CN102401886B - 磁共振成像系统 - Google Patents

磁共振成像系统 Download PDF

Info

Publication number
CN102401886B
CN102401886B CN201110238486.9A CN201110238486A CN102401886B CN 102401886 B CN102401886 B CN 102401886B CN 201110238486 A CN201110238486 A CN 201110238486A CN 102401886 B CN102401886 B CN 102401886B
Authority
CN
China
Prior art keywords
coil
ring
hole
loop circuit
birdcage coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110238486.9A
Other languages
English (en)
Other versions
CN102401886A (zh
Inventor
岩间美奈
浅羽佑介
石黑孝至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Publication of CN102401886A publication Critical patent/CN102401886A/zh
Application granted granted Critical
Publication of CN102401886B publication Critical patent/CN102401886B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明名称为“磁共振成像系统”。一种磁共振成像装置(100)包括:用于容纳对象的孔(21),围绕孔(21)布置的RF线圈(22),以及围绕RF线圈(22)布置的RF屏蔽(23)。RF线圈(22)具有布置在孔(21)下表面侧上的部分,并且该部分与布置在孔(21)上表面侧上的RF线圈(22)的部分相比,与RF屏蔽(23)间隔更大的距离。

Description

磁共振成像系统
日本专利申请第2010-169901号的英文译文。
技术领域
本发明涉及一种具有RF线圈的磁共振成像系统。
背景技术
一种用于发送发射脉冲的RF线圈安装在磁共振成像系统之内。RF线圈的直径与其中承载对象的孔的尺寸有关。因此,RF线圈直径的值非常重要。可通过做大RF线圈的直径来使孔变大,从而有可能减少对象被承载到孔中时的压迫感。然而,如果RF线圈直径做得大了,就需要增加供给到RF线圈的电能,从而引发了电能消耗增加的问题。此外,因为RF屏蔽环绕RF线圈布置,因此如果RF线圈直径做得大了,介于RF线圈和RF屏蔽之间的间隔就变得较为狭窄。RF屏蔽起到了抵消RF线圈生成的磁场的作用,并且介于RF线圈和RF屏蔽之间的间隔越狭窄,RF屏蔽的作用就越明显。因此,这带来了介于RF线圈和RF屏蔽之间的间隔越狭窄,供给到RF线圈的电能就越大的问题,导致了电能消耗的进一步增加。
已经提出了使用椭圆RF线圈作为解决上面问题的方法(参见专利文件1)。
【现有技术文献】
【专利文件】
日本待决专利公开第平成7年(1995)-222729号。
发明内容
【本发明要解决的问题】
然而,由于专利文件1中描述的RF线圈是椭圆形的,因此在椭圆短轴方向中的线圈直径不能做大。因此,存在孔不能在椭圆短轴方向中做大,并且因此承载到孔中的对象容易感到压迫感的问题。
【用于解决问题的装置】
实现用于解决该问题的装置的本发明置于磁共振成像系统中,本发明包括:用于容纳对象的孔;围绕孔布置的RF线圈;以及围绕RF线圈布置的RF屏蔽,RF线圈构造成使得:与布置在孔上表面侧上的RF线圈的部分相比,布置在孔下表面侧上的RF线圈的部分与RF屏蔽间隔更大的距离。
【本发明的效果】
通过如上构造RF线圈,可能在保证需要的孔尺寸的同时,降低RF线圈的电能消耗。
附图说明
图1是示出根据本发明一实施例的、磁共振成像系统的透视图。
图2是解释鸟笼线圈22和RF屏蔽23之间位置关系的简图。
图3是示出RF屏蔽23已相对于鸟笼线圈22向后移位的状态的简图。
图4是示出鸟笼线圈22的简图。
图5是解释鸟笼线圈22形状和RF屏蔽23形状的简图。
图6是解释环D1的上半部Da形状和环D1的下半部Db形状的简图。
图7是用于解释由实施例中使用的鸟笼线圈22获得的效果的简图。
图8是示出用于仿真鸟笼线圈22阻抗分布的情况的曲线图。
图9是示出仿真结果的简图。
图10是示出具有另一形状的环D1的示例的简图。
具体实施方式
本发明的实施例将在下面进行描述,但本发明并不仅限于下列实施例。
图1是示出根据本发明一实施例的、磁共振成像系统的透视图。
指示为100的磁共振成像系统(下文中称为“MRI系统”,MRI:磁共振成像)具有磁场发生器2和工作台3。
磁场发生器2配备有用于容纳对象的孔21。在磁场发生器2之内,安装了用于发射RF脉冲和接收来自对象的磁共振信号的鸟笼线圈22,以及用于降低辐射到MRI系统100之外的RF功率的RF屏蔽23。
图2是解释鸟笼线圈22和RF屏蔽23之间位置关系的简图,而图3是示出RF屏蔽23已相对于鸟笼线圈22向后移位的状态的简图。
磁场发生器2具有用于支撑鸟笼线圈22的线圈支架220。线圈支架220是圆柱形的,并且在线圈支架220内装配了用于在孔21之内支撑托架31(参见图1)的托架支撑底座221。由线圈支架220环绕的空间与托架支撑底座221形成了用于容纳对象的孔21。鸟笼线圈22提供在线圈支架220的外表面220a上。RF屏蔽23围绕鸟笼线圈22布置。
图4是示出鸟笼线圈22的简图。
图4(a)是鸟笼线圈22的透视图,而图4(b)是示出当从前侧观察鸟笼线圈22时,支腿L1至L16假想的位置的简图。
鸟笼线圈22具有两个环D1、D2和用于使两个环D1和D2彼此连接的数量为n的支腿Li(i=1到n)。在该实施例中,n设定为16。因此,鸟笼线圈22具有16个支腿L1至L16。
鸟笼线圈22具有回路电路Ci,j。每一回路电路Ci,J使用相邻的支腿Li、Lj和环D1、D2组成。例如,回路电路C1,2使用两个相邻支腿L1、L2和两个环D1、D2组成,以及C16,1使用两个支腿L16、L1和两个环D1、D2组成。在附图4(a)中,使用点划线示意性示出了回路电路C1,2的路径(route)和回路电路C16,1的路径。
接着,下面将给出有关鸟笼线圈22形状和RF屏蔽23形状的描述。
图5是解释鸟笼线圈22形状和RF屏蔽23形状的简图。
图5(a)是在z方向中观察的图2的示图,而图5(b)是在图5(a)中的线A-A上取得的截面图。为便于说明,线圈支架220和托架支撑底座221并没有在图5(b)中示出。
如图5(a)中所示,当在z方向中观察时,RF屏蔽23具有圆形形状。更特别地,RF屏蔽具有以参考轴线A为中心、r1为半径的圆形形状。
另一方面,鸟笼线圈22的环D1被构造成使得环D1的上半部Da(位于孔21的上表面21a侧上的部分)和环D1的下半部Db(位于孔21的下表面21b侧上的部分)提供非对称形状。
图6是解释环D1的上半部Da形状和环D1的下半部Db形状的简图。
图6(a)是解释环D1的上半部Da形状的简图,而图6(b)是解释环D1的下半部Db形状的简图。在图6(a)中,环D1的上半部Da以实线指示,而环D1的下半部Db以虚线指示。另一方面,在图6(b)中,环D1的上半部Da以虚线指示,而环D1的下半部Db以实线指示。
如图6(a)中所示,环D1的上半部Da具有以参考轴线A为中心、ra为半径的圆的上半部分的形状(半圆形形状)。另一方面,如图6(b)中所示,环D1的下半部Db具有长轴长度为2ra(ra的两倍)、短轴长度为rb(<ra)的椭圆的下半部分的形状(半椭圆形形状)。因此,与上半部Da相比,环D1的下半部Db与RF屏蔽23间隔更大的距离。在该实施例中,环D1的上半部Da与RF屏蔽23间隔□ra,但环D1的下半部Db与RF屏蔽23间隔最大为Δrb(=Δra+Δx)。因此,环D1的下半部Db具有与RF屏蔽23的、最大值为Δx的进一步的间隔。
尽管在图6中示出环D1,但是另一个环D2也具有与环D1相同的形状。
因此,如图5(b)中所示,相对于鸟笼线圈22的上半部(位于孔21的上表面21a侧上的部分)22a,鸟笼线圈22的下半部(位于孔21的下表面21b侧上的部分)22b具有与RF屏蔽23的、最大值为Δx的进一步的间隔。通过这样构造鸟笼线圈22,在使得对象容纳孔尽可能宽的同时,可获得鸟笼线圈22的电能消耗降低的效果。获得这一效果的原因将在下面参照图7进行说明。
图7是用于解释由该实施例中使用的鸟笼线圈22获得的效果的简图。
图7(a)是示出RF屏蔽23和具有圆形环DC的鸟笼线圈22的简图,而图7(b)是示出RF屏蔽23和用于本实施例的鸟笼线圈22的简图。
在图7(a)中示出的鸟笼线圈22’的情况下,线圈直径ra越大,孔21就可以越宽,因此对象在孔21之内具有的压迫感可减少。然而,存在线圈直径ra越大,线圈中心生成的磁场越小的问题。而且,由于线圈直径ra被做得较大,因此鸟笼线圈22’和RF屏蔽23之间的间隔Δra就变得更狭窄。RF屏蔽23起到了抵消由鸟笼线圈生成的磁场的作用,而间隔Δra越狭窄,作用就越显著。因此,为了阻止线圈中心处生成的磁场变小,就必须向鸟笼线圈22’供给更大的电力。结果,带来了电能损耗增加的问题。
另一方面,在图7(b)中,鸟笼线圈22的下半部22b被构造成使得:相对于鸟笼线圈22的上半部22a,鸟笼线圈22的下半部22b与RF屏蔽23具有最大值为Δx的、进一步的间隔。因此,通过Δx的量,由RF屏蔽23抵消磁场的作用可减少,并因此可能减少鸟笼线圈22的电能损耗。
由于鸟笼线圈22的下半部22b和鸟笼线圈22的上半部22a在形状上是非对称的,有时候存在磁场均匀性紊乱的情况。一旦磁场均匀性紊乱,不利影响将施加到图像质量上。因此,期望磁场尽可能均匀。可通过调整鸟笼线圈22的阻抗分布,以使得鸟笼线圈22的上半部22a的阻抗变高、同时鸟笼线圈22的下半部22b的阻抗变低,来使磁场尽可能均匀。例如,关于鸟笼线圈22的回路电路Ci,j(参见图4(b)),可通过使回路电路C1,2至C8,9在阻抗上高、而回路电路C9,10至C16,1在阻抗上低,来获得上面的阻抗分布。通过这样调整鸟笼线圈22的阻抗分布,可能增强磁场的均匀性。接着,实施仿真来验证:通过调整阻抗分布可增强磁场的均匀性。下文描述提供了关于该仿真的情况和结果。
图8是示出用于仿真鸟笼线圈22阻抗分布的情况的曲线图。
在图8的曲线图中,鸟笼线圈22的回路电路Ci,j沿横坐标轴绘制,而回路电路Ci,j的阻抗沿纵坐标轴绘制。如图8的曲线图中示出的,回路电路C1,2至C8,9在阻抗上被设定为高,而回路电路C9,10至C16,1在阻抗上被设定为低。具体地,在本次实施的仿真中,阻抗被设置成使得:位于最高位置处的回路电路C4,5和C5,6在阻抗上是最高的,而位于最低位置处的回路电路C12,13和C13,14在阻抗上是最低的。
在图7(b)中,鸟笼线圈22和RF屏蔽23之间的间隔Δra和Δrb设置成满足Δra∶Δrb=1∶2的关系。
图9是示出仿真结果的简图。
在图9的曲线图中,在AP方向中的孔21的位置沿横坐标轴绘制,鸟笼线圈生成的磁场B1的强度沿纵坐标轴绘制。曲线图中的实曲线(solidcurve)A1指示了图7(a)中示出的传统鸟笼线圈22’生成的磁场B1的强度,而曲线图中的点划线曲线A2指示了根据具有图8中示出的阻抗分布的本实施例的鸟笼线圈22生成的磁场B1的强度。曲线A1和A2之间的对比示出获得了几乎相同的磁场强度。因此,可以看出,通过调整本实施例中使用的、像图8中的鸟笼线圈22的阻抗分布,可使磁场强度分布足够均匀。例如,可通过调整鸟笼线圈22的电容和电感,来调整鸟笼线圈22的阻抗分布。
在根据本实施例的鸟笼线圈22中,环D1的上半部Da具有半圆形形状(参见图6(a)),而环D1的下半部Db具有半椭圆形形状(参见图6(b))。然而,环D1的形状并不限于图6中示出的形状。它可以是另一个形状。下面将参考具有另一形状的环D1的示例。
图10是示出了具有另一形状的环D1的示例的简图。
环D1的上半部Da具有像图6中示出的环D1的半圆形形状。然而,与图6中示出的环D1不同的是,环D1的下半部Db’具有直线延伸部P。因此,可对鸟笼线圈22的环形状进行多种改变。
尽管在上面的实施例中示出了使用鸟笼线圈22作为RF线圈的示例,但本发明中使用的RF线圈可以是不同于鸟笼线圈的RF线圈。
参考标记说明
2磁场发生器
3工作台
21孔
22鸟笼线圈
23RF屏蔽
100MRI系统
220线圈支架
220a外表面
221托架支撑底座

Claims (8)

1.一种磁共振成像装置(100),包括:
孔(21),其用于容纳对象;
RF线圈(22),其围绕所述孔(21)布置;以及
RF屏蔽(23),其围绕所述RF线圈(22)布置,
其中,所述RF线圈(22)具有布置在所述孔(21)下表面侧上的部分,并且所述部分与布置在所述孔(21)上表面侧上的所述RF线圈(22)的部分相比,与所述RF屏蔽(23)间隔更大的距离;
其中,布置在所述孔(21)下表面侧上的所述RF线圈(22)的所述部分在阻抗上小于布置在所述孔(21)上表面侧上的所述RF线圈(22)的所述部分。
2.根据权利要求1所述的磁共振成像装置(100),
其中,所述RF线圈(22)包括:
都围绕所述孔(21)布置的第一环(D1)和第二环(D2);以及
使所述第一环和所述第二环彼此连接的多个支腿(L)。
3.根据权利要求2所述的磁共振成像装置(100),其中:
所述第一环(D1)的上半部和所述第二环(D2)的上半部在形状上是半圆形的;并且,
所述第一环(D1)的下半部和所述第二环(D2)的下半部在形状上是半椭圆形的。
4.根据权利要求2或权利要求3所述的磁共振成像装置(100),其中:
所述RF线圈(22)包括多个回路电路,所述多个回路电路由所述第一环和所述第二环(D1、D2)及多个支腿(L)组成;以及
布置在所述孔(21)下表面侧上的回路电路在阻抗上小于布置在所述孔(21)上表面侧上的回路电路。
5.根据权利要求4所述的磁共振成像装置(100),
其中,在所述多个回路电路中,位于最高位置处的回路电路具有最大的阻抗,并且位于最低位置处的回路电路具有最小的阻抗。
6.根据权利要求1至3中任何一项所述的磁共振成像装置(100),
其中,所述RF线圈(22)是鸟笼线圈。
7.根据权利要求4所述的磁共振成像装置(100),其中,所述RF线圈(22)是鸟笼线圈。
8.根据权利要求5所述的磁共振成像装置(100),其中,所述RF线圈(22)是鸟笼线圈。
CN201110238486.9A 2010-07-29 2011-07-29 磁共振成像系统 Expired - Fee Related CN102401886B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010169901A JP5248557B2 (ja) 2010-07-29 2010-07-29 磁気共鳴イメージング装置
JP2010-169901 2010-07-29

Publications (2)

Publication Number Publication Date
CN102401886A CN102401886A (zh) 2012-04-04
CN102401886B true CN102401886B (zh) 2016-03-30

Family

ID=45526080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110238486.9A Expired - Fee Related CN102401886B (zh) 2010-07-29 2011-07-29 磁共振成像系统

Country Status (3)

Country Link
US (1) US8749235B2 (zh)
JP (1) JP5248557B2 (zh)
CN (1) CN102401886B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481116B (zh) * 2009-09-30 2015-02-18 株式会社日立医疗器械 倾斜磁场线圈以及磁共振成像装置
KR101505331B1 (ko) * 2010-07-01 2015-03-23 바이엘 메디컬 케어 인크. 다-채널 직장내 코일 및 연관된 인터페이스 장치
JP5555081B2 (ja) * 2010-07-20 2014-07-23 株式会社日立メディコ 磁気共鳴イメージング装置
CN103777160B (zh) * 2012-10-25 2017-03-01 西门子股份有限公司 磁共振成像设备的体线圈及使用其的磁共振成像设备
US10451691B2 (en) 2013-03-28 2019-10-22 Koninklijke Philips N.V. Radio frequency coil array having an internal opening configured to accommodate variable sizes of a subject's anatomy
EP3207394B1 (en) * 2014-10-16 2021-09-15 Koninklijke Philips N.V. Mri birdcage coil with distributed excitation
DE102016108601A1 (de) * 2016-05-10 2017-11-16 Axel Muntermann Vorrichtung zur Kernspinresonanztherapie
JP7250476B2 (ja) * 2017-11-08 2023-04-03 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及びrfコイル
US11061090B2 (en) 2017-11-08 2021-07-13 Canon Medical Systems Corporation Magnetic resonance imaging apparatus and RF coil
EP3527999B1 (de) * 2018-02-16 2024-03-27 Siemens Healthineers AG Sendeantenne für eine magnetresonanzeinrichtung
US10884079B2 (en) * 2018-06-11 2021-01-05 Children's Hospital Medical Center Asymmetric birdcage coil for a magnetic resonance imaging (MRI)
US11275133B2 (en) 2018-06-11 2022-03-15 Children's Hospital Medical Center Asymmetric birdcage coil
US10684336B2 (en) * 2018-10-24 2020-06-16 General Electric Company Radiofrequency coil and shield in magnetic resonance imaging method and apparatus
CN110687487A (zh) * 2019-09-30 2020-01-14 东软医疗系统股份有限公司 大体线圈及其制造方法、扫描设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198882A (zh) * 2005-06-16 2008-06-11 皇家飞利浦电子股份有限公司 具有可选择视场的rf体线圈
CN101405612A (zh) * 2006-03-22 2009-04-08 皇家飞利浦电子股份有限公司 用于平行高场MRI的屏蔽Multix线圈阵列

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594566A (en) * 1984-08-30 1986-06-10 Advanced Nmr Systems, Inc. High frequency rf coil for NMR device
DE3522401A1 (de) * 1985-06-22 1987-01-02 Bruker Medizintech Probenkopf fuer die nmr-tomographie
DE3538952A1 (de) * 1985-11-02 1987-05-14 Philips Patentverwaltung Hochfrequenz-spulenanordnung fuer kernspinresonanzgeraet
US4751464A (en) * 1987-05-04 1988-06-14 Advanced Nmr Systems, Inc. Cavity resonator with improved magnetic field uniformity for high frequency operation and reduced dielectric heating in NMR imaging devices
JP3100642B2 (ja) * 1991-01-16 2000-10-16 株式会社東芝 磁気共鳴イメージング装置
US5557247A (en) * 1993-08-06 1996-09-17 Uab Research Foundation Radio frequency volume coils for imaging and spectroscopy
JP3372099B2 (ja) 1994-02-14 2003-01-27 株式会社日立メディコ Rfプローブ
US5543711A (en) * 1994-11-22 1996-08-06 Picker International, Inc. Multiple quadrature volume coils for magnetic resonance imaging
US5760583A (en) 1996-03-13 1998-06-02 Ge Yokogawa Medical Systems, Limited RF coil for MRI and MRI apparatus
DE10157039A1 (de) * 2001-11-21 2003-06-05 Philips Intellectual Property HF-Spulenanordnung für Magnetresonanz-Bildgerät
DE19702256A1 (de) * 1997-01-23 1998-07-30 Philips Patentverwaltung MR-Gerät mit einer MR-Spulenanordnung
US6011393A (en) * 1997-06-26 2000-01-04 Toshiba America Mri, Inc. Self-supporting RF coil for MRI
US6029082A (en) * 1997-11-24 2000-02-22 Picker International, Inc. Less-claustrophobic, quadrature, radio-frequency head coil for nuclear magnetic resonance
DE19953748A1 (de) * 1999-11-09 2001-05-10 Philips Corp Intellectual Pty MR-Gerät
US6348794B1 (en) 2000-01-18 2002-02-19 Ge Yokogawa Medical Systems, Limited RF coil for magnetic resonance imaging having three separate non-overlapping coils electrically isolated from each other
JP2001198100A (ja) 2000-01-20 2001-07-24 Ge Medical Systems Global Technology Co Llc Mrデータ収集方法、mr画像表示方法およびmri装置
JP2004504906A (ja) * 2000-07-31 2004-02-19 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 高周波磁界ユニット
US6591128B1 (en) * 2000-11-09 2003-07-08 Koninklijke Philips Electronics, N.V. MRI RF coil systems having detachable, relocatable, and or interchangeable sections and MRI imaging systems and methods employing the same
US6487436B1 (en) * 2001-04-17 2002-11-26 Ge Medical Systems Global Technology Company, Llc Switchable field of view apparatus and method for magnetic resonance imaging
WO2003008988A1 (en) * 2001-07-20 2003-01-30 Mri Devices Corporation Coil configuration for magnetic resonance imaging
US6608480B1 (en) * 2002-09-30 2003-08-19 Ge Medical Systems Global Technology Company, Llc RF coil for homogeneous quadrature transmit and multiple channel receive
CN100554993C (zh) * 2003-11-18 2009-10-28 皇家飞利浦电子股份有限公司 用于超高场(shf)mri的rf线圈系统
JP2007511315A (ja) * 2003-11-18 2007-05-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mri用のハイブリッドtem/バードケージコイル
JP4427475B2 (ja) 2005-04-01 2010-03-10 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置及び補助コイル
US7135864B1 (en) * 2005-07-20 2006-11-14 General Electric Company System and method of elliptically driving an MRI Coil
CN101292175A (zh) * 2005-10-18 2008-10-22 特西奥普技术有限公司 用于高增益磁共振成像的方法和设备
DE102006018158A1 (de) * 2006-04-19 2007-10-25 Siemens Ag Zylindrische Magnetresonanzantenne
WO2008104895A1 (en) * 2007-02-26 2008-09-04 Koninklijke Philips Electronics, N.V. Doubly resonant high field radio frequency surface coils for magnetic resonance
CN101498771B (zh) * 2008-01-29 2011-12-07 西门子(中国)有限公司 磁共振成像系统的分离式线圈
US8035384B2 (en) * 2008-10-23 2011-10-11 General Electric Company Hybrid birdcage-TEM radio frequency (RF) coil for multinuclear MRI/MRS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198882A (zh) * 2005-06-16 2008-06-11 皇家飞利浦电子股份有限公司 具有可选择视场的rf体线圈
CN101405612A (zh) * 2006-03-22 2009-04-08 皇家飞利浦电子股份有限公司 用于平行高场MRI的屏蔽Multix线圈阵列

Also Published As

Publication number Publication date
CN102401886A (zh) 2012-04-04
US20120025833A1 (en) 2012-02-02
US20120212225A9 (en) 2012-08-23
US8749235B2 (en) 2014-06-10
JP2012029734A (ja) 2012-02-16
JP5248557B2 (ja) 2013-07-31

Similar Documents

Publication Publication Date Title
CN102401886B (zh) 磁共振成像系统
CN108680882B (zh) 一种双核射频线圈装置和双核射频阵列线圈装置
EP3371615B1 (en) Unified coil (unic) systems and method for next generation magnetic resonance coils
US8362775B2 (en) Magnetic resonance whole body antenna system, elliptically polarized with major ellipse axis tilted/non-horizontal at least when unoccupied by an examination subject
US4712067A (en) R.F. coil system for generating and/or receiving alternating magnetic fields
KR102436951B1 (ko) 단면 mri 시스템에서 체적 취득을 위한 시스템들 및 방법들
US20090066332A1 (en) Magnetic resonance imaging apparatus and gradient magnetic field coil
JP5285596B2 (ja) 平行高磁界mriのための遮蔽されたmultixコイルアレイ
US20030071622A1 (en) Coil Structure with tapered conductive members for improved homogeneity in MRI
US5497089A (en) Wide aperture gradient set
JP2012139547A (ja) 高磁場mriコイル用の電磁場シールディング
JP6402112B2 (ja) 磁気共鳴イメージングのためのzセグメント化されたラジオ周波数アンテナ装置
JP2004527294A (ja) 連続可変視界を伴うmriの勾配コイルアセンブリ、画像形成装置、画像形成方法及び画像形成システムのための勾配コイルシステムをデザインする方法
EP1921461A1 (en) Dual-tuned MRI birdcage coil
KR20140059575A (ko) 위상 배열형 고주파 코일 및 이를 채용한 자기공명영상 장치
JPWO2008075614A1 (ja) 核磁気共鳴計測装置およびコイルユニット
CN110312942A (zh) 用于不同mri模式的rf线圈设备和rf屏蔽设备
CN107621615B (zh) 嵌入式梯度及射频集成线圈及带有该集成线圈的磁共振设备
KR101630634B1 (ko) 자기 공명 장치의 로컬 코일을 위한 기울임에 무관한 심 코일
Woo et al. Comparison of 16-channel asymmetric sleeve antenna and dipole antenna transceiver arrays at 10.5 Tesla MRI
JP4266580B2 (ja) 磁気共鳴イメージング用rfコイル
US10241163B2 (en) TEM resonator system especially for use in an MRI system
JP2008532609A (ja) 超短mriボディコイル
KR101890261B1 (ko) Z-축 방향 어레이 구조의 자기공명 영상용 새장형 코일 조립체
JPH11221201A (ja) 磁気共鳴像形成装置及び方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20200729