CN102257635A - 光伏器件的薄吸收层 - Google Patents

光伏器件的薄吸收层 Download PDF

Info

Publication number
CN102257635A
CN102257635A CN2009801514993A CN200980151499A CN102257635A CN 102257635 A CN102257635 A CN 102257635A CN 2009801514993 A CN2009801514993 A CN 2009801514993A CN 200980151499 A CN200980151499 A CN 200980151499A CN 102257635 A CN102257635 A CN 102257635A
Authority
CN
China
Prior art keywords
type doped
doped layer
layer
type
layer comprises
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801514993A
Other languages
English (en)
Inventor
伊西克·C·奇吉尔亚里
美利莎·艾契尔
哈利·艾华特
汤玛士·J·吉密特
何甘
安德瑞斯·海吉杜斯
雷格·东克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Awbscqemgk Inc
Original Assignee
Awbscqemgk Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Awbscqemgk Inc filed Critical Awbscqemgk Inc
Publication of CN102257635A publication Critical patent/CN102257635A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

提供了用于以与常规太阳能电池相比时增大的效率将电磁辐射(例如太阳能)转化为电能的方法及装置。在光伏(PV)器件的一个实施方式中,PV器件大致上包括n型掺杂层及p+型掺杂层,p+型掺杂层邻近所述n型掺杂层以形成p-n层,使得当电磁辐射被p-n层吸收时产生电能。n型掺杂层和p+型掺杂层可以构成吸收层,并且吸收层的厚度小于500nm。与常规太阳能电池相比,这样的薄吸收层可以允许PV器件具有更大的效率和及可挠性。

Description

光伏器件的薄吸收层
背景
技术领域
本发明的实施方式一般涉及具有增大的效率和较大的可挠性的光伏(PV)器件(例如太阳能电池)及用以制造其的方法。
相关技术的描述
因为化石燃料正以不断增加的速率耗尽,所以对替代能源的需要变得越来越明显。源自风、源自太阳及源自流水的能量提供对化石燃料(例如煤、油及天然气)的可再生的、环境友好的替代物。因为太阳能在地球上的几乎任何地方都容易得到,所以它可能有朝一日成为可行的替代物。
为了利用来自太阳的能量,太阳能电池的结吸收光子以产生电子空穴对,这些电子空穴对被结的内部电场分离以产生电压,从而将光能转化为电能。所产生的电压可通过串联连接太阳能电池而增加,且电流可通过并联连接太阳能电池而增加。太阳能电池可在太阳电池板上组合在一起。逆变器可耦接至若干太阳电池板以将直流功率转换为交流功率。
然而,生产太阳能电池的当前高成本相对于当代器件的低效率水平阻止太阳能电池成为主流能源,且限制太阳能电池可适用的应用。因此,需要适于大量应用的更有效的光伏器件。
发明概述
本发明的实施方式一般涉及用于以与常规太阳能电池相比时增大的效率将电磁辐射(例如太阳能)转化为电能的方法及装置。
本发明的一个实施方式提供一种光伏(PV)器件。PV器件大致上包括n型掺杂层及p+型掺杂层,p+型掺杂层邻近n型掺杂层以形成p-n层,使得当电磁辐射被p-n层吸收时产生电能。
本发明的另一个实施方式为一种制造PV器件的方法。该方法大致上包括:在基底上方形成n型掺杂层;以及在n型掺杂层上方形成p+型掺杂层,以在n型掺杂层与p+型掺杂层之间形成p-n层,使得当电磁辐射被p-n层吸收时产生电能。
附图的简要说明
因此,可详细理解本发明的上述特征结构的方式,即,上文简要概述的本发明的更特定的描述可参照实施方式进行,一些实施方式在附图中示出。然而,应注意,附图仅示出本发明的典型实施方式,且因此不应被视为其范围的限制,因为本发明可允许其它同等有效的实施方式。
图1以横截面示出根据本发明的一个实施方式的具有半导体层的示例性厚度、组合物及掺杂的光伏(PV)单元的多个外延层。
图2A至图2D示出根据本发明的实施方式的PV单元的基极层及发射极层的各种层堆栈剖面。
图3A及图3B示出根据本发明的实施方式的PV单元的半导体层,这些半导体层具有在基极层与发射极层之间的偏移p-n层。
图4示出根据本发明的一个实施方式的PV单元的半导体层,这些半导体层具有发射极层,该发射极层具有精细调整的掺杂剖面以使得掺杂程度从p-n层至发射极层的顶部增加。
图5示出根据本发明的一个实施方式的PV单元的半导体层,这些半导体层具有多个AlGaAs发射极层,这些发射极层具有分级的铝(Al)含量。
详细描述
提供了用于以与常规太阳能电池相比时增大的效率将电磁辐射(例如太阳能)转化为电能的技术及装置。
示范性薄吸收层
图1以横截面示出在制造期间光伏(PV)单元100的各种外延层。可使用用于半导体生长的任何适合的方法在基底(未示出)上形成各种层,这些方法例如是分子束外延法(MBE)或金属有机化学汽相沉积法(MOCVD)。
为了形成PV单元100,可在基底上形成一个或多个缓冲层。缓冲层的目的在于提供介于基底与最终PV单元的半导体层之间的中间层,当形成各种外延层时,该中间层可容纳各种外延层的不同结晶结构。举例而言,具有大约200nm的厚度的缓冲层102可根据最终PV单元的期望组合物而包括III-V族化合物半导体,例如砷化镓(GaAs)。对于一些实施方式,例如当产生GaAs缓冲层时,基底可(例如)包含GaAs。
对于一些实施方式,释放层104可形成于缓冲层102之上。举例而言,释放层104可包含砷化铝(AlAs),且其厚度在约5至10nm的范围内。薄释放层104的目的被更详细地描述于下文。
在释放层104之上,可形成窗层106。窗层106可包含砷化铝镓(AlGaAs),例如Al0.3Ga0.7As。窗层106的厚度可在约5nm至30nm的范围内(例如,如所示的20nm),且可以是未掺杂的。窗层106可为透明的以允许光子穿过在PV单元的正面上的窗层传递到其它下伏层。
基极层108可形成于窗层106之上。基极层108可包含任何适合的III-V族化合物半导体,例如砷化镓。基极层108可为单晶体。基极层108可为n型掺杂的,且对于一些实施方式,n型掺杂基极层108的掺杂浓度可在约1×1016cm-3至1×1019cm-3的范围内(例如,如所示的2×1017cm-3)。基极层108的厚度可在约300nm至3500nm的范围内。
如图1中所示出的,发射极层110可形成于基极层108之上。发射极层110可包含用以与基极层108形成异质结的任何适合的III-V族化合物半导体。举例而言,如果基极层108包含GaAs,则发射极层110可包含诸如AlGaAs的不同半导体材料。如果发射极层110及窗层106都包含AlGaAs,则发射极层110的AlxGa1-xAs组合物可与窗层106的AlyGa1-yAs组合物相同或不同。发射极层110可为单晶体。发射极层110可为p型重掺杂(即,p+型掺杂),且对于一些实施方式,p+型掺杂发射极层的掺杂浓度可为约1×1017cm-3至1×1020cm-3的范围内(例如,如所示的1×1019cm-3)。举例而言,发射极层110的厚度可为约300nm。基极层108及发射极层110的组合可形成用以吸收光子的吸收层。对于一些实施方式,吸收层的厚度可小于800nm,或甚至小于500nm。
n型掺杂基极层与p+型掺杂发射极层的接触产生p-n层112。当光在p-n层112附近被吸收以产生电子空穴对时,内建电场可迫使空穴到p+型掺杂侧且迫使电子到n型掺杂侧。自由电荷的该位移导致两个层108、110之间的电压差,以使得电子流可在负载连接在耦接至这些层的端子两端时流动。
不同于如上所述的n型掺杂基极层108及p+型掺杂发射极层110,常规光伏半导体器件通常具有p型掺杂基极层及n+型掺杂发射极层。在常规器件中,由于载流子的扩散长度,基极层通常为p型掺杂。制造根据本发明的实施方式的较薄基极层允许改变n型掺杂基极层。与p型掺杂层内的空穴的迁移率相比,n型掺杂层内的电子的较高迁移率导致本发明的实施方式的n型掺杂基极层108的较低掺杂密度。
一旦形成发射极层110,就可在发射极层内形成空腔或凹槽114,这些空腔或凹槽114足够深以到达下伏基极层108。举例而言,通过使用光刻术将掩模应用于发射极层110,且使用任何适合的技术(例如湿式或干式蚀刻)移除发射极层110内的未由掩模覆盖的半导体材料,可形成这样的凹槽114。以此方式,可经由PV单元100的背面接近基极层108。
对于一些实施方式,可在发射极层110之上形成界面层116。界面层116可包含任何适合的III-V族化合物半导体,例如GaAs。界面层116可为p+型掺杂,且对于一些实施方式,p+型掺杂界面层116的掺杂浓度可为1×1019cm-3。举例而言,界面层116的厚度可为约300nm。
一旦在释放层104之上形成剩余外延层,薄释放层104就可例如经由使用含水HF的蚀刻而牺牲。以此方式,在外延层剥离(ELO)工艺期间,PV单元100的功能层(例如,窗层106、基极层108及发射极层110)可与缓冲层102及基底分离。
与常规太阳能单元相比,以此方式产生的PV单元具有相当薄的吸收层(例如,<500nm),而常规太阳能单元可为数微米厚。吸收层的厚度与PV单元内的暗电流电平成比例(即,吸收层越薄,暗电流越低)。暗电流为即使没有光子进入器件时也流过PV单元或其它类似感光性器件(例如,光电二极管)的小电流。该背景电流可作为热离子发射或其它效应的结果而存在。因为当暗电流在感光性半导体器件内减小时,开路电压(Voc)增加,所以对给定光强度而言,较薄的吸收层最可能导致较大的Voc,且因此导致增大的效率。只要吸收层能够捕集光,当吸收层的厚度减小时,效率增加。
吸收层的薄度可能不仅仅受薄膜技术能力及ELO的能力的限制。举例而言,效率随着吸收层的薄度增加而增加,但吸收层应足够厚以承载电流。然而,较高掺杂程度可允许电流流动,甚至在极薄的吸收层内流动。因此,可利用增加的掺杂来制造极薄的吸收层,并具有甚至更大的效率。常规PV器件可遭受体积重组效应,因此这样的常规器件并不在吸收层内使用高掺杂。当确定适当厚度时,也可考虑吸收层的薄层电阻。
不仅薄吸收层导致增大的效率,而且具有这样的薄吸收层的PV单元可比具有若干微米的厚度的常规太阳能电池更具可挠性。因此,根据本发明的实施方式的PV单元可比常规太阳能电池适于更大量的应用。
图2A至图2D示出根据本发明的实施方式的PV单元的基极层108及发射极层110的各种层堆栈剖面200a-d。图2A中的层堆栈剖面200a示出了如图1所示出的基极层108及发射极层110。对于一些实施方式,可在基极层108之上形成中间层202,且可在中间层之上形成发射极层110。中间层202可提供介于基极层108与发射极层110之间的更平缓过渡。
中间层202可为n型掺杂,n型重掺杂(即,n+型掺杂)或p+型掺杂的。举例而言,图2B示出包含n型AlGaAs的中间层202b。作为另一实例,图2C描绘包含n+型AlGaAs的中间层202c。作为又一实例,图2D描绘包含p+型GaAs的中间层202d
在图1中,在基极层108与发射极层110之间的p-n层112为平坦的且未暴露于凹槽114内。换言之,图1的p-n层112可被视为仅具有二维几何形状的平面。如图3A及图3B所示,对于一些实施方式,可形成PV单元的半导体层以在基极层108与发射极层110之间产生偏移p-n层312。换言之,偏移p-n层312可被视为具有三维几何形状。偏移p-n层312可暴露于凹槽114内。
如图3A中所示出的,当如上所述形成凹槽114时,通过一直穿过发射极层110移除半导体材料且部分地进入基极层108内,可产生偏移p-n层312a。如图3B中所示出的,用以形成偏移p-n层312b的另一方法可包括在形成发射极层110之前,将掩模应用于基极层108。经由任何适合的技术(例如蚀刻),可从被预期保留发射极层的基极层108的一部分(即,除凹槽114的期望位置外的其它位置)移除半导体材料。一旦在发射极层内形成发射极层110及凹槽114,所得到的偏移p-n层312b就具有比平坦p-n层112的表面面积更大的表面面积。
对于一些实施方式,在制造期间,可在PV单元的层内将掺杂程度精细调整。举例而言,图4示出具有发射极层110的PV单元400,该发射极层110具有精细调整的掺杂剖面,以使得掺杂浓度在Z方向上从p-n层112增加至发射极层110的顶部。
对于一些实施方式,发射极层110可包括多个层,且多个层可包括不同的组合物。举例而言,图5示出根据本发明的一个实施方式的PV单元500的半导体层,这些半导体层具有多个p+型AlGaAs发射极层,这些发射极层具有分级(graded)的铝(Al)含量(即,百分比)。在该示例性实施方式中,可在基极层108之上形成包含p+型GaAs而无任何铝的第一发射极层5101。可在第一个发射极层5101之上形成包含p+型Al0.1Ga0.9As的第二发射极层5102。然后,又可在第二发射极层5102之上形成包含p+型Al0.2Ga0.8As的第三发射极层5103及包含p+型Al0.3Ga0.7As的第四发射极层5104。具有这些分级的Al含量可避免结势垒。
尽管上文针对本发明的实施方式,但是可设计本发明的其它及另外的实施方式而不偏离其基本范围,且其范围由随后的权利要求确定。

Claims (56)

1.一种光伏(PV)器件,包括:
n型掺杂层;以及
p+型掺杂层,其邻近所述n型掺杂层以形成p-n层,使得当电磁辐射被所述p-n层吸收时产生电能。
2.如权利要求1所述的PV器件,其中所述n型掺杂层与所述p+型掺杂层构成吸收层,并且所述吸收层的厚度小于800nm。
3.如权利要求1所述的PV器件,其中所述p-n层包括异质结。
4.如权利要求1所述的PV器件,其中所述n型掺杂层或所述p+型掺杂层包括III-V族半导体。
5.如权利要求4所述的PV器件,其中所述III-V族半导体是单晶体。
6.如权利要求4所述的PV器件,其中所述n型掺杂层包含n型GaAs。
7.如权利要求4所述的PV器件,其中所述p+型掺杂层包含p+型AlGaAs。
8.如权利要求7所述的PV器件,其中所述p+型掺杂层包含p+型Al0.3Ga0.7As。
9.如权利要求1所述的PV器件,还包括插在所述n型掺杂层和所述p+型掺杂层之间的中间层。
10.如权利要求9所述的PV器件,其中所述n型掺杂层包含n型GaAs,所述p+型掺杂层包含p+型AlGaAs,以及所述中间层包含n型AlGaAs。
11.如权利要求9所述的PV器件,其中所述n型掺杂层包含n型GaAs,所述p+型掺杂层包含p+型AlGaAs,以及所述中间层包含n+型AlGaAs。
12.如权利要求9所述的PV器件,其中所述n型掺杂层包含n型GaAs,所述p+型掺杂层包含p+型AlGaAs,以及所述中间层包含p+型GaAs。
13.如权利要求1所述的PV器件,还包括邻近所述n型掺杂层的窗层。
14.如权利要求13所述的PV器件,其中所述窗层包含AlGaAs。
15.如权利要求14所述的PV器件,其中所述窗层包含Al0.3Ga0.7As。
16.如权利要求13所述的PV器件,其中所述窗层具有大约5到30nm的厚度。
17.如权利要求1所述的PV器件,还包括邻近所述p+型掺杂层的界面层。
18.如权利要求17所述的PV器件,其中所述界面层包含p+型GaAs。
19.如权利要求17所述的PV器件,其中所述界面层具有大约300nm的厚度。
20.如权利要求17所述的PV器件,其中所述界面层具有1×1019cm-3的掺杂程度。
21.如权利要求1所述的PV器件,其中在所述n型掺杂层与所述p+型掺杂层之间形成的所述p-n层为偏移p-n层。
22.如权利要求1所述的PV器件,其中所述p+型掺杂层具有被精细调整的掺杂剖面,使得掺杂程度从所述p+型掺杂层的一侧到另一侧增加。
23.如权利要求1所述的PV器件,其中所述p+型掺杂层包括多个p+型掺杂层。
24.如权利要求23所述的PV器件,其中所述多个p+型掺杂层包含AlGaAs,并且所述多个p+型掺杂层的每个包含不同百分比的铝。
25.如权利要求24所述的PV器件,其中所述多个p+型掺杂层包括具有p+型GaAs的第一p+型掺杂层、具有p+型Al0.1Ga0.9As的第二p+型掺杂层、具有p+型Al0.2Ga0.8As的第三p+型掺杂层和具有p+型Al0.3Ga0.7As的第四p+型掺杂层。
26.如权利要求25所述的PV器件,其中所述第一p+型掺杂层邻近所述n型掺杂层。
27.如权利要求1所述的PV器件,其中所述n型掺杂层具有从约300nm至约3500nm的范围内的厚度。
28.如权利要求1所述的PV器件,其中所述p+型掺杂层的厚度为约300nm。
29.如权利要求1所述的PV器件,其中所述n型掺杂层具有2×1017cm-3的掺杂程度。
30.如权利要求1所述的PV器件,其中所述p+型掺杂层具有1×1019cm-3的掺杂程度。
31.一种制造光伏(PV)器件的方法,包括:
在基底上方形成n型掺杂层;以及
在所述n型掺杂层上方形成p+型掺杂层,以在所述n型掺杂层与所述p+型掺杂层之间形成p-n层,使得当电磁辐射被所述p-n层吸收时产生电能。
32.如权利要求31所述的方法,还包括使用外延剥离(ELO)来从所述基底移除所述n型掺杂层和所述p+型掺杂层。
33.如权利要求31所述的方法,其中所述n型掺杂层和所述p+型掺杂层组成吸收层,且所述吸收层具有小于800nm的厚度。
34.如权利要求31所述的方法,其中所述p-n层包括异质结。
35.如权利要求31所述的方法,其中所述n型掺杂层或所述p+型掺杂层包括III-V族半导体。
36.如权利要求35所述的方法,其中所述n型掺杂层包含n型GaAs。
37.如权利要求35所述的方法,其中所述p+型掺杂层包含p+型AlGaAs。
38.如权利要求31所述的方法,还包括在所述n型掺杂层上方形成中间层,其中形成所述p+型掺杂层包括在所述中间层上方形成所述p+型掺杂层。
39.如权利要求38所述的方法,其中所述n型掺杂层包含n型GaAs,所述p+型掺杂层包含p+型AlGaAs,以及所述中间层包含n型AlGaAs。
40.如权利要求38所述的方法,其中所述n型掺杂层包含n型GaAs,所述p+型掺杂层包含p+型AlGaAs,以及所述中间层包含n+型AlGaAs。
41.如权利要求38所述的方法,其中所述n型掺杂层包含n型GaAs,所述p+型掺杂层包含p+型AlGaAs,以及所述中间层包含p+型GaAs。
42.如权利要求31所述的方法,还包括在所述基底上方形成窗层,其中形成所述n型掺杂层包括在所述窗层上方形成所述n型掺杂层。
43.如权利要求42所述的方法,其中所述窗层包含AlGaAs。
44.如权利要求42所述的方法,还包括在所述基底上方形成缓冲层,其中形成所述窗层包括在所述缓冲层上方形成所述窗层。
45.如权利要求44所述的方法,其中所述缓冲层包含GaAs。
46.如权利要求44所述的方法,其中所述缓冲层具有大约200nm的厚度。
47.如权利要求44所述的方法,还包括在所述缓冲层上方形成释放层,其中形成所述窗层包括在所述释放层上方形成所述窗层。
48.如权利要求47所述的方法,其中所述释放层包含AlAs。
49.如权利要求47所述的方法,其中所述释放层具有大约5nm的厚度。
50.如权利要求31所述的方法,还包括在所述p+型掺杂层上方形成界面层。
51.如权利要求50所述的方法,其中所述界面层包含p+型GaAs。
52.如权利要求31所述的方法,还包括移除所述n型掺杂层的一部分,使得所述p-n层被偏移。
53.如权利要求31所述的方法,其中形成所述p+型掺杂层包括精细调整所述p+型掺杂层的掺杂剖面,使得掺杂程度从所述p+型掺杂层的一侧到另一侧增加。
54.如权利要求31所述的方法,其中形成所述p+型掺杂层包括形成多个p+型掺杂层。
55.如权利要求54所述的方法,其中所述多个p+型掺杂层包含AlGaAs,并且所述多个p+型掺杂层的每个包含不同百分比的铝。
56.如权利要求54所述的方法,其中所述多个p+型掺杂层包括具有p+型GaAs的第一p+型掺杂层、具有p+型Al0.1Ga0.9As的第二p+型掺杂层、具有p+型Al0.2Ga0.8As的第三p+型掺杂层和具有p+型Al0.3Ga0.7As的第四p+型掺杂层。
CN2009801514993A 2008-10-23 2009-10-23 光伏器件的薄吸收层 Pending CN102257635A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10795908P 2008-10-23 2008-10-23
US61/107,959 2008-10-23
PCT/US2009/061906 WO2010048543A2 (en) 2008-10-23 2009-10-23 Thin absorber layer of a photovoltaic device

Publications (1)

Publication Number Publication Date
CN102257635A true CN102257635A (zh) 2011-11-23

Family

ID=42120002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801514993A Pending CN102257635A (zh) 2008-10-23 2009-10-23 光伏器件的薄吸收层

Country Status (6)

Country Link
US (3) US8674214B2 (zh)
EP (1) EP2351098A2 (zh)
KR (1) KR20110086097A (zh)
CN (1) CN102257635A (zh)
TW (1) TW201029196A (zh)
WO (1) WO2010048543A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874608A (zh) * 2013-08-14 2016-08-17 挪威科技大学 径向p-n结纳米线太阳能电池
WO2017067413A1 (zh) * 2015-10-19 2017-04-27 北京汉能创昱科技有限公司 太阳能电池片、其制备方法及其组成的太阳能电池组

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772628B2 (en) 2004-12-30 2014-07-08 Alliance For Sustainable Energy, Llc High performance, high bandgap, lattice-mismatched, GaInP solar cells
US20120104460A1 (en) 2010-11-03 2012-05-03 Alta Devices, Inc. Optoelectronic devices including heterojunction
CN102257635A (zh) * 2008-10-23 2011-11-23 奥塔装置公司 光伏器件的薄吸收层
EP2351097A2 (en) 2008-10-23 2011-08-03 Alta Devices, Inc. Photovoltaic device
US8686284B2 (en) * 2008-10-23 2014-04-01 Alta Devices, Inc. Photovoltaic device with increased light trapping
CN102257636A (zh) * 2008-10-23 2011-11-23 奥塔装置公司 具有背侧接点的光伏器件
CN102257628A (zh) * 2008-10-23 2011-11-23 奥塔装置公司 光伏器件的集成
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US20170141256A1 (en) 2009-10-23 2017-05-18 Alta Devices, Inc. Multi-junction optoelectronic device with group iv semiconductor as a bottom junction
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US20150380576A1 (en) 2010-10-13 2015-12-31 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
EP2702616B1 (en) * 2011-04-29 2022-06-29 Amberwave, Inc. Thin film intermetallic bond
US20120305059A1 (en) * 2011-06-06 2012-12-06 Alta Devices, Inc. Photon recycling in an optoelectronic device
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
KR101429118B1 (ko) * 2013-02-04 2014-08-14 한국과학기술연구원 자기조립 나노 구조물을 이용한 반사 방지막 및 그 제조방법
US9590131B2 (en) 2013-03-27 2017-03-07 Alliance For Sustainable Energy, Llc Systems and methods for advanced ultra-high-performance InP solar cells
KR20150014298A (ko) * 2013-07-29 2015-02-06 엘지전자 주식회사 화합물 반도체 태양 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400221A (en) * 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
EP0595634A1 (en) * 1992-10-30 1994-05-04 Spectrolab, Inc. Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell
US6166318A (en) * 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
US20010027805A1 (en) * 1998-05-28 2001-10-11 Frank Ho Solar cell having an integral monolithically grown bypass diode
US20020117675A1 (en) * 2001-02-09 2002-08-29 Angelo Mascarenhas Isoelectronic co-doping
US20070277874A1 (en) * 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017332A (en) * 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4107723A (en) * 1977-05-02 1978-08-15 Hughes Aircraft Company High bandgap window layer for GaAs solar cells and fabrication process therefor
US4094704A (en) * 1977-05-11 1978-06-13 Milnes Arthur G Dual electrically insulated solar cells
FR2404307A1 (fr) * 1977-09-27 1979-04-20 Centre Nat Etd Spatiales Cellules solaires a double heterojonction et dispositif de montage
US4197141A (en) * 1978-01-31 1980-04-08 Massachusetts Institute Of Technology Method for passivating imperfections in semiconductor materials
US4410758A (en) * 1979-03-29 1983-10-18 Solar Voltaic, Inc. Photovoltaic products and processes
US4295002A (en) * 1980-06-23 1981-10-13 International Business Machines Corporation Heterojunction V-groove multijunction solar cell
US4444992A (en) * 1980-11-12 1984-04-24 Massachusetts Institute Of Technology Photovoltaic-thermal collectors
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4385198A (en) * 1981-07-08 1983-05-24 The United States Of America As Represented By The Secretary Of The Air Force Gallium arsenide-germanium heteroface junction device
US4419533A (en) * 1982-03-03 1983-12-06 Energy Conversion Devices, Inc. Photovoltaic device having incident radiation directing means for total internal reflection
US4479027A (en) * 1982-09-24 1984-10-23 Todorof William J Multi-layer thin-film, flexible silicon alloy photovoltaic cell
US4497974A (en) * 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
US4633030A (en) * 1985-08-05 1986-12-30 Holobeam, Inc. Photovoltaic cells on lattice-mismatched crystal substrates
US4667059A (en) * 1985-10-22 1987-05-19 The United States Of America As Represented By The United States Department Of Energy Current and lattice matched tandem solar cell
JP2732524B2 (ja) * 1987-07-08 1998-03-30 株式会社日立製作所 光電変換デバイス
US5116427A (en) * 1987-08-20 1992-05-26 Kopin Corporation High temperature photovoltaic cell
US4889656A (en) * 1987-10-30 1989-12-26 Minnesota Mining And Manufacturing Company Perfluoro(cycloaliphatic methyleneoxyalkylene) carbonyl fluorides and derivatives thereof
US4989059A (en) * 1988-05-13 1991-01-29 Mobil Solar Energy Corporation Solar cell with trench through pn junction
JPH02135786A (ja) * 1988-11-16 1990-05-24 Mitsubishi Electric Corp 太陽電池セル
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5223043A (en) * 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5385960A (en) * 1991-12-03 1995-01-31 Rohm And Haas Company Process for controlling adsorption of polymeric latex on titanium dioxide
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5316593A (en) * 1992-11-16 1994-05-31 Midwest Research Institute Heterojunction solar cell with passivated emitter surface
EP0617303A1 (en) 1993-03-19 1994-09-28 Akzo Nobel N.V. A method of integrating a semiconductor component with a polymeric optical waveguide component, and an electro-optical device comprising an integrated structure so attainable
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US6166218A (en) * 1996-11-07 2000-12-26 Ciba Specialty Chemicals Corporation Benzotriazole UV absorbers having enhanced durability
EP0911884B1 (en) * 1997-10-27 2005-02-09 Sharp Kabushiki Kaisha Photoelectric converter and method of manufacturing the same
US6231931B1 (en) * 1998-03-02 2001-05-15 John S. Blazey Method of coating a substrate with a structural polymer overlay
US6103970A (en) * 1998-08-20 2000-08-15 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
EP0993052B1 (en) * 1998-09-28 2009-01-14 Sharp Kabushiki Kaisha Space solar cell
US6150603A (en) * 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
ATE455852T1 (de) * 1999-06-02 2010-02-15 Chugai Pharmaceutical Co Ltd Neues hämopoietin rezeptorprotein nr10
JP2001127326A (ja) * 1999-08-13 2001-05-11 Oki Electric Ind Co Ltd 半導体基板及びその製造方法、並びに、この半導体基板を用いた太陽電池及びその製造方法
US6368929B1 (en) * 2000-08-17 2002-04-09 Motorola, Inc. Method of manufacturing a semiconductor component and semiconductor component thereof
JP4902092B2 (ja) 2001-02-09 2012-03-21 ミッドウエスト リサーチ インスティチュート 等電子コドーピング
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US6864414B2 (en) * 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells
AU2002252110A1 (en) * 2002-02-27 2003-09-09 Midwest Research Institute Monolithic photovoltaic energy conversion device
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
TW538481B (en) * 2002-06-04 2003-06-21 Univ Nat Cheng Kung InGaP/AlGaAs/GaAs hetero-junction bipolar transistor with zero conduction band discontinuity
US20060162767A1 (en) * 2002-08-16 2006-07-27 Angelo Mascarenhas Multi-junction, monolithic solar cell with active silicon substrate
US8664525B2 (en) * 2003-05-07 2014-03-04 Imec Germanium solar cell and method for the production thereof
CN101459203B (zh) 2003-09-09 2011-06-15 旭化成电子材料元件株式会社 红外线传感器ic、红外线传感器及其制造方法
US7566948B2 (en) * 2004-10-20 2009-07-28 Kopin Corporation Bipolar transistor with enhanced base transport
US7375378B2 (en) * 2005-05-12 2008-05-20 General Electric Company Surface passivated photovoltaic devices
US10069026B2 (en) * 2005-12-19 2018-09-04 The Boeing Company Reduced band gap absorber for solar cells
US20080245409A1 (en) * 2006-12-27 2008-10-09 Emcore Corporation Inverted Metamorphic Solar Cell Mounted on Flexible Film
US20100006143A1 (en) * 2007-04-26 2010-01-14 Welser Roger E Solar Cell Devices
US8193609B2 (en) * 2008-05-15 2012-06-05 Triquint Semiconductor, Inc. Heterojunction bipolar transistor device with electrostatic discharge ruggedness
US8866005B2 (en) * 2008-10-17 2014-10-21 Kopin Corporation InGaP heterojunction barrier solar cells
CN102257628A (zh) 2008-10-23 2011-11-23 奥塔装置公司 光伏器件的集成
CN102257636A (zh) * 2008-10-23 2011-11-23 奥塔装置公司 具有背侧接点的光伏器件
CN102257635A (zh) * 2008-10-23 2011-11-23 奥塔装置公司 光伏器件的薄吸收层
US8686284B2 (en) * 2008-10-23 2014-04-01 Alta Devices, Inc. Photovoltaic device with increased light trapping
EP2351097A2 (en) * 2008-10-23 2011-08-03 Alta Devices, Inc. Photovoltaic device
US20100132774A1 (en) * 2008-12-11 2010-06-03 Applied Materials, Inc. Thin Film Silicon Solar Cell Device With Amorphous Window Layer
US8642883B2 (en) * 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400221A (en) * 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
EP0595634A1 (en) * 1992-10-30 1994-05-04 Spectrolab, Inc. Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell
US6166318A (en) * 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
US20010027805A1 (en) * 1998-05-28 2001-10-11 Frank Ho Solar cell having an integral monolithically grown bypass diode
US20020117675A1 (en) * 2001-02-09 2002-08-29 Angelo Mascarenhas Isoelectronic co-doping
US20070277874A1 (en) * 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874608A (zh) * 2013-08-14 2016-08-17 挪威科技大学 径向p-n结纳米线太阳能电池
WO2017067413A1 (zh) * 2015-10-19 2017-04-27 北京汉能创昱科技有限公司 太阳能电池片、其制备方法及其组成的太阳能电池组
CN106611803A (zh) * 2015-10-19 2017-05-03 北京汉能创昱科技有限公司 一种太阳能电池片、其制备方法及其组成的太阳能电池组
CN106611803B (zh) * 2015-10-19 2019-04-23 北京创昱科技有限公司 一种太阳能电池片、其制备方法及其组成的太阳能电池组

Also Published As

Publication number Publication date
WO2010048543A2 (en) 2010-04-29
US20110041904A1 (en) 2011-02-24
TW201029196A (en) 2010-08-01
US20110056546A1 (en) 2011-03-10
WO2010048543A3 (en) 2010-07-22
US20100126570A1 (en) 2010-05-27
US8674214B2 (en) 2014-03-18
US8669467B2 (en) 2014-03-11
EP2351098A2 (en) 2011-08-03
KR20110086097A (ko) 2011-07-27
US8912432B2 (en) 2014-12-16

Similar Documents

Publication Publication Date Title
CN102257635A (zh) 光伏器件的薄吸收层
US10916676B2 (en) Optoelectronic devices including heterojunction and intermediate layer
US10797187B2 (en) Photovoltaic device with back side contacts
US20110303268A1 (en) HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
JP2010118667A (ja) 2つの変性層を備えた4接合型反転変性多接合太陽電池
Choi et al. High-performance GaInAsSb thermophotovoltaic devices with an AlGaAsSb window
CN102257628A (zh) 光伏器件的集成
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
TWI590481B (zh) 具有脈衝摻雜層的太陽能電池
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
US9530920B2 (en) Photoelectric conversion device
Han et al. Structural Optimization and Temperature-Dependent Electrical Characterization of GaAs Single-Junction Solar Cells
Fan et al. Epitaxial GaAsP/Si tandem solar cells with integrated light trapping
US20090250101A1 (en) Photovoltaic structure
US9379261B2 (en) Ultra thin film nanostructured solar cell
US20190348563A1 (en) Extreme and deep ultraviolet photovoltaic cell
Andreev et al. GaSb structures with quantum dots in space charge region

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111123