CN1227951C - 用于环绕声环境的音频增强系统和方法 - Google Patents

用于环绕声环境的音频增强系统和方法 Download PDF

Info

Publication number
CN1227951C
CN1227951C CNB971957169A CN97195716A CN1227951C CN 1227951 C CN1227951 C CN 1227951C CN B971957169 A CNB971957169 A CN B971957169A CN 97195716 A CN97195716 A CN 97195716A CN 1227951 C CN1227951 C CN 1227951C
Authority
CN
China
Prior art keywords
signal
audio
produce
composite
audio source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB971957169A
Other languages
English (en)
Other versions
CN1223064A (zh
Inventor
A·I·克莱曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DTS Inc
Original Assignee
SRS Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRS Labs Inc filed Critical SRS Labs Inc
Publication of CN1223064A publication Critical patent/CN1223064A/zh
Application granted granted Critical
Publication of CN1227951C publication Critical patent/CN1227951C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 
    • H04S5/02Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation  of the pseudo four-channel type, e.g. in which rear channel signals are derived from two-channel stereo signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/01Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved

Abstract

用于一个环绕声环境中的一种音频增强系统利用多声道、多扬声器再现环境产生更加自然和连续的声场。将在录音时产生的用于驱动设置一个听者前后的多个扬声器的多声道音频源信号分离成对,并且进行处理以产生相应的合成音频信号对。每一对合成音频信号至少部分地是从在两个相应的音频源信号中存在的信息中产生的。然后将各个合成音频信号有选择地结合以形成增强的输出信号,从而将每个增强输出信号作为一组音频源信号的函数加以变换。

Description

用于环绕声环境的音频增强系统和方法
                       发明背景
一般来说本发明涉及用于提高利用立体声再现获得的真实感和戏剧效果的音频增强系统和方法。更具体地说,本发明涉及用于增强在具有独立的前声道和后声道的环绕声环境中产生的声音的装置和方法。
环绕立体声系统,即前后扬声器具有独立声道的音频系统的产生给听者带来更为真实和自然的声音感觉。这种系统,例如杜比实验室的定向逻辑(Pro-Logic)系统,可以使用一种矩阵方案在仅两条音频记录磁道中存储四个或更多个独立声道。在解矩阵时,Pro-Logic音频系统将各个音频信号分别传送到左前扬声器、右后扬声器、中央扬声器、和设置在听者后面的环绕声扬声器。
最近,环绕声系统已经能够传送完全独立的前后声道。名称为“AC-3”的杜比实验室的五声道数字系统就是一种这样的系统。具有杜比AC-3性能的音频器件能够将五个分立的声道传送到设置在听者周围的多个扬声器(左前、中央、右前、左环绕、和右环绕)。与以往的环绕声系统不同,杜比AC-3系统的全部五个分立声道都具有全带宽特性。这使得后声道,或“环绕”声道更宽的动态和音量范围。
杜比AC-3系统的分立全带宽声道已经用于提高一个声场中立体声效果的定位性。这种定位性是由传送到环绕声环境中的一个独立扬声器而产生的。结果,声音信息可以传送到系统中的任何一个扬声器。此外,因为AC-3声道并不限制音频带宽,所以所有声道都能够用于产生环绕声效果和直接声效果。
尽管声音的定位性在某种程度上说是有利的,当声音重放时可以大大提高真实性,但是使诸如杜比AC-3和Pro-Logic一类系统的性能受到限制。例如,通过将声音传送到设置在听者周围的五个分立的扬声器可以建立环绕一个听者的声场。但是,听者可能感觉这个环绕声场是由五个分立的点声源发出的声音构成的。在某些环绕声音频系统中,从听者的感觉来说,旨在从一个后扬声器转移到另一个后扬声器的声音似乎跳跃式跨过后面的声舞台。类似地,旨在从左前扬声器转移到左后扬声器的声音仿佛是跳跃式跨过左边的声舞台。
虽然声音再现系统,特别是具有环绕声性能的系统已经取得了进步,但是仍然需要有一种音频增强系统,这种系统能够提高这些声音再现系统的真实性。本申请中提出的音频增强系统就满足这种需要。
                       发明概要
本申请公开了一种音频增强系统和方法,该系统和方法主要用于环绕声音频系统,如杜比AC-3五声道音频系统,杜比Pro-Logic系统,或类似的多声道环绕声系统。在一个典型的多声道音频增强系统中,用于前扬声器和后扬声器的四个独立的音频信号有选择地组成两对。每一对音频信号用于产生相对于初始音频信号对改善的一对合成音频信号。
对于合成音频信号改善的声级和形式可以变化以强化初始音频信号的某些声学特征。然后有选择地将由不同对初始音频信号产生的各个合成音频信号进行组合以生成复合音频输出信号。然后直接将复合音频输出信号传送到一个扬声器以实现声音再现。通过结合所选择的合成音频信号以类似的方式产生其余的音频输出信号。这样生成一组四个音频输出信号,它们至少作为某些初始音频信号的函数得以增强。
                       附图简介
通过以下结合附图所作的详细介绍可以更加清楚地了解本发明的这些和其它方面、特征和优点,在所说附图中:
图1为用于环绕声环境中的一种音频增强系统的示意性方块图。
图2为用于环绕声环境中的一种音频增强系统的另一个实施例的示意性方块图。
图3为优选的音频增强系统的总体结构方块示意图。
图4A为使用图1所示发明的一个加法电路的示意简图。
图4B为使用图2所示发明的一个加法电路的示意简图。
图5为一种音频增强系统的示意性方块图,该系统可以如图1和图2所示方式使用以产生展宽的立体影像。
图6为应用于环绕空间立体声信号信息的均衡曲线频率响应图表,该图表从图4所示音频增强系统获得。
图7为图4所示音频增强系统的第一实施例的示意图。
图8为图4所示音频增强系统的第二实施例的示意图。
               优选实施例的详细描述
图1为用于环绕声环境中的多声道音频增强系统10的一个方块示意图。音频增强系统10与具有多声道音频源信号的一个立体声信号解码器12协同工作。图1所示的解码器12是一个六声道音频解码器,其输出最终驱动六扬声器组的音频信号。六个声道中的每一个用于六个扬声器中不同的一个。特别是,表示中心信息(例如对话)的音频源信号14最终被传送到一个中央扬声器16。包含低频声音的音频源信号18最终被传送到一个亚低音扬声器20。
立体声解码器12的其余四个音频源信号20、22、24和26分别表示最初准备传输(经过放大)到一个左后扬声器28、一个左前扬声器30、一个右前扬声器32、和一个右后扬声器34的信号。但是,如图1所示,音频源信号20、22、24和26却有选择地传送到一组音频增强装置40、42、44和46。这样,所有的源信号都分成对,使得没有两对是相同的,但是两个独立的信号对可以包含相同的源信号。
具体地说,一个第一音频增强装置40接收左前源信号22(Lf)和右前源信号24(Rf)。音频增强装置40输出一个第一增强合成信号50(Lf1)和一个第二增强合成信号52(Rf1)。按照相同的方式,但是输入信号不同,一个第二音频增强装置42接收左后源信号20(Lr)和源信号22(Lf)。然后,装置42输出第一和第二合成信号54(Lf2)和56(Lr1)。
同样,一个第三音频增强装置44接收源信号24(Rf)和右后源信号26(Rr)。装置44输出第一和第二合成信号58(Rf2)和60(Rr1)。最后,一个第四音频增强装置46接收源信号Lr和源信号26(Rr)。装置46输出第一和第二合成信号62(Lr2)和64(Rr2)。为了便于解释和清楚起见,将增强系统10表示为具有四个独立的音频增强装置40、42、44和46。本领域技术人员可以理解,最后的合成信号可以由一个音频增强装置接收全部四个源信号并对它们进行适当的变换而生成。
将所选择的合成信号对(从不同的信号对获得)在四个加法结点70、74、78、或82中的一个进行复合。具体地说,就是在加法结点70将合成信号Lf1和Lf2结合生成用于驱动左前扬声器30的一个复合增强输出信号72(Lf(enhanced))。在加法结点74,将合成信号52(Rf1)和58(Rf2)结合以生成用于驱动右前扬声器32的一个复合增强输出信号76(Rf(enhanced))。复合增强输出信号80(Lr(enhanced))驱动左后扬声器28。信号Lr(enhanced)是在加法结点78由合成信号Lr1和Lr2产生的。最后,合成信号60(Rr1)和64(Rr2)在加法结点82结合生成一个复合增强输出信号84(Rr(enhanced))。总而言之,Lf(enhanced)=K1(Lf1+Lf2);Rf(enhanced)=K2(Rf1+Rf2);Lr(enhanced)=K3(Lr1+Lr2);  和Rr(enhanced)=K4(Rr1+Rr2),其中每个合成信号是作为两个音频源信号的函数产生的。独立变量K1-K4是由加法结点70、74、78和82的增益(如果有的话)确定的。
在工作中,音频增强系统10生成一组四个音频输出信号72、76、80和84。将这四个增强音频信号中的每一个作为一组初始源信号20、22、24和26的函数进行变换。增强系统10根据解码的经过前置放大的音频源信号工作,这些音频源信号是用于设置在一个听环境中的多个独立扬声器的。所以,所得的增强输出信号72、76、80和84在由扬声器28、30、32和34再现之前必须经过放大。如图1所示声音信号放大器不是独立的,但是也可以包含在扬声器28、30、32和34中。
增强输出信号Lf(enhanced)是由信号Lf1和Lf2复合产生的。信号Lf1是由音频增强装置40作为两个音频源信号Lf和Rf的函数产生的。M1(Lf、Rf)其中M1代表音频增强装置40的增强量和增强类型。各种音频增强装置和方法都可以应用于装置40。但是,在一个优选实施例中,装置40产生一个信号Lf1,该信号与信号Rf1结合,当分别通过扬声器30和32播放这些信号时,它们展宽了所感觉到的空间影像。这样在扬声器30和32之间生成一个更加扩散的声场,并且消除了能够降低真实性的过度的定向性。
除了合成信号Lf1,音频增强装置42还产生一个第二合成信号Lf2。信号Lf2是作为音频源信号20,Lr,和22,Lf的函数产生的。M2(Lr、Lf)其中M2代表音频增强装置42的增强量和增强类型。信号Lf2表示一对声信号之一(另一个为Lr1),根据一个优选实施例,当经过放大并在扬声器28和30播放时,这一对信号产生一个增强的空间影像。
所以,复合增强左输出信号,Lf(enhanced)包含信号Lf1和信号Lf2的一部分。使得Lf(enhanced)=K1(M1(Lf、Rf)+M2(Lr、Lf))。于是,从扬声器30产生的声音依赖于音频源信号Lr和Rf,如果没有增强系统10,这两个音频源信号将直接分别传送到扬声器28和32。因此,信号Lf(enhanced)产生改善的空间影像,其依赖于前音频源信号,Lf和Rf,和左侧音频源信号,Lr和Lf
按照同样的方式,由从增强装置40、42、44、和46输出的合成信号产生复合增强输出信号Rf(enhanced)、Lr(enhanced)、Rr(enhanced)。具体地说,信号Rf(enhanced)是前源信号Lf和Rf,以及右侧源信号Rf和Rr的函数;使得Rf(enhanced)=K2(M3(Lf、Rf)+M4(Rf、Rr))。信号Lr(enhanced)是左侧源信号Lf和Lr以及后侧源信号Lr和Rr的函数;使得Lr(enhanced)=K3(M5(Lf、Lr)+M6(Lr、Rr))。信号Rf(enhanced)是右侧源信号Rf和Rr以及后侧源信号Lr和Rr的函数,使得Rr(enhanced)=K4(M7(Rf、Rr)+M8(Lr、Rr)),K1-K4分别代表组合结点(70、74、78、82)的增益,并且M1-M8代表源信号对的音频增强装置(40、42、44、46)的增强量和增强类型。
根据图1所示的实施例,分别传输(经过放大)到各个扬声器28、30、32和34的每个音频输出信号是音频源信号20、22、24和26中至少三个的函数。因此,通过一个扬声器播放的给定音频输出信号变为依赖于用于(在增强之前)其它附近或邻近扬声器的初始源信号。通过以这种方式将输出信号混合,可以实现改善的声音感觉。根据所使用的音频增强装置的声级和类型,可以消除扬声器点源的感觉,而是形成可以感觉到的扬声器阵列。于是,原来只是“环绕”声环境的声音再现环境可以变为使听者觉得自然或身临其境的环境。
除了对源信号20、22、24和26的增强,信号14和16可能需要进行声级调整以使这些信号的声级与增强源信号20、22、24和26的声级均衡。这种声级调整可以是预设的和固定的,或者是由系统10使用者手动调整的。声级控制装置对于本领域技术人员来说是公知的,可以设置在解码器12与用于驱动相应的扬声器的信号放大器(未示出)之间。
在某些环绕声系统中,例如在杜比Pro-Logic系统中,使用一个单独的音频信号来模拟环绕效果。这个单独的信号传输到两个后侧扬声器。在这样的系统中,图1所示的信号Lr和Rr是相同的,不需要后侧音频增强单元46。
图2表示一个多声道音频增强系统100,该系统使用了上面结合图1所述的技术。此外,该增强系统100具有两个辅助音频增强装置102和104。与其它装置40、42、44和46一样,增强装置102和104产生对最后的音频输出信号72、76、80和84有贡献的合成信号。这些合成信号是作为它们各自的源信号的函数确定的。
与其它四个增强装置40、42、44和46不同,装置102和104产生交迭音频增强。交迭音频增强将声音作为由彼此对角放置的扬声器播放的那些源信号的函数进行变换。具体地说,源信号Lr和Rf输入增强装置102中。所得的合成信号Rf3和Lr3由装置102产生。信号Rf3在加法结点110与另外两个合成信号Rf1和Rf2结合。这样产生了一个复合输出信号112(Rf(enhanced)),该信号作为全部四个源信号20、22、24和26的函数加以变换。类似地,信号Lr3在结点114结合以产生复合信号116(Lr(enhanced)),该信号驱动(在经过放大之后)左后扬声器28。
第二交迭增强装置104的工作与装置102相似。具体地说,装置104接收用于对角设置在扬声器30和34的源信号Lf和Rr。装置104产生一个第一合成信号120(Rr3),该信号在加法结点122与Rr1和Rr2结合以产生最终的输出信号124(Rr(enhanced)。同样,第二复合信号126在加法结点128与Lf1和Lf2结合以产生最终的输出信号130(Lf(enhanced))。
图3表示与主系统132和存储媒体装置134连接的多声道音频增强系统10。在一个优选实施例中,主系统132是一个音频接收器,其与环绕声系统例如杜比实验室五声道数字系统(名称为AC-3)兼容。在另一个实施例中,主系统132是一个音频接收器,其与杜比实验室的Pro-Logic系统兼容。此外,虽然多声道环绕系统如AC-3是优选的,但是本发明并不局限于环绕声系统,而可以用于增强各种多声道系统。在其它实施例中,例如主系统132还可以包括一个激光盘系统、一个录像带系统、一个立体声接收器、一个电视接收器、一个计算机声音系统、一个数字信号处理系统、一个Lucasfilm-THX娱乐系统或诸如此类的系统。
虽然优选实施例中的存储媒体装置134产生AC-3兼容位流,其它实施例可以使用各类存储媒体和格式。AC-3位流的格式由杜比实验室定义,对于本领域技术人员来说是众所周知的。因此,本领域技术人员能够认识到存储媒体装置134可以包括各种光存储媒体、磁性存储媒体、计算机可存取系统或诸如此类的系统。例如,存储媒体装置134可以包括激光盘播放器、数字视频装置、压缩光盘、像带、音带、磁性记录磁道、软盘、硬盘,等。此外,存储媒体装置134的其它实施例支持各种数据格式如模拟频率调制、脉冲编码调制和诸如此类的格式。另外,存储媒体装置134可以是有线广播系统、互交式视频装置、计算机网络、因特网、电视广播系统、高清晰度电视广播系统或类似系统的一部分。
在优选实施例中,多声道信号解码器12经由通信总线136从主系统132或存储媒体装置134接收声音数据。例如包含AC-3位流的复合无线电频率信号从存储媒体装置经由通信总线136传送到多声道音频信号解码器12。但是,一个本领域技术人员应当认识到通信总线136可以用于载送各种音频信号格式。
在其它实施例中,主系统132、存储媒体装置134、和通信总线136可以集成在一个装置中。例如,一个数字视频装置可以将主系统132、存储媒体装置134和通信总线136集成为一体。此外,如在下文中详细讨论的,其它实施例可以将主系统132、存储媒体134和系统10或100与分立的模拟元件、一个半导体基片,借助于软件,集成在一个数字信号处理(DSP)芯片中,即,固件,或其它数字格式。例如,一个音频接收器可以包括一个数字信号处理器,该处理器通过通信总线136存取存储媒体134、执行主系统134功能和执行系统10或100的功能以产生增强信号。
图4A和图4B表示图1和图2中所示的结点。图1中的两信号加法结点70由图4A所示的电路表示。其余的结点74、78、和82除了所接收的具体输入信号以外,其它方面与结点70相同。加法结点70用作具有一个运算放大器142的一个标准反相放大器。放大器142接收信号Lf1和Lf2。然后将Lf1和Lf2在放大器142的一个反相端144结合,或相加。电路70的相对增益由电阻146、148和150确定。在一个优选实施例中,各个信号Lf1和Lf2的增益是一致的。但是,根据具体的声音环境和听者的个人喜好需要对增益进行微量调节。
图4B表示图2所示加法结点128。结点128和结点70同样由加法、反相放大器电路构成。但是,结点128具有一个运算放大器152,其将三个输入信号Lf1、Lf2、和Lf3,而不是两个输入信号结合在一起。
图1和图2所示的音频增强技术改善了环绕声系统的现场效果。图1和图2所示的系统10和100表示具有设置在声舞台的前后区域的四个主扬声器的一种典型的家庭声音再现环境。但是,本发明的构思可以应用于具有可以放置在声舞台任意位置的辅助扬声器的声环境。例如,扬声器可以放置在侧壁或者甚至设置在彼此不同或与听者不同的高度。此外,本发明的构思还可以应用于可能被选择增强的任何一对音频源信号。然后将所得的合成信号与由第二对音频源信号生成的其它合成信号结合。相同的过程可以对由立体声信号解码器或类似装置产生的每一对可能的音频源信号持续不断地进行。
系统10和100可以以模拟分立形式、半导体基片;通过软件,集成在一个数字信号处理(DSP)芯片中,即,固件,或者以某种其它数字格式实施。
图1所示的多声道增强系统10、或图2所示的增强系统100,可以采用各种用于产生合成音频信号的音频增强装置。例如,装置40、42、44、46、102和104可以使用时间延迟技术,相移技术、信号均衡、或所有这些技术的结合以实现所需的声音效果。另外,各个增强装置40、42、44、46、102、和104所应用的音频增强技术不必相同。
根据本发明的一个优选实施例,图1所示的增强装置40、42、44、和46使一对立体声信号中存在的环绕空间信号分量得以均衡。结果,许多从给定扬声器发出的声音将不会定位在该扬声器。此外,跨越声舞台从一个扬声器到另一个扬声器的声音将逐渐变化,就好象存在附加的扬声器一样。环绕空间信号分量表示一对音频信号之间的差值。所以由一对音频信号获得的环绕空间信号分量常常被称为“差值”信号分量。
下面结合图5-8讨论适合使用本发明的一种音频增强装置(和实现方法)的一个实例。这种装置通过增强环绕空间声音信息扩展和混合了由一对立体声信号产生的感觉的声舞台。图5-8所示的音频增强装置与1995年4月27日提出的待审查申请(申请号为08/430751)中公开的装置类似,该专利申请如同完全重述一样结合在本申请中。在授予Arnold 1.Klayman的美国专利US-4738669和US-4866744中公开的相关音频增强装置也如同完全重述一样结合在本申请中。
首先参见图5,其中所示为表示一种音频增强装置160的一个功能模块图。在本发明的一个优选实施例中,装置160代表各个装置40、42、44、46、102和104。增强系统160首先在输入端162和164分别接收第一和第二立体音频源信号(S1和S2)。这些立体音频源信号传送到一个第一加法装置166,例如一个电子加法器中。加法装置166在其输出端68产生表示在输入端162和164接收的立体音频源信号之和的一个和信号。
信号S1还传送到一个音频滤波器170,而信号S2传送到另一个独立的音频滤波器172。滤波器170和172的输出传送到一个第二加法装置174中。加法装置174在一个输出端176产生一个差信号。该差信号表示在经过滤波的信号S1和S2中存在的环绕空间信息。滤波器170和172为预处理高通滤波器,它们用于避免对立体声信号对的环绕空间分量中存在的低音部分进行过度放大。
加法装置168和加法装置174构成一个加法网路,其输出信号分别传送到独立的声级调节装置180和182。装置180和182实际上是电位计或类似的可变阻抗装置。装置180和182的调节通常是由使用者手动进行的以控制输出信号中和信号与差信号的基本声级。这使得使用者可以根据所产生声音的类型按照使用者个人的喜好定制立体声增强的声级和信号方式。和信号声级的增加强化在位于一对扬声器之间的中央舞台产生的声音信号。相反,差信号声级的增加强化形成更宽广的声舞台感觉的环绕空间声音信息。在某些音乐类型和系统配置参数已知的音频装置中,或者在无法进行手动调节的情况下,调节装置180和182可以去掉,和信号与差信号声级固定在一个预定值。
装置182的输出从一个输入端186传送到一个均衡器184中。均衡器184将在输入端186输入的差信号进行谱整形。这是通过对所示的差信号分别应用一个低通音频滤波器188、一个高通音频滤波器190、和一个衰减电路192实现的。滤波器188、190和电路192的输出信号分别通过路径194、196、和198输出。
通过路径194、196和198传送的经过变换的差信号构成经过处理的差信号(S1-S2)p的分量。将这些分量传送到由加法装置200和202构成的一个加法网路中。加法装置200还接收从装置180输出的和信号,以及初始立体音频源信号S1。这五个信号全部输入加法装置200中以产生一个增强的音频输出信号204。
类似地,从均衡器184输出的经过变换的差信号、和信号、以及信号S2在加法装置202中结合以产生一个增强的音频输出信号206。沿路径194、196和198输入的差信号的各个分量在加法装置202中反相以产生用于一个扬声器的经过处理的差信号(S2-S1)p,该信号与其它扬声器的信号相差为180度。
当加法装置200和202结合经过滤波和衰减的差信号分量以产生音频输出信号204和206时,环绕空间信号信息实现全频谱整形,即正则化。因此,音频输出信号204和206产生大大改善的音频效果,因为环绕空间声音被有选择地强化以将听者完全置于一个再现的声舞台中。音频输出信号204和206由下列数学公式表示:
AUDIO OUT(1)-S1+K1(S1+S2)+K2(S1·S2)p        (1)
AUDIO OUT(2)-S2+K1(S1+S2)·K2(S1·S2)p       (2)
应当指出,上述公式中的输入信号S1和S2一般为立体音频源信号,但是,也可以是由一个单声道源合成的。在也是授予ArnoldKlayman的美国专利US-4841572中公开了可以与本发明结合使用的这样一种立体声合成方法,该专利以引用方式结合在本申请中。此外,如在美国专利US-4748669中所讨论的,上式表示的增强输出信号可以利用磁学或电学方法存储在各种记录媒体,例如聚乙烯唱片、压缩光盘、数字或模拟音带、或计算机数据存储媒体中。然后可以利用一种常规的立体声再现系统再现存储的增强音频输出信号以实现同样的立体声影像增强效果。
上述公式中的信号(S2-S1)p表示已经根据本发明频谱整形的经过处理的差信号。根据一个优选实施例,差信号的变换由图6所示的频率响应表示,其标记为增强关系曲线或归一化曲线210。
该关系曲线210表示为按分贝测量的增益相对于以对数格式表示的可听频率的函数。根据一个优选实施例,该关系曲线210在位于大约125Hz的一个点A处具有大约7dB的峰值增益。关系曲线210在125Hz上下以大约每倍频程6dB的速率下降。关系曲线210在大约2.1Khz的点B处对差信号施加-2dB的最小增益。增益在2.1Khz以上以每倍频程6dB的速率增大直到大约7Khz的点C为止,然后继续增大直到大约20Khz,即接近人耳可以听到的最高频率处。虽然关系曲线210的整体均衡是利用高通和低通滤波器实现的,但是还可以将在点B具有最小增益的一种带阻滤波器与一个高通滤波器结合使用以获得相似的关系曲线。
在一个优选实施例中,关系曲线210的点A与点B之间的增益差理论上设计为9dB,点B与点C之间的增益差应当为大约6dB。这些数字是设计约束条件,实际的数字可以根据所使用的器件的不同而对于各个电路不同。如果信号声级装置180和182是固定的,则关系曲线210将保持恒定。但是,装置182的调节会使点A和点B,点B和点C之间的增益差略微变化。在一个环绕声环境中,比9dB大得多的增益差可能会降低听者对中频段清晰度的感觉。
利用一个数字信号处理器实现关系曲线在多数情况下更加准确地反映了上述的设计约束条件。对于采用模拟手段实现的情况,如果对应于点A、B和C的频率、和对于增益差的限制,变化±20%,是可以接受的。与理想性能的这种偏差仍然能够产生所需的立体声增强效果,尽管不如最佳效果。
如从图6可以看出的频率,低于125Hz的差信号在关系曲线210上表现为急剧下降。这种下降是为了避免非常低频,即低音频率的过度放大。对于许多种声音再现系统,特别是环绕声系统,对于这种低频范围的音频差信号的放大会产生具有太多低音频响应的令人不快和不真实的影像。
由本发明产生的立体声增强特别适合于利用高质量立体声唱片。特别是,与以往的模拟音带或聚乙烯套唱片不同,现在的数字存储的录音包含更宽频谱包括低音频段的差信号,即立体声信息。所以不需要对这些频段内的差信号进行过度放大以获得足够的低音频响应。
图7表示用于生成扩展的立体声影像的一个电路220。音频增强电路220对应于图5所示的装置160。在图7中,源信号S1通过一个电阻222、一个电阻224、和一个电容226。源信号S2通过一个电容228和电阻230和232。
电阻222与放大器236的一个非反相端234相连。同一个非反相端234还与电阻232和电阻238相连。放大器236由一个加法放大器构成,其具有通过一个电阻242与地连接的一个反相端240。放大器236的一个输出端244通过一个反馈电阻246与反相端240相连。在输出端244产生表示第一和第二源信号之和的一个和信号(S1+S2),并传送至一个可变电阻250的一端,该电阻的另一端接地。为了利用放大器236将源信号S1和S2进行适合的相加,在一个优选实施例中电阻222、232、238和246的值都是33.2千欧姆,而电阻238可取的是16.5千欧姆。
第二放大器252由一个“差分”放大器构成。该放大器252的反相端254与一个电阻256相连,该电阻256又与电容226串联连接。类似地,放大器252的一个正端258通过与电阻260和电容228串联连接接收信号S2。正端258还通过一个电阻262接地。放大器252的一个输出端264通过一个反馈电阻266与反相端相连。输出端264还与一个可变电阻268相连,该电阻另一端接地。虽然放大器252由一个“差分”放大器构成,它的功能可以表征为将右输入信号与负的左输入信号相加。因此,放大器236和252构成用于分别产生一个和信号和一个差信号的加法网路。
分别由元件226/256和228/260构成的两个串联的RC网路作为高通滤波器工作,它们将左右输入信号中的非常低频率,或低音频率衰减。为了获得图6所示关系曲线210中适合的频率响应,高通滤波器的截止频率wc或-3dB频率应当为大约100Hz。所以,在一个优选实施例中,电容226和228的电容值应当约为0.1微法拉,电阻256和260的阻抗值约为33.2千欧姆。然后,通过选择反馈电阻266和衰减电阻262的值使得:
R 120 R 128 = R 116 R 124 - - - ( 3 )
输出264表示放大两倍的一个差信号(S2-S1)。作为对输入信号的高通滤波的结果,输出端264的差信号具有衰减的低于125Hz的低频分量,其降低速率为每倍频程6dB。除了使用滤波器170和172(图5所示)以外,在均衡器184内(图5所示)可以对差信号的低频分量滤波,以分别对输入的源信号进行滤波。但是,因为在低频下使用的电容必须非常大,可取的是在输入级进行这种滤波以避免加载前面电路。
可变电阻250和268,它们可以是简单的电位计,通过设置滑动触片270和272分别进行调节。在增强输出信号中存在的环绕空间信号分量,即,差信号的电平可以通过对滑动触片272的手动、遥控、或自动调节来控制。类似地,在增强输出信号中存在的单声道信号分量,即和信号的电平可以由滑动触片270的位置部分确定。
在滑动触片270输出的和信号通过一个串联电阻278传送到一个第三放大器276的反相输入端274。在滑动触片270输出的同一和信号还通过另一个串联电阻284传送到一个第四放大器282的一个反相输入端280。放大器276由一个差分放大器构成,其反相端274通过一个电阻286接地。放大器276的输出端288也通过一个反馈电阻290与反相端274相连。
放大器276的正端292提供了一个公共节点,该节点与一组加法电阻294相连,还通过一个电阻296接地。从滑动触片272输出的电平调节差信号通过路径300、302和304传送到这组加法电阻294。这样在点A、B和C分别产生三个独立调节的差信号。然后如图所示将这些经过调节的差信号通过电阻306、308和310输入正端292。
在路径300中的A点,从滑动触片272输出的经过电平调节的差信号不经任何频率响应变换传送到电阻306。因此,A点的信号仅仅由于电阻206与电阻296之间的分压而衰减。理论上,在节点A的衰减电平相对于在节点B的0dB基准为-9dB。衰减量由阻抗为100千欧姆的电阻306和阻抗为21千欧姆的电阻296确定。在节点B的信号表示在接地的电容312两端的经过电平调节的差信号的滤波信号。电容312和电阻314构成的RC网络象一个低通滤波器一样工作,其截止频率由网络的时间常数确定。根据一个优选实施例,这个低通滤波器的截止频率,或-3dB频率约为200Hz。因此,可取的是电阻314为1.5千欧姆,电容为.47微法拉,驱动电阻308为33.2千欧姆,反馈电阻290为121千欧姆。
在环绕声系统中,常常从亚低音扬声器和附加扬声器中产生丰富的低音或低频信息。所以,可能需要独立控制在节点B产生的低频差信号的电平。本领域技术人员应当清楚,这可以通过将放大器252的输出与一个第二可变增益电阻相连而实现,该可变增益电阻代替滑动触片272,用于直接驱动电阻314。这样,就可以保持低通滤波器的时间常数,并且能够更加精确地和直接地控制差信号的较低频率。
在节点C,经过高通滤波的差信号经由驱动电阻310传送到放大器276的非反相端292。该高通滤波器的截止频率大约为7Khz,相对于节点B的增益为-6dB。具体地说,连接在节点C与滑动触片272之间的电容316的值为4700皮法,连接在节点C与地之间的电阻318的值为3.74千欧姆。
在电路节点A、B和C产生的经过变换的差信号还分别通过电阻320、322和324传送到放大器282的反相端280。放大器282为一个反相放大器,其正端332接地,一个反馈电阻334连接在端子280与输出端336之间。为了由反相放大器282实现对信号的适当相加,电阻320的阻抗为100千欧姆,电阻322的阻抗为33.2千欧姆,电阻324的阻抗为44.2千欧姆。音频增强系统220中电阻和电容的精确值可以变换,只要能够保持适合的比值以实现正确的增强量即可。可能影响无源器件的所需值的其它因素包括增强系统220的功率要求和放大器236、252、276和282的性能。
在工作中,经过变换的差信号重新结合以产生由经过处理的差信号构成的输出信号。具体地说,在节点A、B和C产生的差信号分量在差分放大器276的端子292,和在放大器282的端子280重新结合以形成经过处理的差信号(S1-S2)p。信号(S1-S2)p表示已经通过应用图6所示的关系曲线210得到均衡的差信号。理论上,关系曲线表征为在7Khz增益为4dB,在125Hz增益为7dB,在2100Hz增益为-2dB。
放大器276和282为混频放大器,它们将经过处理的差信号与和信号以及左输入信号或右输入信号结合。从放大器276输出端288输出的信号通过一个驱动电阻340传送以产生一个增强的音频输出信号342。类似地,放大器282输出端336输出的信号通过一个驱动电阻344传输以产生一个增强的音频输出信号346。驱动电阻的阻抗通常为200欧姆的量级。增强的输出信号342和346可以用上述数学公式(1)和(2)表示。公式(1)和(2)中的K1值由滑动触片270的位置控制,K2值由滑动触片272的位置控制。
图7中所示的所有分立器件都可以利用在微处理器中运行的软件,或一个数字信号处理器以数字形式实现。因此,分立的放大器、均衡器、或其它器件都可以用软件或固件的相应部分实现。
图8中表示了音频增强装置220的一个变型实施例。图8所示装置350与图7所示相似,表示用于将关系曲线210(图6所示)应用于一对立体声音频信号的另一种方法。音频增强系统350采用了用于产生和信号和差信号的另一种加法网络。
在变型实施例350中,音频源信号S1和S2最终输入到混频放大器352和354的负输入端中。但是,为了产生和信号和差信号,信号S1和S2首先分别通过电阻356和358传输到一个第一放大器362的一个反相端360中。放大器362为一个反相放大器,其具有一个接地输入端364和一个反馈电阻366。在输出端368产生和信号,或在这种情况下产生反相和信号-(L+R)。然后在用可变电阻370进行电平调节之后将和信号分量传送到其余电路中。因为在变型实施例中和信号是反相的,所以它传送到放大器354的非反相端372。因此,放大器354需要设置在非反相输入端272与地电位之间的一个电流平衡电阻376。类似地,在反相输入端378和地电位之间设置一个电流平衡电阻376。在变型实施例中对于放大器354的这些微小的变换对于实现正确的加和以产生增强的音频输出信号380是必须的。
为了产生一个差信号,一个反相加法放大器383在反相输入端384接收信号S1与和信号。更具体地说,源信号S1在到达输入端384之前通过一个电容386和一个电阻388。类似地,输出端368的反相和信号通过一个电容390和一个电阻392。由器件386/388和390/392构成的RC网络如结合优选实施例所述一样对音频信号进行低频滤波。
放大器382具有一个接地的非反相端394和一个反馈电阻396。在输出端398产生一个差信号S2-S1,其中电阻356、358、366和388的阻抗值为100千欧姆,电阻392和396的阻抗值为200千欧姆,电容390的电容值为0.15微法拉,电容386的电容值为0.33微法拉。然后用可变电阻400调节差信号并传送到其余电路。除了上述内容之外,图8中所示其余电路与图7所示优选实施例相同。
图7所示的整个音频增强系统220使用最少的器件。系统220可以只用四个有源器件构成,通常包括对应于放大器236、252、276和282的运算放大器。这些放大器很容易用单个半导体芯片的四方形封装制成。构成音频增强系统220所需的附加器件只包括29个电阻和4个电容。图8所示系统350也可以用一个四边形(quad)放大器、4个电容、和仅仅29个电阻,包括电位计和输出电阻制成。因为其独特的设计,音频增强系统220和350可以占用最小的器件空间以最小的成本制造,并且能够对现有立体声影像产生令人难以置信的扩展。事实上,整个系统220可以由一个半导体基片,或集成电路构成。
除了图7和图8所示的实施例,还有一些令人信服的其它方法可以连接相同的器件和获得如本申请所述对立体声信号的深度增强效果。例如,由差分放大器构成的一对放大器可以分别接收一对源信号,还可以分别接收和信号。这样,该放大器可以分别产生一个第一差信号L-R、和一个第二差信号R-L。
此外,音频增强装置的另外一些实施例可以完全不独立地产生差信号。重要的是将由差信号表示的环绕空间信息进行适当的均衡。这可以用许多方法实现,而不必产生差信号。例如,差信号信息的分离以及其后的均衡可以数字化处理,或者在放大器电路的输入级同时进行。
利用增强系统220和350对于差信号的深度变换已经经过仔细地设计以对于各种应用和输入音频信号达到最佳结果。使用者的调节目前只包括对输入调节电路中的和信号和差信号电平的调节。但是,可以使用电位计代替电阻314和318以使得能够对差信号进行自适应均衡。
可以用作装置40、42、44、46、102、和104的其它音频增强装置和方法包括如在美国专利US-4355203(以引用方式全文结合在本申请中)公开的时间延迟技术,和在美国专利US-5105462(以引用方式全文结合在本申请中)中公开的相移技术。
通过以上描述和附图介绍,已经表明本发明与现有的立体声再现和增强系统相比具有很大的优点。虽然以上详细描述已经表明、阐述、和指出了本发明的基本的新颖特征,但是应当理解,本领域技术人员对于图示装置的结构和细节可以作出各种省略、替代和变换。所以,本发明的范围应当仅由以下的权利要求书限定。

Claims (37)

1、一种音频增强装置(10),其用于扩展环绕声再现环境的感知空间影像,所说音频增强装置(10)包括:
一个第一音频增强器(40),其用于接收一个包括一个左前音频源信号(22)和一个右前音频源信号(24)的第一对音频源信号(22、24),所说第一音频增强器(40)处理所说第一对音频源信号(22、24)以产生一对第一合成信号(50、52);
一个第二音频增强器(42),其用于接收一个包括一个左后音频源信号(20)和所说左前音频源信号(22)的第二对音频源信号(20、22),所说第二音频增强器(42)处理所说音频源信号(20、22)以产生一对第二合成信号(54,56);
一个第三音频增强器(44),其用于接收一个包括所说右前音频源信号(24)和一个右后音频源信号(26)的第三对所说音频源信号(24、26),所说第三音频增强器(44)处理所说音频源信号(24、26)以产生一对第三合成信号(58,60);
一个第一组合结点(70),所述组合结点(70)与所述组合信号(50、54)通信,所述组合结点(70)组合所说合成信号(50、54)以产生一个音频输出信号(72),使得当用所说音频输出信号(72)驱动一个扬声器(30)时,所说音频输出信号(72)能够扩展一个感知的空间影像;和
一个第二组合结点(74),所述组合结点(74)与所述组合信号(52、58)通信,所述组合结点(74)组合所说合成信号(52、58)以产生一个音频输出信号(76),使得当用所说音频输出信号(76)驱动一个扬声器(32)时,所说的一个音频输出信号(76)能够扩展一个感知的空间影像。
2、如权利要求1所述的音频增强装置(10),还包括一个第一交迭增强器(104),其用于接收一个包括所说左前音频源信号(22)和所说右后音频源信号(26)的第四对音频源信号(22、26),其中所说第四对音频源信号(22、26)与所说第一、第二和第三对所说音频源信号(20、22、24、26)不同,所说第一交迭增强器(104)处理所说第四对音频源信号(22、26)以产生一对第一交迭合成信号(120、126)。
3、如权利要求2所述的音频增强装置(10),其中一个组合结点(128)将两个所说合成信号(50、54)与所说第一交迭合成信号(126)组合以产生一个音频输出信号(130)。
4、如权利要求1所述的音频增强装置(10),其中所说音频增强器(40、42、44)之一通过在两个所说音频源信号(20、22、24、26)中存在的环绕空间信息中插入一个时间延迟变换所说环绕空间信息。
5、如权利要求1所述的音频增强装置(10),其中所说音频增强器之一(40、42、44)通过使两个所说音频源信号(20、22、24、26)中存在的环绕空间信息相移来变换所说环绕空间信息。
6、如权利要求1所述的音频增强装置(10),其中所说音频增强器之一(40、42、44)通过有选择地加强在两个所说音频源信号(20、22、24、26)中存在的环绕空间信息的相对幅值变换所说的环绕空间信息。
7、如权利要求1所述的音频增强装置(10),其中所说组合结点(70)将所说合成信号(50、54)相加以产生所说音频输出信号(72。
8、如权利要求1所述的音频增强装置(10),其中所说组合结点之一(70、74)包括一个反相放大器。
9、如权利要求1所述的音频增强装置(10),其中所说组合结点(70、74)之一包括一个运算放大器。
10、如权利要求1所述的音频增强装置(10),其中所说多个音频源信号(20、22、24、26)包括一个左后音频信号(20)、一个左前音频信号(22)、一个右前音频信号(24)和一个右后音频信号(26)。
11、如权利要求10所述的音频增强装置(10),其中所说第一音频增强器(40)用于产生多个前合成信号(50、52),所说第二音频增强器(42)用于产生多个左合成信号(54、56),所说第三音频增强器(44)用于产生多个右合成信号(58、60)。
12、如权利要求11所述的音频增强装置(10),还包括一个用于将所说右合成信号(60)与一个后合成信号之一(64)组合以产生一个右后音频输出信号(84)的第三组合结点(82)。
13、如权利要求12所述的音频增强器(10),其中它还包括:
一个第四音频增强器(46),其用于接收所说左后音频信号(20)和所说右后音频信号(26),所说第四音频增强器(46)处理所说左后音频信号(20)和所说右后音频信号(26)以产生多个后合成信号(62、64),并且其中所说组合结点(82)将所说右合成信号之一(60)与所说后合成信号之一(64)组合以产生一个右后音频输出信号(84)。
14、如权利要求13所述的音频增强装置(10),还包括一个第四组合结点(78),其将所说左合成信号之一(56)与所说后合成信号之一(62)组合以产生一个左后音频输出信号(80)。
15、如权利要求14所述的音频增强装置(10),还包括一个第二交迭增强器(102),其与所说右前音频信号(24)和所说左后音频信号(20)通信,所说第二交迭增强器(102)处理所说右前音频信号(24)和所说左后音频信号(20)以产生多个交迭合成信号(106,108)。
16、如权利要求15所述的音频增强装置(10),其中一个组合结点(114)将所说交迭合成信号(108)、所说左合成信号(56)和所说后合成信号(62)结合以产生所说左后输出信号(116)。
17、用于扩展声音信号的感知空间影像的一种计算机系统,所说计算机系统包括:
一个计算机处理器(132),其用于存取存储在一个计算机可存取存储媒体(134)中的音频数据,所说计算机处理器(132)还用于将所说音频数据传送到一条数据总线(136);
与所说数据总线(136)通信的一个音频解码器(12),所说音频解码器(12)用于产生至少四个音频源信号(20、22、24、26);
一个第一音频增强器(40),其用于接收一个包括一个左前音频源信号(22)和一个右前音频源信号(24)的第一对音频源信号(22、24),所说第一音频增强器(40)处理所说第一对音频源信号(22、24)以产生一对第一合成信号(50、52);
一个第二音频增强器(42),其用于接收一个包括一个左后音频源信号(20)和所说左前音频源信号(22)的第二对所说音频源信号(20、22),所说第二音频增强器(42)处理所说第二对音频源信号(20、22)以产生一对第二合成信号(54、56);
一个第三音频增强器(44),其用于接收一个包括一个右前音频源信号(24)和一个右后音频源信号(26)的第三对所说音频源信号(24、26),所说第三音频增强器(44)处理所说第三对音频源信号(24、26)以产生一对第三合成信号(58、60);
一个第一组合结点(70),所述组合结点(70)与所述组合信号(50、54)通信,所述组合结点(70)组合所说合成信号(50、54)以产生一个音频输出信号(72),使得当用所说音频输出信号(72)驱动一个扬声器(30)时,所说音频输出信号(72)能够扩展一个感知的空间影像;和
一个第二组合结点(74),所述组合结点(74)与所述组合信号(52、58)通信,所述组合结点(74)组合所说合成信号(52、58)以产生一个音频输出信号(76),使得当用所说音频输出信号(76)驱动一个扬声器(32)时,所说的一个音频输出信号(76)能够扩展一个感知的空间影像。
18、如权利要求17所述的计算机系统,其中所说音频解码器(12)是一个数字信号处理器。
19、如权利要求17所述的计算机系统,其中所说音频信号(20、22、24、26)为AC-3兼容音频信号。
20、如权利要求17所述的计算机系统,其中所说的四个音频信号(20、22、24、26)中的每一个对应于一个分立的、全带宽音频声道。
21、如权利要求17所述的计算机系统,其中所说计算机可存取存储媒体(134)为硬盘。
22、如权利要求17所述的计算机系统,其中所说计算机可存取存储媒体(134)为光盘。
23、如权利要求17所述的计算机系统,其中所说计算机可存取存储媒体(134)为激光盘。
24、如权利要求17所述的计算机系统,其中所说计算机处理器(132)将音频位流传送到所说数据总线(136)。
25、如权利要求17所述的计算机系统,其中所说计算机处理器(132)将AC-3兼容位流传送到所说数据总线(136)。
26、如权利要求17所述的计算机系统,其中所说计算机处理器(132)还处理电视信号。
27、在环绕声再现环境中增强声音的一种方法,其中环绕声环境具有至少四个被指定用于在所说再现环境中被设置在一个听者周围的若干扬声器的分立音频源信号,所说增强方法包括以下步骤:
提供在记录的音频信号回放过程中由一个立体声信号解码器(12)产生的四个音频源信号(20、22、24、26);
变换所说音频信号(20、22、24、26)的不同组合以产生多个合成信号(50、52、54、56、58、60、62、64),其中变换所说音频源信号(22、24)以产生所说合成信号(50、52),变换所说音频源信号(20、22)以产生所说合成信号(54、56),变换所说音频源信号(24、26)以产生所说合成信号(58、60),变换所说音频源信号(20、26)以产生所说合成信号(62、64);和
处理所说合成信号(50、52、54、56、58、60、62、64)的组合以产生四个相应的增强音频信号(72、76、80、84),其中处理所说合成信号(50、54)以产生所说增强音频信号(72),处理所说合成信号(52、58)以产生所说增强音频信号(76),处理所说合成信号(56、52)以产生所说增强音频信号(80),处理所说合成信号(60、64)以产生所说增强音频信号(84),将所说四个增强音频信号(72、76、80、84)中每一个都作为至少三个所说音频源信号(20、22、24、26)的函数加以变换,当将所说增强音频信号(72、76、80、84)放大并由再现环境的扬声器播放时,所说增强音频信号(72、76、80、84)使听者产生如身临其境的声音感觉。
28、如权利要求27所述的方法,其中所说音频源信号(20、22、24、26)包括一个左前信号Lf(22)、一个右前信号Rf(24)、一个左后信号Lr(20)和一个右后信号Rr(26)。
29、如权利要求28所述的方法,其中所说增强音频输出信号之一(72)为用于在环绕声环境中再现的一个增强左前输出信号Lf(enhanced)(72)。
30、如权利要求29所述的一种方法,其中所说增强左前输出信号Lf(enhanced)(72)根据下列公式Lf(enhanced)=K1(M1(Lf,Rf)+M2(Lf,Lr))增强,其中M1为表示音频源信号(LfRf)的变换量和变换类型的独立变量,M2为表示音频源信号(LfLr)的变换量和变换类型的独立变量,K1为确定增强左前输出音频信号(72)增益的独立变量。
31、如权利要求28所述的方法,其中所说增强音频输出信号之一(76)为用于在环绕声环境中再现的一个增强右前输出信号Rf(enhanced)(76)。
32、如权利要求31所述的一种方法,其中所说增强右前输出信号Rf(enhanced)(76)根据下列公式Rf(enhanced)=K2(M3(Lf,Rf)+M4(Rf,Rr))增强,其中M3为表示音频源信号(Lf,Rf)的变换量和变换类型的独立变量,M4为表示音频源信号(Rf,Rr)的变换量和变换类型的独立变量,K2为确定增强右前输出音频信号(76)增益的独立变量。
33、如权利要求28所述的方法,其中所说增强音频输出信号之一(80)为用于在环绕声环境中再现的一个增强左后输出信号Lr(enhanced)(80)。
34、如权利要求33所述的一种方法,其中所说增强左后输出信号Lr(enhanced)(80)根据下列公式Lr(enhanced)=K3(M5(Lf,Lr)+M6(Lr,Rr))增强,其中M5为表示音频源信号(Lf,Lr)的变换量和变换类型的独立变量,M6为表示音频源信号(Lr,Rr)的变换量和变换类型的独立变量,K3为确定增强左后输出音频信号(80)增益的独立变量。
35、如权利要求28所述的方法,其中所说增强音频输出信号之一(84)为用于在环绕声环境中再现的一个增强右后输出信号Rr(enhanced)(84)。
36、如权利要求35所述的一种方法,其中所说增强右后输出信号Rr(enhanced)(84)根据下列公式Rr(enhanced)=K4(M7(Rf,Rr)+M8(Lr,Rr))增强,其中M7为表示音频源信号(Rf,Rr)的变换量和变换类型的独立变量,M8为表示音频源信号(Lr,Rr)的变换量和变换类型的独立变量,K4为确定增强右后输出音频信号(84)增益的独立变量。
37、如权利要求36所述的方法,其中独立变量M1-M8表示在所说音频源信号(20、22、24、26)中存在的环绕空间信息的均衡。
CNB971957169A 1996-04-30 1997-04-28 用于环绕声环境的音频增强系统和方法 Expired - Lifetime CN1227951C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/641,319 US5970152A (en) 1996-04-30 1996-04-30 Audio enhancement system for use in a surround sound environment
US08/641,319 1996-04-30

Publications (2)

Publication Number Publication Date
CN1223064A CN1223064A (zh) 1999-07-14
CN1227951C true CN1227951C (zh) 2005-11-16

Family

ID=24571865

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971957169A Expired - Lifetime CN1227951C (zh) 1996-04-30 1997-04-28 用于环绕声环境的音频增强系统和方法

Country Status (10)

Country Link
US (1) US5970152A (zh)
EP (1) EP0897651A1 (zh)
JP (1) JP2001501784A (zh)
KR (1) KR20000065108A (zh)
CN (1) CN1227951C (zh)
AU (1) AU2743597A (zh)
BR (1) BR9708834A (zh)
CA (1) CA2252595A1 (zh)
TW (1) TW309691B (zh)
WO (1) WO1997041711A1 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI105522B (fi) * 1996-08-06 2000-08-31 Sample Rate Systems Oy Järjestely kotiteatteri- tai muussa äänentoistolaitteistossa
US5912976A (en) * 1996-11-07 1999-06-15 Srs Labs, Inc. Multi-channel audio enhancement system for use in recording and playback and methods for providing same
KR20010030608A (ko) * 1997-09-16 2001-04-16 레이크 테크놀로지 리미티드 청취자 주변의 음원의 공간화를 향상시키기 위한 스테레오헤드폰 디바이스에서의 필터링 효과의 이용
US6711265B1 (en) 1999-05-13 2004-03-23 Thomson Licensing, S.A. Centralizing of a spatially expanded stereophonic audio image
US7043312B1 (en) 2000-02-17 2006-05-09 Sonic Solutions CD playback augmentation for higher resolution and multi-channel sound
US6351733B1 (en) * 2000-03-02 2002-02-26 Hearing Enhancement Company, Llc Method and apparatus for accommodating primary content audio and secondary content remaining audio capability in the digital audio production process
US7266501B2 (en) * 2000-03-02 2007-09-04 Akiba Electronics Institute Llc Method and apparatus for accommodating primary content audio and secondary content remaining audio capability in the digital audio production process
JP2001268700A (ja) * 2000-03-17 2001-09-28 Fujitsu Ten Ltd 音響装置
US7076071B2 (en) * 2000-06-12 2006-07-11 Robert A. Katz Process for enhancing the existing ambience, imaging, depth, clarity and spaciousness of sound recordings
US7382888B2 (en) * 2000-12-12 2008-06-03 Bose Corporation Phase shifting audio signal combining
TWI236307B (en) * 2002-08-23 2005-07-11 Via Tech Inc Method for realizing virtual multi-channel output by spectrum analysis
US7764805B2 (en) * 2003-06-02 2010-07-27 Fujitsu Ten Limited Apparatus for generating surround signal from two-channel stereo signal
US7522733B2 (en) * 2003-12-12 2009-04-21 Srs Labs, Inc. Systems and methods of spatial image enhancement of a sound source
CA2456373A1 (fr) * 2004-02-10 2005-08-10 Simon Roy Eliminateur de signaux communs d'une source stereo
US7106411B2 (en) * 2004-05-05 2006-09-12 Imax Corporation Conversion of cinema theatre to a super cinema theatre
US8077815B1 (en) * 2004-11-16 2011-12-13 Adobe Systems Incorporated System and method for processing multi-channel digital audio signals
KR100682904B1 (ko) 2004-12-01 2007-02-15 삼성전자주식회사 공간 정보를 이용한 다채널 오디오 신호 처리 장치 및 방법
TW200627999A (en) 2005-01-05 2006-08-01 Srs Labs Inc Phase compensation techniques to adjust for speaker deficiencies
JP4418774B2 (ja) * 2005-05-13 2010-02-24 アルパイン株式会社 オーディオ装置およびサラウンド音生成方法
CN101185118B (zh) * 2005-05-26 2013-01-16 Lg电子株式会社 解码音频信号的方法和装置
WO2007033150A1 (en) * 2005-09-13 2007-03-22 Srs Labs, Inc. Systems and methods for audio processing
US7761289B2 (en) * 2005-10-24 2010-07-20 Lg Electronics Inc. Removing time delays in signal paths
KR100888474B1 (ko) * 2005-11-21 2009-03-12 삼성전자주식회사 멀티채널 오디오 신호의 부호화/복호화 장치 및 방법
KR100953643B1 (ko) 2006-01-19 2010-04-20 엘지전자 주식회사 미디어 신호 처리 방법 및 장치
WO2007123788A2 (en) * 2006-04-03 2007-11-01 Srs Labs, Inc. Audio signal processing
US8050434B1 (en) 2006-12-21 2011-11-01 Srs Labs, Inc. Multi-channel audio enhancement system
WO2008112571A1 (en) * 2007-03-09 2008-09-18 Srs Labs, Inc. Frequency-warped audio equalizer
US8077474B2 (en) * 2007-06-15 2011-12-13 Edward Perez Variable equalizer apparatus
US8660280B2 (en) 2007-11-28 2014-02-25 Qualcomm Incorporated Methods and apparatus for providing a distinct perceptual location for an audio source within an audio mixture
US8515106B2 (en) 2007-11-28 2013-08-20 Qualcomm Incorporated Methods and apparatus for providing an interface to a processing engine that utilizes intelligent audio mixing techniques
US8108831B2 (en) * 2008-02-07 2012-01-31 Microsoft Corporation Iterative component binding
WO2009140794A1 (en) * 2008-05-22 2009-11-26 Intel Corporation Apparatus and method for audio cloning and redirection
KR101485462B1 (ko) * 2009-01-16 2015-01-22 삼성전자주식회사 후방향 오디오 채널의 적응적 리마스터링 장치 및 방법
JP5363567B2 (ja) * 2009-05-11 2013-12-11 パナソニック株式会社 音響再生装置
CN102577441B (zh) 2009-10-12 2015-06-03 诺基亚公司 用于音频处理的多路分析
US9264813B2 (en) 2010-03-04 2016-02-16 Logitech, Europe S.A. Virtual surround for loudspeakers with increased constant directivity
US8542854B2 (en) 2010-03-04 2013-09-24 Logitech Europe, S.A. Virtual surround for loudspeakers with increased constant directivity
US20120114130A1 (en) * 2010-11-09 2012-05-10 Microsoft Corporation Cognitive load reduction
WO2012094335A1 (en) 2011-01-04 2012-07-12 Srs Labs, Inc. Immersive audio rendering system
KR102003191B1 (ko) * 2011-07-01 2019-07-24 돌비 레버러토리즈 라이쎈싱 코오포레이션 적응형 오디오 신호 생성, 코딩 및 렌더링을 위한 시스템 및 방법
US10149058B2 (en) 2013-03-15 2018-12-04 Richard O'Polka Portable sound system
WO2014144968A1 (en) 2013-03-15 2014-09-18 O'polka Richard Portable sound system
EP2830052A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio decoder, audio encoder, method for providing at least four audio channel signals on the basis of an encoded representation, method for providing an encoded representation on the basis of at least four audio channel signals and computer program using a bandwidth extension
EP2830053A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-channel audio decoder, multi-channel audio encoder, methods and computer program using a residual-signal-based adjustment of a contribution of a decorrelated signal
USD740784S1 (en) 2014-03-14 2015-10-13 Richard O'Polka Portable sound device
US9782672B2 (en) 2014-09-12 2017-10-10 Voyetra Turtle Beach, Inc. Gaming headset with enhanced off-screen awareness
KR20170031392A (ko) * 2015-09-11 2017-03-21 삼성전자주식회사 전자 장치, 음향 시스템 및 오디오 출력 방법
US9860644B1 (en) 2017-04-05 2018-01-02 Sonos, Inc. Limiter for bass enhancement
AR112504A1 (es) 2017-07-14 2019-11-06 Fraunhofer Ges Forschung Concepto para generar una descripción mejorada de campo de sonido o un campo de sonido modificado utilizando una descripción multi-capa
EP3652735A1 (en) * 2017-07-14 2020-05-20 Fraunhofer Gesellschaft zur Förderung der Angewand Concept for generating an enhanced sound field description or a modified sound field description using a multi-point sound field description
KR102568365B1 (ko) 2017-07-14 2023-08-18 프라운 호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 깊이-확장형 DirAC 기술 또는 기타 기술을 이용하여 증강된 음장 묘사 또는 수정된 음장 묘사를 생성하기 위한 개념
US10499153B1 (en) * 2017-11-29 2019-12-03 Boomcloud 360, Inc. Enhanced virtual stereo reproduction for unmatched transaural loudspeaker systems
US11680816B2 (en) * 2017-12-29 2023-06-20 Harman International Industries, Incorporated Spatial infotainment rendering system for vehicles
CN109640242B (zh) * 2018-12-11 2020-05-12 电子科技大学 音频源分量及环境分量提取方法

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249696A (en) * 1961-10-16 1966-05-03 Zenith Radio Corp Simplified extended stereo
US3229038A (en) * 1961-10-31 1966-01-11 Rca Corp Sound signal transforming system
US3246081A (en) * 1962-03-21 1966-04-12 William C Edwards Extended stereophonic systems
FI35014A (fi) * 1962-12-13 1965-05-10 Äänentoistojärjestelmä
US3892624A (en) * 1970-02-03 1975-07-01 Sony Corp Stereophonic sound reproducing system
US3665105A (en) * 1970-03-09 1972-05-23 Univ Leland Stanford Junior Method and apparatus for simulating location and movement of sound
US3757047A (en) * 1970-05-21 1973-09-04 Sansui Electric Co Four channel sound reproduction system
CA942198A (en) * 1970-09-15 1974-02-19 Kazuho Ohta Multidimensional stereophonic reproducing system
NL172815B (nl) * 1971-04-13 Sony Corp Meervoudige geluidweergeefinrichting.
US3761631A (en) * 1971-05-17 1973-09-25 Sansui Electric Co Synthesized four channel sound using phase modulation techniques
US3697692A (en) * 1971-06-10 1972-10-10 Dynaco Inc Two-channel,four-component stereophonic system
US3772479A (en) * 1971-10-19 1973-11-13 Motorola Inc Gain modified multi-channel audio system
JPS5313962B2 (zh) * 1971-12-21 1978-05-13
JPS4889702A (zh) * 1972-02-25 1973-11-22
JPS5251764Y2 (zh) * 1972-10-13 1977-11-25
GB1450533A (en) * 1972-11-08 1976-09-22 Ferrograph Co Ltd Stereo sound reproducing apparatus
GB1522599A (en) * 1974-11-16 1978-08-23 Dolby Laboratories Inc Centre channel derivation for stereophonic cinema sound
JPS51144202A (en) * 1975-06-05 1976-12-11 Sony Corp Stereophonic sound reproduction process
JPS5229936A (en) * 1975-08-30 1977-03-07 Mitsubishi Heavy Ind Ltd Grounding device for inhibiting charging current to the earth in distr ibution lines
US4118599A (en) * 1976-02-27 1978-10-03 Victor Company Of Japan, Limited Stereophonic sound reproduction system
JPS52125301A (en) * 1976-04-13 1977-10-21 Victor Co Of Japan Ltd Signal processing circuit
US4063034A (en) * 1976-05-10 1977-12-13 Industrial Research Products, Inc. Audio system with enhanced spatial effect
JPS53114201U (zh) * 1977-02-18 1978-09-11
US4209665A (en) * 1977-08-29 1980-06-24 Victor Company Of Japan, Limited Audio signal translation for loudspeaker and headphone sound reproduction
JPS5832840B2 (ja) * 1977-09-10 1983-07-15 日本ビクター株式会社 立体音場拡大装置
NL7713076A (nl) * 1977-11-28 1979-05-30 Johannes Cornelis Maria Van De Werkwijze en inrichting voor het opnemen van geluid en/of voor het bewerken van geluid voor- afgaande aan het weergeven daarvan.
US4237343A (en) * 1978-02-09 1980-12-02 Kurtin Stephen L Digital delay/ambience processor
US4204092A (en) * 1978-04-11 1980-05-20 Bruney Paul F Audio image recovery system
US4218583A (en) * 1978-07-28 1980-08-19 Bose Corporation Varying loudspeaker spatial characteristics
US4332979A (en) * 1978-12-19 1982-06-01 Fischer Mark L Electronic environmental acoustic simulator
US4309570A (en) * 1979-04-05 1982-01-05 Carver R W Dimensional sound recording and apparatus and method for producing the same
US4303800A (en) * 1979-05-24 1981-12-01 Analog And Digital Systems, Inc. Reproducing multichannel sound
JPS5931279B2 (ja) * 1979-06-19 1984-08-01 日本ビクター株式会社 信号変換回路
JPS56130400U (zh) * 1980-03-04 1981-10-03
US4355203A (en) * 1980-03-12 1982-10-19 Cohen Joel M Stereo image separation and perimeter enhancement
US4356349A (en) * 1980-03-12 1982-10-26 Trod Nossel Recording Studios, Inc. Acoustic image enhancing method and apparatus
US4308423A (en) * 1980-03-12 1981-12-29 Cohen Joel M Stereo image separation and perimeter enhancement
US4308424A (en) * 1980-04-14 1981-12-29 Bice Jr Robert G Simulated stereo from a monaural source sound reproduction system
JPS575499A (en) * 1980-06-12 1982-01-12 Mitsubishi Electric Corp Acoustic reproducing device
US4479235A (en) * 1981-05-08 1984-10-23 Rca Corporation Switching arrangement for a stereophonic sound synthesizer
CA1206619A (en) * 1982-01-29 1986-06-24 Frank T. Check, Jr. Electronic postage meter having redundant memory
AT379275B (de) * 1982-04-20 1985-12-10 Neutrik Ag Stereophone wiedergabeanlage in fahrgastraeumen von kraftfahrzeugen
US4489432A (en) * 1982-05-28 1984-12-18 Polk Audio, Inc. Method and apparatus for reproducing sound having a realistic ambient field and acoustic image
US4457012A (en) * 1982-06-03 1984-06-26 Carver R W FM Stereo apparatus and method
US4495637A (en) * 1982-07-23 1985-01-22 Sci-Coustics, Inc. Apparatus and method for enhanced psychoacoustic imagery using asymmetric cross-channel feed
JPS5927692A (ja) * 1982-08-04 1984-02-14 Seikosha Co Ltd カラ−プリンタ
US4497064A (en) * 1982-08-05 1985-01-29 Polk Audio, Inc. Method and apparatus for reproducing sound having an expanded acoustic image
US4567607A (en) * 1983-05-03 1986-01-28 Stereo Concepts, Inc. Stereo image recovery
US4503554A (en) * 1983-06-03 1985-03-05 Dbx, Inc. Stereophonic balance control system
DE3331352A1 (de) * 1983-08-31 1985-03-14 Blaupunkt-Werke Gmbh, 3200 Hildesheim Schaltungsanordnung und verfahren fuer wahlweisen mono- und stereo-ton-betrieb von ton- und bildrundfunkemfaengern und -recordern
JPS60107998A (ja) * 1983-11-16 1985-06-13 Nissan Motor Co Ltd 車両用音響装置
US4589129A (en) * 1984-02-21 1986-05-13 Kintek, Inc. Signal decoding system
US4594730A (en) * 1984-04-18 1986-06-10 Rosen Terry K Apparatus and method for enhancing the perceived sound image of a sound signal by source localization
JPS60254995A (ja) * 1984-05-31 1985-12-16 Pioneer Electronic Corp 車載用音場補正システム
JP2514141Y2 (ja) * 1984-05-31 1996-10-16 パイオニア株式会社 車載用音場補正装置
US4569074A (en) * 1984-06-01 1986-02-04 Polk Audio, Inc. Method and apparatus for reproducing sound having a realistic ambient field and acoustic image
JPS6133600A (ja) * 1984-07-25 1986-02-17 オムロン株式会社 車両速度規制標識制御システム
US4594610A (en) * 1984-10-15 1986-06-10 Rca Corporation Camera zoom compensator for television stereo audio
JPS61166696A (ja) * 1985-01-18 1986-07-28 株式会社東芝 デジタル表示装置
US4703502A (en) * 1985-01-28 1987-10-27 Nissan Motor Company, Limited Stereo signal reproducing system
US4696036A (en) * 1985-09-12 1987-09-22 Shure Brothers, Inc. Directional enhancement circuit
US4748669A (en) * 1986-03-27 1988-05-31 Hughes Aircraft Company Stereo enhancement system
NL8702200A (nl) * 1987-09-16 1989-04-17 Philips Nv Werkwijze en een inrichting voor het instellen van de overdrachtskarakteristiek naar twee luisterposities in een ruimte
US4811325A (en) * 1987-10-15 1989-03-07 Personics Corporation High-speed reproduction facility for audio programs
JPH0744759B2 (ja) * 1987-10-29 1995-05-15 ヤマハ株式会社 音場制御装置
US5144670A (en) * 1987-12-09 1992-09-01 Canon Kabushiki Kaisha Sound output system
JPH0720319B2 (ja) * 1988-08-12 1995-03-06 三洋電機株式会社 センターモードコントロール回路
US5208860A (en) * 1988-09-02 1993-05-04 Qsound Ltd. Sound imaging method and apparatus
US5046097A (en) * 1988-09-02 1991-09-03 Qsound Ltd. Sound imaging process
BG60225B2 (en) * 1988-09-02 1993-12-30 Q Sound Ltd Method and device for sound image formation
US5105462A (en) * 1989-08-28 1992-04-14 Qsound Ltd. Sound imaging method and apparatus
US4866774A (en) * 1988-11-02 1989-09-12 Hughes Aircraft Company Stero enhancement and directivity servo
DE3932858C2 (de) * 1988-12-07 1996-12-19 Onkyo Kk Stereophonisches Wiedergabesystem
JPH0623119Y2 (ja) * 1989-01-24 1994-06-15 パイオニア株式会社 サラウンド方式ステレオ再生装置
US5146507A (en) * 1989-02-23 1992-09-08 Yamaha Corporation Audio reproduction characteristics control device
US5172415A (en) * 1990-06-08 1992-12-15 Fosgate James W Surround processor
US5228085A (en) * 1991-04-11 1993-07-13 Bose Corporation Perceived sound
US5325435A (en) * 1991-06-12 1994-06-28 Matsushita Electric Industrial Co., Ltd. Sound field offset device
US5251260A (en) * 1991-08-07 1993-10-05 Hughes Aircraft Company Audio surround system with stereo enhancement and directivity servos
US5255326A (en) * 1992-05-18 1993-10-19 Alden Stevenson Interactive audio control system
US5572591A (en) * 1993-03-09 1996-11-05 Matsushita Electric Industrial Co., Ltd. Sound field controller
GB2277855B (en) * 1993-05-06 1997-12-10 S S Stereo P Limited Audio signal reproducing apparatus
US5371799A (en) * 1993-06-01 1994-12-06 Qsound Labs, Inc. Stereo headphone sound source localization system
DE69433258T2 (de) * 1993-07-30 2004-07-01 Victor Company of Japan, Ltd., Yokohama Raumklangsignalverarbeitungsvorrichtung
JP3276528B2 (ja) * 1994-08-24 2002-04-22 シャープ株式会社 音像拡大装置
US5533129A (en) * 1994-08-24 1996-07-02 Gefvert; Herbert I. Multi-dimensional sound reproduction system

Also Published As

Publication number Publication date
JP2001501784A (ja) 2001-02-06
TW309691B (en) 1997-07-01
AU2743597A (en) 1997-11-19
KR20000065108A (ko) 2000-11-06
EP0897651A1 (en) 1999-02-24
CA2252595A1 (en) 1997-11-06
BR9708834A (pt) 1999-08-03
CN1223064A (zh) 1999-07-14
WO1997041711A1 (en) 1997-11-06
US5970152A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
CN1227951C (zh) 用于环绕声环境的音频增强系统和方法
CN1053078C (zh) 立体声增强系统
CN100586227C (zh) 立体声扩展网络中的输出均衡
US5912976A (en) Multi-channel audio enhancement system for use in recording and playback and methods for providing same
CN1146299C (zh) 通过单声道输入合成伪立体声输出的设备和方法
US7277767B2 (en) System and method for enhanced streaming audio
TWI489887B (zh) 用於喇叭或耳機播放之虛擬音訊處理技術
CN1930915A (zh) 用于处理声音信号的方法和系统
CN102668596B (zh) 用于对产生环绕声音的多通道音频信号进行处理的方法和音频系统
CN1956606A (zh) 产生空间立体声的方法和装置
CN1469684A (zh) 用于产生多声道声音的方法和装置
US8320590B2 (en) Device, method, program, and system for canceling crosstalk when reproducing sound through plurality of speakers arranged around listener
WO1999026454A1 (en) Low-frequency audio simulation system
JP2001160997A (ja) オーディオ再生装置
JP2002291100A (ja) オーディオ信号再生方法、及びパッケージメディア
Pfanzagl-Cardone The Art and Science of 3D Audio Recording
US20010031051A1 (en) Stereo to enhanced spatialisation in stereo sound HI-FI decoding process method and apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: DST LLC

Free format text: FORMER OWNER: SRS LABS. INC.

Effective date: 20121221

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121221

Address after: American California

Patentee after: DTS Labs Inc.

Address before: American California

Patentee before: SRs Labs. Inc.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20051116