Suche Bilder Maps Play YouTube News Gmail Drive Mehr »
Anmelden
Nutzer von Screenreadern: Klicke auf diesen Link, um die Bedienungshilfen zu aktivieren. Dieser Modus bietet die gleichen Grundfunktionen, funktioniert aber besser mit deinem Reader.

Patentsuche

  1. Erweiterte Patentsuche
VeröffentlichungsnummerCN102830381 A
PublikationstypAnmeldung
AnmeldenummerCN 201210291150
Veröffentlichungsdatum19. Dez. 2012
Eingetragen15. Aug. 2012
Prioritätsdatum15. Aug. 2012
Auch veröffentlicht unterCN102830381B
Veröffentlichungsnummer201210291150.3, CN 102830381 A, CN 102830381A, CN 201210291150, CN-A-102830381, CN102830381 A, CN102830381A, CN201210291150, CN201210291150.3
Erfinder周欣, 刘国宾, 孙献平, 刘买利, 叶朝辉
Antragsteller中国科学院武汉物理与数学研究所
Zitat exportierenBiBTeX, EndNote, RefMan
Externe Links:  SIPO, Espacenet
Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer
CN 102830381 A
Zusammenfassung
The invention discloses a nuclear magnetic resonance (NMR) device based on a laser atomic magnetometer, and the NMR device comprises a cesium atom vapor bubble, a magnetic shielding bushing which is sleeved on the cesium atom vapor bubble, three groups of Helmholtz coils which are arranged inside the magnetic shielding bushing, a polarization device which is used for polarizing cesium atoms inside the cesium atom vapor bubble, a laser transmitting device which is used for transmitting detection laser to the cesium atom vapor bubble, a detection device which is used for detecting an NMR signal of the detection laser penetrating the cesium atom vapor bubble and a pneumatic sample feeding device which is used for pre-polarizing a sample to be detected and can place the pre-polarized sample on the cesium atom vapor bubble. The invention also discloses a measurement method of an NMR based on the laser atomic magnetometer. The device and the method are high in detection sensitivity, free from needing low-temperature refrigeration, low in running cost and lower in working temperature.
Ansprüche(8)  übersetzt aus folgender Sprache: Chinesisch
1. ー种基于激光原子磁力计的NMR装置,包括铯原子蒸气泡(7),其特征在于:包括套设在铯原子蒸气泡(7)上的磁屏蔽套筒(5)、设置在磁屏蔽套筒(5)内的三组亥姆霍兹线圈(6)、用于极化铯原子蒸气泡(7)内铯原子的激光极化装置、用于向铯原子蒸气泡(7)发射探测激光的激光发射装置、用于检测穿过铯原子蒸气泡(7)的探测激光的NMR信号检测装置和用于对被测样品进行预极化并可将预极化后的样品放置到铯原子蒸气泡(7)上方的气动进样装置。 1. ー kind of laser-based atomic magnetometer NMR apparatus, including cesium atomic vapor bubble (7) comprising: sheathed cesium atomic vapor bubble (7) on the magnetic shielding sleeve (5) provided in the magnetic three sets of Helmholtz coils shielded sleeve (5) (6) for polarization cesium vapor bubble (7) laser polarization apparatus cesium atoms, for transmitting to the cesium atomic vapor bubble (7) Laser probe laser emitting means for detecting through the cesium atomic vapor bubble (7) of the probe laser NMR signal detection means and for the sample pre-polarization and polarization after the pre-sample is placed into cesium atomic vapor bubble (7) above pneumatic sampling device.
2.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的激光极化装置包括抽运激光器(2)和用于将抽运激光器(2)发出的激光转换为圆偏振光后传送到铯原子蒸气泡(7)的四分之一波片(4)。 The NMR apparatus ー kind of laser-based atomic magnetometer according to claim I, wherein: the laser polarization means comprises a pump laser (2) and for the pump laser (2) issued Laser converted to circularly polarized light transmitted to the cesium vapor bubble (7) of the quarter-wave plate (4).
3.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的激光发射装置包括探测激光器(I)和用于将探测激光器(I)发出的激光转换成线偏振探測激光后传送到铯原子蒸气泡(7)的偏振棱镜(3)。 According to claim I wherein the NMR apparatus based on a laser seed ー atomic magnetometers, characterized in that: said laser emitting means includes a laser probe (I) and means for detecting laser light laser (I) is converted into issued After the detection of linearly polarized laser light is transmitted to the cesium atomic vapor bubble (7) of the polarizing prism (3).
4.根据权利要求2所述的ー种基于激光原子磁力计的匪R装置,其特征在于:所述的NMR信号检测装置包括用于对穿过铯原子蒸气泡(7)的线偏振探測激光进行分束的偏振分束棱镜(8)、用于检测分束后的线偏振探測激光并将检测信号发送到乘法器(10)的光电探测器(9)、用于调整抽运激光器(2)的输出频率并输出方波同步信号到乘法器(10)的信号发生器(11)、用于对检测信号及方波同步信号进行乘法运算的乘法器(10)和用于对乘法器(10)的输出进行滤波并传送到上位机(13)的低通滤波器(12)。ー seed according to claim 2, wherein the laser-based atomic magnetometer bandit R apparatus comprising: NMR signal detection means comprises for cesium vapor bubble through (7) of the linearly polarized laser probe dividing polarizing beam splitting prism (8) for detecting the line beam after the laser polarization detection and a detection signal is sent to the multiplier (10) of the photodetector (9), for adjusting the pump laser (2 ) the output frequency and output square-wave synchronous signal to the multiplier (10) signal generator (11) for the detection signal and the square wave synchronizing signal multiplication of a multiplier (10) and a pair of multipliers ( 10) The output is filtered and transmitted to the host computer (13) of the low-pass filter (12).
5.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的气动进样装置包括气缸(18)、设置在气缸(18)内且一端设置有与气缸(18)内壁贴合的活塞的样品管(17)、套设在气缸(18)—端的环形预极化磁体(19)和用于控制样品管(17)在气缸(18)内往复运动的驱动装置,所述的磁屏蔽套筒(5)上开设有通孔,气缸(18)—端穿过通孔设置在铯原子蒸气泡(7)上方。 According to claim I wherein the NMR apparatus based on a laser seed ー atomic magnetometers, characterized in that: the pneumatic injection means comprises a cylinder (18), provided in the cylinder (18) at one end and is provided with a cylinder (18) the inner wall of the sample tube bonded piston (17), set provided in the cylinder (18) - prepolarized end ring magnet (19) and a control sample tube (17) is reciprocated in a cylinder (18) within the driving means, said magnetic shielding sleeve (5) provided with a through hole, a cylinder (18) - end through the top (7) through holes provided in the cesium atomic vapor bubble.
6.根据权利要求5所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的气缸(18)—端套设有导引线圈(20),另一端套设有小角度脉冲线圈(21),所述的驱动装置包括提供气压源的空气压缩机(14)和用于切换空气压缩机(14)输入到气缸(18)的气流方向的电磁阀(15)。 6. ー kind of claim 5, wherein the laser-based atomic magnetometer NMR apparatus, characterized in that: the cylinder (18) - with a guide sleeve end coil (20) and the other end sleeves with a small angle pulse coil (21), said drive means comprising an air compressor to provide air pressure source (14) and for switching the air compressor (14) is input to the solenoid valve cylinder (18) in the flow direction (15).
7.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的三组亥姆霍兹线圈(6)包括三对环形的亥姆霍兹线圈,每对亥姆霍兹线圈的中心线重合,三对亥姆霍兹线圈的中心线相互垂直,其中ー对亥姆霍兹线圈的中心线与探测激光的光束方向平行。 7. The NMR apparatus ー kind of laser-based atomic magnetometer according to claim I, wherein: the three Helmholtz coils (6) includes three pairs of annular Helmholtz coils, each pair coincides with the center line of Helmholtz coils, the center line three pairs of Helmholtz coils are vertical, which ー parallel to the center line of probe laser beam direction Helmholtz coil.
8. ー种基于激光原子磁力计的NMR的測量方法,其特征在于,包括以下步骤: 步骤I、控制铯原子蒸气泡(7)温度升至20-60°C,控制抽运激光器(2)的输出激光频率与碱金属铯原子Dl线跃迁F=4 -> F'=3共振,并控制探测激光器(I)的输出激光频率偏离该共振频率lOOMHflOOGHz,对抽运激光器(2)的电流进行调制,实现同步光抽运; 步骤2、调整偏振棱镜(3)和四分之一波片(4)的角度,获得线偏振探测激光和圆偏振光; 步骤3、调整偏振分束棱镜(8)的角度,直至光电探测器(9)输出的信号为零; 步骤4、通过调整三组亥姆霍兹线圈(6)的电流,使得磁屏蔽套筒(5)内的残余磁场为最小,得到三组亥姆霍兹线圈(6)的调整电流; 步骤5、扫描三组亥姆霍兹线圈中的中心线与探测激光平行的一对亥姆霍兹线圈中的电流,从设定的负电流值到ー个绝对值与设定的负电流值相等的正电流值,叠加在步骤4中所述的调整电流上,得到低通滤波器(12)输出的磁场鉴别信号; 步骤6、重复步骤步骤5直至単位磁场变化时,低通滤波器(12)输出电压响应的变化值最大,设定磁场线性范围中心的B值为偏置磁场; 步骤7、取适量液体样品倒入样品管(17),放入气缸(18)中; 步骤8、上位机(13)通过继电器(16)控制电磁阀(15),进而控制空气压缩机(14)吹入到气缸(18)中的方向,使得样品管(17)浮起到环形预极化磁体(19)的内部中心; 步骤9、保持样品管(17)悬浮设定时间,使其充分预极化,上位机(13)通过继电器(16)控制电磁阀(15 ),进而改变空气压缩机(14 )吹入到气缸(18 )中的方向,使样品管(17 )向下穿过导引线圈(20),到达铯原子蒸气泡(7)的上方; 步骤10、控制小角度脉冲线圈(21)中的电流,产生直流或交流脉冲,改变样品磁矩方向; 步骤11、样品磁矩与偏置磁场的方向存在5〜15度的小夹角,样品磁矩在物理上受到ー个カ矩的作用而绕偏置磁场作进动,对磁场施加扰动,获得时间域的NMR信号; 步骤12、通过时间域的NMR信号获得频率域的NMR谱信号。 8. A method of NMR measurement ー kind of laser-based atomic magnetometers, characterized in that it comprises the following steps: Step I, the control cesium vapor bubble (7) temperature was raised to 20-60 ° C, the control pump laser (2) The output frequency of the laser with the alkali metal cesium atomic transition line Dl F = 4 -> F '= 3 resonance, and controls the laser probe (I) of the output laser frequency deviates from the resonance frequency lOOMHflOOGHz, of pump laser (2) of the current modulation, optical pumping synchronization; Step 2, to adjust the polarizing prism (3) and a quarter-wave plate (4) of the angle to obtain a linearly polarized probe laser and circularly polarized light; step 3, to adjust the polarization splitting prism (8 ) angles until the photodetector (9) output signal is zero; Step 4, by adjusting the three sets of Helmholtz coils (6) of the current, so that the residual magnetic field shielding sleeve (5) is minimum, get three sets of Helmholtz coils (6) adjust the current; Step 5, three sets of Helmholtz coils in the scanning center line of a pair of Helmholtz coils laser probe parallel to the current, from the set negative current value to (12) outputs a field discrimination signal ー negative absolute value of a positive current value is set equal to the current value, the current superimposed on the adjusting step described in 4, to obtain a low-pass filter; step 6, Repeat Step 5 until the position when the magnetic field changes radiolabeling, a low-pass filter (12) in response to the change of the maximum value of the output voltage, setting the center of the linear range of the magnetic field B is a bias magnetic field; Step 7, take appropriate liquid sample tube into the sample (17), into the cylinder (18); Step 8, the host computer (13) (16) controls the solenoid valve (15) through the relay, and then control the air compressor (14) is blown into the cylinder (18) in the direction so that the sample tube (17) to float to the ring magnet pre-polarization (19) inside the center; Step 9, to maintain the sample tube (17) was to set the time, to make it fully pre-polarized, the host computer (13) via a relay (16) control valve (15), thereby changing the air compressor (14) is blown to the cylinder (18) in the direction of the sample tube (17) down through a guide coil (20), reaches the cesium vapor above the bulb (7); Step 10, small-angle control pulse coil (21) current to produce a DC or AC pulse, changing the direction of the magnetic moment of the sample; step 11, the direction of the magnetic moment of the sample in the presence of 5 to 15 bias magnetic field Small angle degrees, the sample magnetic moment being physically grades ー a moment about the role of the bias magnetic field as the precession of the magnetic field perturbation is applied to obtain NMR signals in the time domain; step 12, by NMR signal in the time domain to obtain NMR spectrum of the signal in the frequency domain.
Beschreibung  übersetzt aus folgender Sprache: Chinesisch

—种基于激光原子磁力计的NMR装置及测量方法技术领域 - NMR apparatus and methods of measurement technology in the field of laser-based atomic species magnetometer

[0001] 本发明属于核磁共振(Nuclear magnetic resonance, NMR)波谱领域,更具体涉及ー种基于激光原子磁力计的NMR装置,还涉及ー种基于激光原子磁力计的NMR的測量方法,适用于在IOOuT〜InT (1uT=1(T6T,InT=I(T9T)磁场下检测NMR信号。u [0001] The present invention belongs to the NMR (Nuclear magnetic resonance, NMR) spectroscopy, and more particularly relates to NMR apparatus based on a laser seed ー atom magnetometer, it relates ー NMR measurement method based on the kind of laser atomic magnetometer for in IOOuT~InT (1uT = 1 (T6T, InT = I (T9T) detects the magnetic field NMR signal .u

背景技术 Background

[0002] NMR是ー种用来获得有关原子和原子所组成的分子结构与动力学信息的技木。 [0002] NMR is used to obtain the technology of wood species ー molecular structure and dynamics of information about the composition of atoms and atoms. NMR对原子核起作用,而且仅对具有不为零自旋的原子核起作用,这些不为零的核自旋就像一个个具有南北极的小磁铁一祥,具有磁矩,从而能被用于NMR研究。 NMR of nuclei work, and only has a non-zero spin nuclei work, these non-zero nuclear spin like one with a north and south pole of a small magnet Cheung, have magnetic moment, which can be used NMR study. [0003] 当这些磁矩处于外部静磁场中吋,由于磁矩与外静磁场存在夹角,因为发生旋进,当用射频磁场照射原子核,原子核吸收射频能量,并发射出与旋进速率对应的射频信号,该射频信号能够反应原子核的特征信息。 [0003] When these magnetic moments in an external static magnetic field in inches, due to the presence of magnetic moments with the external static magnetic field angle, because the occurrence of precession, when the RF magnetic field irradiated nuclei, nuclei absorb RF energy and emits corresponding precession rate RF signal, the RF signal characteristic information capable of reacting nuclei. 原子核处于一定的环境中,这些环境与原子核发生不同程度的相互作用,反映在发射出来的射频信号上,会导致其在以射频振荡的同时有衰减现象,通过研究该衰减行为,可以获得原子核周围的空间结构和动态行为信息。 Nuclei in a certain environment, these environments with different degrees of interaction between nuclei, reflected in the emitted radio frequency signals can cause it to oscillate at the same time with the RF attenuation phenomenon, by studying the decay behavior, you can get around the atomic nucleus The spatial structure and dynamic behavior information.

[0004] 在NMR波谱中,改变射频磁场的频率,测量原子核对不同频率射频磁场的吸收和发射强度,可以获得共振谱,这种NMR波谱能够掲示材料的元素成分与含量,与相关理论结合,甚至可获得各元素原子的结构和运动信息。 [0004] In the NMR spectrum, changing the frequency of the RF magnetic field, the nuclei of the absorption and emission measuring different frequencies of RF magnetic field strength can be obtained resonance spectroscopy, the NMR spectrum shows the elemental composition can kei and content of the material, combined with the theory, Even the structure and motion information obtained atoms of each element.

[0005] NMR发明于20世纪50年代前后,在其几十年的发展历史中,为获得更高的NMR波谱分辨率,磁场强度及射频场频率一直在増加,从最初IOMHz量级的拉莫尔(Larmor)频率,到目前的900MHz,甚至有厂家在研制GHz射频场的NMR谱仪。 [0005] NMR invention before and after the 1950s, decades of development in its history, in order to obtain higher resolution NMR spectroscopy, magnetic field strength and the RF field has been to increase in frequency, from the initial order of Rameau IOMHz Seoul (Larmor) frequency, to the current 900MHz, and even manufacturers in the development GHz RF field NMR spectrometer.

[0006] 虽然高场NMR具有高分辨率,但从实际应用来看,高场强和高RF频率,在一些应用上受到限制。 [0006] Although the high-field NMR high resolution, but the practical point of view, high field strength and high RF frequencies, in some applications is limited. 随着磁场的提高,样品磁导率分布的不均匀性会加剧,从而使信号增宽,尤其是包含铁钴镍等铁磁性元素的样品,通常是无法使用NMR技术来分析的。 With the improvement of the magnetic field, sample permeability uneven distribution will increase, so that the signal is widened, especially iron, cobalt and nickel sample containing a ferromagnetic element, normally can not be used NMR techniques to the analysis. 另ー个常见问题是磁共振成像(Magnetic resonance imaging, MRI)中的磁化率伪影。 Another common problem is ー MRI (Magnetic resonance imaging, MRI) of the magnetic susceptibility artifacts. 当不同种类样品或同类具有较高磁化率梯度的样品处于磁场中时,不同磁化率的样品成分会产生寄生梯度磁场。 When different types of sample or sample has a high magnetic susceptibility similar gradient in a magnetic field, the magnetic susceptibility of different sample constituents will produce parasitic magnetic field gradient. 当这些寄生梯度场与用于编码的梯度场相当吋,MRI的图像严重扭曲。 When these parasitic gradient field used for encoding gradient field quite inch, MRI image severely distorted. 在医学成像中,金属补牙或珠宝饰物的存在可以破坏MRI ;身体内部固体-液体和固体-空气界面处磁化率的跳变,产生细微的变形。 In medical imaging, the presence of metal fillings or jewelry can damage MRI; the body's internal solid - liquid and solid - air interface magnetic susceptibility of transition, resulting in slight distortion.

[0007] 从科学研究来讲,通常化学样品和生物组织的真实环境是地磁场(4(T50uT),为尽可能获取分子样品和人体组织在实际环境下的结构与动力学信息,需要用在低场(地磁场及以下)条件下进行NMR和MRI的原位研究;然而,传统RF线圈探测技术因其在低场下的低灵敏度,在进行此类研究时存在一定的局限性。 [0007] from scientific research is concerned, the real environment usually chemical samples and biological tissues is the geomagnetic field (4 (T50uT), as much as possible to obtain human tissue samples and molecular structure and dynamics of information in the actual environment, the need to use the NMR and MRI in situ study of the low-field (the geomagnetic field and below) conditions; however, the conventional RF coil detection technology because of its low sensitivity at low field, some limitations exist when conducting such research.

[0008]虽然基于超导量子干涉器件(Superconducting quantum interference device,SQUID)的磁力计,也可在低场下实现很高的磁场探测灵敏度,并应用于低场NMR研究,但是它与NMR谱仪一祥,要工作在超导所需的低温环境,在应用方面依然有所局限。 [0008] Although based on superconducting quantum interference device (Superconducting quantum interference device, SQUID) magnetometer can also be realized at low field magnetic high detection sensitivity and low-field NMR applied research, but it and the NMR spectrometer a Cheung, superconductivity required to work in low-temperature environment, the applications are still some limitations.

[0009] 综上所述,虽然NMR作为ー种強大的核自旋分析技术在各领域获得了广泛应用,但目前NMR技术所用RF (Radio Frequency)线圈在低场下的探测灵敏度较差,仍不能满足一些应用的要求。 [0009] In summary, although the NMR as a kind of powerful nuclear spin ー analytical techniques in various fields has been widely used, but the current technology used in NMR RF (Radio Frequency) coil at low field detection sensitivity is poor, still Some applications can not meet the requirements.

[0010] 因此,我们需要一些低场下的高灵敏度NMR仪器和技木。 [0010] Therefore, we need some high sensitivity under low-field NMR instruments and technology of wood. 近年来发展出了几种低场NMR仪器,这些技术弥补了传统NMR在低场下的低灵敏度缺陷。 In recent years developed several low-field NMR instrument, these techniques make up the traditional NMR low sensitivity at low field defect. IM Savukov等人在“NMR Detection with an Atomic Magnetometer^(Phys. Rev. Lett. 94, 123001 (2005))中用激光原子磁力计进行NMR检测,该激光原子磁力计使用处于180°C的钾(K)原子作为エ作介质,在直流到几百Hz的频段上具有20fT/Hz1/2的灵敏度,以信噪比(Signal to noiseratio, SNR)为10的单次采样测得水的NMR信号。VV Yashchuk等人在“HyperpolarizedXenon Nuclear Spins Detected by Optical Atomic Magnetometry,,(Phys. Rev. Lett.93,160801 (2004))中用原子磁力计测量了超极化Xe原子的T1常数。 IM Savukov et al. "NMR Detection with an Atomic Magnetometer ^ (Phys. Rev. Lett. 94, 123001 (2005)) with the laser atomic magnetometer NMR detection, the use of laser atomic magnetometers to 180 ° C in potassium ( K) atoms as the EVAL as a medium, it has sensitivity 20fT / Hz1 / 2 in a DC to a few hundred Hz band on the signal to noise ratio (Signal to noiseratio, SNR) of a single sample measured NMR signal of water 10. VV Yashchuk et al., "HyperpolarizedXenon Nuclear Spins Detected by Optical Atomic Magnetometry ,, (Phys. Rev. Lett.93,160801 (2004)) with atomic magnetometers measure the T1 constant hyperpolarized Xe atoms. MP Ledbetter等人在“Optical detection of NMR J-spectra at zero magnetic field”中用激光原子磁力计测量了こ醇的CH J耦合谱(NMR谱的ー种,可用于确定化学分子中的结构),而且该测量在零磁场下进行。 MP Ledbetter et al., "Optical detection of NMR J-spectra at zero magnetic field" by laser atomic magnetometers measuring the alcohol CH J ko coupled spectrum (NMR spectrum ー species, can be used to determine the chemical structure of the molecule), and the measurement at zero magnetic field.

[0011] 激光原子磁力计基于原子与激光相互作用发生的ー种被称为非线性磁光旋转(Nonlinear magneto-optical rotation,NM0R)的量子力学现象。 [0011] Laser atomic magnetometers based on quantum mechanical phenomenon ー species is called nonlinear magneto-optical rotation (Nonlinear magneto-optical rotation, NM0R) atoms with laser interaction occurs. 由于该现象产生的NMOR信号具有极窄的线宽,且对磁场敏感,因此天然具有高灵敏度的磁场检测能力,另外,即使在如IOOurinT量级甚至更低的极弱磁场下,该灵敏度也不会变差。 Since the phenomenon NMOR signal having a very narrow linewidth, and sensitive to magnetic fields, and therefore the ability to detect the magnetic field having a high natural sensitivity. Further, even in the order of or less as IOOurinT very weak magnetic field, the sensitivity is not It will be worse.

[0012] 上述利用激光原子磁力计检测NMR信号的方法,还有一定的缺陷,比如激光原子磁力计的探头是ー个工作于17(T210°C左右的原子蒸气泡,其温度过高,对NMR样品有谱线加宽的影响,本发明将针对此问题,提出一种新的方法。 [0012] above using a laser atomic magnetometer NMR signal detection method, there are some drawbacks, such as laser atom probe magnetometer is ー working in 17 (T210 ° C around the atomic vapor bubble, its temperature is too high, for NMR samples have line broadening effects, the present invention will solve this problem, a new method.

发明内容 DISCLOSURE

[0013] 本发明的目的是在于针对现有技术存在的上述问题,提供ー种基于激光原子磁力计的NMR装置,还提供一种基于激光原子磁力计的NMR的測量方法,从而解决低场下现存射频线圈方法灵敏度不足的困难,并解决新出现的原子蒸气泡温度过高的问题。 [0013] The object of the present invention is to solve the above problems of the prior art, to provide a laser-based species ー atom magnetometer NMR apparatus is also provided a method of NMR measurement based on laser atom magnetometer, in order to address the low-field Existing RF coil method insufficient sensitivity difficulties and resolve atomic vapor bulbs overheating of emerging issues.

[0014] 为了实现上述目的,本发明采用以下技术方案: [0014] To achieve the above object, the present invention employs the following technical scheme:

ー种基于激光原子磁力计的NMR装置,包括铯原子蒸气泡,包括套设在铯原子蒸气泡上的磁屏蔽套筒、设置在磁屏蔽套筒内的三组亥姆霍兹线圈、用于极化铯原子蒸气泡内铯原子的激光极化装置、用于向铯原子蒸气泡发射探测激光的激光发射装置、用于检测穿过铯原子蒸气泡的探测激光的NMR信号检测装置和用于对被测样品进行预极化并可将预极化后的样品放置到铯原子蒸气泡上方的气动进样装置。ー kinds of laser-based atomic magnetometer NMR apparatus, including cesium atomic vapor bubble, including cesium atomic vapor sleeved taking a dip in the magnetic shielding sleeve disposed within the magnetic shield sleeve three Helmholtz coils for polarized laser polarization apparatus cesium atomic cesium atomic vapor bubble for laser emitting device to emit cesium vapor bubble probe laser to detect through the cesium atomic vapor laser bubble detection means for detecting NMR signals pre-polarization of the sample and the sample is placed into a pre-polarized atomic cesium vapor bubble above the pneumatic injection device.

[0015] 如上所述的激光极化装置包括抽运激光器和用于将抽运激光器发出的激光转换为圆偏振光后传送到铯原子蒸气泡的四分之一波片。 [0015] laser polarization means comprises a pump laser and a laser operation for pumping laser emits into circular polarized light transmitted to the cesium atomic vapor bubble quarter wave plate as described above.

[0016] 如上所述的激光发射装置包括探测激光器和用于将探测激光器发出的激光转换成线偏振探测激光后传送到铯原子蒸气泡的偏振棱镜。 [0016] As described above the laser emitting apparatus comprising detecting means for detecting lasers and laser emits laser light converted into a linearly polarized probe laser cesium vapor bubble is transmitted to the polarizing prism.

[0017] 如上所述的NMR信号检测装置包括用于对穿过铯原子蒸气泡的线偏振探测激光进行分束的偏振分束棱镜、用于检测分束后的线偏振探測激光并将检测信号发送到乘法器的光电探测器、用于调整抽运激光器的输出频率并输出方波同步信号到乘法器的信号发生器、用于对检测信号及方波同步信号进行乘法运算的乘法器和用于对乘法器的输出进行滤波并传送到上位机的低通滤波器。 [0017] NMR signal detection apparatus as described above includes a polarization for cesium atomic vapor bubbles through the linearly polarized probe laser beam splitting prism for splitting the line after detecting probe laser polarization and the detection signal sent to the multiplier photodetector for adjusting the output frequency of the pump laser and the output square-wave synchronous signal to the multiplier signal generator, used to detect signal and synchronous signal square wave multiplication of multipliers and use at the output of the multiplier is filtered and transferred to the PC low-pass filter.

[0018] 如上所述的气动进样装置包括气缸、设置在气缸内且一端设置有与气缸内壁贴合的活塞的样品管、套设在气缸一端的环形预极化磁体和用于控制样品管在气缸内往复运动的驱动装置,所述的磁屏蔽套筒上开设有通孔,气缸一端穿过通孔设置在铯原子蒸气泡上方。 [0018] The pneumatic injection apparatus includes a cylinder disposed within the cylinder and one end of the cylinder wall sample tube has bonded piston cylinder sleeve provided at one end of the ring magnet pre-polarization and a control sample tube as described above driving means reciprocates within the cylinder, the said magnetic shielding sleeve provided with a through hole, one end of the cylinder through the through hole provided in the vapor above the bubble cesium atom.

[0019] 如上所述的气缸一端套设有导引线圈,另一端套设有小角度脉冲线圈,所述的驱动装置包括提供气压源的空气压缩机和用于切换空气压缩机输入到气缸的气流方向的电磁阀。 [0019] As described above one end of the cylinder sleeve with a guide coil, the other end of the sleeve with a small angle pulse coil, said driving means comprises an air compressor to provide air pressure source and for switching the input to the air compressor cylinder Solenoid air flow direction.

[0020] 如上所述的三组亥姆霍兹线圈包括三对环形的亥姆霍兹线圈,每对亥姆霍兹线圈的中心线重合,三对亥姆霍兹线圈的中心线相互垂直,其中ー对亥姆霍兹线圈的中心线与探测激光的光束方向平行。 [0020] The three groups mentioned above includes three pairs of Helmholtz coils annular Helmholtz coils, each pair of Helmholtz coil center line coincides with the center line of three pairs of Helmholtz coils perpendicular to each other,ー to the beam direction in which the center line of the laser probe Helmholtz coils parallel.

[0021] ー种基于激光原子磁力计的NMR的測量方法,包括以下步骤: [0021] Laser species ー atom magnetometer NMR measurement method, comprising the steps of:

步骤I、控制铯原子蒸气泡温度升至20-60°C,控制抽运激光器的输出激光频率与碱金属铯原子Dl线跃迁F=4 -> F'=3共振,并控制探测激光器的输出激光频率偏离该共振频率lOOMHflOOGHz,对抽运激光器的电流进行调制,实现同步光抽运; Step I, controlled cesium vapor bubble temperature was raised to 20-60 ° C, control pump laser output laser frequency with an alkali metal cesium atomic transition Dl line F = 4 -> F '= 3 resonance, and control the output of the laser probe laser frequency deviates from the resonance frequency lOOMHflOOGHz, for pumping the laser current modulation to achieve synchronous optical pumping;

步骤2、调整偏振棱镜和四分之一波片的角度,获得线偏振探测激光和圆偏振光; , Adjust the polarizing prism and quarter-wave plate angle Step 2, to obtain linearly polarized and circularly polarized laser probe;

步骤3、调整偏振分束棱镜的角度,直至光电探测器输出的信号为零; Step 3, to adjust the angle of the polarization splitting prism, until the output signal of the photodetector is zero;

步骤4、通过调整三组亥姆霍兹线圈的电流,使得磁屏蔽套筒内的残余磁场为最小,得到三组亥姆霍兹线圈的调整电流; Step 4, by adjusting the current three sets of Helmholtz coils so that the residual magnetic field magnetic shielding sleeve is minimized, have been adjusted current three sets of Helmholtz coils;

步骤5、扫描三组亥姆霍兹线圈中的中心线与探测激光平行的一对亥姆霍兹线圈中的电流,从设定的负电流值到ー个绝对值与设定的负电流值相等的正电流值,叠加在步骤4中所述的调整电流上,得到低通滤波器输出的磁场鉴别信号; Step 5, scanning three Helmholtz coils parallel to the center line of the laser probe pair Helmholtz coil current, the negative current value is set to the absolute value and the set ー negative current value Positive current values are equal, and superimposed on the step of adjusting the current 4, to obtain the magnetic field identification signal of the low-pass filter output;

步骤6、重复步骤疒步骤5直至単位磁场变化时,低通滤波器输出电压响应的变化值最大,设定磁场线性范围中心的B值为偏置磁场; Step 6, repeat step 5 until radiolabeling step epileptic bit magnetic field changes, changes in the value of the low-pass filter in response to the maximum output voltage, setting the center of the linear range of the magnetic field B is a bias magnetic field;

步骤7、取适量液体样品倒入样品管,放入气缸中; Step 7, take appropriate liquid sample into the sample tube into the cylinder;

步骤8、上位机通过继电器控制电磁阀,进而控制空气压缩机吹入到气缸中的方向,使得样品管浮起到环形预极化磁体的内部中心; Step 8, the host computer via a relay control solenoid valve, then control the air compressor is blown into a cylinder direction so that the sample tube to float to the internal central annular pre-polarized magnet;

步骤9、保持样品管悬浮设定时间,使其充分预极化,上位机通过继电器控制电磁阀,进而改变空气压缩机吹入到气缸中的方向,使样品管向下穿过导引线圈,到达铯原子蒸气泡的上方; Step 9, to maintain the sample tube suspension set time, make it fully pre-polarized, the host computer via a relay control solenoid valve, thereby changing the air compressor is blown into a cylinder direction, the sample tube down through the guide coil, reach the top of the cesium atomic vapor bubble;

步骤10、控制小角度脉冲线圈中的电流,产生直流或交流脉冲,改变样品磁矩方向;步骤11、样品磁矩与偏置磁场的方向存在5〜15度的小夹角,样品磁矩在物理上受到ー个カ矩的作用而绕偏置磁场作进动,对磁场施加扰动,获得时间域的NMR信号; Step 10, small-angle control coil current pulse, produces a DC or AC pulse, to change the direction of the magnetic moment of the sample; step 11, there is a small angle of 5 to 15 degrees in the direction of the magnetic moment of the sample bias magnetic field, the magnetic moments in the sample by ka ー a moment about the role of physical and bias magnetic field as the precession of the magnetic field perturbation is applied to obtain NMR signals in the time domain;

步骤12、通过时间域的NMR信号获得频率域的NMR谱信号。 Step 12 to obtain NMR spectra of signals in the frequency domain by NMR signal in the time domain.

[0022] 本发明与现有技术相比,具有以下优点和效果: [0022] The present invention over the prior art, has the following advantages and effects:

1、在低磁场下,与现有的线圈探测技术相比,具有更高的探测灵敏度; 1, at a low magnetic field, as compared with conventional coil detection technology, has higher detection sensitivity;

2、与现有低场利用SQUID探测NMR技术相比,不需要低温制冷,节约运行成本; 2, with the existing low-field NMR detection technology compared to the use of SQUID, does not require cryogenic cooling, saving operating costs;

3、与现有的基于原子磁力计的NMR探測装置相比,具有更低的工作温度。 3, compared with conventional NMR detection device based on atomic magnetometers, with lower operating temperatures. 附图说明 Brief Description

[0023] 图I是本发明的总体结构示意图; [0023] FIG. I is a schematic diagram of the overall structure of the present invention;

图2是本发明的高灵敏度激光原子磁力检测部分的原理示意图; Figure 2 is a schematic high sensitivity laser atom magnetic detection portion of the present invention, a schematic;

图3是本发明的预极化与气动进样部分的原理示意图。 Figure 3 is a schematic diagram of the present invention, the pre-polarization and pneumatic injection parts.

[0024] 图中:1_探测激光器;2_抽运激光器;3_偏振棱镜;4_四分之一波片;5_磁屏蔽套筒;6_三组亥姆霍兹线圈;7_铯原子蒸气泡;8_偏振分束棱镜;9_光电探测器;10_乘法器;11-信号发生器;12_低通滤波器;13_上位机;14_空气压缩机;15_电磁阀;16_继电器;17-样品管;18_气缸;19-环形预极化磁体;20-导引线圈;21_小角度脉冲线圈;a-样品预极化与气动进样装置;b_激光原子磁力计装置。 [0024] FIG.: 1_ probe laser; 2_ pumped lasers; 3_ polarizing prism; 4_ quarter-wave plate; 5_ magnetic shield sleeve; 6_ three sets of Helmholtz coils; 7_ Cesium vapor bubble; 8_ polarizing beam splitter prism; 9_ photodetector; 10_ multiplier; 11- signal generator; 12_ low-pass filter; 13_ PC; 14_ air compressor; 15_ electromagnetic valve; 16_ relay; 17- sample tube; 18_ cylinder; 19- prepolarized magnet ring; 20- guidance coil; 21_ small-angle pulse coil; a- sample pre-polarized and pneumatic injection means; b_ Laser atomic magnetometer devices.

具体实施方式 DETAILED DESCRIPTION

[0025] 下面结合附图对本发明作进ー步详细描述: [0025] the following with reference to the present invention will be described in further detail into ー:

实施例: Example:

ー种基于激光原子磁力计的NMR装置,包括铯原子蒸气泡7,包括套设在铯原子蒸气泡7上的磁屏蔽套筒5、设置在磁屏蔽套筒5内的三组亥姆霍兹线圈6、用于极化铯原子蒸气泡7内铯原子的激光极化装置、用于向铯原子蒸气泡7发射探测激光的激光发射装置、用于检测穿过铯原子蒸气泡7的探测激光的NMR信号检测装置和用于对被测样品进行预极化并可将预极化后的样品放置到铯原子蒸气泡7上方的气动进样装置。ー kinds of laser-based atomic magnetometer NMR apparatus including cesium atomic vapor bubble 7, including sheathed cesium atomic vapor bubble magnetic shielding sleeve 7 on 5, disposed within the magnetic shield sleeve 5 three Helmholtz coil 6 for cesium vapor bubble polarized laser polarization means 7 is cesium atom, cesium vapor bubble for 7 to emit laser emitting laser detection means for detecting through the cesium atomic vapor bubble probe laser 7 The NMR signal detection means and for the sample pre-polarization and polarization after the pre-sample of cesium atoms placed at the top of the vapor bubble pneumatic sampling device 7.

[0026] 激光极化装置包括抽运激光器2和用于将抽运激光器2发出的激光转换为圆偏振光后传送到铯原子蒸气泡7的四分之一波片4。 [0026] The laser polarization means comprises a pump laser and a laser to convert the 2-pumped laser 2 emits circularly polarized light after transfer to cesium atomic vapor bubble 7 quarter-wave plate 4.

[0027] 激光发射装置包括探测激光器I和用于将探测激光器I发出的激光转换成线偏振探测激光后传送到铯原子蒸气泡7的偏振棱镜3。 [0027] The laser emitting device includes a probe laser I and I used to detect laser laser emitted converted into a linearly polarized probe laser is transmitted to cesium vapor bubble polarizing prism 7 3.

[0028] NMR信号检测装置包括用于对穿过铯原子蒸气泡7的线偏振探測激光进行分束的偏振分束棱镜8、用于检测分束后的线偏振探測激光并将检测信号发送到乘法器10的光电探測器9、用于调整抽运激光器2的输出频率并输出方波同步信号到乘法器10的信号发生器11、用于对检测信号及方波同步信号进行乘法运算的乘法器10和用于对乘法器10的输出进行滤波并传送到上位机13的低通滤波器12。 [0028] NMR signal detecting means comprises means for cesium vapor bubble through line 7 to detect the polarization of the laser beam polarization splitting prism 8 for detecting the line probing beam after the laser polarization and the detection signal is sent to the multiplication multiplier photodetector 10 9 for adjusting the output frequency of the pump laser 2 and the synchronizing signal output square wave signal generator 11 to the multiplier 10 for the detection signal and the square wave synchronizing signal multiplication 10 and is used to filter the output of the multiplier 10 and transmitted to the host computer 13 of the low-pass filter 12.

[0029] 气动进样装置包括气缸18、设置在气缸18内且一端设置有与气缸18内壁贴合的活塞的样品管17、套设在气缸18 —端的环形预极化磁体19和用于控制样品管17在气缸18内往复运动的驱动装置,所述的磁屏蔽套筒5上开设有通孔,气缸18 —端穿过通孔设置在铯原子蒸气泡7上方。 [0029] The injection apparatus comprises a pneumatic cylinder 18, disposed in the cylinder 18 and the cylinder 18 is provided with an end fitting inner wall of the sample tube piston 17, is provided in the cylinder sleeve 18 - end of the annular magnet 19 and a pre-polarization control sample tube drive means 17 in the cylinder 18 reciprocates, the sleeve of the magnetic shield 5 provided with a through-hole, the cylinder 18 - through the through hole provided in the end of cesium vapor bubble 7 above.

[0030] 气缸18—端套设有导引线圈20,另一端套设有小角度脉冲线圈21,所述的驱动装置包括提供气压源的空气压缩机14和用于切换空气压缩机14输入到气缸18的气流方向的电磁阀15。 [0030] The end of the cylinder sleeve has a guide coil 18- 20, the other end of the sleeve with a small angle pulse coil 21, the drive means comprises an air compressor to provide air pressure source 14 and the air compressor 14 for switching input to electromagnetic flow direction of the valve cylinder 18 15.

[0031] 三组亥姆霍兹线圈6包括三对环形的亥姆霍兹线圈,每对亥姆霍兹线圈的中心线重合,三对亥姆霍兹线圈的中心线相互垂直,其中ー对亥姆霍兹线圈的中心线与探测激光的光束方向平行。 [0031] The three sets of Helmholtz coils 6 includes three pairs of annular Helmholtz coils, each pair of Helmholtz coils centerline coincides centerline three pairs of Helmholtz coils are vertical, which ー on beam direction Helmholtz coils parallel to the center line of the laser probe.

[0032] ー种基于激光原子磁力计的NMR的測量方法,包括以下步骤: [0032] Laser species ー atom magnetometer NMR measurement method, comprising the steps of:

步骤I、控制铯原子蒸气泡7温度升至20-60°C,控制抽运激光器2的输出激光频率与碱金属铯原子Dl线跃迁F=4 -> F'=3共振,并控制探测激光器I的输出激光频率偏离该共振频率lOOMHflOOGHz,对抽运激光器2的电流进行调制,实现同步光抽运; Step I, cesium vapor bubble 7 control the temperature rose to 20-60 ° C, control pump laser output laser frequency with an alkali metal cesium atomic transition Dl line 2 F = 4 -> F '= 3 resonance, and laser control probe I output laser frequency deviates from the resonance frequency lOOMHflOOGHz, current 2 for pump laser is modulated to achieve synchronous optical pumping;

步骤2、调整偏振棱镜3和四分之一波片4的角度,获得线偏振探测激光和圆偏振光; 步骤3、调整偏振分束棱镜8的角度,直至光电探测器9输出的信号为零; 2, 3 and 4 to adjust the polarization angle prism steps quarter wave plate, to obtain linearly polarized and circularly polarized laser probe; step 3, to adjust the angle of the polarization splitting prism 8 and 9 until the output of the photodetector signal is zero ;

步骤4、通过调整三组亥姆霍兹线圈6的电流,使得磁屏蔽套筒5内的残余磁场为最小,得到三组亥姆霍兹线圈6的调整电流; Step 4, by adjusting the three sets of Helmholtz coils current 6 so that the residual magnetic field within the magnetic shield sleeve 5 is minimum, to obtain three sets of Helmholtz coils adjusting current 6;

步骤5、扫描三组亥姆霍兹线圈中的中心线与探测激光平行的一对亥姆霍兹线圈中的电流,从设定的负电流值到ー个绝对值与设定的负电流值相等的正电流值,叠加在步骤4中所述的调整电流上,得到低通滤波器12输出的磁场鉴别信号; Step 5, scanning three Helmholtz coils parallel to the center line of the laser probe pair Helmholtz coil current, the negative current value is set to the absolute value and the set ー negative current value Positive current values are equal, and superimposed on the step of adjusting the current 4, to obtain the magnetic field discrimination signal output from the low-pass filter 12;

步骤6、重复步骤步骤5直至単位磁场变化时,低通滤波器12输出电压响应的变化值最大,设定磁场线性范围中心的B值为偏置磁场; Step 6. Repeat Step 5 until the magnetic field changes when radiolabeling bit, change the value of the output voltage of the low-pass filter 12 in response to the largest center of the linear range of the magnetic field setting value of bias magnetic field B;

步骤7、取适量液体样品倒入样品管17,放入气缸18中; Step 7, take appropriate liquid sample into the sample tube 17, into the cylinder 18;

步骤8、上位机13通过继电器16控制电磁阀15,进而控制空气压缩机14吹入到气缸18中的方向,使得样品管17浮起到环形预极化磁体19的内部中心; Step 8, the host computer 13 through the relay 16 controls the solenoid valve 15, and then control the air compressor 14 is blown into the cylinder 18 in a direction so that the sample tube 17 floats to the center of the magnet inside the ring prepolarized 19;

步骤9、保持样品管17悬浮设定时间,使其充分预极化,上位机13通过继电器16控制电磁阀15,进而改变空气压缩机14吹入到气缸18中的方向,使样品管17向下穿过导引线圈20,到达铯原子蒸气泡7的上方; Step 9, to maintain the sample tube 17 suspension set time, make it fully pre-polarized, the PC 13 through the relay 16 controls the solenoid valve 15, thereby changing the air compressor 14 is blown into the cylinder 18 in the direction of the sample tube 17 to Under the guide through the coil 20, to reach the cesium atomic vapor bubble above 7;

步骤10、控制小角度脉冲线圈21中的电流,产生直流或交流脉冲,改变样品磁矩方向;步骤11、样品磁矩与偏置磁场的方向存在5〜15度的小夹角,样品磁矩在物理上受到ー个カ矩的作用而绕偏置磁场作进动,对磁场施加扰动,获得时间域的NMR信号; Step 10, the control 21 of the small-angle pulse coil currents produce a DC or AC pulse, change the direction of the magnetic moment of the sample; step 11, there is a small angle of 5 to 15 degrees in the direction of the magnetic moment of the sample bias magnetic field, the magnetic moment of the sampleー physically by the action of two grades moment for biasing magnetic field around the precession of the magnetic field perturbation is applied to obtain NMR signals in the time domain;

步骤12、通过时间域的NMR信号获得频率域的NMR谱信号。 Step 12 to obtain NMR spectra of signals in the frequency domain by NMR signal in the time domain.

[0033] 本发明是一种通过在特斯拉磁场中预极化,使用激光原子磁力计检测,在纳特斯拉磁场中获得液体NMR谱,从而检测NMR信号的方法和装置。 [0033] The present invention is a process by pre-Tesla magnetic field polarization, using a laser atomic magnetometers detect liquid NMR spectra were obtained Nat Tesla magnetic field, so a method and apparatus for detecting NMR signals. 由于激光原子磁力计的灵敏度和频率无关,通过在极低的磁场中检测NMR,能同时增加SNR和谱的分辨率,即使对于非常不均匀的磁场,NMR谱线也足够窄。 Because of unrelated laser atom magnetometer sensitivity and frequency, by detecting very low magnetic field NMR, can simultaneously increase SNR and spectral resolution, even for highly non-uniform magnetic field, NMR spectra are narrow enough.

[0034] 本发明工作于超低磁场中进行检测,通常约为IOOu疒InT,并且使用0. IT到2T的磁场进行预极化,样品体积很小,从Icm3量级到Imm3量级。 [0034] The present invention work in ultra-low magnetic field is detected, usually about IOOu epileptic InT, and the use of 0. IT to the magnetic field of 2T pre-polarization, the sample size is very small, from Icm3 middleweight to middleweight Imm3. 检测装置可设计成ー种微型激光原子磁力计,是检测探头可以非常靠近室温下的样品。 Detection means can be designed ー kinds miniature laser atomic magnetometers, is detection probe can be very close to the sample at room temperature.

[0035] 激光原子磁力计使用铯原子作为探头气泡工作介质,它工作于室温附近(2(T60°C),由于探头和被检测样品在空间上有距离,因此对化学或生物样品的影响非常小,可忽略不计。因此,样品可与激光原子磁力计探头靠得非常近,一般激光原子磁力计的探头可做到Icm大小,样品与探头距离可到1cm,若利用微加工技术将作为探头的原子蒸气泡做到Imm大小,则该距离也可縮小到1_,将提高样品磁场与激光原子磁力计探头的耦合效果,提高NMR信号的检测灵敏度。同时,激光原子磁力计的灵敏度与待检测信号的频率无关,可以在拉莫尔频率为几Hz到几百Hz时将其检测出来。与该量级拉莫尔频率对应的磁场只在ImT水平,即使该磁场的相对均匀性(如1%。〜1%)远低于传统NMR超导磁体的均匀性(10_8〜10_6),所获取的NMR信号线宽也非常之窄,接近原子核自旋共振的本征线宽。在低场中原子核的化学位移信息将不能展现出来,只有与磁场无关的标量耦合(如J耦合等)信息留下来,这些信息可以提供共价键的特征參数。总之,本发明可实现ー种简单的利用激光原子磁力计的“键检测器”,在IOOuT至InT的磁场中产生有关异核标量耦合的精确信息。 [0035] Laser atomic magnetometers using cesium atoms as probes bubble working medium, it works at near room temperature (2 (T60 ° C), since the probe and the sample is detected in the space distance, so the impact of chemical or biological samples are very small, negligible. Thus, the sample magnetometer with laser atom probe extremely close, conventional laser atom probe magnetometer Icm size can be achieved, the sample and the probe distance to 1cm, if the use of micro-processing technology as a probe Imm do atomic vapor bubble size, the distance may be reduced to 1_, coupled with the effect of the magnetic field increased sample magnetometer laser atom probe, improve the detection sensitivity of the NMR signal. Meanwhile, the laser atom magnetometer sensitivity to be detected irrespective of the frequency of the signal can be at the Larmor frequency is several Hz to several hundred Hz to be detected. Larmor frequency corresponding to the magnitude of the magnetic field only in ImT level, even if the relative homogeneity of the magnetic field (such as 1 % .~1%) is much lower than the uniformity of the traditional NMR superconducting magnet (10_8~10_6), is also very narrow linewidth NMR signals acquired close to nuclear spin resonance of the intrinsic linewidth at low field The chemical shift information nucleus will not show up, only the magnetic field independent scalar coupling (such as J coupling etc.) information to stay, this information can provide parameters of covalent bonds. In summary, the present invention may be implemented using a simple kind ーLaser atomic magnetometer "key detector" to produce accurate information on heteronuclear scalar coupling in IOOuT to InT magnetic field.

[0036] 与背景内容部分提出的已有相关方案不同,本发明使用一种新的工作介质,利用其物理特性,将激光原子磁力计的探头工作温度大大降低,到室温附近,从而消除对待检测NMR样品的谱线加宽效应,另外该工作温度与人体温度接近,可望用于活体生物应用,如人体表面或器官成像等。 [0036] have been associated with the program content made by a different background, the present invention uses a new working medium, using its physical properties, the laser atom probe temperature magnetometer greatly reduced, to about room temperature, thereby eliminating detection treat NMR line broadening effect of the sample, in addition to the working temperature and body temperature close to living organisms it could be used for applications such as body surface or organ imaging.

[0037] 本发明包括了两大部分:ー个是基于激光与碱金属铯(Cs)原子相互作用发生的非线性磁光旋转(Nonlinear magnetic-optical rotation, NM0R)现象制作而成的高灵敏度的激光原子磁力计装置部分,一个是样品的预极化与气动进样装置;下面分别对这两个装置进行操作步骤的说明。 [0037] The present invention includes two parts: one is based on the nonlinear magneto ー laser with an alkali metal cesium (Cs) atomic interactions rotation (Nonlinear magnetic-optical rotation, NM0R) phenomenon is made of high-sensitivity Laser atomic magnetometer device portion, a pre-polarization and pneumatic sample injection device; below each of these two devices will be described operating procedures.

[0038] 本发明装置由探测激光器I和抽运激光器2、偏振棱镜3和四分之一波片4、磁屏蔽套筒5和三组亥姆霍兹线圈6、铯原子蒸气泡7、偏振分束棱镜8和光电探测器9、乘法器10和信号发生器11、低通滤波器12和上位机13、空气压缩机14、电磁阀15和继电器16、 样品管17和气缸18、环形预极化磁体(钕铁硼永磁体)19、导引线圈20和小角度脉冲线圈21组成。 [0038] by a probe laser device of the present invention, and I pumped laser 2, a polarizing prism 3 and the quarter-wave plate 4, magnetic shielding sleeve 5 and three sets of Helmholtz coils 6, cesium vapor bubble 7, polarization splitting prism 8 and the photodetector 9, the multiplier 10 and the signal generator 11, a low pass filter 12 and the host computer 13, air compressor 14, solenoid valve 15 and the relay 16, the sample tube 17 and cylinder 18, an annular pre- polarized magnets (NdFeB) 19, guide the coil 20 and coil 21 composed of small-angle pulse. 抽运激光器2通过四分之一波片4之后,与铯原子蒸气泡7中的原子作用将其极化,信号发生器11输出正弦波信号到抽运激光器2,调制其输出频率;磁屏蔽套筒5以铯原子蒸气泡7为中心将其包裹,提供InT水平的剰余磁场,三组亥姆霍兹线圈6与由干电池加电阻组成的电流源相连,产生磁场补偿磁屏蔽的剩余磁场;探测激光器I产生激光通过偏振棱镜3之后进入铯原子蒸气泡7与之作用,穿过蒸气泡的透射光到达偏振分束棱镜8,被分束后照射到光电探测器9上面,经光电效应产生输出电流流入到乘法器10,与来自信号发生器11的同步信号进行乘法运算,输出到低通滤波器12,产生所要的信号被上位机13记录。 After pumping laser 2 through the quarter-wave plate 4, 7 and cesium vapor bubble in an atomic force its polarization, the signal generator 11 outputs a sine wave signal to the pump laser 2, the output frequency modulation; magnetic shield sleeve cesium vapor bubble 5 to 7 as the center of its package, providing InT field level 剰 than three sets of Helmholtz coils 6 is connected to the current source of the battery plus resistor, generating a magnetic field to compensate the residual magnetic field magnetic shield; I probe laser generates a laser through the polarizing prism 3 after entering the cesium atomic vapor bubble 7 with the role of the transmitted light through the vapor bubble reaches the polarization beam splitter prism 8, after being divided beam onto the photodetector 9 above, produced by the photoelectric effect output current flowing to the multiplier 10, and the synchronizing signal from the signal generator 11 multiplies the output to a low pass filter 12, to produce the desired signal PC 13 records. 样品预极化与气动进样装置与激光原子磁力计装置保持电气隔离,但样品管可经由气动进样装置到达铯原子蒸气泡7的上方,样品预极化产生的磁矩拉莫尔进动信号被激光原子磁力计感应被探測到。 Sample pre-polarized and pneumatic injector device and laser atomic magnetometer means to maintain electrical isolation, but the sample tube via a pneumatic sampling device to reach the cesium atomic vapor bubble above 7 Larmor precession of the magnetic moment produced by the sample prepolarization signals are laser atomic magnetometer sensor is detected. 气动进样装置连接方式如下所述:空气压缩机14输出气流到电磁阀15,上位机13控制继电器16与电磁阀15连接并使其切换不同的工作状态,从而使气流在五位二通电磁阀内的流向切換;从电磁阀出来的气流经气管到达气缸18,气流推动样品管17在气缸内上下运动,气缸上方有ー个环形预极化磁体(钕铁硼永磁体)19,样品被其预极化后在气流推动下向下运动达到铯原子蒸气泡7的上方约1cm,其磁矩进动信号被探測。 Pneumatic sampling device connections as follows: air compressor 14 output stream to the electromagnetic valve 15, the PC 13 controls the relay 16 is connected to the solenoid valve 15 and taking it different working conditions, so that the airflow in five two-way solenoid the flow switching valve; electromagnetic valve out of the airflow from the trachea to reach the cylinder 18 through the air flow pushing the sample tube 17 moves up and down in the cylinder above the cylinder has ー prepolarized a ring magnets (NdFeB) 19, the sample is After the pre-polarization at its airflow pushed downward movement of cesium atoms vapor bubbles reach the top 7 of about 1cm, its magnetic moment precession signal is detected.

[0039] 图I中a为样品预极化与气动进样装置,b为激光原子磁力计装置;a中的气缸(图3中的18)由两个长约Im的有机玻璃管组成,其中外管直径约20mm,内管直径约15mm,厚度很薄,忽略不计。 [0039] Figure I is a sample in a pre-polarized and pneumatic injection means, b is the laser atom magnetometer means; a of the cylinder (18 in FIG. 3) consists of two plexiglass tubes of approximately Im, wherein outer tube diameter of about 20mm, the inner tube diameter of about 15mm, very thin, is negligible. 在激光原子磁力计装置b的磁屏蔽套筒(图2中的5)壁上打外径20mm的孔,使气动进样装置的气缸可以穿过该孔,底端可以与激光原子磁力计的探头7相邻,约10mm,这样可以使激光原子磁力计探头与样品磁场充分相互作用,使得填充因子最大,也即使激光原子磁力计探测NMR信号的整体灵敏度最高。 In the laser atom magnetometer b magnetic shielding sleeve means (5 in FIG. 2) hit the wall of an outer diameter of 20mm hole, so that the cylinder may be a pneumatic injection device through the hole, with the bottom of the laser atom magnetometer probe 7 adjacent to about 10mm, so you can make the laser atom probe and sample magnetometer magnetic field sufficient interaction, making maximum fill factor, but also even the highest overall sensitivity laser atomic magnetometers detect NMR signals.

Patentzitate
Zitiertes PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
CN101692121A *15. Okt. 20097. Apr. 2010中国科学院电工研究所Optical pumping effect based magnetic resonance signal detection method
US7038450 *16. Okt. 20032. Mai 2006Trustees Of Princeton UniversityHigh sensitivity atomic magnetometer and methods for using same
US7521928 *7. Nov. 200621. Apr. 2009Trustees Of Princeton UniversitySubfemtotesla radio-frequency atomic magnetometer for nuclear quadrupole resonance detection
US20090243610 *24. März 20091. Okt. 2009Canon Kabushiki KaishaAtomic magnetometer and magnetic force measuring method
WO2010120783A1 *13. Apr. 201021. Okt. 2010The Regents Of University Of CaliforniaDetection of j-coupling using atomic magnetometer
Nichtpatentzitate
Referenz
1 *I.M. SAVUKOV等: "Detection of NMR signals with a radio-frequency atomic magnetometer", 《JOURNAL OF MAGNETIC RESONANCE》, vol. 185, no. 2, 31 March 2007 (2007-03-31)
2 *LIU QIANG等: "A Picotesla Atomic Magnetometer Operating at Normal Temperature", 《2011 ACADEMIC INTERNATIONAL SYMPOSIUM ON OPTOELECTRONICS AND MICROELECTRONICS TECHNOLOGY (AISOMT)》, 16 October 2011 (2011-10-16), XP032123731, DOI: doi:10.1109/AISMOT.2011.6159341
3 *王丰 等: "Cs原子磁力仪共振谱线宽度的研究", 《光电子#激光》, vol. 21, no. 6, 30 June 2010 (2010-06-30)
Referenziert von
Zitiert von PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
CN103383399A *25. Juli 20136. Nov. 2013中国科学院武汉物理与数学研究所Air-operated sample feeding device for laser detection nuclear magnetic resonance (NMR) signal device
CN103969604A *30. Mai 20146. Aug. 2014华南师范大学Radio-frequency atom magnetometer and method for measuring nuclear magnetic resonance (NMR) signal by same
CN103969604B *30. Mai 201415. März 2017华南师范大学射频原子磁力仪及其测量核磁共振信号的方法
CN104807848A *15. Mai 201529. Juli 2015中国科学院武汉物理与数学研究所Device and method for positioning and sample feeding of low-field magnetism resonance system
CN104833690A *4. Juni 201512. Aug. 2015中国人民解放军国防科学技术大学Method for measuring alkali metal atomic polarizability of nuclear magnetic resonance gyro in real time
CN104833690B *4. Juni 20151. März 2017中国人民解放军国防科学技术大学一种原子核磁共振陀螺碱金属原子极化率实时测量方法
Klassifizierungen
Internationale KlassifikationG01R33/44
Juristische Ereignisse
DatumCodeEreignisBeschreibung
19. Dez. 2012C06Publication
6. Febr. 2013C10Entry into substantive examination
12. Nov. 2014C14Grant of patent or utility model