者递送刺激治疗中使用的所述治疗程序的每一个和姿势状态设定所述选择的标称治疗参数。
72.如权利要求71所述的系统,其特征在于,所述标称治疗参数的每一个是对于所述治疗程序的每一个和所述姿势状态的每一个的最小幅度值或最大幅度值之一。
73.如权利要求71所述的系统,其特征在于,所述治疗调整信息包括对于所述治疗程序的每一个和所述姿势状态的每一个的最小幅度值和最大幅度值。
74.如权利要求71所述的系统,其特征在于,
处理器,其使与所述治疗程序的每一个和姿势状态相关联的多个治疗调整量化;和
用户界面,其呈递对于所述治疗程序的每一个和姿势状态的治疗调整的量化数值。
75.如权利要求71所述的系统,其特征在于,还包括:
可植入的医疗装置,其包括感应所述姿势状态之一的姿势状态模块和根据所述治疗程序之一和对于所述相应治疗程序和所述相应姿势状态设定的所述标称治疗参数递送刺激治疗的刺激器模块;和
用于所述可植入医疗装置的外置编程装置,所述外置编程装置包括用户界面,所述用户界面向所述用户呈递所述治疗调整信息。
76.如权利要求75所述的系统,其特征在于,所述治疗程序组织成多个程序组,其中所述组的每一个包括一个或多个治疗程序,所述刺激模块将任意所述组中的所述治疗程序的每一个与所述相应组中的其他治疗程序递送至所述患者。
77.如权利要求71所述的系统,其特征在于,所述来自用户的输入包括对于所述治疗程序的每一个和对于所述姿势状态的每一个指定选择所述编程治疗参数的单次输入。
78.如权利要求71所述的系统,其特征在于,所述来自用户的输入包括选择所述姿势状态中的至少一些,和选择对于所述治疗程序的每一个和所述选择的姿势状态的所述标称治疗参数。
79.如权利要求78所述的系统,其特征在于,所述来自用户的输入包括选择包括一个或多个程序的程序组,和选择对于所述选择的程序组中的所述治疗程序的每一个和所述选择的姿势状态的标称治疗参数。
80.如权利要求78所述的系统,其特征在于,所述来自用户的输入包括对于所述选择的程序组中的所述治疗程序的每一个和所述选择的姿势状态指定选择所述标称治疗参数的单次输入。
81.一种系统,包括:
用于通过用户界面向用户呈递治疗调整信息的装置,其中,所述治疗调整信息包括患者对一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的一种或多种治疗调整;
接收来自所述用户的基于所述治疗调整信息选择对于所述治疗程序的每一个和对于所述姿势状态的每一个的一个或多个标称治疗参数的输入的装置;和
对于向所述患者递送刺激治疗中使用的所述治疗程序的每一个和姿势状态设定所述标称治疗参数的装置。
82.如权利要求81所述的系统,其特征在于,所述标称治疗参数的每一个是对于所述治疗程序的每一个和所述姿势状态的每一个的最小幅度值或最大幅度值之一。
83.如权利要求81所述的系统,其特征在于,所述治疗调整信息包括对于所述治疗程序的每一个和所述姿势状态的每一个的最小幅度值和最大幅度值。
84.如权利要求81所述的系统,其特征在于,还包括:
用于使与所述治疗程序的每一个和姿势状态相关联的多个治疗调整量化的装置;和
用于呈递对于所述治疗程序的每一个和姿势状态的治疗调整的量化数值的装置。
85.如权利要求81所述的系统,其特征在于,还包括:
用于感应所述多个姿势状态之一的装置;和
根据所述治疗程序之一和对所述相应治疗程序和所述相应姿势状态设定的所述标称治疗参数递送刺激治疗的装置。
86.如权利要求85所述的系统,其特征在于,所述治疗程序组织成多个程序组,其中所述组的每一个包括一个或多个治疗程序,任意所述组中的所述治疗程序的每一个与所述相应组中的其他治疗程序被递送至所述患者。
87.如权利要求81所述的系统,其特征在于,所述来自用户的输入包括对于所述治疗程序的每一个和对于所述姿势状态的每一个指定选择所述编程治疗参数的单次输入。
88.如权利要求81所述的系统,其特征在于,所述来自用户的输入包括选择所述姿势状态中的至少一些,和选择对于所述治疗程序的每一个和所述选择的姿势状态的所述标称治疗参数。
89.如权利要求88所述的系统,其特征在于,所述来自用户的输入包括选择包括一个或多个程序的程序组,和选择对于所述选择的程序组中的所述治疗程序的每一个和所述选择的姿势状态的标称治疗参数。
90.如权利要求88所述的系统,其特征在于,所述来自用户的输入包括对于所述选择的程序组中的所述治疗程序的每一个和所述选择的姿势状态指定选择所述标称治疗参数的单次输入。
91.一种用于可植入医疗装置的外置编程装置,包括:
用户界面,其通过用户界面向用户呈递治疗调整信息,其中所述治疗调整信息包括患者对于一种或多种患者姿势状态的一个或多个刺激治疗程序的至少一种刺激参数作出的一种或多种治疗调整,和接收来自所述用户的基于所述治疗调整信息选择对于所述治疗程序的每一个和对于所述姿势状态的每一个的一个或多个标称治疗参数的输入;和
处理器,其对于向所述患者递送刺激治疗中使用的所述治疗程序的每一个和姿势状态设定所述选择的标称治疗参数。
92.一种方法,包括:
检测递送至所述患者的电刺激治疗的患者调整;
感应所述患者的姿势状态;和
如果在检测所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段内所述感应的姿势状态不改变,则所述检测的调整与所述感应的姿势状态相关联。
93.如权利要求92所述的方法,其特征在于,还包括:
启动姿势搜索计时器以响应于所述调整的检测对第一阶段计时;和
启动姿势稳定性计时器以响应于所述姿势状态的感应对第二阶段计时。
94.如权利要求92所述的方法,其特征在于,还包括如果在所述第一阶段结束之前检测到新的患者调整则重启所述姿势搜索计时器。
95.如权利要求93所述的方法,其特征在于,还包括:
如果在所述稳定性阶段期间所述感应的姿势状态改变至不同的姿势状态则重启所述姿势稳定性计时器;和
如果所述不同的姿势状态在感应所述不同的姿势状态之后的所述第二阶段期间不改变,则使所述检测的调整与所述不同的姿势状态相关联。
96.如权利要求95所述的方法,其特征在于,还包括如果所述不同的姿势状态在感应所述不同的姿势状态之后的所述第二阶段期间不改变并且所述姿势稳定性计时器在所述第一阶段届满之前重启,则使所述检测的调整与所述不同的姿势状态相关联。
97.如权利要求92所述的方法,其特征在于,所述第一和第二阶段是相等的。
98.如权利要求92所述的方法,其特征在于,所述第一和第二阶段是不同的。
99.如权利要求92所述的方法,其特征在于,所述第二阶段在所述第一阶段结束之前开始并延伸超出所述第一阶段的结束之后。
100.如权利要求92所述的方法,其特征在于,所述第一阶段为约30秒到30分钟,所述第二阶段为约30秒到30分钟。
101.如权利要求92所述的方法,其特征在于,所述第一阶段为约2分钟到4分钟,所述第二阶段为约2分钟到4分钟。
102.如权利要求92所述的方法,其特征在于,还包括将所述关联储存在可植入医疗装置或用于所述可植入医疗装置的外置编程装置中至少一个的存储器中。
103.一种系统,包括:
用户界面,其被配置成检测递送至所述患者的电刺激治疗的患者调整;
姿势感应模块,其感应所述患者的姿势状态;和
处理器,如果在检测所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段内所述感应的姿势状态不改变,则所述处理器使得所述检测的调整与所述感应的姿势状态相关联。
104.如权利要求1所述的系统,其特征在于,所述处理器被配置成:
启动姿势搜索计时器以响应于所述调整的检测对第一阶段计时;和
启动姿势稳定性计时器以响应于所述姿势状态的感应对第二阶段计时。
105.如权利要求104所述的方法,其特征在于,如果在所述第一阶段结束之前检测到新的患者调整则所述处理器重启所述姿势搜索计时器。
106.如权利要求104所述的系统,其特征在于,所述处理器被配置成:
如果在所述稳定性阶段期间所述感应的姿势状态改变至不同的姿势状态则重启所述姿势稳定性计时器;和
如果所述不同的姿势状态在感应所述不同的姿势状态之后的所述第二阶段期间不改变,则使所述检测的调整与所述不同的姿势状态相关联。
107.如权利要求106所述的系统,其特征在于,所述处理器被配置成如果所述不同的姿势状态在感应所述不同的姿势状态之后的所述第二阶段期间不改变并且所述姿势稳定性计时器在所述第一阶段届满之前重启则能使所述检测的调整与所述不同的姿势状态相关联。
108.如权利要求104所述的系统,其特征在于,所述第一和第二阶段是相等的。
109.如权利要求104所述的系统,其特征在于,所述第一和第二阶段是不同的。
110.如权利要求104所述的系统,其特征在于,所述第二阶段在所述第一阶段结束之前开始并延伸超出所述第一阶段结束之后。
111.如权利要求104所述的系统,其特征在于,所述第一阶段为约30秒到30分钟,所述第二阶段为约30秒到30分钟。
112.如权利要求104所述的系统,其特征在于,所述第一阶段为约2分钟到4分钟,所述第二阶段为约2分钟到4分钟。
113.如权利要求104所述的系统,其特征在于,还包括递送所述电刺激治疗的可植入医疗装置,其中所述处理器被配置成将所述关联储存在所述可植入医疗装置或用于所述可植入医疗装置的外置编程装置中至少一个的存储器中,且所述处理器位于所述可植入医疗装置或所述外置编程装置之一中。
114.一种系统,包括:
用于检测递送至所述患者的电刺激治疗的患者调整的装置;
用于感应所述患者的姿势状态的装置;和
如果在检测所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段内所述感应的姿势状态不改变,则使所述检测的调整与所述感应的姿势状态相关联的装置。
115.如权利要求114所述的系统,其特征在于,还包括:
用于启动姿势搜索计时器以响应于所述调整的检测对所述第一阶段计时的装置;和
启动姿势稳定性计时器以响应于所述姿势状态的感应对所述第二阶段计时的装置。
116.如权利要求115所述的系统,其特征在于,还包括如果在所述第一阶段结束之前检测到新的患者调整则重启所述姿势搜索计时器的装置。
117.如权利要求115所述的系统,其特征在于,还包括:
如果在所述稳定性阶段期间所述感应的姿势状态改变至不同的姿势状态则重启所述姿势稳定性计时器的装置;和
如果所述不同的姿势状态在感应所述不同的姿势状态之后的所述第二阶段期间不改变,则使所述检测的调整与所述不同的姿势状态相关联的装置。
118.如权利要求117所述的系统,其特征在于,还包括如果所述不同的姿势状态在感应所述不同的姿势状态之后的所述第二阶段期间不改变并且所述姿势稳定性计时器在所述第一阶段届满之前重启,则使所述检测的调整与所述不同的姿势状态相关联的装置。
119.如权利要求115所述的系统,其特征在于,所述第一和第二阶段是相等的。
120.如权利要求115所述的系统,其特征在于,所述第一和第二阶段是不同的。
121.如权利要求115所述的系统,其特征在于,所述第二阶段在所述第一阶段结束之前开始并延伸超出所述第一阶段结束之后。
122.如权利要求115所述的系统,其特征在于,所述第一阶段为约30秒到30分钟,所述第二阶段为约30秒到30分钟。
123.如权利要求115所述的系统,其特征在于,所述第一阶段为约2分钟到4分钟,所述第二阶段为约2分钟到4分钟。
124.如权利要求115所述的系统,其特征在于,还包括用于将所述关联储存在可植入医疗装置或用于所述可植入医疗装置的外置编程装置中至少一个的存储器中的装置。
125.一种用于可植入医疗装置的外置编程装置,包括:
用户界面,其接收由所述可植入医疗装置递送至所述患者的电刺激治疗的患者调整;
遥测界面,其接收来自所述可植入医疗装置的感应的姿势状态并将所述接收的调整传送至所述可植入医疗装置;
处理器,如果在检测所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段内所述感应的姿势状态不改变,则所述处理器使得所述检测的调整与所述感应的姿势状态相关联;和
存储器,其将所述接收的调整与所述感应的姿势状态的关联储存在存储器中。
126.一种可植入医疗装置,包括:
刺激发生器,其向患者递送电刺激治疗;
遥测界面,其接收来自外置编程装置的电刺激治疗的患者调整;
姿势感应模块,其感应所述患者的姿势状态;
处理器,如果在接收所述调整之后的第一阶段内感应所述感应的姿势状态并且如果在感应所述感应的姿势状态之后的第二阶段内所述感应的姿势状态不改变,则所述处理器使得所述接收的调整与所述感应的姿势状态相关联;和
存储器,其将所述接收的调整与所述感应的姿势状态的关联储存在存储器中。
127.一种方法,包括:
接收对于限定递送至所述患者的电刺激治疗的治疗程序的参数的患者治疗调整;
识别所述患者的姿势状态;和
当所述患者治疗调整在基于对所述识别的姿势状态储存的调整信息确定的范围内时,则使所述患者治疗调整与所述姿势状态相关联。
128.如权利要求127所述的方法,其特征在于,还包括基于所述治疗调整与所述识别的姿势状态相关联的确认,当所述治疗调整在所述范围之外时使所述治疗调整与所述识别的姿势状态相关联。
129.如权利要求128所述的方法,其特征在于,还包括接收来自所述患者的确认。
130.如权利要求129所述的方法,其特征在于,还包括提示所述患者经所述用户界面确认或拒绝所述关联。
131.如权利要求127所述的方法,其特征在于,所述调整信息包括对于所述程序和所述姿势状态的先前的患者治疗调整,所述方法还包括确定所述范围包括在对于所述程序和所述姿势状态的先前的患者治疗调整的至少一个子集内。
132.如权利要求131所述的方法,其特征在于,还包括将所述范围的最小值设定为所述先前的患者治疗调整的最低值,将所述范围的最大值设定为所述先前的患者治疗调整的最高值。
133.如权利要求131所述的方法,其特征在于,所述范围包括由所述先前的患者治疗调整的最高值的平均确定的阈值上限和由所述先前的患者治疗调整的最低值的平均确定的阈值下限。
134.如权利要求131所述的方法,其特征在于,还包括至少部分地基于先前的患者治疗调整的权重平均确定所述范围,其中更新近的治疗调整比不太新近的治疗调整权重更高。
135.如权利要求127所述的方法,其特征在于,识别所述姿势状态包括如果所述姿势状态在感应所述姿势状态之后的预定时间范围内不改变则识别所述姿势状态。
136.如权利要求127所述的方法,其特征在于,还包括基于新接收的患者治疗调整更新所述范围。
137.一种系统,包括:
用户界面,其接收对于限定递送至所述患者的电刺激治疗的治疗程序的参数的患者治疗调整;和
处理器,其具有以下功能:
识别所述患者的姿势状态;和
如果所述患者治疗调整在基于对所述识别的姿势状态储存的调整信息确定的范围内,则使所述患者治疗调整与所述姿势状态相关联。
138.如权利要求137所述的系统,其特征在于,基于所述治疗调整与所述识别的姿势状态相关联的确认,当所述治疗调整在所述范围之外时,所述处理器使所述治疗调整与所述识别的姿势状态相关联。
139.如权利要求138所述的系统,其特征在于,所述用户界面接收来自所述患者的确认。
140.如权利要求139所述的系统,其特征在于,所述用户界面提示所述患者经所述用户界面确认或拒绝所述关联。
141.如权利要求137所述的系统,其特征在于,所述调整信息包括对于所述程序和所述姿势状态的先前的患者治疗调整,所述处理器确定所述范围包括在对于所述程序和所述姿势状态的先前的患者治疗调整的至少一个子集内。
142.如权利要求141所述的系统,其特征在于,所述处理器将所述范围的最小值设定为所述先前的患者治疗调整的最低值,将所述范围的最大值设定为所述先前的患者治疗调整的最高值。
143.如权利要求141所述的系统,其特征在于,所述范围包括由所述先前的患者治疗调整的最高值的平均确定的阈值上限和由所述先前的患者治疗调整的最低值的平均确定的阈值下限。
144.如权利要求141所述的系统,其特征在于,所述处理器至少部分地基于先前的患者治疗调整的权重平均确定所述范围,其中更新近的治疗调整比不太新近的治疗调整权重更高。
145.如权利要求137所述的系统,其特征在于,如果所述姿势状态在感应所述姿势状态之后的预定时间范围内不改变则所述处理器识别所述姿势状态。
146.如权利要求137所述的系统,其特征在于,所述处理器基于新接收的患者治疗调整更新所述范围。
147.如权利要求137所述的系统,其特征在于,还包括将所述限定的刺激治疗递送至所述患者的可植入医疗装置。
148.一种系统,包括:
用于接收对于限定递送至所述患者的电刺激治疗的治疗程序的参数的患者治疗调整的装置;
用于识别所述患者的姿势状态的装置;和
如果所述患者治疗调整在基于对所述识别的姿势状态储存的调整信息确定的范围内,则使所述患者调整信息于所述姿势状态相关联的装置。
149.如权利要求148所述的系统,其特征在于,还包括当所述治疗调整在基于所述治疗调整与所述识别的姿势状态相关联的确认的范围之外时,使所述治疗调整与所述识别的姿势状态相关联的装置。
150.如权利要求149所述的系统,其特征在于,还包括用于接收来自所述患者的确认的装置。
151.如权利要求150所述的系统,其特征在于,还包括用于提示所述患者经所述用户界面确认或拒绝所述关联的装置。
152.如权利要求148所述的系统,其特征在于,所述调整信息包括对于所述程序和所述姿势状态的先前的患者治疗调整,所述系统还包括确定所述范围包括在对于所述程序和所述姿势状态的先前的患者治疗调整的至少一个子集内的装置。
153.如权利要求152所述的系统,其特征在于,还包括将所述范围的最小值设定为所述先前的患者治疗调整的最低值的装置,和将所述范围的最大值设定为所述先前的患者治疗调整的最高值的装置。
154.如权利要求152所述的系统,其特征在于,所述范围包括由所述先前的患者治疗调整的最高值的平均确定的阈值上限和由所述先前的患者治疗调整的最低值的平均确定的阈值下限。
155.如权利要求152所述的系统,其特征在于,还包括至少部分地基于先前的患者治疗调整的权重平均确定所述范围的装置,其中更新近的治疗调整比不太新近的治疗调整权重更高。
156.如权利要求148所述的系统,其特征在于,识别所述姿势状态包括如果所述姿势状态在感应所述姿势状态之后的预定时间范围内不改变则识别所述姿势状态的装置。
157.如权利要求148所述的系统,其特征在于,还包括基于新接收的患者治疗调整更新所述范围的装置。
CN2009801280223A 2008-07-11 2009-06-30 使治疗调整与患者姿势状态相关联 Active CN102089031B (zh)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US8000208P 2008-07-11 2008-07-11
US61/080,002 2008-07-11
US12/433,803 2009-04-30
US12/433,803 US8249718B2 (en) 2008-07-11 2009-04-30 Programming posture state-responsive therapy with nominal therapy parameters
US12/433,756 2009-04-30
US12/433,750 US8315710B2 (en) 2008-07-11 2009-04-30 Associating therapy adjustments with patient posture states
US12/433,725 US8200340B2 (en) 2008-07-11 2009-04-30 Guided programming for posture-state responsive therapy
US12/433,725 2009-04-30
US12/433,808 2009-04-30
US12/433,756 US8515549B2 (en) 2008-07-11 2009-04-30 Associating therapy adjustments with intended patient posture states
US12/433,750 2009-04-30
US12/433,808 US8326420B2 (en) 2008-07-11 2009-04-30 Associating therapy adjustments with posture states using stability timers
PCT/US2009/049219 WO2010005832A2 (en) 2008-07-11 2009-06-30 Associating therapy adjustments with patient posture states

Publications (2)

Publication Number Publication Date
CN102089031A true CN102089031A (zh) 2011-06-08
CN102089031B CN102089031B (zh) 2013-11-13

Family

ID=41505800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801280223A Active CN102089031B (zh) 2008-07-11 2009-06-30 使治疗调整与患者姿势状态相关联

Country Status (4)

Country Link
US (6) US8249718B2 (zh)
EP (2) EP2926862B1 (zh)
CN (1) CN102089031B (zh)
WO (2) WO2010005817A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106659412A (zh) * 2014-09-09 2017-05-10 美敦力公司 基于组织激活体积针对电刺激治疗进行治疗程序选择
CN108211110A (zh) * 2013-01-21 2018-06-29 卡拉健康公司 用于控制震颤的设备和方法
CN109074860A (zh) * 2016-04-18 2018-12-21 富士胶片株式会社 代替医药品检索装置及代替医药品检索方法
CN110087534A (zh) * 2016-12-20 2019-08-02 美敦力公司 针对测得的心血管压力值的静液压偏移调整
CN113995956A (zh) * 2021-11-30 2022-02-01 天津大学 基于肌电预期姿势调整的卒中电刺激训练意图识别方法
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification
US11918806B2 (en) 2016-01-21 2024-03-05 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation of the leg

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396565B2 (en) 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
US7957809B2 (en) 2005-12-02 2011-06-07 Medtronic, Inc. Closed-loop therapy adjustment
US9020597B2 (en) 2008-11-12 2015-04-28 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US8200341B2 (en) 2007-02-07 2012-06-12 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US9345879B2 (en) 2006-10-09 2016-05-24 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9724510B2 (en) 2006-10-09 2017-08-08 Endostim, Inc. System and methods for electrical stimulation of biological systems
US11577077B2 (en) 2006-10-09 2023-02-14 Endostim, Inc. Systems and methods for electrical stimulation of biological systems
US20150224310A1 (en) 2006-10-09 2015-08-13 Endostim, Inc. Device and Implantation System for Electrical Stimulation of Biological Systems
US20090210798A1 (en) * 2008-02-19 2009-08-20 Cardiac Pacemakers, Inc. Media presentation for use with implantable device
US8249718B2 (en) * 2008-07-11 2012-08-21 Medtronic, Inc. Programming posture state-responsive therapy with nominal therapy parameters
US8886302B2 (en) 2008-07-11 2014-11-11 Medtronic, Inc. Adjustment of posture-responsive therapy
US8708934B2 (en) * 2008-07-11 2014-04-29 Medtronic, Inc. Reorientation of patient posture states for posture-responsive therapy
US9050471B2 (en) 2008-07-11 2015-06-09 Medtronic, Inc. Posture state display on medical device user interface
US8504150B2 (en) 2008-07-11 2013-08-06 Medtronic, Inc. Associating therapy adjustments with posture states using a stability timer
US9440084B2 (en) * 2008-07-11 2016-09-13 Medtronic, Inc. Programming posture responsive therapy
US8219206B2 (en) * 2008-07-11 2012-07-10 Medtronic, Inc. Dwell time adjustments for posture state-responsive therapy
US8209028B2 (en) 2008-07-11 2012-06-26 Medtronic, Inc. Objectification of posture state-responsive therapy based on patient therapy adjustments
US9592387B2 (en) * 2008-07-11 2017-03-14 Medtronic, Inc. Patient-defined posture states for posture responsive therapy
US8280517B2 (en) 2008-09-19 2012-10-02 Medtronic, Inc. Automatic validation techniques for validating operation of medical devices
EP3714771A1 (en) 2008-10-01 2020-09-30 Inspire Medical Systems, Inc. System for treating sleep apnea transvenously
US9393418B2 (en) * 2011-06-03 2016-07-19 Great Lakes Neuro Technologies Inc. Movement disorder therapy system, devices and methods of tuning
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
US9327121B2 (en) 2011-09-08 2016-05-03 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods
JP5575789B2 (ja) 2008-11-19 2014-08-20 インスパイア・メディカル・システムズ・インコーポレイテッド 睡眠呼吸障害の治療方法
US20130116745A1 (en) * 2009-01-15 2013-05-09 Autonomic Technologies, Inc. Neurostimulator system, apparatus, and method
AU2013203268B2 (en) * 2009-02-10 2013-10-03 Nevro Corporation Systems and Methods for Delivering Neural Therapy Correlated with Patient Status
EP2403589B1 (en) 2009-02-10 2014-01-22 Nevro Corporation Systems for delivering neural therapy correlated with patient status
JP2012521864A (ja) 2009-03-31 2012-09-20 インスパイア・メディカル・システムズ・インコーポレイテッド 睡眠に関連する異常呼吸を処置するシステムにおける経皮的アクセス方法
EP2756864B1 (en) 2009-04-22 2023-03-15 Nevro Corporation Spinal cord modulation systems for inducing paresthetic and anesthetic effects
US9026223B2 (en) 2009-04-30 2015-05-05 Medtronic, Inc. Therapy system including multiple posture sensors
US8175720B2 (en) 2009-04-30 2012-05-08 Medtronic, Inc. Posture-responsive therapy control based on patient input
US9327070B2 (en) * 2009-04-30 2016-05-03 Medtronic, Inc. Medical device therapy based on posture and timing
US8956294B2 (en) * 2009-05-20 2015-02-17 Sotera Wireless, Inc. Body-worn system for continuously monitoring a patients BP, HR, SpO2, RR, temperature, and motion; also describes specific monitors for apnea, ASY, VTAC, VFIB, and ‘bed sore’ index
US8498710B2 (en) 2009-07-28 2013-07-30 Nevro Corporation Linked area parameter adjustment for spinal cord stimulation and associated systems and methods
US9956418B2 (en) 2010-01-08 2018-05-01 Medtronic, Inc. Graphical manipulation of posture zones for posture-responsive therapy
US9357949B2 (en) 2010-01-08 2016-06-07 Medtronic, Inc. User interface that displays medical therapy and posture data
US8579834B2 (en) * 2010-01-08 2013-11-12 Medtronic, Inc. Display of detected patient posture state
US8388555B2 (en) * 2010-01-08 2013-03-05 Medtronic, Inc. Posture state classification for a medical device
US8447403B2 (en) 2010-03-05 2013-05-21 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US11717681B2 (en) 2010-03-05 2023-08-08 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
JP5515875B2 (ja) * 2010-03-08 2014-06-11 セイコーエプソン株式会社 転倒検出装置、転倒検出方法
US9566441B2 (en) 2010-04-30 2017-02-14 Medtronic, Inc. Detecting posture sensor signal shift or drift in medical devices
WO2012050847A2 (en) 2010-09-28 2012-04-19 Masimo Corporation Depth of consciousness monitor including oximeter
US8433419B2 (en) 2010-10-13 2013-04-30 Cardiac Pacemakers, Inc. Method and apparatus for controlling neurostimulation according to physical state
US20120109238A1 (en) * 2010-10-29 2012-05-03 Medtronic, Inc. Automatic personalization of parameter settings and algorithms in a medical device
US20120123503A1 (en) * 2010-11-15 2012-05-17 Medtronic, Inc. Patient programmer with customizable programming
DE102010052936B4 (de) 2010-11-30 2015-07-02 Rodenstock Gmbh Verfahren zur Berechnung eines Brillenglases mit verbessertem Nahbereich
CN102551685B (zh) * 2010-12-30 2015-04-01 世意法(北京)半导体研发有限责任公司 对象监视器
JP2012181733A (ja) * 2011-03-02 2012-09-20 Funai Electric Co Ltd 情報端末および携帯情報端末
CN103596515A (zh) 2011-04-14 2014-02-19 恩多斯提姆公司 用于治疗胃食道返流疾病的系统和方法
US20120278760A1 (en) * 2011-04-28 2012-11-01 Medtronic, Inc. Predictive background data transfer for implantable medical devices
AU2012255671B2 (en) 2011-05-13 2016-10-06 Saluda Medical Pty Limited Method and apparatus for measurement of neural response - a
WO2012155187A1 (en) 2011-05-13 2012-11-22 National Ict Australia Ltd Method and apparatus for application of a neural stimulus - i
US10568559B2 (en) 2011-05-13 2020-02-25 Saluda Medical Pty Ltd Method and apparatus for measurement of neural response
WO2012155189A1 (en) 2011-05-13 2012-11-22 National Ict Australia Ltd Method and apparatus for estimating neural recruitment - f
WO2012155184A1 (en) 2011-05-13 2012-11-22 National Ict Australia Ltd Method and apparatus for measurement of neural response - c
US9872990B2 (en) 2011-05-13 2018-01-23 Saluda Medical Pty Limited Method and apparatus for application of a neural stimulus
EP4159273A1 (en) * 2011-05-13 2023-04-05 Saluda Medical Pty Ltd Implantable device for controlling a neural stimulus
US9375574B2 (en) 2011-05-31 2016-06-28 Nuvectra Corporation System and method of providing computer assisted stimulation programming (CASP)
US9144680B2 (en) 2011-05-31 2015-09-29 Greatbatch Ltd. System and method of establishing a protocol for providing electrical stimulation with a stimulation system to treat a patient
US9072903B2 (en) 2011-05-31 2015-07-07 Greatbatch Ltd. System and method of establishing a protocol for providing electrical stimulation with a stimulation system to treat a patient
US20130184611A1 (en) * 2011-07-13 2013-07-18 Andrew Nichols System and apparatus for posture and body position correction and improvement through a computer-assisted biofeedback system
US20170026504A1 (en) 2011-07-13 2017-01-26 Andrew Nichols System and apparatus for mitigating of bad posture and property loss through computer-assisted appliance
US8915868B1 (en) 2011-08-11 2014-12-23 Kendall Duane Anderson Instrument for measuring the posture of a patent
WO2013023218A1 (en) 2011-08-11 2013-02-14 Inspire Medical Systems, Inc. System for selecting a stimulation protocol based on sensed respiratory effort
US8771206B2 (en) 2011-08-19 2014-07-08 Accenture Global Services Limited Interactive virtual care
US9925367B2 (en) 2011-09-02 2018-03-27 Endostim, Inc. Laparoscopic lead implantation method
US20130108995A1 (en) * 2011-10-31 2013-05-02 C&D Research Group LLC. System and method for monitoring and influencing body position
US9814884B2 (en) 2011-11-04 2017-11-14 Nevro Corp. Systems and methods for detecting faults and/or adjusting electrical therapy based on impedance changes
US20130150918A1 (en) * 2011-12-08 2013-06-13 Boston Scientific Neuromodulation Corporation System and method for automatically training a neurostimulation system
KR101665009B1 (ko) * 2012-03-09 2016-10-11 한미사이언스 주식회사 비알콜성 지방간 질환의 예방 또는 치료용 약학적 조성물
US8958876B2 (en) 2012-03-27 2015-02-17 Cardiac Pacemakers, Inc. Determination of phrenic nerve stimulation threshold
US9031651B2 (en) 2012-03-27 2015-05-12 Cardiac Pacemakers, Inc. Phrenic nerve stimulation detection
US10413203B2 (en) 2012-03-27 2019-09-17 Cardiac Pacemakers, Inc. Baseline determination for phrenic nerve stimulation detection
US9907959B2 (en) 2012-04-12 2018-03-06 Medtronic, Inc. Velocity detection for posture-responsive therapy
US9737719B2 (en) 2012-04-26 2017-08-22 Medtronic, Inc. Adjustment of therapy based on acceleration
WO2013173102A1 (en) 2012-05-18 2013-11-21 Cardiac Pacemakers, Inc. Automatic pacing configuration switcher
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US9272151B2 (en) 2012-07-12 2016-03-01 Cardiac Pacemakers, Inc. Adaptive phrenic nerve stimulation detection
EP2888000A4 (en) 2012-08-23 2016-07-06 Endostim Inc DEVICE AND IMPLANT SYSTEM FOR THE ELECTRICAL STIMULATION OF BIOLOGICAL SYSTEMS
US9507912B2 (en) 2012-08-31 2016-11-29 Nuvectra Corporation Method and system of simulating a pulse generator on a clinician programmer
US9259577B2 (en) 2012-08-31 2016-02-16 Greatbatch Ltd. Method and system of quick neurostimulation electrode configuration and positioning
US8903496B2 (en) 2012-08-31 2014-12-02 Greatbatch Ltd. Clinician programming system and method
US9180302B2 (en) 2012-08-31 2015-11-10 Greatbatch Ltd. Touch screen finger position indicator for a spinal cord stimulation programming device
US9594877B2 (en) 2012-08-31 2017-03-14 Nuvectra Corporation Virtual reality representation of medical devices
US8868199B2 (en) 2012-08-31 2014-10-21 Greatbatch Ltd. System and method of compressing medical maps for pulse generator or database storage
US8983616B2 (en) 2012-09-05 2015-03-17 Greatbatch Ltd. Method and system for associating patient records with pulse generators
US9471753B2 (en) 2012-08-31 2016-10-18 Nuvectra Corporation Programming and virtual reality representation of stimulation parameter Groups
US8812125B2 (en) 2012-08-31 2014-08-19 Greatbatch Ltd. Systems and methods for the identification and association of medical devices
US10668276B2 (en) 2012-08-31 2020-06-02 Cirtec Medical Corp. Method and system of bracketing stimulation parameters on clinician programmers
US9375582B2 (en) 2012-08-31 2016-06-28 Nuvectra Corporation Touch screen safety controls for clinician programmer
US9615788B2 (en) 2012-08-31 2017-04-11 Nuvectra Corporation Method and system of producing 2D representations of 3D pain and stimulation maps and implant models on a clinician programmer
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9767255B2 (en) 2012-09-05 2017-09-19 Nuvectra Corporation Predefined input for clinician programmer data entry
US8757485B2 (en) 2012-09-05 2014-06-24 Greatbatch Ltd. System and method for using clinician programmer and clinician programming data for inventory and manufacturing prediction and control
US9849025B2 (en) 2012-09-07 2017-12-26 Yale University Brain cooling system
WO2014040023A1 (en) * 2012-09-10 2014-03-13 Great Lakes Neurotechnologies Inc. Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically
US11786735B1 (en) * 2012-09-10 2023-10-17 Great Lakes Neurotechnologies Inc. Movement disorder therapy system, devices and methods of remotely tuning
US20140107524A1 (en) * 2012-10-12 2014-04-17 Mayo Foundation For Medical Education And Research Neuromuscular monitoring display system
DK2908904T3 (da) 2012-11-06 2020-12-14 Saluda Medical Pty Ltd System til styring af vævs elektriske tilstand
US9664570B2 (en) 2012-11-13 2017-05-30 R.J. Reynolds Tobacco Company System for analyzing a smoking article filter associated with a smoking article, and associated method
US9446243B2 (en) 2012-12-07 2016-09-20 Boston Scientific Neuromodulation Corporation Patient posture determination and stimulation program adjustment in an implantable stimulator device using impedance fingerprinting
US9895538B1 (en) 2013-01-22 2018-02-20 Nevro Corp. Systems and methods for deploying patient therapy devices
US9731133B1 (en) 2013-01-22 2017-08-15 Nevro Corp. Systems and methods for systematically testing a plurality of therapy programs in patient therapy devices
US9295840B1 (en) 2013-01-22 2016-03-29 Nevro Corporation Systems and methods for automatically programming patient therapy devices
US9384671B2 (en) 2013-02-17 2016-07-05 Ronald Charles Krosky Instruction production
US9211415B2 (en) 2013-03-13 2015-12-15 Cardiac Pacemakers, Inc. Phrenic nerve stimulation detection with posture sensing
US9421383B2 (en) 2013-03-13 2016-08-23 Cardiac Pacemakers, Inc. Ambulatory phrenic nerve stimulation detection
FR3004652A1 (fr) * 2013-04-19 2014-10-24 Sorin Crm Sas Dispositif medical implantable actif pour le traitement de l'insuffisance cardiaque avec stimulation du nerf vague
KR102063611B1 (ko) 2013-08-19 2020-01-09 삼성디스플레이 주식회사 광 치료 영상을 표시하는 디스플레이 장치의 구동 방법, 및 디스플레이 장치
CN105848708A (zh) 2013-09-03 2016-08-10 恩多斯蒂姆股份有限公司 电刺激疗法中的电极极性切换的方法和系统
AU2014351064B2 (en) 2013-11-15 2019-07-04 Closed Loop Medical Pty Ltd Monitoring brain neural potentials
AU2014353891B2 (en) 2013-11-22 2020-02-06 Saluda Medical Pty Ltd Method and device for detecting a neural response in a neural measurement
WO2015168735A1 (en) 2014-05-05 2015-11-12 Saluda Medical Pty Ltd Improved neural measurement
US9630014B2 (en) * 2014-07-03 2017-04-25 Cardiac Pacemakers, Inc. System and method for analyzing medical device programming parameters
DK3171929T3 (da) 2014-07-25 2021-05-25 Saluda Medical Pty Ltd Dosering til nervestimulation
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
WO2016077882A1 (en) 2014-11-17 2016-05-26 Saluda Medical Pty Ltd Method and device for detecting a neural response in neural measurements
US10716517B1 (en) 2014-11-26 2020-07-21 Cerner Innovation, Inc. Biomechanics abnormality identification
WO2016090436A1 (en) 2014-12-11 2016-06-16 Saluda Medical Pty Ltd Method and device for feedback control of neural stimulation
US10588698B2 (en) 2014-12-11 2020-03-17 Saluda Medical Pty Ltd Implantable electrode positioning
AU2016208972B2 (en) 2015-01-19 2021-06-24 Saluda Medical Pty Ltd Method and device for neural implant communication
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
CN107864617B (zh) 2015-03-19 2021-08-20 启迪医疗仪器公司 用于治疗睡眠障碍性呼吸的刺激
JP7071121B2 (ja) 2015-04-09 2022-05-18 サルーダ・メディカル・ピーティーワイ・リミテッド 電極-神経間距離の推定
US9855005B2 (en) 2015-04-22 2018-01-02 Samsung Electronics Co., Ltd. Wearable posture advisory system
AU2016273415B2 (en) 2015-05-31 2021-07-15 Closed Loop Medical Pty Ltd Monitoring brain neural activity
WO2016191807A1 (en) 2015-05-31 2016-12-08 Saluda Medical Pty Ltd Brain neurostimulator electrode fitting
JP7204325B2 (ja) 2015-06-01 2023-01-16 クローズド・ループ・メディカル・ピーティーワイ・リミテッド 運動線維ニューロモジュレーション
US11318310B1 (en) 2015-10-26 2022-05-03 Nevro Corp. Neuromodulation for altering autonomic functions, and associated systems and methods
US11099631B2 (en) 2015-11-13 2021-08-24 Andrew R. Basile, JR. Virtual reality system with posture control
US10300277B1 (en) 2015-12-14 2019-05-28 Nevro Corp. Variable amplitude signals for neurological therapy, and associated systems and methods
AU2017211121B2 (en) 2016-01-25 2022-02-24 Nevro Corp. Treatment of congestive heart failure with electrical stimulation, and associated systems and methods
EP3439732B1 (en) 2016-04-05 2021-06-02 Saluda Medical Pty Ltd Improved feedback control of neuromodulation
AU2017252643B2 (en) 2016-04-19 2022-04-14 Inspire Medical Systems, Inc. Accelerometer-based sensing for sleep disordered breathing (SDB) care
WO2017219096A1 (en) 2016-06-24 2017-12-28 Saluda Medical Pty Ltd Neural stimulation for reduced artefact
US10449371B2 (en) 2016-08-15 2019-10-22 Boston Scientific Neuromodulation Corporation Patient-guided programming algorithms and user interfaces for neurostimulator programming
AU2017341910B2 (en) * 2016-10-14 2020-05-14 Boston Scientific Neuromodulation Corporation Systems and methods for closed-loop determination of stimulation parameter settings for an electrical simulation system
WO2018094207A1 (en) 2016-11-17 2018-05-24 Endostim, Inc. Modular stimulation system for the treatment of gastrointestinal disorders
JP6532170B2 (ja) * 2016-11-22 2019-06-19 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
EP3731749A4 (en) 2017-12-31 2022-07-27 Neuroenhancement Lab, LLC NEURO-ACTIVATION SYSTEM AND METHOD FOR ENHANCING EMOTIONAL RESPONSE
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11944820B2 (en) 2018-04-27 2024-04-02 Saluda Medical Pty Ltd Neurostimulation of mixed nerves
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
US10818386B2 (en) * 2018-11-21 2020-10-27 Enlitic, Inc. Multi-label heat map generating system
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
US11924645B2 (en) 2019-05-14 2024-03-05 Verily Life Sciences Llc Authorizing programming of an implanted device using second factor
WO2021016536A1 (en) 2019-07-25 2021-01-28 Inspire Medical Systems, Inc. Systems and methods for operating an implantable medical device based upon sensed posture information
US11596342B2 (en) 2019-09-19 2023-03-07 Medtronic, Inc. Automatic detection of body planes of rotation
US11439825B2 (en) 2019-12-19 2022-09-13 Medtronic, Inc. Determining posture state from ECAPs
US11202912B2 (en) 2019-12-19 2021-12-21 Medtronic, Inc. Posture-based control of electrical stimulation therapy
US11179567B2 (en) 2019-12-19 2021-11-23 Medtronic, Inc. Hysteresis compensation for detection of ECAPs
US11857793B2 (en) 2020-06-10 2024-01-02 Medtronic, Inc. Managing storage of sensed information
US11904170B2 (en) 2021-01-21 2024-02-20 Medtronic, Inc. Patient-learned control of medical device
WO2022248939A2 (en) * 2021-05-23 2022-12-01 Mellodge Patricia A Apparatus and method of measurement of incremental changes in partial postural control
WO2023057558A1 (en) * 2021-10-08 2023-04-13 Biotronik Se & Co. Kg Medical device system including a programmable implantable medical device such as a neurostimulator and method for operating same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036783A1 (en) * 2000-04-27 2003-02-20 Bauhahn Ruth Elinor Patient directed therapy management
US20040215286A1 (en) * 2003-04-22 2004-10-28 Stypulkowski Paul H. Generation of multiple neurostimulation therapy programs
US20050060001A1 (en) * 2003-09-15 2005-03-17 Ruchika Singhal Automatic therapy adjustments
US20070150029A1 (en) * 2005-12-02 2007-06-28 Medtronic, Inc. Closed-loop therapy adjustment

Family Cites Families (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US555640A (en) * 1896-03-03 Francis harley davis
US4297685A (en) 1979-05-31 1981-10-27 Environmental Devices Corporation Apparatus and method for sleep detection
US4365633A (en) 1980-02-22 1982-12-28 Telectronics Pty. Ltd. Patient-operated pacemaker programmer
US4543955A (en) 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
CA1213330A (en) 1983-10-14 1986-10-28 Canadian Patents And Development Limited - Societe Canadienne Des Brevets Et D'exploitation Limitee Movement artifact detector for sleep analysis
US4566456A (en) 1984-10-18 1986-01-28 Cordis Corporation Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output
US5167229A (en) 1986-03-24 1992-12-01 Case Western Reserve University Functional neuromuscular stimulation system
FR2604908B1 (fr) 1986-10-13 1990-06-22 Saint Nicolas Cie Financiere Procede de reglage d'un stimulateur cardiaque implantable en fonction de l'effort du patient porteur du stimulateur, stimulateur cardiaque implantable a parametres reglables et programmateur externe de commande d'un stimulateur cardiaque implantable reglable
US4771780A (en) 1987-01-15 1988-09-20 Siemens-Pacesetter, Inc. Rate-responsive pacemaker having digital motion sensor
DE3709073A1 (de) 1987-03-19 1988-09-29 Alt Eckhard Implantierbares medizinisches geraet
US4776345A (en) 1987-09-04 1988-10-11 Cns, Inc. Interactive determination of sleep stages
US5040534A (en) 1989-01-25 1991-08-20 Siemens-Pacesetter, Inc. Microprocessor controlled rate-responsive pacemaker having automatic rate response threshold adjustment
US5278190A (en) 1989-11-30 1994-01-11 Clintec Nutrition Co. Method for improving the quality of sleep and treating sleep disorders
FR2657443B1 (fr) 1990-01-24 1992-05-15 Blanchet Gerard Procede et appareil de traitement de signal electro-encephalographique.
US5040536A (en) 1990-01-31 1991-08-20 Medtronic, Inc. Intravascular pressure posture detector
US5031618A (en) 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
US5125412A (en) 1990-07-23 1992-06-30 Thornton William E Musculoskeletal activity monitor
US5158078A (en) 1990-08-14 1992-10-27 Medtronic, Inc. Rate responsive pacemaker and methods for optimizing its operation
US5058584A (en) 1990-08-30 1991-10-22 Medtronic, Inc. Method and apparatus for epidural burst stimulation for angina pectoris
US5337758A (en) 1991-01-11 1994-08-16 Orthopedic Systems, Inc. Spine motion analyzer and method
DE4138702A1 (de) 1991-03-22 1992-09-24 Madaus Medizin Elektronik Verfahren und vorrichtung zur diagnose und quantitativen analyse von apnoe und zur gleichzeitigen feststellung anderer erkrankungen
US5233984A (en) 1991-03-29 1993-08-10 Medtronic, Inc. Implantable multi-axis position and activity sensor
US5335657A (en) 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
DE69231157T2 (de) 1991-11-14 2001-02-15 Univ Technologies Int Automatisches system zum erzeugen eines kontinuierlichen positiven atemwegsdruck
US5431691A (en) 1992-03-02 1995-07-11 Siemens Pacesetter, Inc. Method and system for recording and displaying a sequential series of pacing events
US5732696A (en) * 1992-03-17 1998-03-31 New York University Polysomnograph scoring
US5354317A (en) 1992-04-03 1994-10-11 Intermedics, Inc. Apparatus and method for cardiac pacing responsive to patient position
US5312446A (en) 1992-08-26 1994-05-17 Medtronic, Inc. Compressed storage of data in cardiac pacemakers
US5425750A (en) 1993-07-14 1995-06-20 Pacesetter, Inc. Accelerometer-based multi-axis physical activity sensor for a rate-responsive pacemaker and method of fabrication
GB9321086D0 (en) 1993-10-13 1993-12-01 Univ Alberta Hand stimulator
FR2712501B1 (fr) 1993-11-17 1996-02-09 Ela Medical Sa Appareil médical, notamment défibrillateur implantable, à fonctions d'enregistrement Holter intégrées .
US5759149A (en) 1993-12-17 1998-06-02 Hill-Rom, Inc. Patient thermal support device
EP0672427A1 (en) 1994-03-17 1995-09-20 Siemens-Elema AB System for infusion of medicine into the body of a patient
US5514162A (en) 1994-06-07 1996-05-07 Pacesetter, Inc. System and method for automatically determining the slope of a transfer function for a rate-responsive cardiac pacemaker
US5476483A (en) 1994-06-10 1995-12-19 Pacesetter, Inc. System and method for modulating the base rate during sleep for a rate-responsive cardiac pacemaker
FI100851B (fi) 1994-08-15 1998-03-13 Polar Electro Oy Menetelmä ja laite yksilön vartalo-osan liikkeen ambulatoriseen rekist eröimiseen ja tallentamiseen sekä eri vartalo-osien liikkeiden samanai kaiseen tarkkailuun
FR2728798B1 (fr) * 1994-12-30 1997-06-20 Ela Medical Sa Procede de determination d'un critere d'activite d'un capteur de mesure d'un parametre d'asservissement dans un dispositif medical implantable actif
US5674258A (en) 1995-03-08 1997-10-07 Medtronic, Inc. Packaged integrated accelerometer
US5911738A (en) 1997-07-31 1999-06-15 Medtronic, Inc. High output sensor and accelerometer implantable medical device
US5725562A (en) 1995-03-30 1998-03-10 Medtronic Inc Rate responsive cardiac pacemaker and method for discriminating stair climbing from other activities
US5593431A (en) 1995-03-30 1997-01-14 Medtronic, Inc. Medical service employing multiple DC accelerometers for patient activity and posture sensing and method
US5913727A (en) 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US5643332A (en) 1995-09-20 1997-07-01 Neuromotion Inc. Assembly for functional electrical stimulation during movement
US5720770A (en) 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability
US20020169485A1 (en) 1995-10-16 2002-11-14 Neuropace, Inc. Differential neurostimulation therapy driven by physiological context
US5741310A (en) 1995-10-26 1998-04-21 Medtronic, Inc. System and method for hemodynamic pacing in ventricular tachycardia
US5919149A (en) 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
US5628317A (en) 1996-04-04 1997-05-13 Medtronic, Inc. Ultrasonic techniques for neurostimulator control
US5716377A (en) 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US5711316A (en) 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US6609031B1 (en) 1996-06-07 2003-08-19 Advanced Neuromodulation Systems, Inc. Multiprogrammable tissue stimulator and method
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US5944680A (en) 1996-06-26 1999-08-31 Medtronic, Inc. Respiratory effort detection method and apparatus
US6099479A (en) 1996-06-26 2000-08-08 Medtronic, Inc. Method and apparatus for operating therapy system
US5895371A (en) 1996-08-27 1999-04-20 Sabratek Corporation Medical treatment apparatus and method
US5782884A (en) 1996-11-05 1998-07-21 Sulzer Intermedics Inc. Rate responsive cardiac pacemaker with peak impedance detection for rate control
SE9604319D0 (sv) 1996-11-25 1996-11-25 Pacesetter Ab Medical detecting system
DE19653773C1 (de) 1996-12-21 1998-07-02 Ggt Ges Fuer Gerontotechnik Mb Verfahren und Anordnung zur Erfassung von Sturzsituationen gesundheitsgefährdeter Personen
US5836989A (en) 1996-12-26 1998-11-17 Medtronic, Inc. Method and apparatus for controlling an implanted medical device in a time-dependent manner
US5893883A (en) 1997-04-30 1999-04-13 Medtronic, Inc. Portable stimulation screening device for screening therapeutic effect of electrical stimulation on a patient user during normal activities of the patient user
US6171276B1 (en) 1997-08-06 2001-01-09 Pharmacia & Upjohn Ab Automated delivery device and method for its operation
US6134459A (en) 1998-10-30 2000-10-17 Medtronic, Inc. Light focusing apparatus for medical electrical lead oxygen sensor
US5941906A (en) 1997-10-15 1999-08-24 Medtronic, Inc. Implantable, modular tissue stimulator
DE29719250U1 (de) 1997-10-30 1998-05-07 Hauptverband Der Gewerblichen Körperbelastungsmeß- und Analysesystem
US6059576A (en) 1997-11-21 2000-05-09 Brann; Theodore L. Training and safety device, system and method to aid in proper movement during physical activity
NL1008619C2 (nl) 1998-03-17 1999-10-01 Robert Christiaan Van Lummel Werkwijze voor het meten en aangeven van de mate waarin een persoon beperkt is in activiteiten van het dagelijks leven.
US5904708A (en) 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
US6120467A (en) 1998-04-30 2000-09-19 Medtronic Inc. Spinal cord simulation systems with patient activity monitoring and therapy adjustments
US6539249B1 (en) * 1998-05-11 2003-03-25 Cardiac Pacemakers, Inc. Method and apparatus for assessing patient well-being
US6045513A (en) 1998-05-13 2000-04-04 Medtronic, Inc. Implantable medical device for tracking patient functional status
US6128534A (en) 1998-06-16 2000-10-03 Pacesetter, Inc. Implantable cardiac stimulation device and method for varying pacing parameters to mimic circadian cycles
FR2780654B1 (fr) 1998-07-06 2000-12-01 Ela Medical Sa Dispositif medical implantable actif permettant le traitement par electrostimulation du syndrome de l'apnee du sommeil
US6027456A (en) 1998-07-10 2000-02-22 Advanced Neuromodulation Systems, Inc. Apparatus and method for positioning spinal cord stimulation leads
DE19831109A1 (de) 1998-07-11 2000-01-13 Univ Schiller Jena Verfahren zur Auswertung von mit Störungen der Atemregulation bei Früh- und Neugeborenen im Zusammenhang stehenden Meßdaten
US6095991A (en) 1998-07-23 2000-08-01 Individual Monitoring Systems, Inc. Ambulatory body position monitor
US6157857A (en) 1998-07-24 2000-12-05 Dimpfel; Wilfried Apparatus for determining sleep staging
US7403820B2 (en) 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
DE19842107A1 (de) 1998-09-08 2000-03-09 Biotronik Mess & Therapieg Verfahren zur Erkennung der Körperlage eines Menschen
SE9803197D0 (sv) 1998-09-21 1998-09-21 Pacesetter Ab Medical implant
US6044297A (en) 1998-09-25 2000-03-28 Medtronic, Inc. Posture and device orientation and calibration for implantable medical devices
US6308099B1 (en) 1998-11-13 2001-10-23 Intermedics Inc. Implantable device and programmer system which permits multiple programmers
US6259948B1 (en) 1998-11-13 2001-07-10 Pacesetter, Inc. Medical device
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6216537B1 (en) 1999-03-31 2001-04-17 Medtronic, Inc. Accelerometer for implantable medical device
US6923784B2 (en) 1999-04-30 2005-08-02 Medtronic, Inc. Therapeutic treatment of disorders based on timing information
US6341236B1 (en) * 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US6635048B1 (en) 1999-04-30 2003-10-21 Medtronic, Inc. Implantable medical pump with multi-layer back-up memory
US6315740B1 (en) 1999-05-17 2001-11-13 Balbir Singh Seizure and movement monitoring apparatus
US6516749B1 (en) 1999-06-18 2003-02-11 Salasoft, Inc. Apparatus for the delivery to an animal of a beneficial agent
US6351672B1 (en) 1999-07-22 2002-02-26 Pacesetter, Inc. System and method for modulating the pacing rate based on patient activity and position
CA2314517A1 (en) 1999-07-26 2001-01-26 Gust H. Bardy System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
US6381496B1 (en) * 1999-10-01 2002-04-30 Advanced Bionics Corporation Parameter context switching for an implanted device
US6449508B1 (en) 1999-10-21 2002-09-10 Medtronic, Inc. Accelerometer count calculation for activity signal for an implantable medical device
US6327501B1 (en) 1999-11-02 2001-12-04 Pacesetter, Inc. System and method for determining safety alert conditions for implantable medical devices
US6368284B1 (en) 1999-11-16 2002-04-09 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof
US6466821B1 (en) 1999-12-08 2002-10-15 Pacesetter, Inc. AC/DC multi-axis accelerometer for determining patient activity and body position
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
JP2001190526A (ja) 2000-01-07 2001-07-17 Minolta Co Ltd 姿勢検出装置および呼吸機能測定装置
KR100734212B1 (ko) 2000-01-07 2007-07-02 바이오웨이브 코포레이션 전자 치료 장치, 피드백 제어 장치, 전극 및 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체
US6564105B2 (en) 2000-01-21 2003-05-13 Medtronic Minimed, Inc. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
FR2804596B1 (fr) 2000-02-04 2002-10-04 Agronomique Inst Nat Rech Procede d'analyse d'irregularites de locomotion humaine
US6477421B1 (en) 2000-02-24 2002-11-05 Pacesetter, Inc. Method and apparatus for position and motion sensing
US7806831B2 (en) * 2000-03-02 2010-10-05 Itamar Medical Ltd. Method and apparatus for the non-invasive detection of particular sleep-state conditions by monitoring the peripheral vascular system
US7082333B1 (en) 2000-04-27 2006-07-25 Medtronic, Inc. Patient directed therapy management
US6884596B2 (en) 2000-04-28 2005-04-26 The Regents Of The University Of California Screening and therapeutic methods for promoting wakefulness and sleep
US6572557B2 (en) 2000-05-09 2003-06-03 Pacesetter, Inc. System and method for monitoring progression of cardiac disease state using physiologic sensors
DE10024103A1 (de) 2000-05-18 2001-11-29 Baumgart Schmitt Rudolf Anordnung und Verfahren zur Verbesserung der Schlafqualität durch Thermostimulation
US6659968B1 (en) 2000-06-01 2003-12-09 Advanced Bionics Corporation Activity monitor for pain management efficacy measurement
US6748276B1 (en) 2000-06-05 2004-06-08 Advanced Neuromodulation Systems, Inc. Neuromodulation therapy system
US20040049132A1 (en) 2000-06-15 2004-03-11 The Procter & Gamble Company Device for body activity detection and processing
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6687538B1 (en) * 2000-06-19 2004-02-03 Medtronic, Inc. Trial neuro stimulator with lead diagnostics
GB2368017B (en) 2000-06-20 2004-05-12 Bournemouth University Higher Apparatus for electrical stimulation of the leg
US6468234B1 (en) 2000-07-14 2002-10-22 The Board Of Trustees Of The Leland Stanford Junior University SleepSmart
US6459934B1 (en) 2000-07-21 2002-10-01 Cardiac Pacemakers, Inc. Estimate of efficiency using acceleration-heart rate ratio
US7122066B2 (en) 2000-08-07 2006-10-17 Avertech, Inc. Air filter system
EP1195139A1 (en) 2000-10-05 2002-04-10 Ecole Polytechnique Féderale de Lausanne (EPFL) Body movement monitoring system and method
EP1331965B1 (en) 2000-10-26 2008-07-16 Medtronic, Inc. Apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
AU2002230578A1 (en) 2000-10-30 2002-05-15 Naval Postgraduate School Method and apparatus for motion tracking of an articulated rigid body
US6665558B2 (en) 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US6438408B1 (en) 2000-12-28 2002-08-20 Medtronic, Inc. Implantable medical device for monitoring congestive heart failure
US20020091308A1 (en) 2001-01-09 2002-07-11 Kipshidze Nicholas N. Method and apparatus for the synchronized therapeutic treatment of a life form
DE10103973A1 (de) 2001-01-30 2002-08-01 Peter L Kowallik Verfahren und Vorrichtung zur Schlafüberwachung
US6834436B2 (en) 2001-02-23 2004-12-28 Microstrain, Inc. Posture and body movement measuring system
US6620151B2 (en) 2001-03-01 2003-09-16 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
US7167751B1 (en) 2001-03-01 2007-01-23 Advanced Bionics Corporation Method of using a fully implantable miniature neurostimulator for vagus nerve stimulation
EP1381425A1 (en) 2001-04-24 2004-01-21 Neurodan A/S Functional electrical therapy system (fets)
US6668188B2 (en) 2001-04-25 2003-12-23 Cardiac Pacemakers, Inc. Determination of long-term condition of cardiac patients
US6641542B2 (en) 2001-04-30 2003-11-04 Medtronic, Inc. Method and apparatus to detect and treat sleep respiratory events
EP1391846B1 (en) 2001-05-16 2011-10-19 Sega Corporation Image processing method, image processing apparatus, and program for emphasizing object movement
CA2447643A1 (en) 2001-05-29 2002-12-05 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US6731984B2 (en) 2001-06-07 2004-05-04 Medtronic, Inc. Method for providing a therapy to a patient involving modifying the therapy after detecting an onset of sleep in the patient, and implantable medical device embodying same
US6658292B2 (en) 2001-08-24 2003-12-02 Pacesetter, Inc. Detection of patient's position and activity status using 3D accelerometer-based position sensor
US6625493B2 (en) 2001-08-24 2003-09-23 Pacesetter, Inc. Orientation of patient's position sensor using external field
US6937899B2 (en) 2001-08-30 2005-08-30 Medtronic, Inc. Ischemia detection
US6662047B2 (en) 2001-09-05 2003-12-09 Pacesetter, Inc. Pacing mode to reduce effects of orthostatic hypotension and syncope
US6961616B2 (en) 2001-09-27 2005-11-01 Cardiac Pacemakers, Inc. Trending of conduction time for optimization of cardiac resynchronization therapy in cardiac rhythm management system
US7095424B2 (en) 2001-10-26 2006-08-22 Canon Kabushiki Kaisha Image display apparatus and method, and storage medium
US6751503B1 (en) 2001-11-01 2004-06-15 Pacesetter, Inc. Methods and systems for treating patients with congestive heart failure (CHF)
US7214197B2 (en) 2001-11-06 2007-05-08 Prass Richard L Intraoperative neurophysiological monitoring system
US6975904B1 (en) 2001-11-08 2005-12-13 Pacesetter, Inc. Modification of evoked response detection algorithm based on orientation and activity of patient
US6832113B2 (en) 2001-11-16 2004-12-14 Cardiac Pacemakers, Inc. Non-invasive method and apparatus for cardiac pacemaker pacing parameter optimization and monitoring of cardiac dysfunction
FR2833177B1 (fr) 2001-12-07 2004-06-04 Ela Medical Sa Dispositif medical actif comprenant des moyens perfectionnes de discrimination des phases d'eveil et de sommeil
FR2833496B1 (fr) 2001-12-14 2004-02-13 Ela Medical Sa Dispositif medical actif comprenant des moyens perfectionnes de diagnostic du syndrome d'apnee du sommeil
US6997882B1 (en) 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
AU2003241269A1 (en) 2002-02-01 2003-09-09 The Cleveland Clinic Foundation Neurostimulation for affecting sleep disorders
US7110820B2 (en) 2002-02-05 2006-09-19 Tcheng Thomas K Responsive electrical stimulation for movement disorders
US7317948B1 (en) 2002-02-12 2008-01-08 Boston Scientific Scimed, Inc. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance
US6999817B2 (en) 2002-02-14 2006-02-14 Packsetter, Inc. Cardiac stimulation device including sleep apnea prevention and treatment
US6928324B2 (en) 2002-02-14 2005-08-09 Pacesetter, Inc. Stimulation device for sleep apnea prevention, detection and treatment
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7031772B2 (en) 2002-04-29 2006-04-18 Medtronic, Inc. Method and apparatus for rate responsive adjustments in an implantable medical device
US7123967B2 (en) 2002-05-13 2006-10-17 Pacesetter, Inc. Implantable neural stimulation device providing activity, rest, and long term closed-loop peripheral vascular disease therapy and method
US7151961B1 (en) 2002-05-24 2006-12-19 Advanced Bionics Corporation Treatment of movement disorders by brain stimulation
US6782315B2 (en) 2002-06-19 2004-08-24 Ford Global Technologies, Llc Method and apparatus for compensating misalignments of a sensor system used in a vehicle dynamic control system
US6922587B2 (en) 2002-06-26 2005-07-26 Pacesetter, Inc. System and method for tracking progression of left ventricular dysfunction using implantable cardiac stimulation device
US7117036B2 (en) 2002-06-27 2006-10-03 Pacesetter, Inc. Using activity-based rest disturbance as a metric of sleep apnea
US6817979B2 (en) 2002-06-28 2004-11-16 Nokia Corporation System and method for interacting with a user's virtual physiological model via a mobile terminal
WO2004036370A2 (en) 2002-10-15 2004-04-29 Medtronic Inc. Channel-selective blanking for a medical device system
US7218968B2 (en) 2002-10-31 2007-05-15 Medtronic, Inc. User interface for programming rate response technical field
US6878121B2 (en) 2002-11-01 2005-04-12 David T. Krausman Sleep scoring apparatus and method
US7016730B2 (en) 2002-11-15 2006-03-21 Cardiac Pacemakers, Inc. Method of operating implantable medical devices to prolong battery life
US7308311B2 (en) 2002-11-22 2007-12-11 Pacesetter, Inc. Physician programmer system with telemetered sensor waveform
US7252640B2 (en) 2002-12-04 2007-08-07 Cardiac Pacemakers, Inc. Detection of disordered breathing
US7189204B2 (en) 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US7149584B1 (en) 2002-12-23 2006-12-12 Pacesetter, Inc. System and method for determining patient posture based on 3-D trajectory using an implantable medical device
US7149579B1 (en) 2002-12-23 2006-12-12 Pacesetter, Inc. System and method for determining patient posture based on 3-D trajectory using an implantable medical device
US7207947B2 (en) 2003-01-10 2007-04-24 Pacesetter, Inc. System and method for detecting circadian states using an implantable medical device
US7160252B2 (en) 2003-01-10 2007-01-09 Medtronic, Inc. Method and apparatus for detecting respiratory disturbances
US7155279B2 (en) 2003-03-28 2006-12-26 Advanced Bionics Corporation Treatment of movement disorders with drug therapy
US7548786B2 (en) 2003-04-02 2009-06-16 Medtronic, Inc. Library for management of neurostimulation therapy programs
US7489970B2 (en) 2003-04-02 2009-02-10 Medtronic, Inc. Management of neurostimulation therapy using parameter sets
US7505815B2 (en) * 2003-04-02 2009-03-17 Medtronic, Inc. Neurostimulation therapy usage diagnostics
US7894908B2 (en) 2003-04-02 2011-02-22 Medtronic, Inc. Neurostimulation therapy optimization based on a rated session log
US7221979B2 (en) 2003-04-30 2007-05-22 Medtronic, Inc. Methods and apparatus for the regulation of hormone release
US7162304B1 (en) 2003-05-08 2007-01-09 Advanced Bionics Corporation System for measuring cardiac rhythm parameters for assessment of spinal cord stimulation
US7130681B2 (en) 2003-05-09 2006-10-31 Medtronic, Inc. Use of accelerometer signal to augment ventricular arrhythmia detection
US20040257693A1 (en) 2003-06-05 2004-12-23 Ehrlich Richard M. Disk drive disturbance rejection using accelerometer and/or back-EMF measurements
US20050004622A1 (en) 2003-07-03 2005-01-06 Advanced Neuromodulation Systems System and method for implantable pulse generator with multiple treatment protocols
US7092759B2 (en) 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
US7664546B2 (en) * 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Posture detection system and method
EP1656181B1 (en) 2003-08-18 2008-06-04 Cardiac Pacemakers, Inc. Disordered breathing management system
US7572225B2 (en) 2003-09-18 2009-08-11 Cardiac Pacemakers, Inc. Sleep logbook
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
EP2008581B1 (en) 2003-08-18 2011-08-17 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US7591265B2 (en) 2003-09-18 2009-09-22 Cardiac Pacemakers, Inc. Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US8346361B2 (en) 2003-10-02 2013-01-01 Medtronic, Inc. User interface for external charger for implantable medical device
US7181281B1 (en) 2003-10-08 2007-02-20 Pacesetter, Inc. ICD using MEMS for optimal therapy
JP3960298B2 (ja) 2003-11-19 2007-08-15 株式会社デンソー 寝姿及び体位検出装置
US7142921B2 (en) 2003-12-11 2006-11-28 Medtronic, Inc. Single axis accelerometer and method therefore
US7471980B2 (en) 2003-12-22 2008-12-30 Cardiac Pacemakers, Inc. Synchronizing continuous signals and discrete events for an implantable medical device
US6964641B2 (en) 2003-12-24 2005-11-15 Medtronic, Inc. Implantable medical device with sleep disordered breathing monitoring
US20050172311A1 (en) 2004-01-31 2005-08-04 Nokia Corporation Terminal and associated method and computer program product for monitoring at least one activity of a user
DE602005027468D1 (de) 2004-02-17 2011-05-26 Verathon Inc System und verfahren zur messung der blasenwanddicke und masse
US7130689B1 (en) 2004-02-24 2006-10-31 Pacesetter, Inc. Methods and systems for optimizing cardiac pacing intervals for various physiologic factors
US20050209512A1 (en) 2004-03-16 2005-09-22 Heruth Kenneth T Detecting sleep
US7717848B2 (en) 2004-03-16 2010-05-18 Medtronic, Inc. Collecting sleep quality information via a medical device
US8725244B2 (en) 2004-03-16 2014-05-13 Medtronic, Inc. Determination of sleep quality for neurological disorders
US8308661B2 (en) * 2004-03-16 2012-11-13 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7330760B2 (en) 2004-03-16 2008-02-12 Medtronic, Inc. Collecting posture information to evaluate therapy
US7805196B2 (en) 2004-03-16 2010-09-28 Medtronic, Inc. Collecting activity information to evaluate therapy
US7366572B2 (en) 2004-03-16 2008-04-29 Medtronic, Inc. Controlling therapy based on sleep quality
WO2005089646A1 (en) 2004-03-16 2005-09-29 Medtronic, Inc. Sensitivity analysis for selecting therapy parameter sets
US8055348B2 (en) 2004-03-16 2011-11-08 Medtronic, Inc. Detecting sleep to evaluate therapy
US20070276439A1 (en) 2004-03-16 2007-11-29 Medtronic, Inc. Collecting sleep quality information via a medical device
US7881798B2 (en) 2004-03-16 2011-02-01 Medtronic Inc. Controlling therapy based on sleep quality
US7395113B2 (en) 2004-03-16 2008-07-01 Medtronic, Inc. Collecting activity information to evaluate therapy
US7792583B2 (en) 2004-03-16 2010-09-07 Medtronic, Inc. Collecting posture information to evaluate therapy
US7491181B2 (en) 2004-03-16 2009-02-17 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US20050222638A1 (en) 2004-03-30 2005-10-06 Steve Foley Sensor based gastrointestinal electrical stimulation for the treatment of obesity or motility disorders
US8135473B2 (en) 2004-04-14 2012-03-13 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
WO2005102449A1 (en) 2004-04-14 2005-11-03 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
NZ533460A (en) 2004-06-10 2006-10-27 Movement Metrics Ltd Biomechanical monitoring apparatus with motion detectors and accumulation means to indicate time period where threshold activity is exceeded
US7840268B2 (en) 2004-06-21 2010-11-23 Advanced Neuromodulation Systems, Inc. System and method of managing medical device historical data
US7819909B2 (en) 2004-07-20 2010-10-26 Medtronic, Inc. Therapy programming guidance based on stored programming history
US7559901B2 (en) 2004-07-28 2009-07-14 Cardiac Pacemakers, Inc. Determining a patient's posture from mechanical vibrations of the heart
US7387610B2 (en) 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
ITTO20040847A1 (it) 2004-12-01 2005-03-01 St Microelectronics Srl Dispositivo di rilevamento di spostamenti per un apparecchio portatile
US7584808B2 (en) 2004-12-14 2009-09-08 Raytheon Utd, Incorporated Centralizer-based survey and navigation device and method
WO2006074029A2 (en) 2005-01-06 2006-07-13 Cyberkinetics Neurotechnology Systems, Inc. Neurally controlled and multi-device patient ambulation systems and related methods
US20060262120A1 (en) 2005-05-19 2006-11-23 Outland Research, Llc Ambulatory based human-computer interface
AU2006212007A1 (en) * 2005-02-11 2006-08-17 The University Court Of The University Of Glasgow Sensing device, apparatus and system, and method for operating the same
US7447543B2 (en) * 2005-02-15 2008-11-04 Regents Of The University Of Minnesota Pathology assessment with impedance measurements using convergent bioelectric lead fields
US7515965B2 (en) 2005-02-23 2009-04-07 Medtronic, Inc. Implantable medical device providing adaptive neurostimulation therapy for incontinence
US20060195051A1 (en) 2005-02-25 2006-08-31 Schnapp Elma O Posture monitoring device and method of use thereof
US7577479B2 (en) 2005-03-17 2009-08-18 Cardiac Pacemakers, Inc. Methods and devices for implementing time of day pacing adjustments
US7519431B2 (en) 2005-04-11 2009-04-14 Medtronic, Inc. Shifting between electrode combinations in electrical stimulation device
US20060235289A1 (en) 2005-04-19 2006-10-19 Willem Wesselink Pacemaker lead with motion sensor
US7603170B2 (en) 2005-04-26 2009-10-13 Cardiac Pacemakers, Inc. Calibration of impedance monitoring of respiratory volumes using thoracic D.C. impedance
US7406351B2 (en) 2005-04-28 2008-07-29 Medtronic, Inc. Activity sensing for stimulator control
US7389147B2 (en) 2005-04-29 2008-06-17 Medtronic, Inc. Therapy delivery mode selection
DE602006010995D1 (de) 2005-04-29 2010-01-21 Medtronic Inc Funktionstest für verteilte leitungskabel
US8108049B2 (en) 2005-04-30 2012-01-31 Medtronic, Inc. Impedance-based stimulation adjustment
US20080194998A1 (en) 2005-05-24 2008-08-14 Nils Holmstrom Method, Device and Computer-Readable Medium for Evaluating Prevalence of Different Patient Postures
US8021299B2 (en) 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US7430447B2 (en) 2005-06-06 2008-09-30 Pacesetter, Inc. Evoked response and impedance measures for monitoring heart failure and respiration
EP1906815A2 (en) 2005-07-12 2008-04-09 Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California Method and apparatus for detecting object orientation and position
US8033996B2 (en) 2005-07-26 2011-10-11 Adidas Ag Computer interfaces including physiologically guided avatars
US7590481B2 (en) 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions
US9061146B2 (en) 2005-10-28 2015-06-23 Medtronic, Inc. Impedance-based bladder sensing
US8366641B2 (en) 2005-11-18 2013-02-05 Cardiac Pacemakers, Inc. Posture detector calibration and use
US7471290B2 (en) 2005-11-18 2008-12-30 Cardiac Pacemakers, Inc. Posture detection system
US7766840B2 (en) 2005-12-01 2010-08-03 Cardiac Pacemakers, Inc. Method and system for heart failure status evaluation based on a disordered breathing index
US20070129641A1 (en) 2005-12-01 2007-06-07 Sweeney Robert J Posture estimation at transitions between states
US7853322B2 (en) 2005-12-02 2010-12-14 Medtronic, Inc. Closed-loop therapy adjustment
EP1960046A1 (en) 2005-12-02 2008-08-27 Medtronic, Inc. Closed-loop therapy adjustment
US8016776B2 (en) 2005-12-02 2011-09-13 Medtronic, Inc. Wearable ambulatory data recorder
US20070156057A1 (en) * 2005-12-30 2007-07-05 Cho Yong K Method and system for interpreting hemodynamic data incorporating patient posture information
IL173604A (en) 2006-02-08 2013-01-31 E Afikim Milking Systems Agricultural Cooperative Ltd Sa A device and method for recording animal poses, especially for live animals
US7747330B2 (en) 2006-03-09 2010-06-29 Medtronic, Inc. Global parameter adjustment for multiple stimulation programs
WO2007112092A2 (en) 2006-03-24 2007-10-04 Medtronic, Inc. Collecting gait information for evaluation and control of therapy
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
US20070255154A1 (en) 2006-04-28 2007-11-01 Medtronic, Inc. Activity level feedback for managing obesity
US8200341B2 (en) 2007-02-07 2012-06-12 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US20070293917A1 (en) 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
EP1870128A1 (en) 2006-06-19 2007-12-26 Lifestim S.r.l. Analgesic neuromodulating device, with a modulating effect depending on the user's activity and position
US8060203B2 (en) 2006-08-28 2011-11-15 St. Jude Medical Ab Method and apparatus for determining variation over time of a medical parameter of a human being
US20080081958A1 (en) 2006-09-28 2008-04-03 Medtronic, Inc. Implantable medical device with sensor self-test feature
ATE467821T1 (de) 2006-09-28 2010-05-15 Medtronic Inc Kapazitive schnittstellenschaltung für eine low- power-sensorsystem
US7764996B2 (en) 2006-10-31 2010-07-27 Cardiac Pacemakers, Inc. Monitoring of chronobiological rhythms for disease and drug management using one or more implantable device
US8556833B2 (en) 2007-01-10 2013-10-15 Integrity Tracking, Llc Wireless sensor network system and method
WO2008095185A1 (en) 2007-02-01 2008-08-07 Boston Scientific Neuromodulation Corporation Neurostimulation system for measuring patient activity
US20090046056A1 (en) 2007-03-14 2009-02-19 Raydon Corporation Human motion tracking device
GB2447647A (en) 2007-03-16 2008-09-24 Cambridge Neurotechnology Ltd Activity monitor
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US7822481B2 (en) 2007-04-30 2010-10-26 Medtronic, Inc. Therapy adjustment
US8788055B2 (en) 2007-05-07 2014-07-22 Medtronic, Inc. Multi-location posture sensing
US8103351B2 (en) 2007-05-07 2012-01-24 Medtronic, Inc. Therapy control using relative motion between sensors
US7634379B2 (en) 2007-05-18 2009-12-15 Ultimate Balance, Inc. Newtonian physical activity monitor
US8805508B2 (en) 2007-05-30 2014-08-12 Medtronic, Inc. Collecting activity data for evaluation of patient incontinence
US8204597B2 (en) 2007-05-30 2012-06-19 Medtronic, Inc. Evaluating patient incontinence
US7769436B1 (en) * 2007-06-04 2010-08-03 Pacesetter, Inc. System and method for adaptively adjusting cardiac ischemia detection thresholds and other detection thresholds used by an implantable medical device
US8221290B2 (en) 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US20090046065A1 (en) * 2007-08-17 2009-02-19 Eric Liu Sensor-keypad combination for mobile computing devices and applications thereof
WO2009036333A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Dynamic pairing of patients to data collection gateways
US20090264789A1 (en) 2007-09-26 2009-10-22 Medtronic, Inc. Therapy program selection
US8380314B2 (en) 2007-09-26 2013-02-19 Medtronic, Inc. Patient directed therapy control
EP2207590A1 (en) 2007-09-26 2010-07-21 Medtronic, INC. Therapy program selection
US8121694B2 (en) 2007-10-16 2012-02-21 Medtronic, Inc. Therapy control based on a patient movement state
US9772689B2 (en) 2008-03-04 2017-09-26 Qualcomm Incorporated Enhanced gesture-based image manipulation
US8287520B2 (en) 2008-04-10 2012-10-16 Medtronic, Inc. Automated integrity tests
US8708934B2 (en) 2008-07-11 2014-04-29 Medtronic, Inc. Reorientation of patient posture states for posture-responsive therapy
US9050471B2 (en) 2008-07-11 2015-06-09 Medtronic, Inc. Posture state display on medical device user interface
US8886302B2 (en) 2008-07-11 2014-11-11 Medtronic, Inc. Adjustment of posture-responsive therapy
US8249718B2 (en) 2008-07-11 2012-08-21 Medtronic, Inc. Programming posture state-responsive therapy with nominal therapy parameters
US9592387B2 (en) 2008-07-11 2017-03-14 Medtronic, Inc. Patient-defined posture states for posture responsive therapy
US8219206B2 (en) 2008-07-11 2012-07-10 Medtronic, Inc. Dwell time adjustments for posture state-responsive therapy
US9440084B2 (en) 2008-07-11 2016-09-13 Medtronic, Inc. Programming posture responsive therapy
US8209028B2 (en) 2008-07-11 2012-06-26 Medtronic, Inc. Objectification of posture state-responsive therapy based on patient therapy adjustments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036783A1 (en) * 2000-04-27 2003-02-20 Bauhahn Ruth Elinor Patient directed therapy management
US20040215286A1 (en) * 2003-04-22 2004-10-28 Stypulkowski Paul H. Generation of multiple neurostimulation therapy programs
US20050060001A1 (en) * 2003-09-15 2005-03-17 Ruchika Singhal Automatic therapy adjustments
US20070150029A1 (en) * 2005-12-02 2007-06-28 Medtronic, Inc. Closed-loop therapy adjustment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211110A (zh) * 2013-01-21 2018-06-29 卡拉健康公司 用于控制震颤的设备和方法
CN108211110B (zh) * 2013-01-21 2022-04-19 卡拉健康公司 用于控制震颤的设备和方法
CN106659412A (zh) * 2014-09-09 2017-05-10 美敦力公司 基于组织激活体积针对电刺激治疗进行治疗程序选择
US10583293B2 (en) 2014-09-09 2020-03-10 Medtronic, Inc. Therapy program selection for electrical stimulation therapy based on a volume of tissue activation
US11648398B2 (en) 2014-09-09 2023-05-16 Medtronic, Inc. Therapy program selection for electrical stimulation therapy based on a volume of tissue activation
US11918806B2 (en) 2016-01-21 2024-03-05 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation of the leg
CN109074860A (zh) * 2016-04-18 2018-12-21 富士胶片株式会社 代替医药品检索装置及代替医药品检索方法
CN110087534A (zh) * 2016-12-20 2019-08-02 美敦力公司 针对测得的心血管压力值的静液压偏移调整
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification
CN113995956A (zh) * 2021-11-30 2022-02-01 天津大学 基于肌电预期姿势调整的卒中电刺激训练意图识别方法
CN113995956B (zh) * 2021-11-30 2022-09-13 天津大学 基于肌电预期姿势调整的卒中电刺激训练意图识别装置

Also Published As

Publication number Publication date
US8315710B2 (en) 2012-11-20
EP2926862B1 (en) 2019-02-20
US20100010588A1 (en) 2010-01-14
WO2010005832A3 (en) 2010-12-02
US20100010388A1 (en) 2010-01-14
CN102089031B (zh) 2013-11-13
US8249718B2 (en) 2012-08-21
US8326420B2 (en) 2012-12-04
US20100010590A1 (en) 2010-01-14
US20100010589A1 (en) 2010-01-14
US20100010587A1 (en) 2010-01-14
EP2331198A2 (en) 2011-06-15
EP2926862A1 (en) 2015-10-07
US20100010432A1 (en) 2010-01-14
WO2010005832A2 (en) 2010-01-14
US8200340B2 (en) 2012-06-12
EP2331198B1 (en) 2015-06-10
US8515549B2 (en) 2013-08-20
US8150531B2 (en) 2012-04-03
WO2010005817A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
CN102089031B (zh) 使治疗调整与患者姿势状态相关联
US11004556B2 (en) Associating therapy adjustments with posture states using a stability timer
US9744365B2 (en) Presentation of information associated with medical device therapy
CN102088905B (zh) 获取基线患者信息
US9327070B2 (en) Medical device therapy based on posture and timing
US8219206B2 (en) Dwell time adjustments for posture state-responsive therapy
US8175720B2 (en) Posture-responsive therapy control based on patient input
US8401666B2 (en) Modification profiles for posture-responsive therapy
US9907959B2 (en) Velocity detection for posture-responsive therapy
CN102123761A (zh) 医疗装置用户界面上的姿势状态显示

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant