CN1253625A - 改进了通道几何结构的微型流体装置 - Google Patents

改进了通道几何结构的微型流体装置 Download PDF

Info

Publication number
CN1253625A
CN1253625A CN98804504A CN98804504A CN1253625A CN 1253625 A CN1253625 A CN 1253625A CN 98804504 A CN98804504 A CN 98804504A CN 98804504 A CN98804504 A CN 98804504A CN 1253625 A CN1253625 A CN 1253625A
Authority
CN
China
Prior art keywords
sample
channel
crossing
passage
fluid device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98804504A
Other languages
English (en)
Other versions
CN1105914C (zh
Inventor
R·S·杜布罗
C·B·肯尼迪
L·布塞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caliper Life Sciences Inc
Original Assignee
Caliper Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26740479&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1253625(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/845,754 external-priority patent/US5976336A/en
Application filed by Caliper Technologies Corp filed Critical Caliper Technologies Corp
Publication of CN1253625A publication Critical patent/CN1253625A/zh
Application granted granted Critical
Publication of CN1105914C publication Critical patent/CN1105914C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0418Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/02Micromixers: segmented laminar flow with boundary mixing orthogonal to the direction of fluid propagation with or without geometry influences from the pathway
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/03Micromixers: variable geometry from the pathway influences mixing/agitation of non-laminar fluid flow

Abstract

一种微型流体装置,它具有:主分析通道(100);进样通道(102);进样通道(102)与主分析通道(100)形成交叉口(108),样品引人通道(104、106)与进样通道(102)连通且位于交叉口(108)的对侧;与样品引入通道(104、106)连通的第一和第二样品源(110和112);与进样通道(102)连通且位于交叉口(108)两侧的加样/退液通道(114、116);与加样/退液通道(114、116)连通的加样/退液库(118、120)。

Description

改进了通道几何结构的微型流体装置
发明背景
人们对用于获取化学和生物化学方面信息的微型流体系统的开发和制造既在其制备,又在其分析能力上越来越感兴趣。在这种流体系统中采用电子工业的技术,例如平板照相、湿化学蚀刻等,更促进了人们在这方面的兴趣。
微型流体系统最早用于化学或生物化学分析是在毛细管电泳(CE)领域。CE系统一般使用熔凝二氧化硅毛细管,而最近使用的是在平面二氧化硅基片上蚀刻出的通道,其中充以适当的分离基质或介质。待分析的样品流体在毛细管或通道的一端注入。给毛细管两端加上电压,使得样品中的物质发生电泳迁移。样品流体中组成元素因各自净电荷或大小的不同造成的电泳迁移率差别使得它们得以分离、鉴定和分析。有关CE法的全面论述,可参见Wiktorowicz的美国专利5,015,350和Petersen等的美国专利5,192,405。
关于使用平面基片制造CE系统也进行了讨论,可参见Mathies等,Proc.Natl.Acad.Sci.(1994)91:11348-11352;Jacobsen等,Anal.Chem.(1994)66:1114-1118,Effenhauser等;Anal.Chem.(1994)66:2949-2953。但是,这类系统通常只有一个样品引入口,例如只有一个引入有待在毛细通道中接受分析的样品的孔。这就需要在每次分析前进行清洗和重新进样。而且,如果需要分析的样品数目较多,各样品中尺寸较大的组分(例如大的核酸片段、蛋白质等)会在进样孔和分离通道内聚集,还/或被毛细管壁吸附,最终影响系统的运行。
所以,有必要提供包括CE系统在内的微型流体系统,它能够更快的分析许多份样品,而所需的费用、空间和时间则最少,甚至有所降低。本发明就满足了这些要求以及其它要求。
发明概述
首先,本发明提供了一种微型流体装置,它包括具有第一表面的平面基片。其内部至少有三条微细通道,第二通道与第一通道相交于第一交叉口,第三与第一通道相交于第二交叉口。其体结构内分布着许多样品库,它们都与第二通道连接。至少有一个第一退液库与第三通道连接。
本发明还提供了一种类似上述的微型流体装置,但是至少一个样品库与第二通道连接,而至少一个样品库与第三通道连接。该装置还包括至少第一和第二退液库,第一退液库与第一通道连接,第二退液库与第二通道连接。
本发明还提供了一种类似上述的微型流体装置,但是包括一个与第一通道连通的预加样组件。该预加样组件具有第一进样通道,与第一通道相交于第一交叉口。该组件还具有第一批多个样品库,它们与第一进样通道连通;还有一个第一加样/退液库,它在第一批多个样品库和第一交叉口之间与第一进样通道连通。
本发明还提供了一种利用上述微型流体装置分析许多份样品的方法。在体结构内分布有许多样品库,都与第二通道连接。至少有第一退液库连接于第三通道。该方法是令样品材料从多个样品库中的第一样品库流经第二通道,流经第一和第二交叉口进入第三通道,流向第一退液库。部分样品材料在第一交叉口注入第一通道,沿第一通道传送,在分析通道内检测。
相关地,本发明提供了一种利用如上所述但是具有多个样品库的微型流体装置分离样品中组分的方法。这样多样品库都连接于第二通道,至少第一退液库连接于第三通道。该方法是令样品从所述多个样品库中的第一个样品库流经第二通道,流经第一和第二交叉口进入第三通道,流向第一退液库。部分样品材料在第一交叉口注入第一通道,沿第一通道传送,从而将样品中的组分分离开来。
本发明还提供了一种微型流体装置分离样品组分的用途,这种装置包括具有内部和外部的体结构,内部分布着至少第一、第二和第三微细通道,第二通道与第一通道相交于第一交叉口,第三通道与第一通道相交于第二交叉口,有多个样品库与第二通道连通,各自含有不同的样品;还有一个退液库连通于第三通道。
本发明还提供了一种微型流体装置,它包括分析通道和进样通道,后者在第一交叉口与分析通道连通。有多个样品源连通于进样通道,这多个样品源中至少各有一个在第一交叉口的两侧与进样通道连通。第一和第二加样/退液通道与进样通道分别相交于第二和第三交叉口。第二和第三交叉口位于第一交叉口的不同侧。
本发明还提供了一种包括一个分析通道的微型流体装置。有一个进样通道在所述分析通道的第一侧,与其相交于第一交叉口。有多个样品库在第一交叉口的第一侧与进样通道连通,并有一个退液通道在分析通道的第二侧,与分析通道相交于第二交叉口。有一个退液库在第一交叉口的第二侧与退液通道连通。
本发明还提供了一种包括一个分析通道的微型流体装置。进样通道与分析通道相交于第一交叉口。该装置还具有一个样品的预加样组件,该组件的体结构内具有多个样品库和一个退液库。每个样品库和该退液库都在第一交叉口的同一侧与进样通道连通。
本发明还提供了一种包括一个分析通道,并在内部具有第一和第二横向通道的微型流体装置。第一横向通道位于分析通道的第一侧,与其相交于第一交叉口。第二横向通道位于分析通道的第二侧,与其相交于第二交叉口。第一样品源与第一横向通道连通,第二样品源与第二横向通道连通。第一退液通道位于第一横向通道第三交叉口,第二退液通道位于第二横向通道第四交叉口。该装置还具有一个导流系统,用来引导来自第一和第二样品源的样品分别通过第一和第二横向通道流入第一和第二退液通道,并使得样品选择性地注入分析通道。
本发明还提供了一种具有一个分析通道,并在内部具有第一和第二横向通道的微型流体装置。第一横向通道位于分析通道的第一侧,与其相交于第一交叉口。第二横向通道位于分析通道的第二侧,与其相交于第二交叉口。有多个样品源与第一横向通道连通。第一退液通道位于内部,并与第一横向通道相交于第三交叉口。内部至少有一个第二退液通道,与第二横向通道相交于第四交叉口。该装置还具有一个导流系统,用来引导来自第一和第二样品源的样品分别通过第一和第二横向通道流入第一和第二退液通道,并使得样品选择性地注入分析通道。
本发明还提供具有一个分析通道和与之连通的进样通道的微型流体装置。而且,有多个样品源与进样通道连通。
本发明还提供了利用具有分析通道的微型流体装置来分析多种不同物质的方法。装置内有一个进样通道,与所述分析通道相交于第一交叉口。有多个样品源与所述进样通道连通。第一样品从所述多个样品源中的第一个样品源经所述进样通道流至第一交叉口。一部分所述第一样品注入所述分析通道。第二样品从所述多个样品源中第二个样品源经所述进样通道流至所述交叉口。一部分所述第二样品注入所述分析通道;在分析通道内分析所述的部分第二样品。
本发明还提供用一种微型流体装置分析多种不同样品的方法,所述装置包括具有第一表面(其上面有分析通道)的平面基片。该装置的所述体结构内还包括与所述分析通道相交于第一交叉口的进样通道,具有至少第一和第二样品库以及一个退液库的样品预加样组件,所述多个样品库和所述退液库都与进样通道连通。样品由所述第一库流至第一交叉口。部分所述第一样品注入所述分析通道。所述部分第一样品在所述分析通道内同时接受分析,此时,第二样品由所述第二样品库进入所述进样通道,然后进入所述退液库。所述第二样品由所述进样通道传送至所述交叉口,然后注入所述分析通道,在其中接受分析。
本发明还提供一种其体结构中具有一个分析通道的微型流体装置。其体结构内还含有多个样品源,通过一个或多个样品通道与分析通道的第一位点连通。许多样品源中第一个样品源与分析通道该位点间的通道距离基本上相等于许多样品源中第二个样品源到分析通道该位点的距离。
本发明还提供了以下微型流体装置,其体结构中具有一个分析通道和第一样品引入通道,该样品引入通道与分析通道相交于第一位点。体结构内还具有第一批的许多样品源,它们都分别通过体第一批各自分开的样品通道与第一样品引入通道连通。许多样品源中第一个样品源至第一位点的通道距离基本上等于许多样品源中第二个样品源至该位点的距离。
本发明还涉及其体结构具有一个分析通道和与之相交连通的一个进样通道的微型流体装置。根据本发明这部分内容,分析通道和进样通道一般不超过50μm宽。许多样品源也与进样通道连通。
相关地,本发明提供了一种制造微型流体装置的方法,所述方法包括在第一基片的第一平面上先制成许多通道。这许多通道一般包括一个分析通道、一个位于其第一侧并与之相交于第一交叉口的进样通道。还包括与进样通道相交并位于第一交叉口第一侧的多个样品通道和位于分析通道第二侧并与之相交于第二交叉口的一个退液通道。在这第一基片的平表面上覆盖上第二平面基片以界定上述许多通道。第二平面基片上有许多穿透的眼,它们包括与分析通道两端连通的两个眼,与退液通道非相交末端连通的退液眼,以及分别与各样品通道非相交末端连通的许多样品眼。
本发明还提供具有一个分析通道和与其相交于第一交叉口的进样通道的微型流体装置。为了提供许多种样品进行分析,它还具有许多与进样通道连通的样品源。
此外,本发明还提供实施本发明方法和装置的成套盒。本发明成套盒可以包括以下物件之一种或多种:(1)所述装置或装置部件;(2)进行所述方法和/或操作所述装置或装置部件的说明书;(3)一种或多种试验物质;(4)装有装置或试验物质的容器;(5)包装材料。
附图简述
图1A-1C示意的是本发明装置使用的通道和储库的几何结构,以及它们在加样注入许多种样品(图1A和图1B),在预加样样品(图C)时的运作。
图2示意的是在本发明微型流体装置中进行毛细管电泳中物质传送各步骤的时间顺序(下方),并与没有预加样特征的CE系统(上方)进行比较。
图3显示为了连续分析许多种样品而改进了通道/样品库几何结构的微型流体装置的一个实施例。
图4显示为了连续分析许多种样品而改进了通道/样品库几何结构的微型流体装置的另一个实施例。
图5显示连续分析许多种样品的微型流体装置内的另一种通道几何结构。
图6是荧光染色核酸片段的滞留时间图,该种核酸片段是注入由采用本发明改进的通道/样品库几何结构的基片构成的CE通道中的。
图7A-7C是一组嵌有荧光染料的PCR片段(图7A)、用HaeIII剪切然后嵌入有荧光染料的Phix174 DNA(图7B)和空白缓冲液(图7C)的荧光温度-时间图,它们被相继注入利用本发明通道/样品库几何结构的微型流体装置的分析通道。
图8A和8B显示的是微型流体装置内进行的核酸分离试验,所述装置的通道宽度分别为30微米(图8A)和70微米(图8B)。
本发明的详细说明I.综述
本发明提供改进了通道和储库几何结构的微型流体装置,以及在分析、制备或处理其它以流体为载体的物质时使用这类装置的方法,以期获得更大的处理能力,而对费用、物质和/或空间的需要却更低。
在此,“微型流体装置”通指这样的装置或系统:它具有至少两个相交的通道即流体管道,其中至少一根通道的横截面直径至少在约0.1至500微米之间,约1至约100微米更好。
本发明的微型流体装置具有一个中心结构,其中分布着各种微型流体元件。该装置具有一个外表部分即表面,以及一个界定整个微型流体装置中各种细微通道和/或库的内部。例如,本发明微型流体装置的体结构通常采用平结构(即基本上平的或具有至少一个平表面)的固体或半固体基质。合适的基片可由各种材料或混合材料制成。通常,平面基片是用微型制造领域常用的固体基材制造的,例如玻璃、石英、硅或聚硅烷等二氧化硅基的基材,以及砷化镓等其它已知的基材。如果是以上基片,可以方便地应用例如平板照相、湿化学蚀刻、微型机械加工(即微型钻孔和研磨等)等常用微型制造技术来制造微型流体装置和基片。或者,可以使用聚合基材材料来制造本发明的装置,包括使用聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚氨基甲酯、聚氯乙烯(PVC)、聚苯乙烯、聚砜、聚碳酸酯、聚甲基戊烯、聚丙烯、聚乙烯、聚偏氟乙烯、ABS(丙烯腈-丁二烯-苯乙烯的共聚物)等。如果用上述聚合材料,可以用注射成形法或压印法来制造具有所述通道和储库几何结构的基片。此时,原模可以用上述材料和方法中任意一种来制造。
装置的通道和储库通常制造在平面基片的一个平面上,例如制成该平面上的沟槽或凹陷区域。一般用相同或相似材料制成的另一个基板覆盖在前述基片上并与之结合,由此界定了装置的通道和/或储库。位于下面的基片的上表面和位于上面的基片的下表面共同界定着装置的内部结构,即装置的通道和储库。
在上述装置内,底板的表面上至少有一根主通道(又称分析通道),样品通过它传送并接受一定的分析。通常,许多样品从他们各自的来源连续地输出,通过进入与主通道相交的横向通道而注入主通道。这一横向通道又称“进样通道”。样品源最好包括在装置内,例如以许多库的形式分布在装置内,并通过例如居中的样品通道与进样通道连通。但是,本发明装置的样品源也可以位于装置外,但是仍然必须如上所述与进样通道连通。
进样通道内的样品流经进样通道和分析通道的交叉口。然后,这两个通道的交叉口内的那部分或那一“段”样品输送进分析通道,在此接受所需的分析。两通道的交叉口,例如主通道和进样通道内的交叉口可以是“T”形即“三路”交叉口,进样通道在此与主通道相交并在主通道内终结,或者反过来。两个通道又可以相交穿过,形成“四路”交叉口。此时,注入样品的体积与交叉口的体积直接有关。如果需要较多的样品,一般可以使进样通道入口侧即样品侧的交叉口和进样通道出口侧即退液侧的交叉口错开,这样,更多的样品可在加样过程中进入分析通道,视两个错开的交叉口之间分析通道的长度而异。
为了方便讨论,一般是通过对样品进行毛细管电泳分析(CE)来说明本发明的装置和系统。所以,对这种操作而言,主通道即分析通道内通常含有筛选基质、缓冲液或介质,用于优化样品中各组分的分离。但是,在阅读此处公开的内容时应该理解的是,此处所述改进了几何结构的微型流体装置也适用于许多非CE用途,可以用于对样品进行多种不同的分析反应,就此可参见国际专利申请WO98/00231,本文将其参考结合于本发明中。
如上所述,本发明装置使用的通道和储库的几何结构降低了生产这类装置的费用,因为可以减少制造装置所需的材料。此外,本发明装置能够以更高的处理能力进行试验,而且改进了这些试验,之所以有这个优点是由于:(1)缩短了样品从装置上的来源输送到分析区即分析通道的路程;(2)任意两种样品从各自来源到达分析区即分析通道的距离相等,这使得输送过程对样品的影响相等;(3)增加了可置于同一装置内的样品的份数;(4)允许一种样品接受分析时,另一种样品则输送到一定区域即预先加样以备后来进行分析;(5)为各样品提供了一个预加样到达的共同位点,因此,各样品的加样注入循环的时间得以标准化;(6)改善了分析通道内各物质区(例如液带或液段)的检测和分辨率。II.成本的降低
通常,在微型制造领域,需要使用“收缩”原则来优化制造过程。所谓收缩一般是指先在最初的尺度上对装置结构进行优化,然后进行比例缩小到装置的尺寸。收缩为装置的设计和制造提供了两方面的优点。首先,其明显优点是可以减小实际产品的总体尺寸。因为尺寸较小,即产品所占空间较小,就可以继而将该装置装在较小的整体系统中。而且,许多情况下,用微型制造技术制成的装置(包括微处理器、微型流体装置等)可以在较大的基片(例如硅、二氧化硅等)上制成。因此,通过减小各单独装置的尺寸,可以增加在同一基片上生产的装置的数量,由此降低了成本。
而且,增加用同一基片生产的装置的数量还显著减少了因给定基片中的缺陷而损失的装置数量。例如,如果一张基片只能生产4个装置,该基片的一个小的关键性缺陷存在于一个装置内就会造成25%的损耗,即4个装置中的一个装置会具有该缺陷。但是,如果同一基片可生产20个不同装置,则仅5%即20个装置中的一个装置有缺陷。所以,减小装置尺寸本身在成本上的优点是双重的。
就本发明装置而言,要能够分析许多份样品,单个装置的长度和宽度约为5mm至100mm,但是根据要求的分析数目以及反应试剂库的所需体积,可以制备更大或更小的装置。较好的是,装置的长与宽约为5mm至50mm。
通过本发明装置内通道和储库几何结构的优化,可以显著减少单个装置所需的基材。这种对基材需求的减少加上基片数/基片的增加和基材损耗/基片的降低显著降低了成本。虽然这里是用二氧化硅基或硅基基片材料进行说明,但是不难理解的是,本发明在成本和材料方面的节省也适用于更多种类的基材,例如玻璃、聚合材料等。III.处理能力的提高
如前所述,本发明装置中改进的通道和储库的几何结构还显著改善了对许多份样品进行一定试验的处理能力。具体地说,在各种流通系统中,有相当多的时间只是用于将物质从系统的一个位置运送到另一个位置。在毛细管电泳系统中,物质是以电泳的方式从系统的一个位置运送到另一个位置,即从样品库运送到分析毛细管的,情况尤其如此。如果系统被用于连续分析许多份样品,则该问题更严重。
另一方面,本发明装置和系统中使用的通道和储库的几何结构显著缩短了从装置的样品库到分析部位(即分析通道)的运送时间。改进的几何结构还允许在单位面积基片上容纳更多的样品库。此外,这种改进的几何结构允许进行“预加样”操作,这一操作允许一份样品在分析区即分析通道内分析的同时,另一份样品从其储库传送至邻近分析区即分析通道的位置。以上几种因素结合起来就使装置的处理能力显著提高。
A.多样品库
本发明内容之一,是本发明装置和系统对于一个给定的分析通道使用多个样品源或样品库,仅靠各样品顺次从其储库注入分析通道(即从第一样品库吸出样品注入分析通道,然后从第二样品库吸出样品注入分析通道)就能在同一装置内连续分析许多份样品。虽然,在这里的一般叙述是就制造在微型流体装置内的样品库而言的,但需要明白的是,样品库也可以在本发明装置以外,但是须保持着与本发明装置上各个位点的连通。
多样品库的使用提供的优点在于能够连续分析许多份样品而无需每次在结束前一次样品分析后手工加样。本发明装置包括至少两个位于同一基片上并与一个给定分析通道连通的隔开的样品库。通常,所述装置包括与一个给定分析通道相通的4个隔开的样品库,更常见的是6个隔开的样品库,以至少8个为佳,至少12个更好,经常是至少16个。每个样品库一般都与进样通道连通,后者又与分析通道相交连通。通常有一个位于进样通道与分析通道交叉口另一侧的加样/退液库与进样通道连通。这就可以通过抽吸样品穿过交叉口导向加样/退液库而进行加样。还可以另加一个位于样品进入同一侧的预加样通道和储库与进样通道连通,以便当前一份样品正通过主通道时可对后一份样品进行加样,加样时这份样品由其储库传送至交叉口同侧的加样/退液库,但不穿过交叉口。
如上所述,在本发明装置的单位基片面积上有着较高的样品库和其它库的密度。具体地说,样品库和缓冲液库一般在装置内,密度约2个库/cm2,超过4个库/cm2更好,有时可能超过8个库/cm2。特别好的是,本发明装置内的各个库间隔均匀。更具体地说,这样的间隔是对现有流体处理系统中间距的补充,例如,与多库片的尺寸是相适的。例如较好的是,储库排列成规则间距的线状方式(为沿一直线)或网状方式。例如,装置的储库以9mm的中心距(适合96库的片)排布成线状或网状,以4.5mm中心距更好(适合384库的片),有时约为2.25mm中心距(适合1636库的片)。
较好的是,多个样品储库在基片上位于分析通道的两侧。这样将样品库集中在样品注入分析通道位点的周围,给定储库和样品注入分析通道位点之间的距离最短,通道长度也就最短。样品库与分析通道之间长度最短,就可以令样品传送到分析通道所需的时间最短。而且还尽可能减小了流体运送过程中会造成的影响,例如组分粘附在装置上,电渗(E/O)或电泳系统中的电效应,(在进入分析通道前是不希望出现这些效应的)例如样品内组分的电泳偏移或分离。
更好的是,样品库在分析通道两边均等分布。这样,在分析通道的两侧各有相互隔开的样品库至少2个,一般至少各3个,至少各4个为佳,至少6个更好,至少8个则还要好。
或者更好的是,各样品源或样品库的位置使得物质从各样品源或样品库到达注入通道(或者是后文将详细说明的样品注入通道)的必经路程基本相等。“基本相等”的意思是任何一个储库的这段通道路程与另一储库的相差不超过25%,低于15%为佳,低于10%更好,低于5%则还要好。最好的是,这些通道路程彼此相差在2%之内。
就到达注入点或预加样点的通道路程而言,令样品库分布等距离具有许多优点。起先,在许多应用中,运行缓冲液、筛选基质、动力涂料等流体加到微型流体装置的通道中是先加在一个储库例如缓冲液库或退液库中,然后,这些流体通过毛细作用、和/或液压或外加的压力传送到装置的通道内。在这类情况下,流体通过管径大致相同的通道,且流速大致相同。所以,如果微型流体装置从注入点的通道路程不同,流体将最先到达位于最短通道末端的储库。如果有施加的压力或液压,这些储库会在流体到达其它储库之前开始充液。结果造成不同样品库中不同的液位,继而造成各样品稀释度的不同,由此影响对各样品进行定量比较的能力。通道的距离相等就可解决这个问题,因为流体以相同的速度和时间到达并充满各个储库。
通道距离相等,除了可解决稀释问题外,还会使各个样品从其储库到注入点的时间即加样时间相等。这有好几个优点。首先,每一样品经过相同时间传送到相同环境,结果传送时间的效应相同。例如,在核酸分析中,嵌入染料常与运行缓冲液在装置的通道内混合,此时该染料就被在这些通道中传送(即从样品源到分析通道的传送过程中)的核酸所吸取。传送时间不同会造成染料被吸取量的不同,结果不同样品的最后信号强度不同。此外,进样时间相同的优点还在于使系统的操作者能够将各种样品进样或预加样所需的时间标准化。具体地说,每份样品进样或预加样需要相同的时间,就极大地改善了微型流体装置的操作。
通过采用其它通道的形状或结构也可以达到使得各样品源与注入点等距的优点,因为此时给定流体(例如样品)去向或来自一样品源的传送时间与其去向或来自另一样品源的传送时间相同。例如,如果样品源不等距,可以通过改变通道宽度来使得去向或来自两个不同样品源的流体传送速度相同。具体地说,靠近注入点或预加样点的样品源可以通过较宽的通道与注入点或预加样点连通,这样,在类似或完全相同的物质传送条件下(例如相同的电场),样品从其源通过该通道流向注入点或预加样点所需的时间与通过较长较细通道连通的样品源所需的时间基本相同。类似的,根据本文的详细说明,这样的通道改变还可以用于均衡流体通过一共同通道引入各自样品源所需的时间,例如在给装置加入缓冲液等时。
“基本相同的时间”是指,对于任意其它样品源或储库而言,样品从其来源流至装置的注入点或预加样点的时间在相同的传送条件下(例如在电动力传送中施加的压力和电场相同)相差不超过25%,不超过15%为佳,不超过10%更好,不超过5%则还要好。最好的是,样品从各自样品源流至注入点或预加样点的时间彼此相差在约2%之内。
除了保证装置内各种样品的传送时间相同之外,一般还要求缩短样品为到达注入点而必须经过的共同通道(例如进样通道)的长度。具体地说,缩短进样通道从其与样品通道交叉口至其与预加样/退液通道交叉口之间的长度,就减少了最后注入的物质的交叉污染的机会。具体地说,在下一份样品实际注入交叉口之前,缩短的进样通道更可能被完全充满。这样,本发明至少包括这样一种情况,样品通道与进样通道的交叉口距进样通道与加样/退液通道的交叉口很近,例如在约5mm之内,4mm之内为佳,约2mm之内更好,通常约1mm之内,这样进样通道在其与样品通道的交叉口和其与注入交叉口或预加样交叉口之间的长度少于约5mm,少于4mm为佳,少于约2mm则更好。
如前所述,样品注入主分析通道的过程通常包括将样品传送穿过进样通道与分析通道的交叉口。所以,较好的是,本发明的装置或系统一般包括加样/退液库和与进样通道连通但位于与分析通道进样侧相对另一侧的通道。给位于分析通道两侧的所需样品库和加样/退液库之间加上电压,就使得物质沿进样通道并穿过进样通道与分析通道的交叉口(又称注入点)进入加样/退液通道和储库。
由于本发明的装置和系统以让各种样品位于分析通道的两侧为佳,所以这类装置通常还包括分析通道两侧的一个加样/退液库和与进样通道连通的相应通道。具体地说,分析通道一侧的预加样室是分析通道另一侧的加样/退液库。这一结构特征可参见图1。
图1A简明地展示了微型流体装置(未示出)内两个通道(例如主分析通道100与进样通道102)的一个交叉口。进样通道还包括第一和第二样品引入通道,分别为104和106,它们与进样通道位于交叉口108两侧的段分别连通,这两个样品引入通道还与第一样品源110和第二样品源112连通,这些样品源例如是位于装置内的样品库。进样通道位于交叉口两侧的段除了与第一和第二样品引入通道连接外还与第一和第二加样/退液通道114和116分别连通,后两者又与第一和第二加样/退液库118和120连通。
图1B显示从第一和第二样品库顺次注入样品。具体地说,图1B中的分图1和II显示的是第一样品(用斜线阴影表示)被传送进入进样通道102,穿过进样通道与主通道100的交叉口,进入第二加样/退液通道116。在电引导系统(例如本发明中一般所述的E/O流即电泳传输系统)中,这个传送过程是通过在第一样品库110和第二加样/退液库120之间加上电压令物质顺电流途径的运动实现的。然后,交叉口的那段样品注入到主通道100中,这是通过在交叉口108两侧的主通道的两个位置(即主通道100两端的缓冲液库和退液库)之间加电压实现的。在此注入过程中,可以去除样品库110和第二加样/退液库120之间的电压,例如,允许这些储库“漂送”。但是,通常,这两个库之间的电压仍是维持的,为了使得恰好是交叉口中的物质流入(例如引入)到主通道中,也是为了避免分析过程中样品可能扩散或渗到交叉口中。
如图1B的分图III和IV所示,将第二样品(用交叉线阴影表示)加入然后注入主通道100中,方法与第一样品相同,所不同的是,在加样过程中,电压加在第二样品库112和第一加样/退液库118之间。
除了可从分析通道两侧注入样品外,与没有这一特征的装置相比,在分析通道的两侧都设置了加样/退液库还允许当一个样品在分析通道内接受分析时,另一样品可以预先加入。
例如,在典型的平面基片式CE装置(其中分离通道和进样通道彼此交叉)中,样品加入分离通道的过程是将样品装在进样通道末端的库内,在进样通道上加上电压,直至样品电泳通过进样通道与分离通道的交叉口。通常,电压是通过设在给定通道末端的库(又称“港口”)内的电极施加的。然后,交叉口内的那段物质沿分离通道进行电泳,这是利用在分析或分离通道长度方向上施加电压实现的。为了避免干扰样品的分析或分离,即避免对电场进行干扰,必须等到分离结束才可加入后继样品。
但是这里所述的通道结构中,当第一样品正在分析通道中接受分析(例如电泳)时,后继样品可以传送到进样通道内靠近甚至毗邻注入点的位置。具体地说,在样品库以及与进样通道连通且与该样品库位于分析通道同一侧的加样/退液库之间施加电压,样品就从相应的样品库通过进样通道一段传送至加样/退液通道/库,此时不通过分析通道。而且,在这个后继样品的预加样进料过程中维持所加的电压,使得预加样点(例如加样/退液通道114和进样通道102的交叉口处)的电压基本上等于注入点108的电压,这个预加样过程的进行就不会影响分析通道内物质的传送,例如,在进样通道和分析通道之间不会产生横向电场。当某一通道的一端施加电压Va,其另一端施加电压Vb时要确定该通道内某个给定居中点的电压值Vi,可采用以下公式:
Vi=Rb+(Va-Vb)/(Ra+Rb)其中Ra是施加Va的点与其电压Vi的居中点之间的电阻,Rb是施加Vb的点与居中点之间的电阻。
在结束分析前一个样品后,只要将已在进样通道内的后一个样品传送通过进样通道和分析通道的交叉口,然后和前次一样,交叉口内的样品段被传送进入分析通道。
图1C显示的通道交叉结构与图1B的相同,但是该结构是用来当前一样品在主通道中接受分析时另一样品预先进样的。具体地说,分图I显示的是图1B第一样品进入后期的情况。在分析第一样品时,通过传送第二样品进入进样通道然后进入第二加样/退液通道,第二样品就送至进样通道内靠近注入点即交叉口108的位置。如分图II所示,第一样品分析(例如电泳分离等)完成后,将第二样品传送通过交叉口108再进入分析通道(分图III)。然后对全部要分析的若干样品重复上述过程。
图2显示,具有后续样品预加样结构的装置,与没有这种结构的装置相比,明显节省了时间。分图A简明地显示使用一般微型流体装置(即在分析通道两侧没有分开的加样/退液库)将多份样品添加注入分析通道所经历的时间过程。具体地说,加入任何给定样品都需要传送样品通过分析通道与进样通道的交叉口,然后将交叉口处的样品传送到分离通道内。在这类一般装置中,当一份给定样品接受分析时,没有其它样品加入,因为那样将会扰乱分析通道内的物流。所以,必须在一份样品完全分析完毕后才能加入后面的样品,结果在进样注入的时间线上,如箭头所示,样品的进样和分析在时间上是不重叠的。
图2的分图B显示了在本发明装置中连续分析各个样品的时间线,该装置中在含有要加入的样品的库的同侧还具有附加的加样/退液库。因此可以允许样品从其库进入进样通道(这又称为预加样),此时不与分析通道内的物流交叉,也不在其它方面影响该物流。因此,当一份样品正沿分析通道传送并接受分析时,后面的样品可以预先加入到进样通道内。如分图B所示,时间上的节省是很明显的,尤其是要分析许多份样品(例如8、10、12、16或更多)时。
为了减少预加入的样品和分析通道之间的死体积,通常要求加样/退液通道与进样通道相交的位点比较靠近进样通道和分析通道的交叉口。在本发明微型流体装置中,这两个交叉口的距离一般小于5mm,小于2mm为佳,小于1mm更好,通常小于0.5mm。
此外,对多样品库的装置来说,一般要求能将各样品预加样在进样通道内相同的位点。这样可以对预加样、加样和注入各样品的时间安排进行标准化和简化。而且,在预加样期间,对该样品可以进行许多其它操作,包括稀释、与底料或其它反应物混合等。因此,加样/退液通道与进样通道的相交的位点在全部的样品库和主通道之间是较好的。这样,较好的是,每个加样/退液通道与进样通道的相交位点是在:(1)进样通道和主通道的交叉口和(2)进样通道与各样品通道的交叉口之间。以下将更详细的说明样品的加样和预加样。
最后,除上述优点以外,设置多样品库且各样品库具有一根单独通道与注入点至少部分地连通,这还至少提供了另一个优点,尤其是用在CE用途中时。典型的CE系统通过同一通路(例如同一样品库或同一通道和路径)引入各样品。这一点经常造成例如核酸大分子或络合物或蛋白质等迁移极慢的物质在该路径内累积,这种累积可能造成分离通道或毛细管的堵塞。
就象本发明这样,为每一份待测样品设置隔开的引入通路,与不同样品通过同一路径引入不同,迁移缓慢的物质通常会滞留在样品源或与共用进样通道连接的那个通道内。这一影响在CE用途中尤其明显,CE在装置的不同通道内含有筛选基质或介质,该基质会强化大尺寸组分的差异迁移率。
在某些实施例中,本发明微型流体装置中还可以有较窄的通道,特别在装置的注入点处。具体地说,缩小至少在注入交叉口的尺寸可以大大减少注入分析通道的样品量,这样,测出的带更窄,而相邻带之间的分辨率更高。
分析通道较窄在利用激光荧光进行检测的系统中尤其有用。具体地说,将注入通道和分析通道的宽度减小至入射到分析通道检测部分上激光斑大小的约1倍至5倍,如前所述,可以提高分析通道内条带的分辨率,而不会显著改变装置的灵敏度。虽然进入分析通道和通过检测器的物质较少,但是检测器能够检测的物质所占的百分比较高。所以,较好的是,使用光斑为10微米的激光时,分析通道的宽度宜为约10至50微米,约20至40微米为佳,约30至35微米更佳。IV.装置说明
改进了通道和储库几何结构的本发明装置实施例之一见图3所示:装置300是由一块平面基片302制成的,在其表面上制成许多通道。将第二层平面基片覆盖在第一块上形成许多储库,前者上分布了许多孔。然后,第二层基片与第一层基片结合。
如图所示,该装置包括一个主要的分离或分析通道304沿着基片的中部纵向沿伸。它开始于缓冲液库306并与其连通,终止于退液库308和310并通过通道312与它们连通。进样通道314与主通道304相交并连通。如图所示,该装置还具有许多样品库316到346,通过各自的样品通道348至378或通过中间样品通道都与进样通道314连通。另有加样/退液通道380和382,它们与进样通道314连通,分别位于进样通道与主通道304交叉口的两侧,且位于该交叉口及交叉口各侧相应样品通道之间。这两个加样/退液通道都分别终止于加样/退液库384和386。
多个隔开的样品库分布在主通道两侧,这是为了在基片上设置尽可能多的储库,同时样品到达分析通道的必经路程尽可能短。
为了调控和引导装置内物质的电泳移动,有一个电极与各储库306-310、316-346、348和386都有电气连接。同样,虽然本实施例是以装置内物质的电泳传送和引导来说明的,但显然,其它形式的物质传送和引导也是可以的,例如电渗流体传送和引导、压力或气动的流体传送系统、包括使用微型泵或其它位移驱动系统的,同样都能受益于本发明。
运行中,第一样品位于样品库例如316中。在样品库316和退液库318间电压的作用下,样品沿样品通道348传送至进样通道314,穿过进样通道314与主通道304的交叉口。较好的是,在缓冲液库306和退液库318间也加上电压,提供一段来自主通道的限制流,对流过交叉口的样品进行“收聚”,避免交叉口内样品的泄漏和扩散。有关节制进样的详情可参见Ramsey等的PCT申请No.WO96/04547,将其参考结合在本发明中。
进样通道314和主通道304交叉口处的样品段例如收聚流段,在缓冲液库306和退液库308及310之间的电压作用下沿主通道304传送,此时储库316和386则让其“漂送”。有时,可以在这些漂送库上施加适当的电压使得进样通道的样品离开交叉口,以避免样品渗进分析通道。
当第一样品沿主通道304传送并接受分析(例如电泳分离)时,第二样品可以预加样在进样通道314内待作分析。在样品库318和加样/退液库384上加一个合适的电压,后继样品就从样品库318进入进样通道314并通过加样/退液通道380后到达加样/退液库384。如前所述,通常维持加在这些储库上的电压使得注入点(通道304与314的交叉口)的电压基本上等于预加样点(通道314与382的交叉口)的电压,为的是在预加样时避免在进样通道和主通道之间产生横向电场,即横向电压梯度。
第一样品沿主分析通道304流动后,在样品库318和加样/退液库386之间施加电压,进样通道314内的预先加入的样品就流过进样通道314与主通道304的交叉口。再在主通道304上施加合适电压使交叉口处的样品段沿主通道传送,此时如前所述尺寸第三样品预加料。对主通道两侧的各样品库都重复上述过程。如图所示,主通道的两则各有一个隔开的“预加样组件”,它包括一组与进样通道连通的样品库和通道。这两个预加样组件各具有与进样通道连通的自己的加样/退液库和通道,通过它们,样品可以从各自储库流入进样通道到达其中靠近其与主通道交叉口的某个位置,此时不会影响主通道内物质的运动。如前所述,为了尽可能减小样品预加样和注入之间的死体积,预加样组件的加样/退液通道(例如加样/退液通道308)与其进样通道(例如314)的相交位置应靠近进样通道与主通道的交叉口。
图4显示了装置的一种类似的通道/储库几何结构,它具有12个分开的样品库,也具有上述预加样结构特征。为了使几何结构更紧凑,在装置的底部,缓冲液库306、退液库310和加样/退液库384及386排成一列。由此形成样品/退液/缓冲液库的网格阵列,这样,这个12个样品的装置所占基片面积仅为图3中的大约一半。虽然这一装置的样品库少于前述的图3装置,但是通过优化通道和储库的几何结构,样品数对于面积的比例显著提高。具体地说,如果图4装置的边长为17.5mm(例如17.5mm×17.5mm),从一张5英寸×5英寸的正方形基片可获得49个装置,即每个基片可进行588份样品的分析。假设图3装置尺寸为22.4mm×37mm,每个基片仅可制得15个装置,仅可进行240份样品的分析。
如前所述,本发明的装置、系统和方法不局限于毛细管电泳,可以广泛应用于采用许多种不同物质传送机制的整个微型流体领域,包括例如电渗运送系统、电泳运送系统,甚至压力驱动系统。但是,如果这类装置、系统和方法应用于毛细管电泳,即用于分离核酸片段之类的样品组分时,一般要求降低装置通道内的电渗流的量,从而优化系统内电荷或大小不同的组分的迁移度差异,继而优化它们的可分离度。
所以,如果本发明的装置和系统应用于毛细管电泳,宜先用动力筛选基质预先处理装置的通道。这类动力筛选基质一般包含带电聚合物,例如线性聚丙烯酰胺,它们能够与毛细管壁结合,由此屏蔽管壁的带电表面,减小电渗流。特别适用的动力筛选基质包括美国专利5,264,101(参考结合于此)中的那些动力筛选基质以及Perkin Elmer Corp的GeneScanTM筛选缓冲液。
图5是采用本发明另一种通道几何结构的装置。如图所示,该装置的通道几何结构与图4的类似。具体地说,如图所示,微型流体装置500由基片502制成,基片上具有主通道504,在其末端是缓冲液库506和退液库508。主通道504分别在左侧和右侧与进样通道512及514的第一末端相交连通。样品通道512的第二末端分别通过样品通道542至550与样品库516至526连通,但进样通道514的第二末端分别通过样品通道552至562与样品库528至538连通。样品预加样/退液通道582及584分别在注入点或交叉口附近与进样通道512及514相交。
该装置的运行与图3和图4装置基本相同。但是,如同所示,装置500的样品通道540至562从各自储库至样品通道与各自进样通道(512或514)相交点的长度基本相等。该装置显示了前文所概括的全部优点。
而且,在图5的另一方面内容中,为了尽可能缩短进样通道的长度来避免预加样期间样品交叉污染的可能性,进样通道512及514与各自样品/预加样通道582及584的交叉口被安排在这些通道与各自样品通道例如540至500及552至562交叉口的附近。较好的是,这些交叉口之间的进样通道长度小于约5mm,小于约2mm为佳。
如上所述,本发明装置可广泛用于化学和生物化学物质的分析。例如,本发明至少有一方面内容提供了这类装置和系统在分离核酸、蛋白质、或其它大分子物质以及电荷差异物质的组分时的用途。本发明装置有时以成套盒的形式提供。本发明成套盒可以包含以下组件之一或多种:(1)前文所述的装置或装置部件,例如前文所述的微型流体装置;(2)进行所述方法和/或操作所述装置或装置部件的说明书;(3)一种或多种试验物质,例如反应试剂、荧光染料、标准物质、筛选基质等;(4)装有装置或试验物质的容器;(5)包装材料。
上述微型流体装置通常装在电气调节器单元内,在装置的每个储库内都设有电极如前所述地进行装置的运作。调节器单元通过与装置内储库接触的电极传递合适的电流,为的是引导物质经过装置的通道流动。调节器传递的电流通常是每个电极适用的,使用者将每个电极的电流时间曲线输入与调节器连接的电脑。然后,电脑指令调节器向不同的电极发送电流令物质在装置的通道中以受控方式运行,例如提供足够的电流进行前述的物质电动传送。
以下将结合实施例更详细的说明本发明。
                            实施例实施例l:多样品分析
一可容16份样品的装置,称LabChipTM,其几何结构如图3所示,由直径100mm厚500微米的白冕玻璃基片制成。使用的基片可与市售最常见的平板照相装置配合使用。利用标准平板照相技术在玻璃基片上蚀刻出所示构型的75微米宽、12微米深的通道。在另一片每边长5英寸的玻璃基片上穿孔,孔对应各个通道的末端。将两片基片热结合形成所示的通道和库结构。从这块大的材料上切下22.4mm×37mm大小的装置。
制备筛选缓冲液:称取2.5g GeneScan Polymer(Perkin Elmer Corp.),0.5g基因分析缓冲液(Perkin Elmer Corp.)和2.5ml水,装入20ml的闪烁瓶,该瓶离心30秒。每0.5ml筛选缓冲液添加1μl Syber Green 1 DNA嵌入染料(Molecular ProbeInc.),再在1.5ml的Eppendorf管中离心30秒。含大小从50至1000bp的6个DNA片段的5μl PCR标志物(Promega Corp.)与含Syber Green的15μl缓冲液混合并离心。
在LabChipTM的通道内充以3.5%的GeneScanTM缓冲液(Perkin Elmer Corp.):在缓冲液库内加入55μl筛分缓冲液,用注射筒给该库施加少许压力。该缓冲液含有的聚合物按其大小能阻碍DNA的迁移,而且对通道壁有修饰作用,能减小电渗流。然后在缓冲液库和退液库内添加4μlGeneScanTM缓冲液。
将DNA标准物质,用HinfI(Promega Corp.)剪切的PhiX174,在含有1μM SyberGreen 1 DNA嵌入染料(Molecular Probe Inc.)的3.5%GeneScanTM缓冲液中进行50∶1的稀释,取4μl该溶液加入16个样品库的每个库内。然后,将装置放在Nikon反转显微镜Diaphot 200下,配以PTI型814PMT检测系统,进行荧光闪烁检测。光源是配以40X显微镜物镜的OptiQuip 1200-1500 50W钨/卤灯。用配有合适滤光镜/二色镜的滤光管(Chroma,Brattleboro VT)选择激发波长和发射波长。基片上反应物库的电流和电压由一调压器来调节,该调压器对在微型流体装置的每个单独储库都各有一个可调电极。样品的连续注入遵循以下循环:
步骤1:最初的样品预加样(45秒)
步骤2:加样(5秒)
步骤3:注入(1秒)
步骤4:后抽(2秒)
步骤5:进行分析/下一样品的预加样(85秒)
步骤6:下一样品的加样(5秒)
步骤7:重复步骤3-6
以下表提供了在一个循环内加在各储库上电流的例子。插入一个后抽步骤是为了将样品抽离进样通道和主通道的交叉口,从而避免样品的渗漏。而且,在加样步骤例如步骤2和6,向交叉口施加一收聚,使得样品流不会因对流效应扩散到主通道内。用基于电流的控制系统来调节施加的电压,如用参考结合于此的普通转让的1996年7月3日提交的美国专利申请08/678,436所述。上述各步骤中使用的电流见表1。调节加在主缓冲液库306上的电压,使其能为系统的其余部分提供合适的平衡电流。
                                    表1步骤  样品库  样品电流(μA)  加样/退液室  加样/退液电流(μA)  缓冲液室  退液电流(μA)1    332         -7            386              10              310        -22    332         -7            384              10              310        -23    332          5            384              5               308        -124    334          1            384              1               308        -85    334         -7            386              10              308        -7.56    334         -7            384              10              310        -2
用该方法进行最初分离的结果见图6。显然,利用毛细管电泳的该方法在明显缩短时间的同时得到了较高的分辨率。而且,在分离16份样品的全过程中,没有发生分辨率的降低。实施例2:连续样品交叉污染的检测
为了确定装置内的连续运行是否发生样品的交叉污染,连续试验了两份不同的核酸片段样品和一份纯缓冲液样品,并检测污染结果。
上述16库装置中的每一个库都加入PCR标志物、HAEIII剪切的PhiX174或纯缓冲液。根据各库的相继注入顺序来加样。记录每次运行的荧光数据随时间的变化。
图7A、7B和7C是相继注入PCR标志物、PhiX174/HAEIII和缓冲液空白的图。图7B显示,没有测到表明由前面的PCR标志物试验渗到PhiX174/HAEIII试验中的异常荧光峰。另外,图7C显示,即使在纯缓冲液试验中也未测到来自前面含DNA样品的交叉污染。实施例3:窄通道注入
如实施例1所述制备一微型流体装置,其通道的几何结构如图5所示,所不同的是,装置内所有通道的宽度都减小至30微米,而通道深度仍保持为约12微米。用它来与实施例1中几何结构如图4所示但通道宽度约70微米的微型流体装置比较。两装置内分离通道的长度基本相等。
如前所述,准备两装置时都用筛选缓冲液,且都用来分离购自Promega Corp.,Madison WI的核酸的标准100碱基对序列梯。窄通道和宽通道装置内的分离结果分别见图8A和8B。显然,窄通道装置得到的分辨率(图8A)高于宽通道装置的(图8B)。
本说明书中具体并单独指明了某些出版物或专利申请参考结合于此,但所有出版物和专利申请都也相同程度地参考结合于此。虽然,为了清楚和便于理解,通过叙述和实施例对本发明进行了详细的说明,但显然,在所附的权利要求范围内是可以进行某些改变和修正的。

Claims (78)

1.一种微型流体装置,它包括:
具有内部和外部的体结构;
分布在内部的至少第一、第二和第三微细通道,第二通道与第一通道相交于第一交叉口,第三通道与第一通道相交于第二交叉口;
分布在体结构内的多个样品库,各库均与第二通道连接;
至少一个连接于第三通道的第一退液库。
2.根据权利要求1所述的微型流体装置,其中第二和第三通道在第一通道的两侧与第一通道相交。
3.根据权利要求2所述的微型流体装置,其中的第一和第二交叉口位于第一通道上的同一点。
4.根据权利要求3所述的微型流体装置,其中的第二与第三通道共线。
5.根据权利要求1所述的微型流体装置,它还包括至少一个连接于第三通道的样品库和至少一个连接于第二通道的第二退液库。
6.根据权利要求5所述的微型流体装置,其中的第一退液库在至少一个样品库和第一交叉口之间与第三通道连接。
7.根据权利要求6所述的微型流体装置,其中:
第一退液库通过第一加样/退液通道连接于第三通道,第一加样/退液通道与第三通道相交于第三交叉口,第三交叉口位于至少一个样品库和第二交叉口之间;
第二退液库通过第二加样/退液通道连接于第二通道,第二加样/退液通道与第二通道相交于第四交叉口,第四交叉口位于多个样品库和第一交叉口之间。
8.根据权利要求7所述的微型流体装置,其中第三和第四交叉口与第二和第一交叉口分别相距不超过5mm。
9.根据权利要求7所述的微型流体装置,其中第三和第四交叉口与第二和第一交叉口分别相距不超过2mm。
10.根据权利要求1所述的微型流体装置,其中的体结构包括:
具有至少第一平表面的第一平面基片;
至少分布在第一平表面上的许多槽,这些槽对应于至少第一、第二和第三通道;
具有第一平表面的第二基片,第二基片的第一平表面与第一基片的第一平表面匹配,覆盖在槽上密封形成第一、第二和第三通道,这些通道构成内部;
分布在第一和第二基片至少其一上的多个孔,这些孔与第一、第二和第三通道连通,界定出多个样品库和至少第一退液库。
11.根据权利要求10所述的微型流体装置,其中第一和第二平面基片中至少其一是二氧化硅型基片。
12.根据权利要求11所述的微型流体装置,其中的二氧化硅型基片选自玻璃、石英和熔凝二氧化硅。
13.根据权利要求11所述的微型流体装置,其中的二氧化硅型基片是玻璃。
14.根据权利要求1所述的微型流体装置,其中第一和第二平面基片中至少其一是聚合材料。
15.根据权利要求14所述的微型流体装置,其中的聚合材料选自聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚氨基甲酯、聚氯乙烯、聚苯乙烯、聚砜、聚碳酸酯、聚甲基戊烯、聚丙烯、聚乙烯、聚偏氟乙烯和丙烯腈-丁二烯-苯乙烯的共聚物。
16.根据权利要求14所述的微型流体装置,其中的聚合材料是聚甲基丙烯酸甲酯。
17.根据权利要求1所述的微型流体装置,其中的多个样品库至少有2个。
18.根据权利要求1所述的微型流体装置,其中的多个样品库至少有4个。
19.根据权利要求1所述的微型流体装置,其中的多个样品库至少有8个。
20.根据权利要求1所述的微型流体装置,其中的多个样品库至少有12个。
21.根据权利要求1所述的微型流体装置,它还具有至少2个连接于第三通道的样品库。
22.根据权利要求1所述的微型流体装置,它还具有至少4个连接于第三通道的样品库。
23.根据权利要求1所述的微型流体装置,它还具有至少8个连接于第三通道的样品库。
24.根据权利要求1所述的微型流体装置,它还具有至少12个连接于第三通道的样品库。
25.根据权利要求1所述的微型流体装置,其中的多个样品库在体结构内是线性排列,并间隔均匀的。
26.根据权利要求25所述的微型流体装置,其中间隔均匀的样品库之间的中心距约9mm。
27.根据权利要求25所述的微型流体装置,其中间隔均匀的样品库之间的中心距约4.5mm。
28.根据权利要求25所述的微型流体装置,其中间隔均匀的样品库之间间的中心距约2.25mm。
29.根据权利要求1所述的微型流体装置,其中多个样品库排列成网格状,而且间隔均匀。
30.根据权利要求29所述的微型流体装置,其中间隔均匀的样品库之间的中心距约9mm。
31.根据权利要求29所述的微型流体装置,其中间隔均匀的样品库之间的中心距约4.5mm。
32.根据权利要求29所述的微型流体装置,其中间隔均匀的样品库之间的中心距约2.25mm。
33.根据权利要求1所述的微型流体装置,其中多个样品库中每一个都通过相互隔开的样品通道连接于第二通道,这些样品通道与各样品库分别连通并与第二通道相交。
34.根据权利要求33所述的微型流体装置,其中样品通道连通于多个样品库中的每一个,且与第二通道相交于一共同交叉口。
35.根据权利要求34所述的微型流体装置,其中的共同交叉口距第一交叉口约5mm之内。
36.根据权利要求34所述的微型流体装置,其中的共同交叉口距第一交叉口约2mm之内。
37.根据权利要求34所述的微型流体装置,其中各样品通道长度大致相等。
38.根据权利要求1所述的微型流体装置,其中第二通道的宽度至少小于第一通道。
39.根据权利要求1所述的微型流体装置,其中第二通道的宽度至少在约10微米至50微米之间。
40.根据权利要求1所述的微型流体装置,其中至少第一通道内包含分离介质。
41.根据权利要求1所述的微型流体装置,其中的分离介质是一种筛选基质。
42.根据权利要求41所述的微型流体装置,其中的筛选基质是聚丙烯酰胺。
43.根据权利要求1所述的微型流体装置,其样品库内还有样品,样品是核酸。
44.一种微型流体装置,它包括:
具有内部和外部的体结构;
分布在内部的至少第一、第二和第三微细通道,第二通道与第一通道相交于第一交叉口,第三通道与第一通道相交于第二交叉口;
分布在体结构内的多个样品库,至少一个样品库连接于第二通道,而且至少一个样品库连接于第三通道;
至少第一和第二退液库,第一退液库连接于第二通道,第二退液库连接于第三通道。
45.一种微型流体装置,它包括:
具有内部和外部的体结构;
分布在内部的第一通道;
与第一通道连通的至少第一样品预加样组件,该预加样组件包括:与第一通道相交于第一交叉口的第一进样通道,与第一进样通道连通的第一组多样品库;
位于第一组多样品库和第一交叉口之间,与第一进样通道连通的第一预加样/退液库。
46.根据权利要求45所述的微型流体装置,它还至少具有与第一通道连通的第二样品预加样组件,该第二预加样组件包括:
与第一通道相交于第二交叉口的第二进样通道,与第二进样通道连通的第二组多样品库;
位于第二组多样品库和第二交叉口之间,与第二进样通道连通的第二预加样/退液库。
47.根据权利要求46所述的微型流体装置,其中的第一和第二交叉口位于第一通道上的一共同位点。
48.根据权利要求46所述的微型流体装置,其中第一和第二进样通道共线。
49.一种分析多份样品的方法,它包括:
a)提供一种微型流体装置,它包括具有内部和外部的体结构;
分布在内部的至少第一、第二和第三微细通道,第二通道与第一通道相交于第一交叉口,第三通道与第一通道相交于第二交叉口;
分布在体结构内的多个样品库,各库均与第二通道连接;
至少一个连接于第三通道的第一退液库;
b)运送样品从所述多样品库中的第一库经过第二通道,经过第一和第二交叉口,进入第三通道,流向第一退液库;
c)将第一交叉口的该部分样品注入第一通道;
d)沿第一通道运送该部分第一样品;和
e)在分析通道内分析该部分第一样品。
50.根据权利要求49的方法,还包括对于来自多样品库中至少第二库的样品重复步骤b)至e)。
51.根据权利要求49的方法,还包括对于来自多样品库中每一库的样品重复步骤b)至e)。
52.根据权利要求49的方法,其中:
提供的微型流体装置还包括至少第四通道,它通过加样/退液通道在第三交叉口将第二退液库与第二通道连接,第三交叉口在第二通道上,介于多样品库和第一交叉口之间;
运送样品自第一样品库至第一交叉口的步骤,包括运送样品经过第二通道至第三交叉口,然后进入第四通道,流向第二退液库。
53.根据权利要求52所述的方法,其中运送样品自第一样品库至第一交叉口的步骤包括运送第三交叉口处的物质经过第二通道进入第一交叉口。
54.根据权利要求52所述的方法,其中自样品库送出样品的步骤包括利用电动力使样品自样品库向第一交叉口运动。
55.根据权利要求54所述的方法,其中电动力使样品运动的步骤包括在样品库和第一退液库之间施加一电压梯度来使样品流经第一和第二交叉口,进入第三通道,流向第一退液库。
56.根据权利要求54所述的方法,其中:
提供的微型流体装置中,第一和第二交叉口都位于第一通道上的一共同位点;
还包括利用电动力收聚第一和第二交叉口内的第一样品。
57.根据权利要求52所述的方法,其中运送样品经过第一通道的步骤还包括利用电动力运送第二和第三通道内的样品分别离开第一和第二交叉口。
58.一种分离样品各组分的方法,它包括:
a)提供微型流体装置,它包括具有内部和外部的体结构;
分布在内部的至少第一、第二和第三微细通道,第二通道与第一通道相交于第一交叉口,第三通道与第一通道相交于第二交叉口;
分布在体结构内的多个样品库,各库均与第二通道连接;
至少一个连接于第三通道的第一退液库;
b)运送样品从所述多样品库中的第一库经过第二通道,经过第一和第二交叉口,进入第三通道,流向第一退液库;
c)将第一交叉口的那部分样品注入第一通道;
d)沿第一通道运送样品,令样品中各组分分离。
59.根据权利要求58所述的方法,其中还包括至少在第一通道内提供分离介质。
60.根据权利要求59所述的方法,其中样品从第一样品库送出的步骤包括在样品库和第一退液库之间施加电压梯度。
61.根据权利要求58所述的方法,还包括检测在第一通道内样品的各组份。
62.权利要求1、44、45或46所述微型流体装置的用途,用于分离和检测样品中的组分。
63.根据权利要求62所述的用途,其中的样品组分包括核酸。
64.根据权利要求62所述的用途,其中的样品组分包括蛋白质。
65.一种微型流体装置,它包括:
具有外部和内部的体结构;
位于所述内部的一根分析通道;
位于所述内部与分析通道连通并与其相交于第一交叉口的进样通道;
与所述进样通道连通的多个样品源,所述多样品源中至少有一个与所述第一交叉口两侧的所述进样通道连通;
位于所述内部的第一和第二加样/退液通道,它们与所述的进样通道分别相交于第二和第三交叉口。所述第二和第三交叉口位于所述第一交叉口的不同侧。
66.一种微型流体装置,它包括:
具有外部和内部的体结构;
位于所述内部的一根分析通道;
位于所述体内部分析通道的第一侧,并与之相交于第一交叉口的进样通道;
在所述第一交叉口第一侧与所述进样通道连通的多个样品库;
位于所述内部所述分析通道第二侧并与之相交于第二交叉口的一根退液通道;
在所述第一交叉口所述第二侧连通所述退液通道的一个退液库。
67.一种微型流体装置,它包括:
具有外部和内部的体结构;
位于所述内部的一根分析通道;
位于所述内部并与所述分析通道相交于第一交叉口的进样通道;
位于所述体结构内,具有多个样品库和一个退液库的样品预加样组件,所述多样品库中的每一个和所述退液库都在所述第一交叉口的同一侧与所述进样通道连通。
68.一种微型流体装置,它包括:
具有外部和内部的体结构;
位于所述内部的一根分析通道;
位于所述内部的第一和第二横向通道,所述的第一横向通道位于所述分析通道的第一侧并与之相交于第一交叉口,所述第二横向通道位于所述分析通道的第二侧并与之相交于第二交叉口;
位于体结构内与所述第一横向通道连通的第一样品源;
位于体结构内与所述第二横向通道连通的至少第二样品源;
位于所述内部与所述第一横向通道相交于第三交叉口的第一退液通道;
位于所述内部并与所述第二横向通道相交于第四交叉口的至少第二退液通道;
样品引导系统,用于将样品从所述第一和第二样品源分别通过所述第一和第二横向通道传送至所述第一和第二退液库,将所述样品选择性地注入所述分析通道。
69.一种微型流体装置,它包括:
具有外部和内部的体结构;
位于所述内部的一根分析通道;
位于所述内部的第一和第二横向通道,所述的第一横向通道位于所述分析通道的第一侧并与之相交于第一交叉口,所述第二横向通道位于所述分析通道的第二侧并与之相交于第二交叉口;
与所述第一横向通道连通的多个样品源;
在所述内部并与第一横向通道相交于第三交叉口的第一退液通道;
位于所述内部并与所述第二横向通道相交于第四交叉口的至少第二退液通道;
样品引导系统,用于将样品从所述第一和第二样品源分别通过所述第一和第二横向通道传送至所述第一和第二退液库,将所述样品选择性地注入所述分析通道。
70.一种微型流体装置,它包括:
具有外部和内部的体结构;
位于所述内部的一根分析通道;
位于所述内部并相交连通于所述分析通道的进样通道;
与所述进样通道连通的多个样品源。
71.一种分析多种不同样品的方法,它包括:
提供一种微型流体装置,它包括:具有外部和内部的平板型体结构;位于所述内部的分析通道;位于所述内部并与所述分析通道相交于第一交叉口的进样通道;与所述进样通道连通的多个样品源;
将第一样品从多个样品源中的第一源经过所述进样通道传送至所述第一交叉口;
将所述第一样品的该部分注入所述分析通道;
在所述分析通道内分析所述第一样品的该部分;
将第二样品从多个样品源中的第二源经过所述进样通道传送至所述交叉口;
将所述第二样品的该部分注入分析通道;
在分析通道内分析所述第二样品的该部分。
72.一种分析多种不同样品的方法,它包括:
提供一种微型流体装置,它包括:具有内部和外部的体结构;位于所述内部的分析通道;位于所述内部并与所述分析通道相交于第一交叉口的进样通道;位于所述体结构内包括至少第一和第二样品库和一个退液库的样品预加样组件,多个样品库中的每一个和所述退液库都与所述进样通道连通;
将第一样品从第一样品库传送至所述第一交叉口;
将所述第一样品的该部分注入所述分析通道;
在所述分析通道内分析所述第一样品的该部分,与此同时将第二样品从所述第二样品库传送进入所述进样通道,然后传送至所述退液库;
将所述第二样品从所述进样通道传送至所述交叉口;
将所述第二样品的该部分注入所述分析通道;在所述分析通道内分析所述第二样品的该部分。
73.一种微型流体装置,它包括:
体结构;
位于体结构内的分析通道;
位于体结构内的多个样品源,每个样品源通过一根或多根样品通道与分析通道内第一位点连通;
多个样品源中第一源与分析通道中的所述位点的距离和第二样品源与分析通道中的该位点的距离基本相等。
74.一种微型流体装置,它包括:
体结构;
位于体结构内的分析通道;
位于体结构内并与分析通道相交于第一位点的第一样品引入通道;
位于体结构内的第一组多个样品源,其中每一个样品源都通过体结构内第一组隔开的多个样品通道与第一样品引入通道连通,其中多个样品源中第一样品源至第一位点的距离与第二样品源至该点的距离基本相等。
75.一种微型流体装置,它包括:
具有外部和内部的体结构;
位于所述内部的分析通道;
位于所述内部并与所述分析通道相交连通的进样通道;
所述分析通道和所述进样通道的宽度小于50微米;
与所述进样通道连通的多个样品源。
76.制造微型流体装置的方法,它包括:
在第一基片第一平表面上制成许多通道,这些通道为:
分析通道;
位于分析通道第一侧并与之相交于第一交叉口的进样通道;
多个样品通道,它们与所述进样通道相交于所述第一交叉口的第一侧;
位于所述分析通道第二侧并与之相交于第二交叉口的一个退液通道;
在第一基片的第一平表面上覆盖第二基片以界定这些通道,第二基片上有许多穿透的眼,这些眼包括与分析通道两端连通的两个眼,与退液通道非相交末端连通的退液眼,以及与各样品通道非相交末端分别连通的多个样品眼。
77.一种微型流体装置的用途,所述装置包括位于内部的分析通道,与分析通道相交于第一交叉口的进样通道和与进样通道连通的多个样品源,所述用途是用来分别分析许多份样品。
78.分析样品组分的成套盒:它包括:
权利要求1所述的微型流体装置;
与分离样品组分用途说明书包装在一起的分离介质。
CN98804504A 1997-04-25 1998-04-13 改进了通道几何结构的微型流体装置 Expired - Fee Related CN1105914C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/845,754 1997-04-25
US08/845,754 US5976336A (en) 1997-04-25 1997-04-25 Microfluidic devices incorporating improved channel geometries
US6090297P 1997-10-03 1997-10-03
US60/060,902 1997-10-03

Publications (2)

Publication Number Publication Date
CN1253625A true CN1253625A (zh) 2000-05-17
CN1105914C CN1105914C (zh) 2003-04-16

Family

ID=26740479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98804504A Expired - Fee Related CN1105914C (zh) 1997-04-25 1998-04-13 改进了通道几何结构的微型流体装置

Country Status (8)

Country Link
US (3) US6235175B1 (zh)
EP (1) EP0988529B1 (zh)
JP (1) JP4171075B2 (zh)
KR (1) KR100351531B1 (zh)
CN (1) CN1105914C (zh)
AU (1) AU727083B2 (zh)
CA (1) CA2287409C (zh)
WO (1) WO1998049548A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392317C (zh) * 2006-03-27 2008-06-04 博奥生物有限公司 一种控制液体在微管路中连续流动的流路结构
CN100394171C (zh) * 2000-08-02 2008-06-11 卡钳技术有限公司 基于分离的高处理量分析系统
CN1991356B (zh) * 2005-12-31 2010-11-10 博奥生物有限公司 一种多通道毛细管电泳芯片及其电压控制方法
CN102740976A (zh) * 2010-01-29 2012-10-17 精密公司 取样-应答微流体盒
US10065186B2 (en) 2012-12-21 2018-09-04 Micronics, Inc. Fluidic circuits and related manufacturing methods
US10087440B2 (en) 2013-05-07 2018-10-02 Micronics, Inc. Device for preparation and analysis of nucleic acids
US10190153B2 (en) 2013-05-07 2019-01-29 Micronics, Inc. Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions
US10386377B2 (en) 2013-05-07 2019-08-20 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
US10436713B2 (en) 2012-12-21 2019-10-08 Micronics, Inc. Portable fluorescence detection system and microassay cartridge
US10518262B2 (en) 2012-12-21 2019-12-31 Perkinelmer Health Sciences, Inc. Low elasticity films for microfluidic use
US10761030B2 (en) 2005-05-09 2020-09-01 Labrador Diagnostics Llc System and methods for analyte detection
US10876956B2 (en) 2011-01-21 2020-12-29 Labrador Diagnostics Llc Systems and methods for sample use maximization
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11139084B2 (en) 2009-10-19 2021-10-05 Labrador Diagnostics Llc Integrated health data capture and analysis system
US11162947B2 (en) 2006-05-10 2021-11-02 Labrador Diagnostics Llc Real-time detection of influenza virus
US11215610B2 (en) 2006-10-13 2022-01-04 Labrador Diagnostics Llc Reducing optical interference in a fluidic device
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
US11754554B2 (en) 2007-08-06 2023-09-12 Labrador Diagnostics Llc Systems and methods of fluidic sample processing
US11802882B2 (en) 2006-11-14 2023-10-31 Labrador Diagnostics Llc Methods for the detection of analytes in small-volume blood samples

Families Citing this family (363)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620432B1 (en) * 1993-04-15 2004-08-25 Zeptosens AG Method for controlling sample introduction in microcolumn separation techniques and sampling device
US7824532B2 (en) * 1995-04-26 2010-11-02 Life Technologies Corporation Apparatus and method for electrophoresis
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
NZ333346A (en) 1996-06-28 2000-03-27 Caliper Techn Corp High-throughput screening assay systems in microscale fluidic devices
US7070590B1 (en) * 1996-07-02 2006-07-04 Massachusetts Institute Of Technology Microchip drug delivery devices
US7033474B1 (en) 1997-04-25 2006-04-25 Caliper Life Sciences, Inc. Microfluidic devices incorporating improved channel geometries
WO1998049548A1 (en) * 1997-04-25 1998-11-05 Caliper Technologies Corporation Microfluidic devices incorporating improved channel geometries
US6613512B1 (en) 1997-06-09 2003-09-02 Caliper Technologies Corp. Apparatus and method for correcting for variable velocity in microfluidic systems
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US5989402A (en) 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US7745142B2 (en) 1997-09-15 2010-06-29 Molecular Devices Corporation Molecular modification assays
AU758407B2 (en) 1997-12-24 2003-03-20 Cepheid Integrated fluid manipulation cartridge
AU2021099A (en) * 1997-12-30 1999-07-19 Caliper Technologies Corporation Software for the display of chromatographic separation data
US7497994B2 (en) 1998-02-24 2009-03-03 Khushroo Gandhi Microfluidic devices and systems incorporating cover layers
US6251343B1 (en) 1998-02-24 2001-06-26 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
US6756019B1 (en) 1998-02-24 2004-06-29 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
US6123798A (en) * 1998-05-06 2000-09-26 Caliper Technologies Corp. Methods of fabricating polymeric structures incorporating microscale fluidic elements
EP1046032A4 (en) 1998-05-18 2002-05-29 Univ Washington LIQUID ANALYSIS CARTRIDGE
US6830729B1 (en) 1998-05-18 2004-12-14 University Of Washington Sample analysis instrument
US6306590B1 (en) 1998-06-08 2001-10-23 Caliper Technologies Corp. Microfluidic matrix localization apparatus and methods
AU747464B2 (en) 1998-06-08 2002-05-16 Caliper Technologies Corporation Microfluidic devices, systems and methods for performing integrated reactions and separations
US6794197B1 (en) 1998-07-14 2004-09-21 Zyomyx, Inc. Microdevice and method for detecting a characteristic of a fluid
US20030138973A1 (en) * 1998-07-14 2003-07-24 Peter Wagner Microdevices for screening biomolecules
US6576478B1 (en) * 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
US6716394B2 (en) 1998-08-11 2004-04-06 Caliper Technologies Corp. DNA sequencing using multiple fluorescent labels being distinguishable by their decay times
US6447724B1 (en) 1998-08-11 2002-09-10 Caliper Technologies Corp. DNA sequencing using multiple fluorescent labels being distinguishable by their decay times
US6637463B1 (en) 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
JP2002527250A (ja) 1998-10-13 2002-08-27 バイオマイクロ システムズ インコーポレイテッド 受動流体力学に基づく流体回路構成要素
US6601613B2 (en) 1998-10-13 2003-08-05 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6591852B1 (en) 1998-10-13 2003-07-15 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6149787A (en) 1998-10-14 2000-11-21 Caliper Technologies Corp. External material accession systems and methods
EP0999443A3 (en) * 1998-11-02 2002-09-18 The Institute of Physical and Chemical Research Capillary electrophoretic apparatus, sample plate and sample injection method
US6887693B2 (en) 1998-12-24 2005-05-03 Cepheid Device and method for lysing cells, spores, or microorganisms
US6431476B1 (en) 1999-12-21 2002-08-13 Cepheid Apparatus and method for rapid ultrasonic disruption of cells or viruses
US7914994B2 (en) 1998-12-24 2011-03-29 Cepheid Method for separating an analyte from a sample
US6416642B1 (en) 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US20020019059A1 (en) * 1999-01-28 2002-02-14 Calvin Y.H. Chow Devices, systems and methods for time domain multiplexing of reagents
WO2000046594A1 (en) * 1999-02-02 2000-08-10 Caliper Technologies Corp. Methods, devices and systems for characterizing proteins
EP1163052B1 (en) 1999-02-23 2010-06-02 Caliper Life Sciences, Inc. Manipulation of microparticles in microfluidic systems
US6749814B1 (en) 1999-03-03 2004-06-15 Symyx Technologies, Inc. Chemical processing microsystems comprising parallel flow microreactors and methods for using same
US6326083B1 (en) 1999-03-08 2001-12-04 Calipher Technologies Corp. Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety
US6303343B1 (en) 1999-04-06 2001-10-16 Caliper Technologies Corp. Inefficient fast PCR
US7214540B2 (en) * 1999-04-06 2007-05-08 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US20030022383A1 (en) * 1999-04-06 2003-01-30 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US7250305B2 (en) * 2001-07-30 2007-07-31 Uab Research Foundation Use of dye to distinguish salt and protein crystals under microcrystallization conditions
US7247490B2 (en) * 1999-04-06 2007-07-24 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
WO2000062050A1 (en) * 1999-04-09 2000-10-19 The University Of Manchester Institute Of Science & Technology Electrophoresis method and apparatus with time- or space-modulated sample injection
US6375817B1 (en) * 1999-04-16 2002-04-23 Perseptive Biosystems, Inc. Apparatus and methods for sample analysis
US6458259B1 (en) 1999-05-11 2002-10-01 Caliper Technologies Corp. Prevention of surface adsorption in microchannels by application of electric current during pressure-induced flow
US6555389B1 (en) * 1999-05-11 2003-04-29 Aclara Biosciences, Inc. Sample evaporative control
AU770678B2 (en) 1999-05-17 2004-02-26 Caliper Life Sciences, Inc. Focusing of microparticles in microfluidic systems
US6592821B1 (en) 1999-05-17 2003-07-15 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US6287774B1 (en) * 1999-05-21 2001-09-11 Caliper Technologies Corp. Assay methods and system
US6472141B2 (en) 1999-05-21 2002-10-29 Caliper Technologies Corp. Kinase assays using polycations
US8815521B2 (en) 2000-05-30 2014-08-26 Cepheid Apparatus and method for cell disruption
US20040200909A1 (en) * 1999-05-28 2004-10-14 Cepheid Apparatus and method for cell disruption
WO2000073413A2 (en) 1999-05-28 2000-12-07 Cepheid Apparatus and method for cell disruption
US9073053B2 (en) 1999-05-28 2015-07-07 Cepheid Apparatus and method for cell disruption
US6649358B1 (en) 1999-06-01 2003-11-18 Caliper Technologies Corp. Microscale assays and microfluidic devices for transporter, gradient induced, and binding activities
DE19928412C2 (de) * 1999-06-22 2002-03-21 Agilent Technologies Inc Versorgungselement für einen Labor-Mikrochip
AU6068300A (en) 1999-07-06 2001-01-22 Caliper Technologies Corporation Microfluidic systems and methods for determining modulator kinetics
EP1212458A4 (en) 1999-07-30 2005-01-05 Surromed Inc INSTRUMENTS, METHODS AND REAGENTS FOR PLASMON SURFACE RESONANCE
US7138254B2 (en) * 1999-08-02 2006-11-21 Ge Healthcare (Sv) Corp. Methods and apparatus for performing submicroliter reactions with nucleic acids or proteins
US6858185B1 (en) 1999-08-25 2005-02-22 Caliper Life Sciences, Inc. Dilutions in high throughput systems with a single vacuum source
US6613581B1 (en) 1999-08-26 2003-09-02 Caliper Technologies Corp. Microfluidic analytic detection assays, devices, and integrated systems
AU783191B2 (en) 1999-10-08 2005-10-06 Caliper Life Sciences, Inc. Use of nernstein voltage sensitive dyes in measuring transmembrane voltage
DE19949551C2 (de) 1999-10-14 2001-12-13 Agilent Technologies Inc Mikrofluidischer Mikrochip, Energieversorgungseinrichtung und Verfahren zum Betrieb eines mikrofluidischen Mikrochips
US7157284B2 (en) * 1999-10-29 2007-01-02 The United States Of America As Represented By The Environmental Protection Agency Vacuum distillation automatic sampler
US6878255B1 (en) 1999-11-05 2005-04-12 Arrowhead Center, Inc. Microfluidic devices with thick-film electrochemical detection
EP1236034A4 (en) * 1999-11-12 2006-05-03 Surromed Inc PLASMON RESONANCE SURFACE BIODETECTION
US6149815A (en) * 1999-11-23 2000-11-21 Sauter; Andrew D. Precise electrokinetic delivery of minute volumes of liquid(s)
US6271038B1 (en) * 1999-12-15 2001-08-07 Glaxo Wellcome Inc. Methods for high throughout determination and ranking of formulations and solubility
US6468761B2 (en) 2000-01-07 2002-10-22 Caliper Technologies, Corp. Microfluidic in-line labeling method for continuous-flow protease inhibition analysis
US7037416B2 (en) 2000-01-14 2006-05-02 Caliper Life Sciences, Inc. Method for monitoring flow rate using fluorescent markers
AU2001234997B2 (en) * 2000-02-11 2006-07-27 Monogram Biosciences, Inc. Microfluid device with sample injector and method of use
US6685813B2 (en) 2000-02-11 2004-02-03 Aclara Biosciences, Inc. Tandem isotachophoresis/zone electrophoresis method and system
JP2003524183A (ja) * 2000-02-23 2003-08-12 カリパー・テクノロジーズ・コープ. マルチリザーバ圧力コントロールシステム
US6720157B2 (en) * 2000-02-23 2004-04-13 Zyomyx, Inc. Chips having elevated sample surfaces
US6681616B2 (en) * 2000-02-23 2004-01-27 Caliper Technologies Corp. Microfluidic viscometer
US7040144B2 (en) * 2000-02-23 2006-05-09 Caliper Life Sciences, Inc. Microfluidic viscometer
WO2001064344A2 (en) 2000-03-02 2001-09-07 Microchips, Inc. Microfabricated devices for the storage and selective exposure of chemicals and devices
GB2359765B (en) * 2000-03-02 2003-03-05 Univ Newcastle Capillary reactor distribution device and method
US7485454B1 (en) 2000-03-10 2009-02-03 Bioprocessors Corp. Microreactor
US20020012971A1 (en) 2000-03-20 2002-01-31 Mehta Tammy Burd PCR compatible nucleic acid sieving medium
US6358387B1 (en) * 2000-03-27 2002-03-19 Caliper Technologies Corporation Ultra high throughput microfluidic analytical systems and methods
JP2001281233A (ja) * 2000-03-28 2001-10-10 Inst Of Physical & Chemical Res 水性分配用マイクロチップおよびそれを用いた水性分配方法
AU5121801A (en) * 2000-03-31 2001-10-15 Micronics Inc Protein crystallization in microfluidic structures
US6733645B1 (en) 2000-04-18 2004-05-11 Caliper Technologies Corp. Total analyte quantitation
AU2001261541B2 (en) 2000-05-11 2004-10-14 Caliper Life Sciences, Inc. Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers
EP1297179B1 (en) * 2000-05-12 2008-09-24 Caliper Life Sciences, Inc. Detection of nucleic acid hybridization by fluorescence polarization
US6557427B2 (en) * 2000-05-24 2003-05-06 Micronics, Inc. Capillaries for fluid movement within microfluidic channels
GB2362713A (en) * 2000-05-26 2001-11-28 Casect Ltd Sampling system for gas
WO2001091902A2 (en) 2000-05-30 2001-12-06 Massachusetts Institute Of Technology Methods and devices for sealing microchip reservoir devices
US6829753B2 (en) * 2000-06-27 2004-12-07 Fluidigm Corporation Microfluidic design automation method and system
US6885982B2 (en) * 2000-06-27 2005-04-26 Fluidigm Corporation Object oriented microfluidic design method and system
DE10035911A1 (de) * 2000-07-21 2002-02-07 Abb Research Ltd Verfahren und Sensor zum Überwachen von Flüssigkeiten
US20070119711A1 (en) * 2000-08-02 2007-05-31 Caliper Life Sciences, Inc. High throughput separations based analysis systems and methods
CA2415055A1 (en) 2000-08-03 2002-02-14 Caliper Technologies Corporation Methods and devices for high throughput fluid delivery
US20020142618A1 (en) * 2000-08-04 2002-10-03 Caliper Technologies Corp. Control of operation conditions within fluidic systems
JP2004506189A (ja) * 2000-08-04 2004-02-26 カリパー・テクノロジーズ・コープ. 流体システム内の操作条件の制御
US6615856B2 (en) * 2000-08-04 2003-09-09 Biomicro Systems, Inc. Remote valving for microfluidic flow control
GB0019499D0 (en) 2000-08-08 2000-09-27 Diamond Optical Tech Ltd system and method
GB0019496D0 (en) 2000-08-08 2000-09-27 Diamond Optical Tech Ltd System and method
GB0019500D0 (en) 2000-08-08 2000-09-27 Diamond Optical Tech Ltd System and method
US6562213B1 (en) 2000-08-30 2003-05-13 Ethrog Biotechnology Ltd. Electrophoresis apparatus for simultaneous loading of multiple samples
WO2002025243A1 (en) * 2000-09-21 2002-03-28 Dna Sciences, Inc. Sample injector system and method
AU1189702A (en) * 2000-10-13 2002-04-22 Fluidigm Corp Microfluidic device based sample injection system for analytical devices
US8231845B2 (en) * 2000-10-25 2012-07-31 Steag Microparts Structures for uniform capillary flow
DE50110742D1 (de) * 2000-10-25 2006-09-28 Boehringer Ingelheim Micropart Mikrostrukturierte Plattform für die Untersuchung einer Flüssigkeit
ATE355129T1 (de) * 2000-11-06 2006-03-15 Us Gov Health & Human Serv Probenzuführsystem mit laminarmischung zur biodetektion von mikrovolumen
US20090118139A1 (en) 2000-11-07 2009-05-07 Caliper Life Sciences, Inc. Microfluidic method and system for enzyme inhibition activity screening
US8900811B2 (en) 2000-11-16 2014-12-02 Caliper Life Sciences, Inc. Method and apparatus for generating thermal melting curves in a microfluidic device
US6942778B1 (en) * 2000-11-28 2005-09-13 Nanogen, Inc. Microstructure apparatus and method for separating differently charged molecules using an applied electric field
US7070682B2 (en) * 2001-01-16 2006-07-04 Cheng Lee Microfluidic apparatus for performing gel protein extractions and methods for using the apparatus
US7070681B2 (en) * 2001-01-24 2006-07-04 The Board Of Trustees Of The Leland Stanford Junior University Electrokinetic instability micromixer
US6681788B2 (en) 2001-01-29 2004-01-27 Caliper Technologies Corp. Non-mechanical valves for fluidic systems
US20020100714A1 (en) * 2001-01-31 2002-08-01 Sau Lan Tang Staats Microfluidic devices
US20020166592A1 (en) * 2001-02-09 2002-11-14 Shaorong Liu Apparatus and method for small-volume fluid manipulation and transportation
AU2002306486A1 (en) * 2001-02-09 2002-08-28 Microchem Solutions Method and apparatus for sample injection in microfabricated devices
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
EP1377527A4 (en) * 2001-03-08 2004-09-15 Ethrog Biotechnology Ltd DEVICE AND METHOD FOR ELECTROPHORESIS
US7010391B2 (en) * 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US6575188B2 (en) * 2001-07-26 2003-06-10 Handylab, Inc. Methods and systems for fluid control in microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US6742661B1 (en) * 2001-04-03 2004-06-01 Micronics, Inc. Well-plate microfluidics
US7670429B2 (en) * 2001-04-05 2010-03-02 The California Institute Of Technology High throughput screening of crystallization of materials
AU2002307152A1 (en) 2001-04-06 2002-10-21 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
US20040058407A1 (en) * 2001-04-10 2004-03-25 Miller Scott E. Reactor systems having a light-interacting component
US20040058437A1 (en) * 2001-04-10 2004-03-25 Rodgers Seth T. Materials and reactor systems having humidity and gas control
US20030040119A1 (en) * 2001-04-11 2003-02-27 The Regents Of The University Of Michigan Separation devices and methods for separating particles
US7440684B2 (en) * 2001-04-12 2008-10-21 Spaid Michael A Method and apparatus for improved temperature control in microfluidic devices
US6974526B2 (en) * 2001-05-01 2005-12-13 Calibrant Biosystems, Inc. Plastic microfluidics enabling two-dimensional protein separations in proteome analysis
US7641780B2 (en) * 2001-05-01 2010-01-05 Calibrant Biosystems, Inc. Two-dimensional microfluidics for protein separations and gene analysis
US6929730B2 (en) * 2001-05-01 2005-08-16 Cheng Sheng Lee Two dimensional microfluidic gene scanner
US7723123B1 (en) 2001-06-05 2010-05-25 Caliper Life Sciences, Inc. Western blot by incorporating an affinity purification zone
US6977163B1 (en) * 2001-06-13 2005-12-20 Caliper Life Sciences, Inc. Methods and systems for performing multiple reactions by interfacial mixing
US20030077570A1 (en) * 2001-09-20 2003-04-24 Coventor, Inc. Small molecule substrate based enzyme activity assays
US20050149304A1 (en) * 2001-06-27 2005-07-07 Fluidigm Corporation Object oriented microfluidic design method and system
EP1399135B1 (en) 2001-06-28 2004-12-29 Microchips, Inc. Methods for hermetically sealing microchip reservoir devices
EP2196799A3 (en) * 2001-07-19 2010-08-25 Applera Corporation Buffers for electrophoresis and use thereof
US6825127B2 (en) 2001-07-24 2004-11-30 Zarlink Semiconductor Inc. Micro-fluidic devices
US20060062696A1 (en) 2001-07-27 2006-03-23 Caliper Life Sciences, Inc. Optimized high throughput analytical systems
US20040022691A1 (en) * 2001-08-15 2004-02-05 Allen Susan D. Method of manufacturing and design of microreactors, including microanalytical and separation devices
WO2003015890A1 (en) * 2001-08-20 2003-02-27 President And Fellows Of Harvard College Fluidic arrays and method of using
US7134486B2 (en) * 2001-09-28 2006-11-14 The Board Of Trustees Of The Leeland Stanford Junior University Control of electrolysis gases in electroosmotic pump systems
US6942018B2 (en) * 2001-09-28 2005-09-13 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
US20030082632A1 (en) * 2001-10-25 2003-05-01 Cytoprint, Inc. Assay method and apparatus
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
WO2003038424A1 (en) * 2001-11-02 2003-05-08 Imperial College Innovations Limited Capillary electrophoresis microchip, system and method
US20040028559A1 (en) * 2001-11-06 2004-02-12 Peter Schuck Sample delivery system with laminar mixing for microvolume biosensing
EP1463796B1 (en) 2001-11-30 2013-01-09 Fluidigm Corporation Microfluidic device and methods of using same
US7691333B2 (en) * 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
EP1462805B1 (en) 2001-12-14 2010-02-10 Arkray, Inc. Sample measuring device
US7691244B2 (en) * 2001-12-18 2010-04-06 Massachusetts Institute Of Technology Microfluidic pumps and mixers driven by induced-charge electro-osmosis
US6581441B1 (en) * 2002-02-01 2003-06-24 Perseptive Biosystems, Inc. Capillary column chromatography process and system
US6606251B1 (en) 2002-02-07 2003-08-12 Cooligy Inc. Power conditioning module
US7459127B2 (en) * 2002-02-26 2008-12-02 Siemens Healthcare Diagnostics Inc. Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces
WO2003076052A1 (en) 2002-03-05 2003-09-18 Caliper Life Sciences, Inc. Mixed mode microfluidic systems
US7195986B1 (en) * 2002-03-08 2007-03-27 Caliper Life Sciences, Inc. Microfluidic device with controlled substrate conductivity
US7252928B1 (en) 2002-03-12 2007-08-07 Caliper Life Sciences, Inc. Methods for prevention of surface adsorption of biological materials to capillary walls in microchannels
US7223371B2 (en) * 2002-03-14 2007-05-29 Micronics, Inc. Microfluidic channel network device
EP1499706A4 (en) 2002-04-01 2010-11-03 Fluidigm Corp MICROFLUIDIC PARTICLE ANALYSIS SYSTEMS
US7312085B2 (en) * 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
GB0208766D0 (en) * 2002-04-02 2002-05-29 Univ Surrey Liquid-liquid separation
US20050026134A1 (en) * 2002-04-10 2005-02-03 Bioprocessors Corp. Systems and methods for control of pH and other reactor environment conditions
EP2484751B1 (en) * 2002-04-16 2018-11-28 Princeton University Method of analysing polynucleotides
US9943847B2 (en) 2002-04-17 2018-04-17 Cytonome/St, Llc Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US6976590B2 (en) * 2002-06-24 2005-12-20 Cytonome, Inc. Method and apparatus for sorting particles
US6808075B2 (en) 2002-04-17 2004-10-26 Cytonome, Inc. Method and apparatus for sorting particles
US8241883B2 (en) 2002-04-24 2012-08-14 Caliper Life Sciences, Inc. High throughput mobility shift
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
ATE479899T1 (de) * 2002-05-09 2010-09-15 Univ Chicago Einrichtugn und verfahren für druckgesteuerten plug-transport und reaktion
US20070026528A1 (en) * 2002-05-30 2007-02-01 Delucas Lawrence J Method for screening crystallization conditions in solution crystal growth
US20050106714A1 (en) * 2002-06-05 2005-05-19 Zarur Andrey J. Rotatable reactor systems and methods
WO2003104792A2 (en) * 2002-06-07 2003-12-18 Picosep A/S A method of separating biocomponents contained in a liquid, a separating system and a separating unit
US7867193B2 (en) * 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US20050238506A1 (en) * 2002-06-21 2005-10-27 The Charles Stark Draper Laboratory, Inc. Electromagnetically-actuated microfluidic flow regulators and related applications
US20040077104A1 (en) * 2002-07-09 2004-04-22 Valentino Montegrande Antigen detection device
US20040007672A1 (en) * 2002-07-10 2004-01-15 Delucas Lawrence J. Method for distinguishing between biomolecule and non-biomolecule crystals
US7235164B2 (en) 2002-10-18 2007-06-26 Eksigent Technologies, Llc Electrokinetic pump having capacitive electrodes
DE10232849A1 (de) * 2002-07-19 2004-02-12 Abb Patent Gmbh Gasanalyseeinrichtung zur Qualitätsüberwachung eines gasförmigen Stoffes oder Stoffgemisches, insbesondere Luft
US7381317B2 (en) * 2002-08-12 2008-06-03 Beckman Coulter, Inc. Methods and compositions for capillary electrophoresis (CE)
US7510551B2 (en) * 2002-08-16 2009-03-31 Microchips, Inc. Controlled release device and method using electrothermal ablation
JP3725109B2 (ja) * 2002-09-19 2005-12-07 財団法人生産技術研究奨励会 マイクロ流体デバイス
US6881039B2 (en) 2002-09-23 2005-04-19 Cooligy, Inc. Micro-fabricated electrokinetic pump
US7329545B2 (en) 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US8220494B2 (en) * 2002-09-25 2012-07-17 California Institute Of Technology Microfluidic large scale integration
EP1551753A2 (en) * 2002-09-25 2005-07-13 California Institute Of Technology Microfluidic large scale integration
ES2375724T3 (es) 2002-09-27 2012-03-05 The General Hospital Corporation Dispositivo microflu�?dico para seperación de células y sus usos.
TW590982B (en) * 2002-09-27 2004-06-11 Agnitio Science & Technology I Micro-fluid driving device
JP5695287B2 (ja) 2002-10-02 2015-04-01 カリフォルニア インスティテュート オブ テクノロジー 微小流体の核酸解析
US6994151B2 (en) * 2002-10-22 2006-02-07 Cooligy, Inc. Vapor escape microchannel heat exchanger
US20040076408A1 (en) * 2002-10-22 2004-04-22 Cooligy Inc. Method and apparatus for removeably coupling a heat rejection device with a heat producing device
GB2395006A (en) * 2002-10-29 2004-05-12 Micro Chemical Systems Ltd Apparatus and method for performing an assay
US7932098B2 (en) * 2002-10-31 2011-04-26 Hewlett-Packard Development Company, L.P. Microfluidic system utilizing thin-film layers to route fluid
US20040086872A1 (en) * 2002-10-31 2004-05-06 Childers Winthrop D. Microfluidic system for analysis of nucleic acids
US6988535B2 (en) 2002-11-01 2006-01-24 Cooligy, Inc. Channeled flat plate fin heat exchange system, device and method
US6986382B2 (en) * 2002-11-01 2006-01-17 Cooligy Inc. Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
US7836597B2 (en) 2002-11-01 2010-11-23 Cooligy Inc. Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system
EP2096341A1 (en) * 2002-12-04 2009-09-02 Spinx, Inc, Devices and methods for programmable microscale manipulation of fluids
US7094354B2 (en) * 2002-12-19 2006-08-22 Bayer Healthcare Llc Method and apparatus for separation of particles in a microfluidic device
US7125711B2 (en) * 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
CA2511012C (en) 2002-12-20 2018-02-27 Applera Corporation Genetic polymorphisms associated with myocardial infarction, methods of detection and uses thereof
US7293423B2 (en) * 2004-06-04 2007-11-13 Cooligy Inc. Method and apparatus for controlling freezing nucleation and propagation
JP4136969B2 (ja) * 2003-03-03 2008-08-20 キヤノン株式会社 流体搬送装置
EP1613160A4 (en) 2003-03-27 2008-01-02 Ptc Therapeutics Inc VIEWING ENZYMES OF THE TRNA-SPLICE PATH TO IDENTIFY ANTIFUNGAL AND / OR PROLIFERATION-INHIBITING MOLECULES
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US7476363B2 (en) * 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
US7666361B2 (en) * 2003-04-03 2010-02-23 Fluidigm Corporation Microfluidic devices and methods of using same
US7604965B2 (en) * 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
FR2855076B1 (fr) * 2003-05-21 2006-09-08 Inst Curie Dispositif microfluidique
US7435381B2 (en) * 2003-05-29 2008-10-14 Siemens Healthcare Diagnostics Inc. Packaging of microfluidic devices
US7316543B2 (en) * 2003-05-30 2008-01-08 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic micropump with planar features
EP1628748A2 (en) * 2003-06-05 2006-03-01 Bioprocessors Corporation Reactor with memory component
US20060147898A1 (en) * 2003-06-20 2006-07-06 Nitto Denko Corporation Cell microchip
US20080257754A1 (en) * 2003-06-27 2008-10-23 Pugia Michael J Method and apparatus for entry of specimens into a microfluidic device
US20040265172A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method and apparatus for entry and storage of specimens into a microfluidic device
US20040265171A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method for uniform application of fluid into a reactive reagent area
US7591302B1 (en) 2003-07-23 2009-09-22 Cooligy Inc. Pump and fan control concepts in a cooling system
US7021369B2 (en) * 2003-07-23 2006-04-04 Cooligy, Inc. Hermetic closed loop fluid system
US7731906B2 (en) 2003-07-31 2010-06-08 Handylab, Inc. Processing particle-containing samples
US7231839B2 (en) * 2003-08-11 2007-06-19 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic micropumps with applications to fluid dispensing and field sampling
CA2535566A1 (en) * 2003-08-11 2005-07-07 California Institute Of Technology Microfluidic large scale integration
US7413712B2 (en) * 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7347617B2 (en) * 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
CA3050151C (en) 2003-11-26 2023-03-07 Celera Corporation Single nucleotide polymorphisms associated with cardiovascular disorders and statin response, methods of detection and uses thereof
US7867194B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
EP1716404A4 (en) * 2004-02-20 2010-05-05 Univ New York State Res Found METHOD AND DEVICE FOR HANDLING LIQUIDS IN MICROFLUIDIC SYSTEMS
US8058056B2 (en) * 2004-03-12 2011-11-15 The Regents Of The University Of California Method and apparatus for integrated cell handling and measurements
US7059352B2 (en) * 2004-03-31 2006-06-13 Lifescan Scotland Triggerable passive valve for use in controlling the flow of fluid
US20050217742A1 (en) * 2004-03-31 2005-10-06 Sebastian Bohm Microfluidic circuit including an array of triggerable passive valves
US20050227350A1 (en) * 2004-04-13 2005-10-13 Agency For Science, Technology And Research Device and method for studying cell migration and deformation
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
AU2005241080B2 (en) 2004-05-03 2011-08-11 Handylab, Inc. Processing polynucleotide-containing samples
EP1745154B1 (en) 2004-05-07 2012-08-01 Celera Corporation Genetic polymorphisms associated with liver fibrosis methods of detection and uses thereof
JP3952036B2 (ja) * 2004-05-13 2007-08-01 コニカミノルタセンシング株式会社 マイクロ流体デバイス並びに試液の試験方法および試験システム
JP2008504845A (ja) * 2004-06-07 2008-02-21 バイオプロセッサーズ コーポレイション リアクター環境条件の制御
JP2006010529A (ja) * 2004-06-25 2006-01-12 Canon Inc 磁性粒子分離装置および分離方法
WO2006015299A2 (en) * 2004-07-30 2006-02-09 Microchips, Inc. Multi-reservoir device for transdermal drug delivery and sensing
US7211184B2 (en) * 2004-08-04 2007-05-01 Ast Management Inc. Capillary electrophoresis devices
US20060042785A1 (en) * 2004-08-27 2006-03-02 Cooligy, Inc. Pumped fluid cooling system and method
JP5107041B2 (ja) * 2004-09-01 2012-12-26 マイクロチップス・インコーポレーテッド レザバ内容物の制御された放出または曝露のための、マルチキャップレザバデバイス
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays
US7429317B2 (en) * 2004-12-20 2008-09-30 Eksigent Technologies Llc Electrokinetic device employing a non-newtonian liquid
US20060183216A1 (en) * 2005-01-21 2006-08-17 Kalyan Handique Containers for liquid storage and delivery with application to microfluidic devices
EP1859330B1 (en) * 2005-01-28 2012-07-04 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board
US20060171855A1 (en) * 2005-02-03 2006-08-03 Hongfeng Yin Devices,systems and methods for multi-dimensional separation
US8354069B2 (en) 2005-03-08 2013-01-15 Authentix, Inc. Plug flow system for identification and authentication of markers
ZA200707354B (en) * 2005-03-08 2009-04-29 Authentix Inc Microfluidic device for identification, quantification, and authentication of latent markers
EP1856296A2 (en) 2005-03-11 2007-11-21 Applera Corporation Genetic polymorphisms associated with coronary heart disease, methods of detection and uses thereof
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
US8206974B2 (en) 2005-05-19 2012-06-26 Netbio, Inc. Ruggedized apparatus for analysis of nucleic acid and proteins
US20070014699A1 (en) 2005-06-23 2007-01-18 Beckman Coulter, Inc, Methods and apparatus for improving the sensitivity of capillary zone electrophoresis
US9354156B2 (en) 2007-02-08 2016-05-31 Emd Millipore Corporation Microfluidic particle analysis method, device and system
US9637715B2 (en) 2005-07-07 2017-05-02 Emd Millipore Corporation Cell culture and invasion assay method and system
US9388374B2 (en) 2005-07-07 2016-07-12 Emd Millipore Corporation Microfluidic cell culture systems
US9376658B2 (en) * 2008-01-03 2016-06-28 Emd Millipore Corporation Cell culture array system for automated assays and methods of operation and manufacture thereof
ES2865180T3 (es) 2005-07-07 2021-10-15 Univ California Aparato para formación de cultivo celular
US8257964B2 (en) 2006-01-04 2012-09-04 Cell ASIC Microwell cell-culture device and fabrication method
US7799530B2 (en) 2005-09-23 2010-09-21 Celera Corporation Genetic polymorphisms associated with cardiovascular disorders and drug response, methods of detection and uses thereof
ATE498460T1 (de) 2005-11-08 2011-03-15 Surmodics Inc Ultradünne photopolymer-beschichtungen und verwendungen davon
EP1957794B1 (en) 2005-11-23 2014-07-02 Eksigent Technologies, LLC Electrokinetic pump designs and drug delivery systems
US20070151856A1 (en) * 2005-12-29 2007-07-05 Fazzio R S Fluidic device having contiguous conductive layer over interior and exterior surfaces thereof
JP4749867B2 (ja) 2006-01-13 2011-08-17 パナソニック株式会社 電気泳動装置
JP4713397B2 (ja) * 2006-01-18 2011-06-29 株式会社リコー 微小流路構造体及び微小液滴生成システム
US7913719B2 (en) 2006-01-30 2011-03-29 Cooligy Inc. Tape-wrapped multilayer tubing and methods for making the same
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
JP5415253B2 (ja) 2006-03-24 2014-02-12 ハンディラブ・インコーポレーテッド 微小流体サンプルを処理するための一体化システム及びその使用方法
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
WO2007120530A2 (en) 2006-03-30 2007-10-25 Cooligy, Inc. Integrated liquid to air conduction module
US8293524B2 (en) * 2006-03-31 2012-10-23 Fluxion Biosciences Inc. Methods and apparatus for the manipulation of particle suspensions and testing thereof
US7715194B2 (en) 2006-04-11 2010-05-11 Cooligy Inc. Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers
US7674924B2 (en) 2006-05-22 2010-03-09 Third Wave Technologies, Inc. Compositions, probes, and conjugates and uses thereof
CA2666346C (en) 2006-10-20 2016-02-23 Celera Corporation Genetic polymorphisms associated with venous thrombosis, methods of detection and uses thereof
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
US20080160629A1 (en) * 2007-01-02 2008-07-03 Calibrant Biosystems, Inc. Methods and systems for off-line multidimensional concentration and separation of biomolecules
US20080156080A1 (en) * 2007-01-02 2008-07-03 Calibrant Biosystems, Inc. Methods and systems for multidimensional concentration and separation of biomolecules using capillary isotachophoresis
JP5016683B2 (ja) 2007-01-17 2012-09-05 アジレント・テクノロジーズ・インク 流体導入用の側面開口部を有するマイクロ流体チップ
US7867592B2 (en) 2007-01-30 2011-01-11 Eksigent Technologies, Inc. Methods, compositions and devices, including electroosmotic pumps, comprising coated porous surfaces
WO2008094672A2 (en) 2007-01-31 2008-08-07 Charles Stark Draper Laboratory, Inc. Membrane-based fluid control in microfluidic devices
US7799656B2 (en) 2007-03-15 2010-09-21 Dalsa Semiconductor Inc. Microchannels for BioMEMS devices
KR101530943B1 (ko) * 2007-04-04 2015-06-23 네트바이오, 인코포레이티드 통합된 핵산 분석
EP2527472B1 (en) 2007-05-31 2016-09-28 Yale University A genetic lesion associated with cancer
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
WO2009012185A1 (en) 2007-07-13 2009-01-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
TW200912621A (en) * 2007-08-07 2009-03-16 Cooligy Inc Method and apparatus for providing a supplemental cooling to server racks
US8268246B2 (en) * 2007-08-09 2012-09-18 Advanced Liquid Logic Inc PCB droplet actuator fabrication
EP2031382B1 (en) * 2007-08-29 2010-12-29 Agilent Technologies, Inc. On-chip analysis of covalently labelled sample species
US8381169B2 (en) * 2007-10-30 2013-02-19 International Business Machines Corporation Extending unified process and method content to include dynamic and collaborative content
EP2011573B1 (en) 2007-11-05 2010-07-21 Agilent Technologies, Inc. Freezing a microfluidic chip
US8039212B2 (en) 2007-11-05 2011-10-18 Celera Corporation Genetic polymorphisms associated with liver fibrosis, methods of detection and uses thereof
WO2009076134A1 (en) * 2007-12-11 2009-06-18 Eksigent Technologies, Llc Electrokinetic pump with fixed stroke volume
US20090221620A1 (en) 2008-02-20 2009-09-03 Celera Corporation Gentic polymorphisms associated with stroke, methods of detection and uses thereof
US9297571B1 (en) 2008-03-10 2016-03-29 Liebert Corporation Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
US20090225514A1 (en) 2008-03-10 2009-09-10 Adrian Correa Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
US20090250347A1 (en) * 2008-04-03 2009-10-08 Protea Biosciences, Inc. Microfluidic devices & processes for electrokinetic transport
US20090250345A1 (en) * 2008-04-03 2009-10-08 Protea Biosciences, Inc. Microfluidic electroelution devices & processes
CN102056838B (zh) * 2008-04-11 2013-07-03 弗卢丁公司 微流体装置和方法
US8277112B2 (en) * 2008-05-27 2012-10-02 The Research Foundation Of State University Of New York Devices and fluid flow methods for improving mixing
EP2878680B1 (en) 2008-07-09 2016-06-08 Celera Corporation Genetic polymorphisms associated with cardiovascular diseases, methods of detection and uses thereof
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
WO2010017321A1 (en) 2008-08-05 2010-02-11 Cooligy Inc. Bonded metal and ceramic plates for thermal management of optical and electronic devices
US8546128B2 (en) * 2008-10-22 2013-10-01 Life Technologies Corporation Fluidics system for sequential delivery of reagents
US11951474B2 (en) 2008-10-22 2024-04-09 Life Technologies Corporation Fluidics systems for sequential delivery of reagents
US7927904B2 (en) 2009-01-05 2011-04-19 Dalsa Semiconductor Inc. Method of making BIOMEMS devices
US8925373B2 (en) * 2009-04-22 2015-01-06 Wisconsin Alumni Research Foundation Microfluidic device integrating sensing element and method
AU2010257118B2 (en) 2009-06-04 2014-08-28 Lockheed Martin Corporation Multiple-sample microfluidic chip for DNA analysis
EP2264183B1 (en) 2009-06-09 2016-12-07 Gendiag.exe, S.L. Risk markers for cardiovascular disease
WO2010147654A2 (en) 2009-06-15 2010-12-23 Netbio Inc. Improved methods for forensic dna quantitation
EP2446056A2 (en) 2009-06-25 2012-05-02 Yale University Single nucleotide polymorphisms in brca1 and cancer risk
US20110073292A1 (en) * 2009-09-30 2011-03-31 Madhav Datta Fabrication of high surface area, high aspect ratio mini-channels and their application in liquid cooling systems
US9759718B2 (en) 2009-11-23 2017-09-12 Cyvek, Inc. PDMS membrane-confined nucleic acid and antibody/antigen-functionalized microlength tube capture elements, and systems employing them, and methods of their use
US9216412B2 (en) 2009-11-23 2015-12-22 Cyvek, Inc. Microfluidic devices and methods of manufacture and use
US9700889B2 (en) 2009-11-23 2017-07-11 Cyvek, Inc. Methods and systems for manufacture of microarray assay systems, conducting microfluidic assays, and monitoring and scanning to obtain microfluidic assay results
US10065403B2 (en) 2009-11-23 2018-09-04 Cyvek, Inc. Microfluidic assay assemblies and methods of manufacture
JP5701894B2 (ja) 2009-11-23 2015-04-15 サイヴェク・インコーポレイテッド アッセイを行う方法及び装置
US9500645B2 (en) 2009-11-23 2016-11-22 Cyvek, Inc. Micro-tube particles for microfluidic assays and methods of manufacture
US9855735B2 (en) 2009-11-23 2018-01-02 Cyvek, Inc. Portable microfluidic assay devices and methods of manufacture and use
US9651568B2 (en) 2009-11-23 2017-05-16 Cyvek, Inc. Methods and systems for epi-fluorescent monitoring and scanning for microfluidic assays
US9353342B2 (en) 2010-01-21 2016-05-31 Emd Millipore Corporation Cell culture and gradient migration assay methods and devices
WO2011128096A1 (en) 2010-04-16 2011-10-20 Roche Diagnostics Gmbh Polymorphism markers for predicting response to interleukin-6 receptor-inhibiting monoclonal antibody drug treatment
US20110269735A1 (en) 2010-04-19 2011-11-03 Celera Corporation Genetic polymorphisms associated with statin response and cardiovascular diseases, methods of detection and uses thereof
GB2497501A (en) 2010-10-15 2013-06-12 Lockheed Corp Micro fluidic optic design
US20120108651A1 (en) 2010-11-02 2012-05-03 Leiden University Medical Center (LUMC) Acting on Behalf of Academic Hospital Leiden (AZL) Genetic polymorphisms associated with venous thrombosis and statin response, methods of detection and uses thereof
JP6162047B2 (ja) 2011-02-02 2017-07-12 ザ チャールズ スターク ドレイパー ラボラトリー インク 薬物送達装置
US10526572B2 (en) 2011-04-01 2020-01-07 EMD Millipore Corporaticn Cell culture and invasion assay method and system
CN106190806B (zh) 2011-04-15 2018-11-06 贝克顿·迪金森公司 扫描实时微流体热循环仪和用于同步的热循环和扫描光学检测的方法
EP2704759A4 (en) 2011-05-05 2015-06-03 Eksigent Technologies Llc COUPLING GEL FOR ELECTROCINETIC FLUID DISTRIBUTION SYSTEMS
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
KR102121853B1 (ko) 2011-09-30 2020-06-12 벡톤 디킨슨 앤드 컴퍼니 일체화된 시약 스트립
CN104040238B (zh) 2011-11-04 2017-06-27 汉迪拉布公司 多核苷酸样品制备装置
CN104245917B (zh) 2011-12-03 2017-07-21 Emd密理博公司 用于微流体细胞培养的微型培育系统和方法
CN107881219B (zh) 2012-02-03 2021-09-10 贝克顿·迪金森公司 用于分子诊断测试分配和测试之间兼容性确定的外部文件
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
EP2822688B1 (en) 2012-03-08 2019-09-25 Cyvek, Inc. Microfluidic assay assemblies and methods of manufacture
EP2839275A1 (en) * 2012-04-19 2015-02-25 Wako Pure Chemical Industries Limited Methods for real-time sampling of reaction products
WO2016161081A1 (en) 2015-04-03 2016-10-06 Fluxion Biosciences, Inc. Molecular characterization of single cells and cell populations for non-invasive diagnostics
US10519493B2 (en) 2015-06-22 2019-12-31 Fluxergy, Llc Apparatus and method for image analysis of a fluid sample undergoing a polymerase chain reaction (PCR)
WO2016209734A1 (en) 2015-06-22 2016-12-29 Fluxergy, Llc Device for analyzing a fluid sample and use of test card with same
WO2016209731A1 (en) 2015-06-22 2016-12-29 Fluxergy, Llc Test card for assay and method of manufacturing same
WO2017001436A1 (en) * 2015-06-29 2017-01-05 Imec Vzw Valve-less mixing method and mixing device
US10228367B2 (en) 2015-12-01 2019-03-12 ProteinSimple Segmented multi-use automated assay cartridge
CN110997900A (zh) * 2017-07-14 2020-04-10 多伦多大学管理委员会 用于快速产生用于化合物筛选的类器官/球状体的微流体平台
US11041834B2 (en) * 2018-03-06 2021-06-22 Waters Technologies Corporation High surface area chromatographic device with low pressure drop
GB2598113A (en) 2020-08-18 2022-02-23 Agilent Technologies Inc Fluidically coupling with elastic structure deformable by sealing element
WO2023194369A1 (en) 2022-04-08 2023-10-12 Fundació Institut Mar D'investigacions Mèdiques (Imim) Genetic markers for severe covid-19

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077845A (en) * 1977-04-20 1978-03-07 Miles Laboratories, Inc. Disposable inoculation device and process of using same
US4390403A (en) * 1981-07-24 1983-06-28 Batchelder J Samuel Method and apparatus for dielectrophoretic manipulation of chemical species
US5140161A (en) 1985-08-05 1992-08-18 Biotrack Capillary flow device
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5144139A (en) 1985-08-05 1992-09-01 Biotrack, Inc. Capillary flow device
US5164598A (en) 1985-08-05 1992-11-17 Biotrack Capillary flow device
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US5015350A (en) 1989-11-06 1991-05-14 Applied Biosystems, Inc. Flow-rate-controlled surface-charge coating for capillary electrophoresis
US5264101A (en) 1989-11-06 1993-11-23 Applied Biosystems, Inc. Capillary electrophoresis molecular weight separation of biomolecules using a polymer-containing solution
US5750015A (en) 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US5126022A (en) 1990-02-28 1992-06-30 Soane Tecnologies, Inc. Method and device for moving molecules by the application of a plurality of electrical fields
US5122248A (en) * 1990-05-18 1992-06-16 Northeastern University Pulsed field capillary electrophoresis
US5192405A (en) 1991-01-11 1993-03-09 Millipore Corporation Process for effecting high efficiency separations by capillary electrophoresis
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5498392A (en) * 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
JPH06265447A (ja) * 1993-03-16 1994-09-22 Hitachi Ltd 微量反応装置およびこれを使用する微量成分測定装置
GB9307319D0 (en) * 1993-04-07 1993-06-02 British Tech Group Liquid transfer devices
EP0620432B1 (en) * 1993-04-15 2004-08-25 Zeptosens AG Method for controlling sample introduction in microcolumn separation techniques and sampling device
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US5500071A (en) 1994-10-19 1996-03-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
US5571410A (en) 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
US5603351A (en) 1995-06-07 1997-02-18 David Sarnoff Research Center, Inc. Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5560811A (en) 1995-03-21 1996-10-01 Seurat Analytical Systems Incorporated Capillary electrophoresis apparatus and method
US5800778A (en) * 1995-05-31 1998-09-01 Biomerieux Vitek, Inc. Sealant for sample holder
US5609828A (en) 1995-05-31 1997-03-11 bio M erieux Vitek, Inc. Sample card
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5716825A (en) 1995-11-01 1998-02-10 Hewlett Packard Company Integrated nucleic acid analysis system for MALDI-TOF MS
US5885470A (en) * 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US6399023B1 (en) * 1996-04-16 2002-06-04 Caliper Technologies Corp. Analytical system and method
NZ333346A (en) * 1996-06-28 2000-03-27 Caliper Techn Corp High-throughput screening assay systems in microscale fluidic devices
US5779868A (en) * 1996-06-28 1998-07-14 Caliper Technologies Corporation Electropipettor and compensation means for electrophoretic bias
AU726987B2 (en) * 1996-06-28 2000-11-30 Caliper Life Sciences, Inc. Electropipettor and compensation means for electrophoretic bias
US5800690A (en) 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
US5699157A (en) * 1996-07-16 1997-12-16 Caliper Technologies Corp. Fourier detection of species migrating in a microchannel
US6447727B1 (en) * 1996-11-19 2002-09-10 Caliper Technologies Corp. Microfluidic systems
US5964995A (en) * 1997-04-04 1999-10-12 Caliper Technologies Corp. Methods and systems for enhanced fluid transport
EP0972082A4 (en) * 1997-04-04 2007-04-25 Caliper Life Sciences Inc BIOCHEMICAL ANALYZERS OPERATING IN CLOSED LOOP
WO1998049548A1 (en) * 1997-04-25 1998-11-05 Caliper Technologies Corporation Microfluidic devices incorporating improved channel geometries
US6090251A (en) * 1997-06-06 2000-07-18 Caliper Technologies, Inc. Microfabricated structures for facilitating fluid introduction into microfluidic devices
US6613512B1 (en) * 1997-06-09 2003-09-02 Caliper Technologies Corp. Apparatus and method for correcting for variable velocity in microfluidic systems
US5869004A (en) * 1997-06-09 1999-02-09 Caliper Technologies Corp. Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
US5882465A (en) * 1997-06-18 1999-03-16 Caliper Technologies Corp. Method of manufacturing microfluidic devices
US5959291A (en) * 1997-06-27 1999-09-28 Caliper Technologies Corporation Method and apparatus for measuring low power signals
US5876675A (en) * 1997-08-05 1999-03-02 Caliper Technologies Corp. Microfluidic devices and systems
US5989402A (en) * 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
CA2300203A1 (en) * 1997-09-02 1999-03-11 Caliper Technologies Corporation Microfluidic system with electrofluidic and electrothermal controls
US6012902A (en) * 1997-09-25 2000-01-11 Caliper Technologies Corp. Micropump
US5842787A (en) * 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
US5958694A (en) * 1997-10-16 1999-09-28 Caliper Technologies Corp. Apparatus and methods for sequencing nucleic acids in microfluidic systems
US6074725A (en) * 1997-12-10 2000-06-13 Caliper Technologies Corp. Fabrication of microfluidic circuits by printing techniques
US5948227A (en) * 1997-12-17 1999-09-07 Caliper Technologies Corp. Methods and systems for performing electrophoretic molecular separations

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394171C (zh) * 2000-08-02 2008-06-11 卡钳技术有限公司 基于分离的高处理量分析系统
US10761030B2 (en) 2005-05-09 2020-09-01 Labrador Diagnostics Llc System and methods for analyte detection
US10908093B2 (en) 2005-05-09 2021-02-02 Labrador Diagnostics, LLC Calibration of fluidic devices
US11630069B2 (en) 2005-05-09 2023-04-18 Labrador Diagnostics Llc Fluidic medical devices and uses thereof
CN1991356B (zh) * 2005-12-31 2010-11-10 博奥生物有限公司 一种多通道毛细管电泳芯片及其电压控制方法
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
CN100392317C (zh) * 2006-03-27 2008-06-04 博奥生物有限公司 一种控制液体在微管路中连续流动的流路结构
US11162947B2 (en) 2006-05-10 2021-11-02 Labrador Diagnostics Llc Real-time detection of influenza virus
US11215610B2 (en) 2006-10-13 2022-01-04 Labrador Diagnostics Llc Reducing optical interference in a fluidic device
US11442061B2 (en) 2006-10-13 2022-09-13 Labrador Diagnostics Llc Reducing optical interference in a fluidic device
US11802882B2 (en) 2006-11-14 2023-10-31 Labrador Diagnostics Llc Methods for the detection of analytes in small-volume blood samples
US11754554B2 (en) 2007-08-06 2023-09-12 Labrador Diagnostics Llc Systems and methods of fluidic sample processing
US11061022B2 (en) 2007-10-02 2021-07-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11143647B2 (en) 2007-10-02 2021-10-12 Labrador Diagnostics, LLC Modular point-of-care devices, systems, and uses thereof
US11899010B2 (en) 2007-10-02 2024-02-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11199538B2 (en) 2007-10-02 2021-12-14 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11366106B2 (en) 2007-10-02 2022-06-21 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11137391B2 (en) 2007-10-02 2021-10-05 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11092593B2 (en) 2007-10-02 2021-08-17 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11139084B2 (en) 2009-10-19 2021-10-05 Labrador Diagnostics Llc Integrated health data capture and analysis system
US11158429B2 (en) 2009-10-19 2021-10-26 Labrador Diagnostics Llc Integrated health data capture and analysis system
US11195624B2 (en) 2009-10-19 2021-12-07 Labrador Diagnostics Llc Integrated health data capture and analysis system
US9132423B2 (en) 2010-01-29 2015-09-15 Micronics, Inc. Sample-to-answer microfluidic cartridge
CN102740976B (zh) * 2010-01-29 2016-04-20 精密公司 取样-应答微流体盒
CN102740976A (zh) * 2010-01-29 2012-10-17 精密公司 取样-应答微流体盒
US9895692B2 (en) 2010-01-29 2018-02-20 Micronics, Inc. Sample-to-answer microfluidic cartridge
US11199489B2 (en) 2011-01-20 2021-12-14 Labrador Diagnostics Llc Systems and methods for sample use maximization
US10876956B2 (en) 2011-01-21 2020-12-29 Labrador Diagnostics Llc Systems and methods for sample use maximization
US11644410B2 (en) 2011-01-21 2023-05-09 Labrador Diagnostics Llc Systems and methods for sample use maximization
US11181105B2 (en) 2012-12-21 2021-11-23 Perkinelmer Health Sciences, Inc. Low elasticity films for microfluidic use
US10518262B2 (en) 2012-12-21 2019-12-31 Perkinelmer Health Sciences, Inc. Low elasticity films for microfluidic use
US10436713B2 (en) 2012-12-21 2019-10-08 Micronics, Inc. Portable fluorescence detection system and microassay cartridge
US10065186B2 (en) 2012-12-21 2018-09-04 Micronics, Inc. Fluidic circuits and related manufacturing methods
US11016108B2 (en) 2013-05-07 2021-05-25 Perkinelmer Health Sciences, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
US10386377B2 (en) 2013-05-07 2019-08-20 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
US10190153B2 (en) 2013-05-07 2019-01-29 Micronics, Inc. Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions
US10087440B2 (en) 2013-05-07 2018-10-02 Micronics, Inc. Device for preparation and analysis of nucleic acids

Also Published As

Publication number Publication date
AU7115498A (en) 1998-11-24
EP0988529A4 (en) 2001-02-07
US6068752A (en) 2000-05-30
US6235175B1 (en) 2001-05-22
WO1998049548A1 (en) 1998-11-05
CA2287409A1 (en) 1998-11-05
JP2001523341A (ja) 2001-11-20
AU727083B2 (en) 2000-11-30
CN1105914C (zh) 2003-04-16
KR20010012108A (ko) 2001-02-15
CA2287409C (en) 2003-06-03
JP4171075B2 (ja) 2008-10-22
EP0988529A1 (en) 2000-03-29
US6153073A (en) 2000-11-28
KR100351531B1 (ko) 2002-09-11
EP0988529B1 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN1105914C (zh) 改进了通道几何结构的微型流体装置
EP1317569B1 (en) Microfluidic devices and methods for performing temperature mediated reactions
US6551836B1 (en) Microfluidic devices, systems and methods for performing integrated reactions and separations
US5976336A (en) Microfluidic devices incorporating improved channel geometries
US6375817B1 (en) Apparatus and methods for sample analysis
US6274089B1 (en) Microfluidic devices, systems and methods for performing integrated reactions and separations
US6316201B1 (en) Apparatus and methods for sequencing nucleic acids in microfluidic systems
US8460531B2 (en) Integrated bio-analysis and sample preparation system
US7033474B1 (en) Microfluidic devices incorporating improved channel geometries
CN1455864A (zh) 基于分离的高处理量分析系统
JP2009047626A (ja) 電気泳動用マイクロ流路チップ及び電気泳動方法
EP1862542A1 (en) Detecting chip and method of detecting substance using the same
WO2004038399A1 (ja) 物質移動の制御方法
WO2005040331A1 (en) Integrated bio-analysis and sample preparation system
AU747505B2 (en) Microfluidic devices incorporating improved channel geometries
Windman et al. University, Tempe, Arizona, USA

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030416