CN1360738A - 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管 - Google Patents

具有低导通电阻的高压功率金属氧化物半导体场效应晶体管 Download PDF

Info

Publication number
CN1360738A
CN1360738A CN00808381A CN00808381A CN1360738A CN 1360738 A CN1360738 A CN 1360738A CN 00808381 A CN00808381 A CN 00808381A CN 00808381 A CN00808381 A CN 00808381A CN 1360738 A CN1360738 A CN 1360738A
Authority
CN
China
Prior art keywords
tagma
groove
power mosfet
epitaxial loayer
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00808381A
Other languages
English (en)
Other versions
CN1171318C (zh
Inventor
理查德·A·布兰查德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Semiconductor Inc
Original Assignee
General Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Semiconductor Inc filed Critical General Semiconductor Inc
Publication of CN1360738A publication Critical patent/CN1360738A/zh
Application granted granted Critical
Publication of CN1171318C publication Critical patent/CN1171318C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

提供一种功率MOSFET,包含第一导电类型的衬底。也是第一导电类型的外延层淀积在衬底上。第一体区和第二体区位于外延层中,在其间限定漂移区。体区具有第二导电类型。第一导电类型的第一源区和第二源区分别位于第一体区和第二体区中。在外延层的漂移区中位于体区下面的多个沟槽。沟槽从第一体区和第二体区向衬底延伸,用包含第二导电类型的掺杂剂的材料填充沟槽。掺杂剂从沟槽扩散到与沟槽相邻的外延层的部分中。

Description

具有低导通电阻的高压功率金属氧化物半导体场效应晶体管
相关申请
本申请与1999年6月3日提交的名称为“具有相当低的导通电阻的高压MOS栅结构(A High Voltage MOS-Gated Structure with aRelatively Low On-Resistance)”的美国临时专利申请No.相关。
发明领域
本发明总的来说涉及半导体器件,更具体地说涉及功率MOSFET器件。
发明背景
在如机动车电子系统、电源和电源管理方面采用功率MOSFET器件。这种器件在截止的状态应耐高压,在导通的状态应产生低压和高的饱和电流密度。
图1显示了N沟道功率MOSFET的典型结构。在该器件中,对于两个MOSFET单元来说,形成在N+硅衬底2上的N-外延硅层1包含p体区5a和6a、N+源区7和8。p体区5和6还可以包含深的p体区5b和6b。源-体电极12跨越外延层1的某些表面部分延伸,以接触源区和体区。在图1中,由N外延层1延伸到半导体上表面的部分形成两个单元的N型漏区。在N+衬底2的底部设置漏极(未独立示出)。包括氧化物和多晶硅层的绝缘栅极18位于体的沟道和漏区部分上。
图1所示的传统MOSFET的导通电阻很大程度上由外延层1中的漂移区电阻决定。该漂移区电阻又由外延层1的掺杂和层厚决定。然而,为了增加器件的击穿电压,外延层1的掺杂浓度必须减小,而层厚增加。图2显示了传统的MOSFET每单位面积的导通电阻与击穿电压之间的函数曲线图。遗憾的是,如曲线20所示,当击穿电压增加时,器件的导通电阻快速增加。当MOSFET工作在高压、特别是比几百伏更高的电压时,这种电阻的快速增加会产生问题。
图3显示了所设计的工作在更高电压、具有减小的导通电阻的MOSFET。该MOSFET公开于1998年的IEDM会刊(Proceedings of theIEDM,1998)26.2期第683页。除了该MOSFET包含从器件的体区5和6下面延伸到漂移区的p型掺杂区40和42之外,该MOSFET与图2所示的传统MOSFET相同。上述P型掺杂区40和42引起反压,该反压将不仅像传统的MOSFET一样在垂直方向建立,而且在水平方向也建立了反压。结果该器件可以得到与传统器件一样的反压,并具有减小的外延层1的厚度和增加的漂移区掺杂浓度。图2中的曲线25显示了图3所示的MOSFET每单位面积的导通电阻与击穿电压之间的函数关系。从图中可以清楚地看出,在更高的工作电压下,相对于图1所示的器件,基本上减小了该器件的导通电阻,器件的导通电阻与击穿电压主要是线性增加关系。
可以用包含多个外延淀积步骤的工艺顺序来制造图3所示的结构,每个淀积步骤后接着引入适当的掺杂剂。遗憾的是,进行外延淀积步骤很昂贵,因此制造的该结构的成本较高。
因此,希望提供一种制造图3所示的MOSFET结构的方法,该方法只需要最少数量的淀积步骤,以便能够制造廉价的器件。
发明综述
根据本发明,提供了一种功率MOSFET,该功率MOSFET包含第一导电类型的衬底。在该衬底上淀积第一导电类型的外延层。第一体区和第二体区位于外延层中,并在它们之间限定了漂移区。体区具有第二导电类型。第一导电类型的第一源区和第二源区分别位于第一体区和第二体区中。在外延层的漂移区中,多个沟槽位于体区下面。从第一体区和第二体区向衬底延伸的沟槽用包含第二导电类型的掺杂剂的材料填充。掺杂剂从沟槽扩散到与沟槽相邻的外延层的部分中,这样就形成了P型掺杂区,该P型掺杂区将在水平方向和垂直方向建立反压。
根据本发明的一个技术方案,填充沟槽的材料是多晶硅。
根据本发明的另一个技术方案,填充沟槽的多晶硅至少局部氧化。可选的是,该多晶硅可以接着再结晶以形成单晶硅。
根据本发明的另一个技术方案,填充沟槽的材料是电介质,例如二氧化硅。
根据本发明的再一个技术方案,填充沟槽的材料可以既包含多晶硅又包含电介质。
根据本发明的再一个技术方案,提供一种用于形成功率MOSFET的方法。该方法由提供第一导电类型的衬底和在衬底上淀积外延层开始。上述外延层具有第一导电类型。第一体区和第二体区形成在外延层中,以在其间限定漂移区。上述体区具有第二导电类型。第一导电类型的第一源区和第二源区分别形成在第一体区和第二体区中。在外延层的漂移区中形成多个沟槽。用具有第二导电类型的掺杂剂的材料填充沟槽。沟槽从第一体区和第二体区向衬底延伸。至少一部分掺杂剂从沟槽扩散到与沟槽相邻的外延层部分中。
附图的简要说明
图1显示了传统的功率MOSFET结构的截面图。
图2显示了对于传统的功率MOSFET和根据本发明构造的MOSFET来说,作为击穿电压的函数的每单位面积的导通电阻。
图3显示了一种MOSFET结构,与图1所示的结构相比,在相同的电压下工作,该MOSFET结构具有更低的每单位面积的导通电阻。
图4-6显示了根据本发明构造的功率MOSFET的各种实施例的相关部分。
图7显示了根据本发明构造的完整的功率MOSFET。
详细描述
根据本发明,通过首先蚀刻一对沟槽形成图3所示的P型区40和42,该对沟槽位于P型区40和42将要形成的位置的中心处。接着用富含掺杂剂的材料填充沟槽。材料中的掺杂剂扩散到沟槽的外面并进入形成器件漂移区的相邻的外延层中。所得到的外延层的掺杂部分形成P型区。填充沟槽的材料随着没有扩散到沟槽外面的掺杂剂一起留在最后的器件中。因此,该材料应选择那些不会对器件特性产生不利影响的材料。可以被用于填充沟槽的典型材料包括多晶硅或诸如二氧化硅之类的电介质。
图4-6显示了用来填充形成在外延硅层1中的沟槽44和46的材料的几种不同的组合。图4-6显示了沟槽44和46、外延层1和衬底2,为了清楚图4-6没有显示包含p体区和源区的功率MOSFET结构的上部。
在图4中,用掺杂的电介质,例如掺硼的二氧化硅,填充沟槽44和46。填充沟槽之后,硼扩散到相邻的外延层1中,以形成p型区40和42。填充沟槽的掺硼的二氧化硅留在最后的MOSFET器件中。
在图5中,至少用掺硼的多晶的硅即掺硼的多晶硅部分填充沟槽。填充沟槽之后,硼扩散到相邻的外延层1中以形成p型区40和42,填充沟槽所留下来的掺硼的多晶硅保留在最后的MOSFET器件中。或者,在进行扩散步骤之后可以全部或部分氧化多晶硅,以形成二氧化硅。因此用电介质即二氧化硅和所有残留的多晶硅填充留在最后的MOSFET器件中的沟槽。或者,在升高的温度下使沟槽中所有掺硼的多晶硅再结晶以形成单晶硅。在这种情况下,遗留在最后的MOSFET器件中的沟槽用单晶硅或与二氧化硅或其它的电介质相结合的单晶硅填充。
在图6中,首先用掺杂的多晶硅部分填充沟槽44和46,接着通过淀积电介质来完全填充沟槽。填充沟槽之后,硼扩散到相邻的外延层1中以形成p型区40和42。填充沟槽而遗留下来的掺硼的多晶硅和电介质保留在最后的MOSFET器件中。在某些情况下,在升高的温度下使掺硼的多晶硅再结晶以形成单晶硅。因此,遗留在最后的MOSFET器件中的沟槽用单晶硅和电介质填充。
图7显示了根据本发明构造的功率MOSFET。该MOSFET包含衬底2、外延层1、p体区5a和6a、深的p体区5b和6b、源区7和8和p型区40和42,其中沟槽44和46分别定位。图中还示出了栅极和源—体电极,栅极包含氧化物层48和多晶硅层49,源-体电极包含金属化层50。
图7所示的本发明的功率MOSFET可以根据任何传统的加工技术来制造。例如,可以进行下面一系列的典型步骤来形成图7所示的MOSFET。
首先,通过用氧化物层覆盖外延层1的表面形成氧化物掩模层,然后进行通常的曝光和构图以留下限定沟槽44和46的位置的掩模部分。利用活性离子蚀刻通过掩模开口将沟槽干蚀到一般10-40微米的深度。可以使每个沟槽的侧壁光滑。首先,采用干化学蚀刻从沟槽侧壁除去氧化物的薄层(一般大约500-1000埃),以消除由活性离子蚀刻工艺而引起的损伤。然后在沟槽44和46以及掩模部分上生长牺牲二氧化硅层。通过缓冲氧化物蚀刻或HF蚀刻除去该牺牲层和掩模部分以便使所得到的沟槽侧壁尽可能光滑。
用先前提到的任何材料,例如多晶硅、二氧化硅或其组合填充沟槽44和46。在淀积过程中,通常用掺杂剂,例如硼,掺杂多晶硅或氧化物。接着进行扩散步骤以使掺杂剂扩散到沟槽的外面并进入周围的外延层中。如果遗留在沟槽中的材料是多晶硅,可以使其氧化或再结晶。
然后,在传统的N+掺杂的衬底2上生长N-掺杂的外延层1。对于400-800V器件,外延层1一般厚15-50微米,电阻率为15-60欧姆-厘米。然后,在淀积、掺杂和氧化有源区掩模和多晶硅层之后生长栅氧化物。如果需要,利用传统的掩模、离子注入和扩散工艺形成深的p体区5b和6b。深的p体区的剂量一般在大约1×1014-5×1015/cm2。然后,在传统的掩模、注入和扩散步骤中形成p体区5a和6a。在40-60KeV用大约1×1013-5×1014/cm2的剂量将硼注入到p体区中。
然后,采用光致抗蚀剂掩模工艺形成布图的掩模层,限定源区7和8。然后通过注入和扩散工艺形成源区7和8。例如,可以在80KeV将砷注入到源区中,浓度一般达到2×1015-1.2×1016/cm2的浓度。注入之后,砷扩散到大约0.5-2.0微米的深度。深p体区的深度一般在大约2.5-5微米范围内,而体区的深度在大约1-3微米的范围内。最后,以传统的方式除去掩模层,形成图7所示的结构。
以传统的方式通过形成和布图氧化物层以形成接触开口来实现DMOS晶体管。并且淀积和遮蔽金属化层50以限定源-体和栅电极。而且,采用焊盘掩模来限定焊盘接触。最后,在衬底的下表面上形成漏接触层(未示出)。
应注意当在先前提到的工艺中沟槽在形成p体区和深p体区之前形成时,本发明更普遍的是包含以下工艺,在该工艺中沟槽先于或后于任何或所有遗留的掺杂区形成。另外,在公开了用于制造功率MOSFET的特定的工艺顺序的同时,也可以采用其它的工艺顺序,而落入本发明的范围内。
与由传统技术构造的现有技术的器件相比,根据本发明构造的功率MOSFET器件具有许多优点。例如p型区的垂直掺杂剂梯度非常接近于0。通过改变引入的掺杂剂的量和用于扩散步骤的热循环的数量和周期可以精确地控制水平掺杂剂的梯度。此外可以改变引入的掺杂剂的量和水平掺杂剂梯度来优化器件的击穿电压和导通电阻。
在图7所示的本发明的实施例中,在体区的下面形成了p型沟槽。然而不是每一个p型沟槽都需要与其相结合的体区,特别是在管芯的周边或在含有焊盘或互连线的区中。
尽管这里已经具体说明和描述了各种实施例,但是应当理解在不离开本发明的精神和所要求的范围的情况下,本发明的修改和变化由上述教导所覆盖,并在附加的权利要求范围内。例如可以提供根据本发明的功率MOSFET,其中各种半导体区的导电类型与从这里所公开的相反。

Claims (23)

1.一种功率MOSFET,包括:
第一导电类型的衬底;
衬底上的外延层,所述外延层具有第一导电类型;
位于外延层中的第一体区和第二体区,在它们之间限定了漂移区,所述体区具有第二导电类型;
分别位于第一体区和第二体区中的第一导电类型的第一源区和第二源区;和
在外延层的漂移区中,位于所述体区下面的多个沟槽,所述沟槽用具有第二导电类型的掺杂剂的材料填充,所述沟槽从第一体区和第二体区向衬底延伸,所述掺杂剂从所述沟槽扩散到与沟槽相邻的外延层的部分中。
2.权利要求1的功率MOSFET,其中,所述填充沟槽的材料是多晶硅。
3.权利要求1的功率MOSFET,其中,所述填充沟槽的材料是电介质。
4.权利要求3的功率MOSFET,其中,所述电介质是二氧化硅。
5.权利要求1的功率MOSFET,其中,所述掺杂剂是硼。
6.权利要求2的功率MOSFET,其中,所述多晶硅至少局部被氧化。
7.权利要求2的功率MOSFET,其中,接着使所述多晶硅再结晶以形成单晶硅。
8.权利要求1的功率MOSFET,其中,所述填充沟槽的材料包含多晶硅和电介质。
9.权利要求1的功率MOSFET,其中,所述体区包含深体区。
10.一种形成功率MOSFET的方法,包括步骤:
提供第一导电类型的衬底;
在衬底上淀积外延层;所述外延层具有第一导电类型;
在外延层中形成第一体区和第二体区,以在其间限定漂移区,所述体区具有第二导电类型;
分别在第一体区和第二体区中形成第一导电类型的第一源区和第二源区;和
在外延层的所述漂移区中形成多个沟槽;
用具有第二导电类型的掺杂剂的材料填充沟槽,所述沟槽从第一体区和第二体区向衬底延伸;和
至少一部分所述掺杂剂从所述沟槽扩散到与沟槽相邻的外延层的部分中。
11.权利要求10的方法,其中,所述填充沟槽的材料是多晶硅。
12.权利要求10的方法,其中,所述填充沟槽的材料是电介质。
13.权利要求12的方法,其中,所述电介质是二氧化硅。
14.权利要求10的方法,其中,所述掺杂剂是硼。
15.权利要求11的方法,还包括至少部分氧化所述多晶硅的步骤。
16.权利要求11的方法,还包括在所述多晶硅再结晶以形成单晶硅的步骤。
17.权利要求10的方法,其中,所述填充沟槽的材料包含多晶硅和电介质。
18.权利要求10的方法,其中,所述体区包含深体区。
19.权利要求10的方法,其中,通过提供限定至少一个沟槽的掩模层和蚀刻由掩模层限定的沟槽来形成所述沟槽。
20.权利要求10的方法,其中,通过将掺杂剂注入和扩散到衬底中来形成所述体区。
21.一种根据权利要求10的方法制造的功率MOSFET。
22.权利要求6的功率MOSFET,其中,接着使所述多晶硅再结晶以形成单晶硅。
23.权利要求15的方法,还包括使所述多晶硅再结晶以形成单晶硅的步骤。
CNB008083819A 1999-06-03 2000-06-02 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管 Expired - Fee Related CN1171318C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13740899P 1999-06-03 1999-06-03
US60/137,408 1999-06-03
US09/586,407 2000-06-02
US09/586,407 US6593619B1 (en) 1999-06-03 2000-06-02 High voltage power MOSFET having low on-resistance

Publications (2)

Publication Number Publication Date
CN1360738A true CN1360738A (zh) 2002-07-24
CN1171318C CN1171318C (zh) 2004-10-13

Family

ID=26835219

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008083819A Expired - Fee Related CN1171318C (zh) 1999-06-03 2000-06-02 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管

Country Status (7)

Country Link
US (4) US6593619B1 (zh)
EP (1) EP1192640A2 (zh)
JP (1) JP4860858B2 (zh)
KR (2) KR100773380B1 (zh)
CN (1) CN1171318C (zh)
AU (1) AU5458400A (zh)
WO (1) WO2000075965A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311561C (zh) * 2003-03-13 2007-04-18 世界先进积体电路股份有限公司 侧面扩散金属氧化半导体晶体管的结构及其制作方法
CN100385679C (zh) * 2003-12-25 2008-04-30 恩益禧电子股份有限公司 半导体器件及其制造方法
CN101728430B (zh) * 2008-10-17 2011-06-29 尼克森微电子股份有限公司 高压金氧半导体组件及其制作方法
CN102130015B (zh) * 2006-10-03 2013-03-20 电力集成公司 用于高电压场效应晶体管的栅蚀刻工艺

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773380B1 (ko) * 1999-06-03 2007-11-06 제네럴 세미컨덕터, 인코포레이티드 전력 mosfet, 이를 형성하는 방법, 및 이 방법에 의해 형성되는 다른 전력 mosfet
FR2800515B1 (fr) * 1999-11-03 2002-03-29 St Microelectronics Sa Procede de fabrication de composants de puissance verticaux
US7186609B2 (en) * 1999-12-30 2007-03-06 Siliconix Incorporated Method of fabricating trench junction barrier rectifier
US6376878B1 (en) * 2000-02-11 2002-04-23 Fairchild Semiconductor Corporation MOS-gated devices with alternating zones of conductivity
US6660571B2 (en) * 2000-06-02 2003-12-09 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6608350B2 (en) * 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
US6710403B2 (en) * 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US7132712B2 (en) * 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6818513B2 (en) * 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
US6465304B1 (en) * 2001-10-04 2002-10-15 General Semiconductor, Inc. Method for fabricating a power semiconductor device having a floating island voltage sustaining layer
JP3701227B2 (ja) * 2001-10-30 2005-09-28 三菱電機株式会社 半導体装置及びその製造方法
US6566201B1 (en) * 2001-12-31 2003-05-20 General Semiconductor, Inc. Method for fabricating a high voltage power MOSFET having a voltage sustaining region that includes doped columns formed by rapid diffusion
US6846746B2 (en) * 2002-05-01 2005-01-25 Applied Materials, Inc. Method of smoothing a trench sidewall after a deep trench silicon etch process
DE10235371A1 (de) * 2002-08-02 2004-02-12 Robert Bosch Gmbh Verfahren zur Herstellung einer mikromechanischen Vorrichtung, insbesondere einer mikromechanischen Schwingspiegelvorrichtung
JP3634830B2 (ja) * 2002-09-25 2005-03-30 株式会社東芝 電力用半導体素子
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
KR100994719B1 (ko) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 슈퍼정션 반도체장치
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
US7268395B2 (en) 2004-06-04 2007-09-11 International Rectifier Corporation Deep trench super switch device
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
KR100582374B1 (ko) * 2004-09-08 2006-05-22 매그나칩 반도체 유한회사 고전압 트랜지스터 및 그 제조 방법
CN101882583A (zh) 2005-04-06 2010-11-10 飞兆半导体公司 沟栅场效应晶体管及其形成方法
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
CN101467258B (zh) * 2006-04-21 2012-02-08 意法半导体股份有限公司 用于制造功率半导体器件的工艺和相应功率半导体器件
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
KR20100134375A (ko) * 2009-06-15 2010-12-23 삼성전자주식회사 리프레쉬 동작을 수행하는 메모리 시스템
CN101868856B (zh) 2007-09-21 2014-03-12 飞兆半导体公司 用于功率器件的超结结构及制造方法
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7960781B2 (en) * 2008-09-08 2011-06-14 Semiconductor Components Industries, Llc Semiconductor device having vertical charge-compensated structure and sub-surface connecting layer and method
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
FR2970811B1 (fr) * 2011-01-24 2013-01-25 Commissariat Energie Atomique Dispositif a effet de champ muni d'une contre-électrode amincie et procédé de réalisation
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP2014518017A (ja) 2011-05-18 2014-07-24 ビシャイ‐シリコニックス 半導体デバイス
TWI446459B (zh) * 2012-02-14 2014-07-21 Anpec Electronics Corp 具有超級介面之功率電晶體元件之製作方法
US9093520B2 (en) * 2013-08-28 2015-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. High-voltage super junction by trench and epitaxial doping
JP6340200B2 (ja) * 2014-01-27 2018-06-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9312382B2 (en) 2014-07-22 2016-04-12 Empire Technology Development Llc High voltage transistor device with reduced characteristic on resistance
US10263070B2 (en) 2017-06-12 2019-04-16 Alpha And Omega Semiconductor (Cayman) Ltd. Method of manufacturing LV/MV super junction trench power MOSFETs
CN109326653A (zh) * 2018-11-09 2019-02-12 上海昱率科技有限公司 功率器件及其制造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US94635A (en) * 1869-09-07 Improvement in grain-mills
US70418A (en) * 1867-11-05 Moritz crohjt
US3658584A (en) * 1970-09-21 1972-04-25 Monsanto Co Semiconductor doping compositions
US5191396B1 (en) 1978-10-13 1995-12-26 Int Rectifier Corp High power mosfet with low on-resistance and high breakdown voltage
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
JPS61135109A (ja) * 1984-12-06 1986-06-23 Canon Inc 半導体装置の製造方法
GB8504726D0 (en) * 1985-02-23 1985-03-27 Standard Telephones Cables Ltd Integrated circuits
US4782036A (en) * 1986-08-29 1988-11-01 Siemens Aktiengesellschaft Process for producing a predetermined doping in side walls and bases of trenches etched into semiconductor substrates
US4819052A (en) * 1986-12-22 1989-04-04 Texas Instruments Incorporated Merged bipolar/CMOS technology using electrically active trench
US5404040A (en) 1990-12-21 1995-04-04 Siliconix Incorporated Structure and fabrication of power MOSFETs, including termination structures
CN1019720B (zh) 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
US5326711A (en) * 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
DE4332057A1 (de) * 1993-09-21 1995-03-30 Siemens Ag Integrierte mikromechanische Sensorvorrichtung und Verfahren zu deren Herstellung
JPH08264772A (ja) * 1995-03-23 1996-10-11 Toyota Motor Corp 電界効果型半導体素子
JPH09213939A (ja) * 1996-01-30 1997-08-15 Nec Corp 半導体装置
JP4047384B2 (ja) * 1996-02-05 2008-02-13 シーメンス アクチエンゲゼルシヤフト 電界効果により制御可能の半導体デバイス
DE19611045C1 (de) 1996-03-20 1997-05-22 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement
US5895951A (en) * 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
GB2314206A (en) * 1996-06-13 1997-12-17 Plessey Semiconductors Ltd Preventing voltage breakdown in semiconductor devices
US5789802A (en) * 1996-06-21 1998-08-04 Advanced Micro Devices, Inc. Dopant profile spreading for arsenic source/drain
JPH10108564A (ja) 1996-10-04 1998-04-28 Takagi Ind Co Ltd 栽培基材及び栽培装置
JP3938964B2 (ja) * 1997-02-10 2007-06-27 三菱電機株式会社 高耐圧半導体装置およびその製造方法
JPH1143321A (ja) 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd 石英原料粉の製造方法
DE19748523C2 (de) 1997-11-03 1999-10-07 Siemens Ag Halbleiterbauelement, Verfahren zum Herstellen eines derartigen Halbleiterbauelementes und Verwendung des Verfahrens
US6870201B1 (en) 1997-11-03 2005-03-22 Infineon Technologies Ag High voltage resistant edge structure for semiconductor components
DE19800647C1 (de) * 1998-01-09 1999-05-27 Siemens Ag SOI-Hochspannungsschalter
JP4000669B2 (ja) * 1998-06-12 2007-10-31 日産自動車株式会社 半導体装置およびその製造方法
JP4061711B2 (ja) * 1998-06-18 2008-03-19 株式会社デンソー Mosトランジスタ及びその製造方法
EP0973203A3 (de) 1998-07-17 2001-02-14 Infineon Technologies AG Halbleiterschicht mit lateral veränderlicher Dotierung und Verfahren zu dessen Herstellung
US6452230B1 (en) * 1998-12-23 2002-09-17 International Rectifier Corporation High voltage mosgated device with trenches to reduce on-resistance
KR100773380B1 (ko) * 1999-06-03 2007-11-06 제네럴 세미컨덕터, 인코포레이티드 전력 mosfet, 이를 형성하는 방법, 및 이 방법에 의해 형성되는 다른 전력 mosfet
DE19935442C1 (de) * 1999-07-28 2000-12-21 Siemens Ag Verfahren zum Herstellen eines Trench-MOS-Leistungstransistors
WO2002038865A2 (en) 2000-11-08 2002-05-16 Kimberly-Clark Worldwide, Inc. Foam treatment of tissue products
US6608350B2 (en) 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
US7221011B2 (en) * 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311561C (zh) * 2003-03-13 2007-04-18 世界先进积体电路股份有限公司 侧面扩散金属氧化半导体晶体管的结构及其制作方法
CN100385679C (zh) * 2003-12-25 2008-04-30 恩益禧电子股份有限公司 半导体器件及其制造方法
CN102130015B (zh) * 2006-10-03 2013-03-20 电力集成公司 用于高电压场效应晶体管的栅蚀刻工艺
CN101728430B (zh) * 2008-10-17 2011-06-29 尼克森微电子股份有限公司 高压金氧半导体组件及其制作方法

Also Published As

Publication number Publication date
KR100829052B1 (ko) 2008-05-19
CN1171318C (zh) 2004-10-13
KR100773380B1 (ko) 2007-11-06
JP4860858B2 (ja) 2012-01-25
KR20020010686A (ko) 2002-02-04
US20020066924A1 (en) 2002-06-06
KR20070044487A (ko) 2007-04-27
WO2000075965A3 (en) 2001-05-03
JP2003524291A (ja) 2003-08-12
US6992350B2 (en) 2006-01-31
AU5458400A (en) 2000-12-28
US20060125003A1 (en) 2006-06-15
EP1192640A2 (en) 2002-04-03
US6689662B2 (en) 2004-02-10
US20040036138A1 (en) 2004-02-26
US8513732B2 (en) 2013-08-20
WO2000075965A2 (en) 2000-12-14
US6593619B1 (en) 2003-07-15

Similar Documents

Publication Publication Date Title
CN1171318C (zh) 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管
CN1305122C (zh) 具有浮岛电压维持层的功率半导体器件的制造方法
CN100342505C (zh) 高压半导体器件及其制造方法
CN100342544C (zh) 含有掺杂柱的高压功率mosfet
CN1230880C (zh) 一种制造功率mos场效应管的方法
CN1280919C (zh) 功率mos场效应管及其制造方法
CN100338778C (zh) 场效应晶体管及其制造方法
CN100409452C (zh) 一种功率半导体器件及其形成该功率半导体器件的方法
CN1610974A (zh) 具有电压维持区域并从相反掺杂的多晶硅区域扩散的高电压功率mosfet
CN1695252A (zh) 具有增加的导通电阻的沟槽mosfet器件
CN1695251A (zh) 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法
CN1565051A (zh) 具有带易于浮岛形成的台阶式沟槽的电压维持层的功率半导体器件的制造方法
CN111180522A (zh) 具有超结和嵌氧硅层的半导体器件
CN101567384B (zh) 具有低导通电阻的高电压功率mosfet
CN1552105A (zh) 具有深植入结的功率mosfet
CN1941414B (zh) 功率mos场效应管及其制造方法
CN110957351A (zh) 一种超结型mosfet器件及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041013

Termination date: 20160602

CF01 Termination of patent right due to non-payment of annual fee