CN1649802A - 陶瓷材料、磨粒、磨具及制造和使用方法 - Google Patents

陶瓷材料、磨粒、磨具及制造和使用方法 Download PDF

Info

Publication number
CN1649802A
CN1649802A CNA028191137A CN02819113A CN1649802A CN 1649802 A CN1649802 A CN 1649802A CN A028191137 A CNA028191137 A CN A028191137A CN 02819113 A CN02819113 A CN 02819113A CN 1649802 A CN1649802 A CN 1649802A
Authority
CN
China
Prior art keywords
glass
particle
metal oxide
ceramic
amorphous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028191137A
Other languages
English (en)
Other versions
CN1649802B (zh
Inventor
A·Z·罗森弗兰兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN1649802A publication Critical patent/CN1649802A/zh
Application granted granted Critical
Publication of CN1649802B publication Critical patent/CN1649802B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/125Silica-free oxide glass compositions containing aluminium as glass former
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1427Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/904Infrared transmitting or absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]

Abstract

本发明涉及无定形材料,玻璃陶瓷和其制备方法。本发明的实施方案包括磨料颗粒。磨料颗粒可掺入各种磨料制品,包括粘结磨料、涂布磨料、非织造磨料和研磨刷中。

Description

陶瓷材料、磨粒、磨具及制造和使用方法
发明领域
本发明涉及无定形材料和玻璃陶瓷。另一方面,本发明的实施方式涉及磨粒和装有该种磨粒的磨具。
相关技术说明
已知许多种无定形(包括)玻璃和玻璃陶瓷组合物。大多数氧化物玻璃体系利用如SiO2,B2O3,P2O5,GeO2,TeO2,As2O3和V2O5等众所周知的玻璃形成物质帮助形成玻璃。一些由这些玻璃形成物质构成的玻璃组合物能被热处理形成玻璃陶瓷。由这些玻璃形成物质构成的玻璃和玻璃陶瓷的最高使用温度,通常低于1200℃,典型值约为700-800℃。玻璃陶瓷与构成它的玻璃相比,往往具有更强的抗高温性能。
另外,已知的玻璃和玻璃陶瓷的许多性质都受限于玻璃形成物质的固有特性。比如,对SiO2,B2O3和P2O5基玻璃和玻璃陶瓷而言,杨氏模量,硬度和强度都受这些玻璃形成物质的限制。这些玻璃和玻璃陶瓷与Al2O3或ZrO2相比,其机械性能较差。要求制备具有与Al2O3或ZrO2相似机械性能的玻璃陶瓷。
虽然已知一些非常规玻璃,比如基于稀土氧化物-氧化铝的玻璃(参见公开号是WO01/27046A1,于2001年4月19日公开的PCT申请和于2000年2月15日公开的日本专利JP2000-045129),要求提供其他的新型玻璃和玻璃陶瓷,以及已知的和新型的玻璃和玻璃陶瓷的用途。
另一方面,本领域已知许多种磨粒(比如,金刚石颗粒,立方氮化硼颗粒,熔凝磨粒和烧结的陶瓷磨粒(包括溶胶凝胶法磨粒))。在一些研磨应用中,所用磨粒是疏松形式的,其他应用中,磨粒则装入磨具中(比如,涂布磨具,粘结磨具,非织造磨具和研磨刷)。用于特定研磨应用的磨粒的选择标准包括:研磨寿命,磨削速度,基片表面光洁度,研磨效率和制造成本。
从约1900年到1980年代中期,用于涂布磨具和粘结磨具等研磨应用中的主要磨粒,通常是熔凝磨粒。熔凝磨粒大致分为两类:(1)熔凝α-氧化铝磨粒(参见美国专利1161620(Coulter),1192709(Tone),1247337(Saunders等人),1268533(Allen)和2424645(Baumann等人));(2)熔凝(有时也称为“共熔凝”)氧化铝-氧化锆磨粒(参见美国专利3891408(Rowse等人),3781172(Pett等人),3893826(Quinan等人),4126429(Watson),4457767(Poon等人)和5143522(Gibson等人))(参见美国专利5023212(Dubots等人)和5336280(Dubots等人),这两份专利报告了某种熔凝氧氮化物磨粒)。熔凝氧化铝磨粒的制法通常是:在加热炉中装入铝矿或铝土矿等氧化铝原料以及其他需要的添加剂,加热这些物质到高于其熔点,冷却熔体制得一种固化形体,将其破碎成颗粒,然后过筛分级颗粒,形成符合要求的磨粒粒径分布。熔凝氧化铝-氧化锆磨粒是按相似方法制备的,区别在于,加热炉中装有氧化铝原料和氧化锆原料,而且熔体冷却速度比制备熔凝氧化铝磨粒时更快。对于熔凝氧化铝-氧化锆磨粒而言,氧化铝原料的用量通常是约50-80重量%,氧化锆用量是50-20重量%。制备熔凝氧化铝和熔凝氧化铝磨粒的过程,包括在冷却步骤前,从熔体中除去杂质的步骤。
虽然熔凝α-氧化铝磨粒和熔凝氧化铝-氧化锆磨粒仍然被广泛用于研磨应用中包括使用涂布和粘结磨具的应用,从大约1980年代中期开始,用于许多研磨应用的主要磨粒是溶胶凝胶法α-氧化铝颗粒(参见美国专利4314827(Leitheiser等人),4518397(Leitheiser等人),4623364(Cottringer等人),4744802(Schwabel),4770671(Monroe等人),4881951(Wood等人),4960441(Pellow等人),5139978(Wood),5201916(Berg等人),5366523(Rowenhorst等人),5429647(Larmie),5547479(Conwell等人),5498269(Larmie),5551963(Larmie)和5725162(Garg等人))。
溶胶凝胶法α-氧化铝磨粒可具有由非常细的α-氧化铝晶粒形成的显微结构,其中存在或不存在添加的二次相。溶胶凝胶法磨粒对金属的研磨性能用由其制成的磨具的寿命来衡量,该寿命与由常规熔凝氧化铝磨粒制成的磨具相比,长得很多。
通常,溶胶凝胶法磨粒的制备过程比常规熔凝磨粒的制备过程更复杂,更昂贵。总的来说,溶胶凝胶法磨粒的制备过程是:制备一种含有水,氧化铝单水合物(勃姆石),还可含有胶溶剂(比如硝酸等酸)的分散液或溶胶,将分散液胶化后干燥,然后破碎成颗粒,将颗粒过筛制成要求粒径的颗粒,煅烧颗粒除去挥发性物质,在低于氧化铝熔点的温度下烧结经煅烧的颗粒,并将颗粒过筛分级,形成符合要求的磨粒粒径分布。经常将一种金属氧化物改性剂复合进入烧结的磨粒中,改变或修饰烧结的磨粒的物理性质和/或显微结构。
本领域已知多种磨具。通常,磨具包括粘合剂和被粘合剂固定在磨具中的许多磨粒。磨具实例包括:涂布磨具,粘结磨具,非织造磨具和研磨刷。
粘结磨具实例包括:磨轮,切割轮和镗磨油石。用于制备粘结磨具的主要粘合体系类型是:树脂状物质,玻璃质物质和金属。树脂状粘结研磨助剂中使用了一种有机粘合体系(比如苯酚树脂粘合体系),将磨粒粘结在一起形成一个形体(参见美国专利4741743(Narayanan等人),4800685(Haynes等人),5037453(Narayanan等人)和5110332(Narayanan等人))。另一主要类型是玻璃质烧结磨轮,其中使用了一种玻璃粘合体系,将磨粒粘合成一形体(参见美国专利4543107(Rue),4898587(Hay等人),4997461(Markhoff-Matheny等人)和5863308(Oi等人))。这些玻璃粘合剂通常在900℃到1300℃之间的温度下固化。如今的玻璃质烧结磨轮同时使用熔凝氧化铝和溶胶凝胶法磨粒。但是,通常不把熔凝氧化铝-氧化锆用于玻璃质烧结磨轮中,部分原因是由于氧化铝-氧化锆的热稳定性较差。在玻璃质粘合剂的固化高温下,氧化铝-氧化锆的物理性能会急剧降低,导致其研磨性能显著降低。金属粘结磨具通常使用烧结的或沉积的金属来粘合磨粒。
研磨工业一直要求提供磨粒的磨具,它们容易制备,价格便宜,和/或性能优于常规的磨粒和磨具。
发明简述
一方面,本发明提供了无定形材料,其中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),无定形材料中含有占其总重量不超过10%(在一些实施方式中,优选小于5%,4%,3%,2%,1%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,该无定形材料具有彼此垂直的x,y和z三维尺寸,每个x,y和z尺寸上的长度至少是5mm(在一些实施方式中至少是10mm)。可以对该无定形材料进行热处理,使至少一部分该无定形材料转变成玻璃陶瓷。
材料x,y和z的尺寸可以用视觉或显微镜确定,这取决于该尺寸的数值。比如,所报告的z尺寸是指,球体的直径,涂层的厚度或棱锥的最大长度。
一方面,本发明提供了无定形材料,其中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),无定形材料中含有占其总重量不超过10%(在一些实施方式中,优选小于5%,4%,3%,2%,1%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,限制条件是,如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该无定形材料还含有除Al2O3,CaO和ZrO2的一种金属氧化物,当该无定形材料结晶时,部分该金属氧化物会形成一种明显的结晶相。在一些实施方式中,该无定形材料具有彼此垂直的x,y和z三维尺寸,每个x,y和z尺寸上的长度至少是5mm(在一些实施方式中至少是10mm)。可以对该无定形材料进行热处理,使至少一部分无定形材料转变成玻璃陶瓷。
“明显的结晶相”是指一种能被X射线衍射检测到的结晶相,这与和另一种明显的结晶相形成固溶体的概念不同。比如,众所周知,如Y2O3或CeO2等氧化物可以与结晶ZrO2形成固溶体作为相稳定剂。这种情况下的Y2O3或CeO2就不是明显的结晶相。
在一些实施方式中,该无定形材料含有占其总重量0到70%,0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%ZrO2和HfO2中的至少一种。
在一些实施方式中,该无定形材料可以存在于另一种材料中(比如,含有本发明无定形材料的颗粒,含有该无定形材料的陶瓷等)。可以对该无定形材料(包括玻璃)进行热处理,使至少一部分一无定形材料转变成玻璃陶瓷。
另一方面,本发明提供了一种玻璃,含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),其中该玻璃含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,该玻璃具有彼此垂直的x,y和z三维尺寸,每个x,y和z尺寸上的长度至少是5mm(在一些实施方式中,至少是10mm)。在一些实施方式中,该玻璃可能处在另一种物质(比如,含有本发明玻璃的颗粒,含有本发明玻璃的陶瓷等)中。可以对该玻璃进行热处理,使至少一部分玻璃转变成玻璃陶瓷。
另一方面,本发明提供了一种玻璃,含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),其中该玻璃中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,限制条件是,如果除Al2O3之外的该金属氧化物是CaO,则该玻璃进一步包含除Al2O3或CaO之外的金属氧化物,当玻璃结晶时,至少一部分该金属氧化物形成自承的结晶相。在一些实施方式中,该玻璃具有彼此垂直的x,y和z三维尺寸,每个x,y和z尺寸上的长度至少是5mm(在一些实施方式中至少是10mm)。在一些实施方式中,该玻璃可以存在于另一种材料中(比如,含有本发明玻璃的颗粒,含有本发明玻璃的陶瓷等)。可以对该玻璃进行热处理,使至少一部分玻璃转变成玻璃陶瓷。
在一些实施方式中,该玻璃含有占其总重量0到70%,0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造含有玻璃的制品的方法,该玻璃含有占玻璃总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),其中该玻璃含有占其总重量不超过10%(在一些实施方式中,优选小于5%,4%,3%,2%,1%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,该方法包括以下步骤:
提供一种玻璃颗粒,其中含有占玻璃总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),其中该玻璃含有占其总重量不超过10%(在一些实施方式中,优选小于5%,4%,3%,2%,1%或甚至是0)含量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,该玻璃具有一定Tg
加热该玻璃颗粒至超过Tg的温度,使该玻璃颗粒聚结成一形体;
将该形体冷却成为制品。
限制条件是,如果除Al2O3的该金属氧化物是CaO或ZrO2,则该玻璃中进一步包含除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成自承的结晶相。可以对含有该玻璃制品进行热处理,使至少一部分玻璃转变成玻璃陶瓷。在一些实施方式中,该玻璃和玻璃陶瓷中含有占其总重量0到70%,0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造玻璃颗粒的方法,该方法包括以下步骤:
将玻璃熔体喷雾,该熔体中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),该玻璃熔体中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5
将喷雾的玻璃熔体冷却形成玻璃颗粒,该玻璃颗粒中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物,其中每个玻璃颗粒中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)含量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,该玻璃颗粒具有彼此垂直的x,y和z三维尺寸,每个x,y和z尺寸上的长度至少是5mm(在一些实施方式中至少是10mm),限制条件是,如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该玻璃进一步包含除Al2O3或CaO之外的金属氧化物,当玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相。可以对该玻璃进行热处理,使至少一部分玻璃转变成玻璃陶瓷。在一些实施方式中,该玻璃和玻璃陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种玻璃陶瓷,该玻璃陶瓷中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),该玻璃陶瓷中含有占其总重量不超过10%(在一些实施方式中,优选小于5%,4%,3%,2%,1%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5,该玻璃陶瓷具有彼此垂直的x,y和z三维尺寸,每个x,y和z尺寸上的长度至少是5mm(在一些实施方式中至少是10mm),限制条件是,如果除Al2O3之外的该金属氧化物是CaO,则该玻璃陶瓷进一步包含除CaO之外的金属氧化物晶体。在一些实施方式中,该玻璃陶瓷可能存在于另一种物质中(含有本发明玻璃陶瓷的颗粒,含有本发明玻璃陶瓷的陶瓷等)。在一些实施方式中,该玻璃陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造玻璃陶瓷的方法,该方法包括对本发明无定形材料(包括玻璃)进行热处理,使至少一部分无定形材料转变成玻璃陶瓷的步骤。
另一方面,本发明提供了制造磨粒的方法,该方法包括以下步骤:
对本发明无定形材料(包括玻璃)进行热处理,使至少一部分无定形材料转变成玻璃陶瓷;
将玻璃陶瓷破碎成为含有玻璃陶瓷的磨粒。
该磨粒能被装在磨具中,或以疏松形态使用。本发明的磨具中含有粘合剂和许多磨粒,其中至少一部分磨粒是本发明的磨粒。磨具实例包括涂布磨具,粘结磨具(比如砂轮),非织造磨具和研磨刷。涂布磨具通常包括一个背衬,具有相背的第一和第二主表面,其中的粘合剂和大量磨粒在第一主表面的至少一部分表面上形成研磨层。
在一些实施方式中,磨具中,优选至少5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%或甚至是100重量%的磨粒是本发明的磨粒。
在使用前,通常对磨粒进行分级,形成要求的粒径分布。这种分布通常包括从粗到细一系列的粒径。在研磨领域,有时将这个系列范围称为“粗”,“受控”和“细”部分。根据工业认可的分级标准分级后的磨粒,其每个额定级别的粒径分布规定在一数值限度内。这种工业认可的分级标准(即,规定的额定级别)包括美国国家标准协会(American National Standards Institute,Inc.)(ANSI)标准,磨具欧洲制造者联合会(Federation of European Producers of Abrasive Products)(FEPA)标准和日本工业标准(Japanese Industrial Standard)(JIS)标准。一方面,本发明提供了具有规定额定级别的磨粒,其中至少一部分磨粒是本发明的磨粒。在一些实施方式中,优选磨粒中,至少5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%或甚至是100重量%是本发明的磨粒。
另一方面,本发明提供了一种制造本发明磨粒的方法,该方法包括热处理含有无定形材料(包括玻璃)的颗粒,使至少一部分无定形材料转变成玻璃陶瓷,形成含有玻璃陶瓷的磨粒的步骤。通常,在热处理后,对含有玻璃陶瓷的磨粒进行分级,形成具有规定额定级别的磨粒,其中,至少一部分磨粒是含有玻璃陶瓷的磨粒。可选在对含有无定形材料的颗粒进行热处理之前,制得具有规定额定级别的颗粒,其中至少一部分颗粒是含有待热处理无定形材料的颗粒,而且,通过热处理形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。
另一方面,本发明提供了一种制造本发明磨粒的方法,该方法包括热处理含有无定形材料的磨粒,使至少一部分无定形材料转变成玻璃陶瓷,形成含有玻璃陶瓷的磨粒的步骤。通常,在热处理后,对含有玻璃陶瓷的磨粒进行分级,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。可以在对含有无定形材料的颗粒进行热处理前,制成具有规定额定级别的颗粒,其中至少一部分颗粒含有待热处理的无定形材料的颗粒,而且,通过热处理能形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。
另一方面,本发明提供了具有规定额定级别的许多磨粒,其中,至少一部分磨粒是含有玻璃陶瓷的磨粒,该玻璃陶瓷中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),该玻璃陶瓷中含有占其总重量不超过10%(在一些实施方式中,优选小于5%,4%,3%,2%,1%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5。在一些实施方式中,该玻璃陶瓷中含有占其总重量0到50%,0到25%,或甚至是0到10%的除Al2O3之外的金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%,或甚至是0到10%的ZrO2和HfO2中的至少一种。在一些实施方式中,该玻璃陶瓷具有彼此垂直的x,y和z三维尺寸,其中每个x,y和z尺寸至少是25微米,30微米,35微米,40微米,45微米,50微米,75微米,100微米,150微米,200微米,250微米,500微米,1000微米,2000微米,2500微米,1mm,5mm,或甚至是至少10mm。在一些实施方式中,如果除Al2O3之外的金属氧化物是CaO,则该玻璃陶瓷中进一步包含除CaO之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,如果除Al2O3之外的金属氧化物是ZrO2,则该玻璃陶瓷中进一步包含除ZrO2之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,如果除Al2O3之外的金属氧化物是CaO或ZrO2,则该玻璃陶瓷进一步包含除CaO和ZrO2之外的金属氧化物的至少一种明显的结晶相。
另一方面,本发明提供了一种制造磨粒的方法,该方法包括以下步骤:
提供具有规定额定级别的许多颗粒,其中,至少一部分颗粒是含有无定形材料的颗粒,该无定形材料中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),该无定形材料中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5;和
对含有无定形材料的颗粒进行热处理,使至少一部分无定形材料转变成玻璃陶瓷,形成具有规定额定级别的含有玻璃陶瓷的磨粒。在一些实施方式中,玻璃和玻璃陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%,或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造磨粒的方法,该方法包括以下步骤;
对含有无定形材料的颗粒进行热处理,使至少一部分玻璃转变成玻璃陶瓷,该无定形材料中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),其中该无定形材料中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5
分级含有玻璃陶瓷的磨粒,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。在一些实施方式中,该玻璃和玻璃陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造磨粒的方法,该方法包括以下步骤:
对无定形材料进行热处理,使至少一部分无定形材料转变成玻璃陶瓷,该无定形材料中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),其中该无定形材料中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5
破碎玻璃陶瓷形成含有玻璃陶瓷的磨粒;
分级含有玻璃陶瓷的磨粒,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。在一些实施方式中,该玻璃和玻璃陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造磨粒的方法,该方法包括以下步骤:
对含有无定形材料的陶瓷进行热处理,使至少一部分无定形材料转变成玻璃陶瓷,该无定形材料中含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3,和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),其中该无定形材料中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5
破碎该玻璃陶瓷形成含有玻璃陶瓷的磨粒;
分级含有玻璃陶瓷的磨粒,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。在一些实施方式中,该玻璃和玻璃陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造陶瓷的方法,该方法包括以下步骤:
将以下两种物质结合,(a)玻璃颗粒,该玻璃含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),该玻璃中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5;(b)比玻璃颗粒更难熔的颗粒(比如,金属氧化物颗粒,硼化物颗粒,碳化物颗粒,氮化物颗粒,金刚石颗粒,金属颗粒,玻璃颗粒和它们的组合),该玻璃具有一定Tg
将玻璃颗粒加热到高于Tg的温度,使玻璃颗粒聚结;
将玻璃冷却形成陶瓷。在一些实施方式中,如果除Al2O3之外的该金属氧化物是CaO,则该玻璃颗粒和陶瓷中进一步包含除CaO之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,如果除Al2O3之外的该金属氧化物是ZrO2,则该玻璃颗粒和陶瓷中进一步包含除ZrO2之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该玻璃颗粒和陶瓷中进一步包含除CaO或ZrO2之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,该玻璃和陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
另一方面,本发明提供了一种制造玻璃陶瓷的方法,该方法包括以下步骤:
将以下两种物质结合,(a)玻璃颗粒,该玻璃含有占其总重量至少35%(在一些实施方式中,优选至少40%,45%,50%,55%,60%,65%或甚至是至少70%)的Al2O3和除Al2O3之外的一种金属氧化物(比如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),该玻璃中含有占其总重量不超过10%(在一些实施方式中,优选小于5%或甚至是0)合量的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5;(b)比玻璃颗粒更难熔的颗粒(比如,金属氧化物颗粒,硼化物颗粒,碳化物颗粒,氮化物颗粒,金刚石颗粒,金属颗粒,玻璃颗粒和它们的组合),该玻璃具有一定Tg
将玻璃颗粒加热到高于Tg的温度,使玻璃颗粒聚结;
将玻璃冷却形成含有玻璃的陶瓷;
热处理该陶瓷,使至少一部分玻璃转变成玻璃陶瓷。在一些实施方式中,如果除Al2O3之外的该金属氧化物是CaO,则该玻璃中进一步包含除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成一种明显的结晶相,该玻璃陶瓷进一步包含除CaO之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,如果除Al2O3之外的该金属氧化物是ZrO2,则该玻璃中进一步包含除Al2O3或ZrO2之外的一种金属氧化物,当该玻璃结晶卅,至少一部分该金属氧化物形成一种明显的结晶相,该玻璃陶瓷进一步包含除ZrO2之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该玻璃中进一步包含除Al2O3,CaO或ZrO2之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成一种明显的结晶相,该玻璃陶瓷中进一步包含除CaO或ZrO2之外的金属氧化物的至少一种明显的结晶相。在一些实施方式中,该玻璃,陶瓷和玻璃陶瓷中含有占其总重量0到50%,0到25%或甚至是0到10%的除Al2O3之外的金属氧化物(如,Y2O3,REO,ZrO2,TiO2,CaO,Cr2O3,MgO,NiO,CuO和它们的复合金属氧化物),和/或0到50%,0到25%或甚至是0到10%的ZrO2和HfO2中的至少一种。
在本申请中:
“无定形材料”是指从熔体和/或蒸汽相制得的材料,其中不含能被X射线衍射检测到的长程的晶体结构和/或用DTA(差热分析)检测时,没有对应于无定形材料结晶过程的放热峰;
“陶瓷”包括无定形材料,玻璃,结晶陶瓷,玻璃陶瓷和它们的组合;
“复合金属氧化物”是指含有两种或多种不同金属元素和氧元素的金属氧化物(比如,CeAl11O18,Dy3Al5O12,MgAl2O4和Y3Al5O12);
“复合Al2O3金属氧化物”是指以理论氧化物计算,含有Al2O3和一种或多种除Al之外的金属元素的复合金属氧化物(比如,CeAl11O18,Dy3Al5O12,MgAl2O4和Y3Al5O12);
“复合Al2O3·Y2O3”是指以理论氧化物计算,含有Al2O3和Y2O3的复合金属氧化物(比如,Y3Al5O12);
“复合Al2O3·REO”是指以理论氧化物计算,含有Al2O3和稀土氧化物的复合金属氧化物(比如CeAl11O18和Dy3Al5O12);
“玻璃”是指具有玻璃化转变温度的无定形材料;
“玻璃陶瓷”是指含有通过热处理无定形材料形成的晶体的陶瓷;
“Tg”是指通过“差热分析”测定的玻璃化转变温度;
“Tx”是指通过“差热分析”测定的结晶温度;
“稀土氧化物”是指氧化铈(即,CeO2),氧化镝(即,Dy2O3),氧化铒(即,Er2O3),氧化铕(即,Eu2O3),氧化钆(即,Gd2O3),氧化钬(即,Ho2O3),氧化镧(即,La2O3),氧化镥(即,Lu2O3),氧化钕(即,Nd2O3),氧化镨(即,Pr6O11),氧化钐(即,Sm2O3),氧化铽(即,Tb2O3),氧化钍(即,Th4O7),氧化铥(即,Tm2O3)和氧化镱(即,Yb2O3)和它们的混合;以及
“REO”是指稀土氧化物。
而且,除非指明金属氧化物(比如,Al2O3,复合Al2O3金属氧化物等)是结晶,比如在玻璃陶瓷中,否则,金属氧化物可以是无定形的,结晶的或部分无定形部分结晶的。比如,如果一种玻璃陶瓷包含Al2O3和ZrO2,则Al2O3和ZrO2可以分别是无定形的,晶态的,或部分无定形部分晶态的,或甚至是与另一种金属氧化物的反应产物(例如除非指明Al2O3以结晶Al2O3或Al2O3的某一特定结晶相(比如α-Al2O3)存在,否则,Al2O3可以是结晶和/或一部分一种或多种复合Al2O3·金属氧化物的结晶形式存在)。
而且,通过加热不表现出Tg的无定形材料制得的玻璃陶瓷中,可能确实不含有玻璃,而是可能含有结晶和不表现出Tg的无定形材料。
本发明的无定形材料和玻璃陶瓷能被制成,形成或转变成颗粒(比如,玻璃珠粒(比如直径至少是1微米,5微米,10微米,25微米,50微米,100微米,150微米,250微米,500微米,750微米,1mm,5mm或甚至至少10mm)),制品(比如,片状),纤维,颗粒和涂层(比如薄涂层)。无定形材料和/或玻璃陶瓷颗粒和纤维能被用于绝热,填料或复合物(比如,陶瓷,金属或聚合基质复合物)中的增强材料。薄涂层能被用于耐磨损和热分配应用中的保护涂层。本发明的制品实例包括厨房器具(比如,盘碟),牙齿托架,和增强纤维,切割工具镶嵌物,研磨助剂,和燃气发动机的结构部件(比如阀门和轴承)。其他制品包括在一物体或基他基片的外表面上具有陶瓷保护涂层的制品。
附图说明
图1是含有本发明磨粒的涂布磨具的片段截面示意图;
图2是含有本发明磨粒的粘结磨具的透视图;
图3是含有本发明磨粒的非织造磨具的放大示意图。
图4是由实施方式1制备的材料的DTA曲线;
图5是由实施方式22制备的材料的断层表面的扫描电镜(SEM)照片;
图6是由实施方式24制备的材料的断层表面的扫描电镜(SEM)照片;
图7是由实施方式30制备的材料的断层表面的扫描电镜(SEM)照片;
图8是由实施方式30制备的材料的断层表面的扫描电镜(SEM)照片;
图9是由实施方式31制备的材料的断层表面的扫描电镜(SEM)照片;
图10是由实施方式32制备的材料的背散射电镜照片;
图11是实施方式35材料的DTA曲线;
图12-15分别是实施方式36-39材料的DTA曲线;
图16是实施方式47的热压材料切片(2mm厚度)的光学显微镜照片。
图17是实施方式47的热处理材料抛光截面的扫描电镜(SEM)照片。
图18是实施方式47材料的DTA曲线。
图19是实施方式65材料的抛光截面的SEM照片。
详细说明
无定形材料(包括玻璃),玻璃陶瓷,含有玻璃陶瓷的本发明磨粒,用于制造玻璃陶瓷和磨粒等的无定形材料(包括玻璃)的一些实施方式中,含有Al2O3和至少一种其他金属氧化物(比如,和;REO和ZrO2或HfO2中的至少一种),其中氧化铝和至少一种其他金属氧化物的含量占无定形材料或玻璃陶瓷等总重量至少80%(85%,90%,95%,97%,98%,99%或甚至是100%)。
无定形材料(比如,玻璃),含有无定形材料的陶瓷,含有无定形材料的颗粒等的制造方法如下:加热(包括在火焰中)合适的金属氧化物原料形成熔体,最好是一种均匀的熔体,然后将其迅速冷却成无定形材料。无定形材料的实施方式可以用以下方法制备:在任何合适的加热炉(比如,感应炉,燃气炉或电炉)中,或在等离子体中熔化金属氧化物原料。将形成的熔体冷却(比如,将熔体排入一冷却介质(比如,高速空气流,液体,金属板(包括急冷金属板),金属辊筒(包括急冷金属辊筒),金属球(包括急冷金属球)等)。
无定形材料的实施方式可以采用焰熔法制得,如美国专利US6254981(Castle)所公开的。在这个方法中,金属氧化物原料被直接投入(比如,以颗粒形式,有时被称为“进料颗粒”)燃烧器中(比如,甲烷-空气燃烧器,乙炔-氧燃烧器,氢-氧燃烧器,及类似燃烧器),然后淬冷,比如,在水中,冷却油,空气或类似淬冷剂中。进料颗粒可以通过研磨,聚集(比如,喷雾干燥),熔化或烧结金属氧化物原料而制得。输入火焰中的进料颗粒的粒径通常决定了制得的含有无定形材料的颗粒的粒径。
无定形材料的实施方式也可以通过其他技术制备,比如:带有自由落体冷却的激光旋转熔融,泰勒线技术,等离子管技术,锤砧技术,离心淬冷,空气枪急冷,单辊筒和双辊筒淬冷,辊筒板淬冷和悬滴熔化排热(参见《陶瓷的快速固化》(RapidSolidification of Ceramics),Brockway等人,Metals and Ceramics Information Center,A Department of Defecse Information Analysis Center,Columbus,OH,1984年1月)。无定形材料的实施方式还能通过其他技术制得,比如:合适前体的热致(包括火焰或激光或等离子辅助)分解,金属前体的物理蒸汽合成(PVS)和机械化学过程。
有用的无定形材料组合物包括那些共熔组合物(比如,二元和三元共熔组合物)。除了此处公开的组合物之外,其他组合物,包括四元和其他更高元的共熔组合物,对了解本公开文件后的本领域技术人员而言是显而易见的。
通常,无定形材料和由其制得的本发明玻璃陶瓷,具有彼此垂直的x,y和z三维尺寸,而且每个x,y和z尺寸上的长度都至少是25微米。在一些实施方式中,x,y和z的尺寸至少是30微米,35微米,40微米,45微米,50微米,75微米,100微米,150微米,200微米,250微米,500微米,1000微米,2000微米,2500微米,1mm,5mm或甚至是至少10mm。
Al2O3(以理论氧化物表示)的原料包括市售原料有铝土矿(包括天然形成的铝土矿和人工合成的铝土矿),煅烧铝土矿,水合氧化铝(比如,勃姆石和水铝矿),铝,拜耳法氧化铝,铝矿石,γ-氧化铝,α-氧化铝,铝盐,硝酸铝和它们的组合。Al2O3原料可以包含或只含有Al2O3。或者,Al2O3原料可以包含Al2O3以及一种或多种其他金属氧化物(包括复合Al2O3·金属氧化物(比如Dy3Al5O12,Y3Al5O12,CeAl11O18等)和含有该复合物的物质)。
稀土氧化物的原料包括市售原料有稀土氧化物粉末,稀土金属,含有稀土的矿石(比如,氟碳铈镧矿和独居石),稀土盐,稀土硝酸盐和稀土碳酸盐。稀土氧化物原料可以包含或只含有稀土氧化物。或者,稀土氧化物原料可以包含稀土氧化物和一种或多种其他金属氧化物(包括复合稀土氧化物·其他金属氧化物(比如,Dy3Al5O12,CeAl11O18等)和含有该复合物的物质)。
Y2O3(以理论氧化物表示)的原料包括市售原料有氧化钇粉末,钇,含钇矿石和钇盐(比如,钇的碳酸盐,硝酸盐,氯化物,氢氧化物和它们的组合)。Y2O3原料可以包含或只含有Y2O3。或者,Y2O3原料可以包含Y2O3和一种或多种其他金属氧化物(包括复合Y2O3·金属氧化物(比如,Y3Al5O12)和含有该复合物的物质)。
ZrO2(以理论氧化物表示)的原料包括市售原料有氧化锆粉末,锆石,锆,含锆矿石和锆盐(比如,锆的碳酸盐,乙酸盐,硝酸盐,氯化物,氢氧化物和它们的组合)。另外,ZrO2原料可以包含ZrO2和其他金属氧化物,比如氧化铪。HfO2(以理论氧化物表示)的原料包括市售原料有氧化铪粉末,铪,含铪矿石和铪盐。另外,HfO2原料可以包含HfO2和其他金属氧化物,比如ZrO2
其他以理论氧化物表示的可用金属氧化物,包括BaO,CaO,Cr2O3,CoO,Fe2O3,GeO2,Li2O,MgO,MnO,NiO,Na2O,Sc2O3,SrO,TiO2,ZnO和它们的组合。其原料包括市售原料有氧化物,复合氧化物,矿石,碳酸盐,乙酸盐,硝酸盐,氯化物,氢氧化物等。通过添加这些金属氧化物,能改进制得的磨粒的物理性质和/或提高加工性能。这些金属氧化物通常以占玻璃陶瓷总重量0到50%添加,在一些实施方式中,优选0到25%,添加量取决于要求的性质。
在一些实施方式中,优选至少一部分金属氧化物原料(在一些实施方式中,优选占10%,15%,20%,25%,30%,35%,40%,45%或甚至是至少50重量%)的获得是添加含有至少一种金属M(比如,Al,Ca,Cu,Cr,Fe,Li,Mg,Ni,Ag,Ti,Zr和它们的组合)的颗粒状金属物质到熔体中或者将其与其他原料金属化。该金属M具有负的氧化物生成焓。虽然不期望受限于理论,但据信,与金属氧化过程相关的放热反应中放出的热量有利于均匀熔体的形成,从而形成无定形材料。比如,据信,原料中由氧化反应产生的额外热量能消除不够充分的热量传递或将该现象的发生可能性降至最低,从而有利于熔体的形成和均匀化,特别是在形成的无定形颗粒x,y和z的尺寸大于150微米时,更是如此。据信,这种额外的热量有利于促进各种化学反应和物理过程(比如,致密化和球化)的完成。而且,据信在一些实施方式中,氧化反应生成的额外热量确实能促使熔体的形成,如果没有这些热量,由于这些物质的高熔点,熔体是很难或无法形成的。而且,氧化反应生成的额外热量确实能促使无定形材料的形成,如果没有这些热量,是无法形成这种无定形材料或无法形成要求粒径的无定形材料的。本发明的另一个优点是,在无定形材料形成过程中,许多化学和物理过程,比如熔化,致密化和球化,都能在短时间内达到,从而可以使用很高的淬冷速度。其他具体内容,参见与本申请同日提交的美国专利申请序列号为____的申请(Attorney Docket号为56931US007)。
对用于制造本发明陶瓷的金属氧化物原料和其他添加剂的具体选择,通常要考虑制得陶瓷的要求组成和显微结构,要求的结晶度,要求物理性质(比如,硬度或韧性),不需要的杂质含量要最低或不存在,制得陶瓷的要求性质和/或用于制备陶瓷的具体过程(包括熔融和/或固化过程前和/或过程中,使用的设备和对原料的纯化)。
在一些情况下,优选加入限定量的以下金属氧化物:Na2O,P2O5,SiO2,TeO2,V2O3和它们的组合。其原料包括市售原料有氧化物,复合氧化物,矿石,碳酸盐,乙酸盐,硝酸盐,氯化物,氢氧化物等。可以通过添加这些金属氧化物,改进制得磨粒的物理性能和/或提高加工性能。这些金属氧化物的添加量通常占玻璃陶瓷总重量的大于0到20%,优选大于0到5%,更优选大于0到2%,取决于要求的性质。
添加某些金属氧化物会改变本发明玻璃陶瓷的性质和/或结晶结构或显微结构,以及制备玻璃陶瓷用的原料和中间物的处理过程。比如,MgO,CaO,Li2O和Na2O等氧化物添加剂,会改变无定形材料的Tg(对玻璃)和Tx(结晶温度)。虽然不期望受限于理论,据信,这些添加剂会影响玻璃的形成。而且,这些氧化物添加剂会降低整个体系的熔化温度(比如,使整个体系向更低的共熔物方向移动),并使无定形材料容易形成。多组分体系(四元组分等)中的共熔复合物具有更好的形成无定形材料的能力。液态熔体的粘度和在其“工作”范围内玻璃的粘度也会受到MgO,CaO,Li2O和Na2O等某些金属氧化物添加剂的影响。本发明的范围还包括将至少一种卤素(比如,氟和氯)或硫族化物(比如,硫化物,硒化物和碲化物)加入无定形材料和由此制得的玻璃陶瓷。
无定形材料和含有该无定形材料的陶瓷的结晶过程也会受添加某种材料的影响。比如,某些金属,金属氧化物(比如,钛酸盐和锆酸盐)和氟化物可以作为成核剂,有利于晶体的异相成核。而且,添加一些氧化物能改变无定形材料再次加热时产生的亚稳相的性质。另一方面,对于含有结晶ZrO2的陶瓷而言,优选加入能稳定四方/立方ZrO2的金属氧化物(比如,Y2O3,TiO2,CaO和MgO)。
金属氧化物原料和其他添加剂可以是适合于制造本发明玻璃陶瓷过程和设备的任何形式。这些原料可以采用本领域用来制造氧化物无定形材料和无定形金属的已知技术和设备进行熔化和淬冷。要求的冷却速度为50K/s或更快的速度。本领域已知的冷却技术包括辊筒冷却。辊筒冷却可以如此进行:将金属氧化物原料在高于其熔点温度20-200℃的温度下熔化,将熔体在高压下喷射(比如,使用空气,氩气,氮气或类似气体)在高速旋转的辊筒上,进行冷却/淬冷。通常,辊筒是金属制的并进行了水冷。也可以使用金属盒式模具对熔体进行冷却/淬冷。
其他用于熔体形成,熔体冷却/淬冷和/或无定形材料成形的技术,包括蒸气相淬冷,熔体排热,等离子体喷射和气相或离心喷雾。蒸气相淬冷是通过溅射由金属合金或金属氧化物原料形成的溅射靶进行的。该溅射靶固定在溅射设备的一预定位置上,要涂覆的基材置于与靶相对的位置上。通常采用压力为10-3torr的氧气和氩气,在靶和基材之间放电,Ar或氧离子撞击靶开始溅射反应,从而在基材上沉积一薄层组合物。关于等离子体喷射的具体内容,参见与本申请同日提交的申请号为__1(Attorney Docket号为57980US002)的美国专利申请。
蒸气相喷雾包括将进料颗粒熔化成熔体的步骤。将这种熔体的细流与粉碎性喷射空气接触,将其雾化(即该细流被分散成很细的液滴)。然后收集制得的含有无定形材料的颗粒(比如珠粒),颗粒基本上是分隔开,通常是椭圆形的。粒径在约5微米到约3mm之间。熔体排热的方法如美国专利US5605870(Strom-Olsen等人)中所公开。采用激光束加热的无容器玻璃形成技术也能被用来制造本发明的材料,如2001年4月4日公开的公开号为WO01/27046A1的PCT专利申请中所述。
据信,冷却速度会影响经淬冷无定形材料的性质。比如,玻璃化转变温度,密度和玻璃的其他随冷却温度改变的性质。
通常,优选主体材料中含有至少50%,60%,70%,80%,85%,90%,95%,98%,99%或甚至是100重量%的无定形材料。
快速冷却也可以在受控气氛下进行,比如在还原性,中性或氧化性气氛中,从而在冷却过程中保持和/或变成要求的氧化态等。气氛也会通过改变过冷液体的结晶动力学而影响无定形材料的形成。比如,据报告,在氩气气氛中存在的未结晶Al2O3熔体的过冷度要比空气中的更大。
一种材料的显微结构或相组成(玻璃态/无定形/结晶态)可以由多种方法确定。用光学显微镜方法,电子显微镜方法,差热分析(DTA)和X射线衍射(XRD)能获得很多信息。
使用光学显微镜方法时,无定形材料通常由于不含晶界等光散射中心而基本呈现透明,但结晶材料具有结晶结构,由于光散射效应而呈现半透明。
使用-100+120目级分(即,收集150微米和125微米网眼两个筛子之间的级分),能计算出颗粒的无定形百分数。通过以下方式进行测量。在一玻璃载片上铺展开一单层颗粒。用光学显微镜观察颗粒。用光学显微镜视野中的十字线做导向,将沿一直线上的颗粒根据其光学透明度分成无定形或结晶的。共观察500个颗粒,用无定形的颗粒数除以观察的颗粒总数,求得无定形颗粒的百分数。
使用DTA,如果相应DTA曲线中具有一个放热结晶峰(Tx),则材料归为无定形的。如果同一条曲线中,在低于Tx的温度处还有一个放热峰(Tg)时,表示其中含有玻璃相。如果材料的DTA曲线中没有这些放热峰,则表示该材料中包含结晶相。
可以按以下方法进行差热分析(DTA)。用-140+170目级分(即,收集在105微米和90微米网眼两个筛子之间的级分)进行DTA测量(使用从NetzschInstruments,Selb,Germany获得的商品名为“NETZSCH STA 409 DTA/TGA”的仪器)。将一定数量的过筛样品(通常约400毫克(mg))置于100微升Al2O3样品容器中。每个样品都在静态空气中以10℃/分的速度,从室温(约25℃)升高到1100℃。
使用X射线粉末衍射XRD(使用从Phillips,Mahwah,NJ获得的商品名为“PHILLIPS XRG 3100”的仪器和铜Kα1的1.54050埃辐射),将结晶材料的XRD谱图中的峰与国际衍射数据中心(International Center for Diffraction Data)出版的JCPDS(Joint Committee on Powder Diffraction Standards)数据库中提供的结晶XRD谱图进行对比,确定材料中存在的相。而且,XRD可以定性地确定相的类型。如果存在宽的弥散强度峰,则表示材料的无定形性质。如果同时存在宽峰和精细峰,则表示在无定形基质中存在结晶物质。
最初形成的无定形材料或陶瓷(包括结晶前的玻璃)的尺寸可能比要求的更大。可以采用本领域已知的破碎和/或研磨技术,将无定形材料或陶瓷转变成小块,包括辊筒破碎,canary研磨,颚式破碎,锤磨,球磨,气流研磨,冲击破碎和类似技术。在一些情况下,要求使用两个或多个破碎步骤。比如,在陶瓷形成(固化)后,其尺寸可能大于要求的尺寸。第一个破碎步骤将这些相对较大的块状体或“团块”破碎成较小的块。这种团块的破碎可以使用锤磨,冲击破碎机或颚式破碎机完成。然后,将这些较小的块破碎成要求的粒径分布。要获得要求的粒径分布(有时是指研磨助剂粒度或级别),必须完成多个破碎步骤。总的来说,要优化破碎条件,获得要求的颗粒形状和粒径分布。如果颗粒仍然太大,可以将制得的颗粒再次进行破碎或进行“再循环”,如果颗粒太小,则可以将其作为原料重新熔融,最终获得要求的粒径。
陶瓷(包括结晶前的玻璃)的形状取决于陶瓷的组成和/或显微结构,其冷却几何方式和陶瓷的破碎方式(即使用的破碎技术)。总的来说,当优选“厚实的”形状时,需要使用更多的能量来达到这个形状。相反,如果优选“尖锐的”形状时,需要的能量较少。也可以改变破碎技术获得不同的指定形状。制得磨粒的平均长径比是1∶1到5∶1,在一些实施方式中是1.25∶1到3∶1,或甚至是1.5∶1到2.5∶1。
直接形成指定形状的陶瓷(包括结晶前的玻璃)也在本发明的范围内。比如,将熔体倒入模具中成形,形成(包括模制)陶瓷(包括结晶前的玻璃)。
通过聚结制造陶瓷(包括结晶前的玻璃),也在本发明范围内。聚结步骤的本质是从两个或多个较小的颗粒形成较大的形体。比如,含有颗粒(从破碎得到的)(包括珠粒和微球),纤维等可以形成为较大的颗粒。比如,通过在高于Tg的温度下加热含有无定形材料的颗粒和/或纤维等,使其聚结成一形体并将其冷却,就能制得陶瓷(包括结晶前的玻璃)。聚结的温度和压力取决于无定形材料的组成和制得材料要求的密度。温度要低于玻璃结晶温度,对于玻璃而言,要高于玻璃化转变温度。在某些实施方式中,加热到介于约850℃到约1100℃之间的温度(在一些实施方式中,优选900℃到1000℃)。通常,无定形材料的聚结在压力(比如大于0到1GPa或更高)下进行,压力有助于无定形材料的聚结。在一个实施方式中,将颗粒料置于子子中,在高于玻璃化转变温度下进行热压,此时玻璃的粘性流动使其体聚结成相对较大的形体。典型的聚结技术实例包括热压,热等静压,热挤压和类似技术。通常,优选在对制得的聚结体做进一步热处理前,将其冷却。热处理后如果需要,可将聚结形体破碎成较小的颗粒或要求的粒径分布。
进行额外的热处理,进一步提高材料的指定性能,也在本发明的范围内。比如,通过热等静压(比如,在从约900℃到约1400℃的温度下)除去剩余的孔隙,提高材料的密度。也可以对所得的聚结制品进行热处理,制得玻璃陶瓷,结晶陶瓷或另外含有结晶陶瓷的陶瓷。
无定形材料和/或玻璃陶瓷(比如颗粒)的聚结也可以通过其他多种方法完成,包括无压或加压烧结(比如,烧结,等离子体辅助烧结,热压,热等静压,热锻,热挤压等)。
热处理可按多种方式进行,包括本领域已知的用于热处理玻璃制成玻璃陶瓷的方法。比如,热处理可以间歇进行,使用电阻式,感应式或燃气炉。或者,热处理可以使用旋转窑连续进行。使用旋转窑时,物料被直接投入较高温的窑中。在高温保持的时间可以从几秒(在一些实施方式中,甚至小于5秒)到几分钟到几小时。温度可以从900℃到1600℃,通常在1200℃到1500℃之间。有些热处理间歇进行(比如,对成核步骤而言),其他热处理连续进行(比如,对晶体生长以及对获得要求的密度而言)的方式,也在本发明的范围内。对于成核步骤而言,温度通常介于约900℃到约1100℃之间,在一些实施方式中,优选介于约925℃到约1050℃之间。对增加密度步骤而言,温度通常介于约1100℃到约1600℃之间,在一些实施方式中,优选介于约1200℃到约1500℃之间。这个热处理温度,可以通过在升温过程中将物料直接投入加热炉中产生。或者,物料在低得多的温度(比如,室温)下被投入加热炉中,然后以预定升温速率被加热到指定温度。在除空气之外的气氛中进行热处理,也在本发明范围内。在一些情况下,更优选在还原性气氛下进行热处理。也可能优选在一定气体压力下进行热处理,比如热等静压机或在气体压力炉中。将制得的制品或经热处理的制品转变(比如,破碎)成颗粒(比如,磨粒),也在本发明范围内。
对无定形材料进行热处理,使至少一部分无定形材料结晶,形成玻璃陶瓷。对某些玻璃进行热处理制成玻璃陶瓷是本领域众所周知的。对许多玻璃而言,使玻璃陶瓷成核和晶体生长的加热条件是已知的。或者,本领域技术人员可以使用本领域已知技术对玻璃的时间-温度-转变(TTT)进行研究,确定合适的条件。本领域技术人员在阅读了本发明后,应该能够作出本发明玻璃的TTT曲线,确定制造本发明玻璃陶瓷的合适成核和/或晶体生长条件。
通常,玻璃陶瓷比形成它的无定形材料的强度更高。因此,材料的强度可以通过转变成结晶陶瓷相的无定形材料的比例来进行调节。或者,可以通过创造的成核位置数目来改变结晶相中的晶体数目和大小,进而改变材料的强度。有关形成玻璃陶瓷的其他具体说明,参见 玻璃陶瓷,P.W.McMillan,Academic Press,Inc.,第二版,1979。
比如,在对某些无定形材料进行热处理,制备本发明的玻璃陶瓷时,在超过约900℃时,观察到La2Zr2O7,以及,如果存在ZrO2的话,立方/四方ZrO2,某些情况下是单斜ZrO2的形成。虽然不期望受限于理论,据信,有关氧化锆的相是从无定形材料中成核的第一个相。据信,Al2O3,ReAlO3(其中Re是至少一种稀土阳离子),ReAl11O18,Re3Al5O12,Y3Al5O12等相通常在超过约925℃时形成。通常,成核步骤中的晶粒粒径是纳米数量级的。比如,观察到小到10-15纳米的晶粒。至少在一些实施方式中,在约1300℃热处理约1小时能产生完全结晶。总的来说,每个成核和晶体生长步骤的热处理时间从几秒(在一些实施方式中,甚至小于5秒)到几分钟到1小时或更长。
形成的晶体的粒径通常至少一部分受控于成核和/或结晶时间和/或温度。虽然通常优选小晶体(比如,不超过微米数量级,或甚至不超过纳米数量级),本发明玻璃陶瓷也可以含有较大的晶体(比如,至少1-10微米,至少10-25微米,至少50-100微米,或甚至超过100微米)。虽然不期望受限于理论,据信,通常晶体越小(相同密度),陶瓷的机械性能(比如,硬度和强度)越高。
本发明磨粒的实施方式中,可以含有的结晶相例子包括:Al2O3(比如,α-Al2O3),Y2O3,REO,HfO2,ZrO2(比如,立方ZrO2和四方ZrO2),BaO,CaO,Cr2O3,CoO,Fe2O3,GeO2,Li2O,MgO,MnO,NiO,Na2O,P2O5,Sc2O3,SiO2,SrO,TeO2,TiO2,V2O3,Y2O3,ZnO,“金属复合氧化物”(包括“复合Al2O3·金属氧化物”(比如,复合Al2O3·REO(比如,ReAlO3(比如,GdAlO3LaAlO3),ReAl11O18(比如,LaAl11O18)和Re3Al5O12(比如,Dy3Al5O12)),复合Al2O3·Y2O3(比如,Y3Al5O12)和复合ZrO2·REO(比如,Re2Zr2O7(比如,La2Zr2O7))),和它们的组合。
本发明的范围内还包括用其他阳离子取代复合Al2O3金属氧化物(比如复合Al2O3·Y2O3(比如,具有石榴石晶体结构的铝酸钇))中部分钇和/或铝阳离子。比如,复合Al2O3·Y2O3中部分Al阳离子可以被至少一种以下元素的阳离子取代:Cr,Ti,Sc,Fe,Mg,Ca,Si,Co和它们的组合。比如,复合Al2O3·Y2O3中部分Y阳离子可以被至少一种以下元素的阳离子取代:Ce,Dy,Er,Eu,Gd,Ho,La,Lu,Nd,Pr,Sm,Th,Tm,Yb,Fe,Ti,Mn,V,Cr,Co,Ni,Cu,Mg,Ca,Sr和它们的组合。相似的,本发明的范围内还包括取代氧化铝中的部分铝阳离子。比如,Cr,Ti,Sc,Fe,Mg,Ca,Si和Co能取代氧化铝中的铝。上述阳离子的取代会影响熔凝材料的性质(比如,硬度,韧性,强度,导热性能等)。
本发明的范围内还包括用其他阳离子取代复合Al2O3·金属氧化物(比如,复合Al2O3·REO)中的部分稀土和/或铝阳离子。比如,复合Al2O3·REO中的部分Al阳离子能被至少一种以下元素的阳离子取代:Cr,Ti,Sc,Fe,Mg,Ca,Si,Co和它们的组合。比如,复合Al2O3·REO中部分Y阳离子能被至少一种以下元素的阳离子取代:Y,Fe,Ti,Mn,V,Cr,Co,Ni,Cu,Mg,Ca,Sr和它们的组合。相似的,本发明的范围内还包括取代氧化铝中的部分铝阳离子。比如,Cr,Ti,Sc,Fe,Mg,Ca,Si和Co可以取代氧化铝中的铝。上述阳离子的取代会影响熔凝材料的性质(比如,硬度,韧性,强度,导热性能等)。
可以采用ASTM标准E 112-96“平均晶粒粒径标准测定方法”(Standard TestMethods for Determining Average Grain Size),用截线法确定平均晶粒粒径。将样品镶装在镶装树脂(比如从Buehler,Lake Bluff,IL获得的商品名为“TRANSOPTICPOWDER”的树脂),通常是一个直径约2.5cm,高度约1.9cm的圆柱形树脂中。镶装截面用抛光机(从Buehler,Lake Bluff,IL获得,商品名为“ECOMET 3”)按常规抛光技术制备。样品用金刚石磨轮抛光约3分钟,然后分别用45,30,15,9,3和1微米磨粒的浆料抛光5分钟。经抛光后的镶装样品用一薄层金.钯溅射,用扫描电镜(JEOL SEM Model JSM 840A)观察。用样品中找到的一个典型背散射电子(BSE)显微结构的显微照片,按以下方法计算平均晶粒。对与穿过显微照片的任意直线的每个单位长度(NL)相交的晶体进行计数。用以下等式计算平均晶粒尺寸。
其中NL是与每单位长度相交的晶粒个数,M是显微照片的放大倍数。
本发明一些实施方式中的玻璃陶瓷含有至少一种平均晶粒粒径不超过150纳米的α-氧化铝。
本发明的一些实施方式是含有α-氧化铝的玻璃陶瓷,其中至少90%(在一些实施方式中优选95%或甚至100%)α-氧化铝的粒径不超过200纳米。
本发明的一些实施方式是含有α-Al2O3,结晶ZrO2和第一复合Al2O3·Y2O3的玻璃陶瓷,而且其中的至少一种物质的平均晶粒粒径不超过150纳米。优选在一些实施方式中,该玻璃陶瓷进一步含有不同的第二复合Al2O3·Y2O3。优选在一些实施方式中,该玻璃陶瓷进一步含有一种复合Al2O3·REO。
本发明的一些实施方式是含有第一复合Al2O3·Y2O3,不同的第二复合Al2O3·Y2O3和结晶ZrO2的玻璃陶瓷,而且其中的至少一种物质中,至少90%(在一些实施方式中,优选95%或甚至是100%)晶粒的粒径不超过200纳米。在一些实施方式中,优选该玻璃陶瓷中进一步包含一种不同的第二复合物Al2O3·Y2O3。在一些实施方式中,优选该玻璃陶瓷中进一步包含一种复合Al2O3·REO。
本发明的一些实施方式是含有α-Al2O3,结晶ZrO2和第一复合Al2O3·REO的玻璃陶瓷,而且其中的至少一种物质的平均晶粒粒径不超过150纳米。在一些实施方式中,优选该玻璃陶瓷中进一步包含一种不同的第二复合Al2O3·REO。在一些实施方式中,优选该玻璃陶瓷中进一步包含一种复合Al2O3·Y2O3
本发明的一些实施方式是含有第一复合Al2O3·REO,一种不同的第二复合Al2O3·REO和结晶ZrO2的玻璃陶瓷,而且其中的至少一种物质中,至少90%(在一些实施方式中,优选95%或甚至是100%)晶粒的粒径不超过200纳米。在一些实施方式中,优选该玻璃陶瓷进一步包含一种复合Al2O3·Y2O3
本发明的一些实施方式是含有一种第一复合Al2O3·Y2O3,一种不同的第二复合Al2O3·Y2O3和结晶ZrO2的玻璃陶瓷,而且其中的至少一种物质的平均晶粒粒径不超过150纳米。在一些实施方式中,优选该玻璃陶瓷进一步包含一种不同的第二复合Al2O3·Y2O3。在一些实施方式中,优选该玻璃陶瓷进一步包含一种复合Al2O3·REO。
本发明的一些实施方式是含有一种第一复合Al2O3·Y2O3,一种不同的第二复合Al2O3·Y2O3和结晶ZrO2的玻璃陶瓷,而且其中的至少一种物质中,至少90%(在一些实施方式中,优选95%或甚至是100%)晶粒的粒径不超过200纳米。在一些实施方式中,优选该玻璃陶瓷进一步包含一种复合Al2O3·REO。
本发明的一些实施方式是含有第一复合Al2O3·REO,一种不同的第二复合Al2O3·REO和结晶ZrO2的玻璃陶瓷,而且其中的至少一种物质的平均晶粒粒径不超过150纳米。在一些实施方式中,优选该玻璃陶瓷进一步包含一种不同的第二复合Al2O3·REO。在一些实施方式中,优选该玻璃陶瓷进一步包含一种复合Al2O3·Y2O3
本发明的一些实施方式是含有第一复合Al2O3·REO,一种不同的第二复合Al2O3·REO和结晶ZrO2的玻璃陶瓷,而且其中的至少一种物质中,至少90%(在一些实施方式中,优选95%或甚至是100%)晶粒的粒径不超过200纳米。在一些实施方式中,优选该玻璃陶瓷进一步包含一种复合Al2O3·Y2O3
在一些实施方式中,本发明的玻璃陶瓷中包含至少75%,80%,85%,90%,95%,97%,98%,99%或甚至是100体积%的晶粒,其中该晶粒的平均粒径小于1微米。在一些实施方式中,本发明的玻璃陶瓷中包含不超过至少75%,80%,85%,90%,95%,97%,98%,99%或甚至是100体积%的晶粒,其中该晶粒的平均粒径不超过0.5微米。在一些实施方式中,本发明的玻璃陶瓷中包含少于75%,80%,85%,90%,95%,97%,98%,99%或甚至是100体积%的晶粒,其中该晶粒的平均粒径不超过0.3微米。在一些实施方式中,本发明的玻璃陶瓷中包含少于至少75%,80%,85%,90%,95%,97%,98%,99%或甚至是100体积%的晶粒,其中该晶粒的平均粒径不超过0.15微米。
对无定形材料进行热处理形成晶体,获得本发明玻璃陶瓷实施方式,那些晶体可以是各方等大的,柱状的或平板状的。
虽然本发明的无定形材料,玻璃陶瓷等可以是疏松形式的材料,本发明的范围内还包括含有本发明无定形材料,玻璃陶瓷等的复合材料。这种复合材料可以是分散在本发明无定形材料,玻璃陶瓷等中的一种相或纤维(连续或不连续的)或颗粒(包括晶须)(比如,金属氧化物颗粒,硼化物颗粒,碳化物颗粒,氮化物颗粒,金刚石颗粒,金属颗粒,玻璃颗粒和它们的组合),或一种多层复合结构材料(比如,具有玻璃陶瓷直至一种用来制造本发明玻璃陶瓷的梯度和/或本不同组成玻璃陶瓷的许多层)。
通常,本发明陶瓷的(真)密度,有时称为比重,是理论密度的至少70%。本发明陶瓷的(真)密度最好是理论密度的至少75%,80%,85%,90%,92%,95%,96%,97%,98%,99%,99.5%或甚至是100%。本发明的磨粒密度至少是理论密度的85%,90%,92%,95%,96%,97%,98%,99%,99.5%或甚至是100%。
可以按以下方法测定本发明材料的平均硬度。将材料样品镶装在镶装树脂(从Buehler,Lake Bluff,IL获得,商品名为“TRANSOPTIC POWDER”)中,该树脂通常是圆柱形的,直径约2.5cm,高度约1.9cm。镶装的截面用抛光机(从Buehler,LakeBluff,IL获得,商品名为“ECOMET 3”)以常规抛光技术处理。将样品用金刚石磨轮抛光约3分钟,然后分别用45,30,15,9,3和1微米磨粒的浆料抛光5分钟。使用常规显微硬度测试仪(从Mitutoyo Corporation,Tokyo,Japan获得,商品名为“MITUTOYO MVK-VL”)和具有100克压力负载的Vickers压头测定显微硬度。显微硬度的测定按照ASTM测试方法E384材料显微硬度测试方法(1991)中所述规则进行。
在一些实施方式中,本发明玻璃陶瓷的平均硬度至少是13GPa(在一些实施方式中,优选至少是14,15,16,17或甚至是至少18GPa)。本发明磨粒的平均硬度是至少15GPa,在一些实施方式中,是至少16GPa,至少17GPa或甚至至少是18GPa。
有关无定形材料和玻璃陶瓷的进一步说明,包括其制造,使用和特性,参见于2001年8月2日提交的美国专利系列号为09/922526,09/922527和09/922530的专利申请,和与本申请同日提交的美国专利系列号为____(Attorney Docket号是56931US005,56931US006,56931US007,56931US009,56931US010,57980US002和57981US002)的专利申请。
本发明磨粒通常包含结晶陶瓷(在一些实施方式中,优选至少75%,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,99.5%或甚至是100体积%)。
本发明磨粒能使用本领域公知技术进行过筛分级,包括使用工业认可的分级标准,比如ANSI(American National Standard Institute),FEPA(Federation Europeenne desFabricants de Products Abrasifs)和JIS(Japanese Industrial Standard)。本发明磨粒可以在较宽的粒径范围内使用,通常从约0.1到约5000微米,更典型从约1到约2000微米;优选从约5到约1500微米,更优选从约100到约1500微米。
ANSI分级规范包括:ANSI4,ANSI6,ANSI8,ANSI16,ANSI24,ANSI36,ANSI40,ANSI50,ANSI60,ANSI80,ANSI100,ANSI120,ANSI150,ANSI180,ANSI220,ANSI240,ANSI280,ANSI320,ANSI360,ANSI400和ANSI600。优选的ANSI级别中包含ANSI 8-220的本发明磨粒。FEPA分级规范包括P8,P12,P16,P24,P36,P40,P50,P60,P80,P100,P120,P150,P180,P220,P320,P400,P500,P600,P800,P1000和P1200。优选的FEPA级别中包含P12-P220的本发明磨粒。JIS分级规范包括JIS8,JIS12,JIS16,JIS24,JIS36,JIS46,JIS54,JIS60,JIS80,JIS100,JIS150,JIS180,JIS220,JIS240,JIS280,JIS320,JIS360,JIS400,JIS600,JIS800,JIS1000,JIS1500,JIS2500,JIS4000,JIS6000,JIS8000和JIS10000。优选的JIS级别中包含JIS8-220的本发明磨粒。
破碎和过筛后,磨粒中通常会存在各种不同的粒径分布或级别。这时,这些级别可能不符合制造商或供应商的要求。可以将不符合要求的颗粒重新熔化,形成无定形材料。这个循环可以在破碎步骤后发生,这时颗粒呈尚未被过筛成一特定分布的大块或细小片状(有时称为“细片”)。
另一方面,本发明提供了一种制造磨粒的方法,该方法包括对含有无定形材料(比如,玻璃)的颗粒进行热处理,使至少一部分无定形材料转变成玻璃陶瓷,从而形成含有玻璃陶瓷的磨粒的步骤。本发明还提供了一种制造含有玻璃陶瓷的磨粒的方法,该方法包括对无定形材料进行热处理,使至少一部分无定形材料转变成玻璃陶瓷,并破碎所得的经热处理的材料,形成磨粒的步骤。破碎时,玻璃能产生比结晶的玻璃陶瓷或结晶材料更尖锐的颗粒。
另一方面,本发明提供了磨粒团聚物,这些团聚物中含有被粘合剂粘在一起的本发明磨粒。另一方面,本发明提供了一种包含粘合剂和许多磨粒的磨具(比如,涂布磨具,粘结磨具(包括玻璃质,合成树脂或金属粘结的磨轮,切割轮,工具镶装尖和镗磨石),非织造磨具和研磨刷),其中,至少一部分磨粒是本发明的磨粒(包括磨粒团聚物)。制造和应用这种磨具的方法是本领域技术人员众所周知的。而且,本发明的磨粒可以被用于磨粒的应用中,比如研磨化合物(比如抛光化合物的浆料),研磨介质,喷丸介质,振动球磨介质和类似应用。
涂布磨具通常包括一个背衬,许多磨粒和至少一种将磨粒固定在背衬上的粘合剂。背衬可以是任何适用材料,包括布,聚合物薄膜,纤维制品,非织造织物,纸,它们的组合和它们经处理的材料。粘合剂可以是任何适用粘合剂,包括一种无机或有机粘合剂(包括热固化树脂和辐射固化树脂)。磨粒可以被置于涂布磨具的一层或两层上。
附图1表示了一种本发明涂布磨具的例子。参见该图,本发明的涂布磨具1具有一个背衬(基片)2和研磨层3。研磨层3包括通过初始结合涂层5和胶结涂层6固定在背衬2主表面上的本发明许多磨粒4。在一些情况下,使用了一种上胶结涂层(未示出)。
粘结磨具通常是被一种有机,金属或玻璃质粘合剂粘在一起的磨粒的形体。这种形体可以是轮子形式的,比如磨轮或切割轮。磨轮的直径通常是约1cm到大于1米;切割轮的直径是约1cm到大于80cm(更典型为3cm到约50cm)。切割轮厚度通常是约0.5mm到约5cm,更典型为约0.5mm到约2cm。该形体也可以是镗磨石,片段,轴形模具,圆盘(比如双盘研磨机)或其他常规粘结磨具形式的。粘结磨具通常包含占粘结磨具总体积约3-50%的粘合材料,约30-90%的磨粒(或混合磨粒),不超过50%的添加剂(包括研磨助剂),和不超过70%的孔隙。
附图2中是一种优选的磨轮,本发明的磨轮10中包括本发明磨粒11,被模制成轮状固定在轴12上。
非织造磨具通常是一种敞开多孔膨松的聚合物纤维结构,本发明磨粒分布在这整个结构中,并通过一种有机粘合剂粘在其中。纤维的例子包括聚酯纤维,聚酰胺纤维和聚芳酰胺纤维。附图3是本发明一种典型非织造磨具放大100倍的示意图。本发明的这种非织造磨具中包含一个作为基材的纤维衬垫50,本发明磨粒52通过粘合剂54被粘在衬垫上。
可用的研磨刷包括那些具有许多硬毛和背衬的结合体(参见美国专利US5427595(Pihl等人),5443906(Pihl等人),5679067(Johnson等人)和59039521(Ionta等人))。优选这些研磨刷是由聚合物和磨粒混合物通过注塑法制备的。
用于制造磨具的合适有机粘合剂,包括热固性有机聚合物。合适的热固性有机聚合物的例子包括酚醛树脂,脲甲醛树脂,蜜胺甲醛树脂,尿烷树脂,丙烯酸酯树脂,聚酯树脂,具有α,β-不饱和羰基侧链的氨基塑料树脂,环氧树脂,丙烯酸化尿烷,丙烯酸酯化环氧和它们的组合。粘合剂和/或磨具中也可以含有一些添加剂,比如纤维,润滑剂,润湿剂,触变材料,表面活性剂,颜料,染料,抗静电剂(比如,碳黑,氧化钒,石墨等),偶合剂(比如,硅烷,钛酸盐,锆铝酸盐等),增塑剂,悬浮剂和类似物。根据要求的性质确定这些可用的添加剂的含量。偶合剂能提高对于磨粒和/或填料的附着性能。粘合剂可以是能热固化的,辐射固化的或两者的组合。关于粘合剂的其他情况参见美国专利US4588419(Caul等人),4751138(Tumey等人)和5436063(Follett等人)。
具有无定形结构并且通常较硬的玻璃质粘结研磨助剂,玻璃质粘合材料,是本领域众所周知的。在一些情况下,玻璃质粘合材料包括结晶相。本发明的玻璃质粘结磨具可以是轮子(包括切割轮),镗磨石,工具镶装尖或其他常规粘结研磨助剂形式的。本发明优选的玻璃质粘结磨具是一种磨轮。
可用于制造玻璃质粘合材料的金属氧化物例子包括:氧化硅,硅酸盐,氧化铝,苏打,氧化钙,氧化钾,氧化钛,氧化铁,氧化锌,氧化锂,氧化镁,氧化硼,硅酸铝,硼硅酸盐玻璃,硅酸锂铝,它们的组合和类似物。通常,用于制备玻璃质粘合材料的组合物中含有10%到100%的玻璃料,虽然更优选含有20%到80%的玻璃料,或30%到70%的玻璃料。玻璃质粘合材料的剩余部分是非玻璃料。或者,玻璃质粘合也可以从含有非玻璃料的组合物形成。玻璃质粘合材料通常在约700℃到约1500℃的温度范围,通常是约800℃到约1300℃,有时在约900℃到约1200℃,或甚至是约950℃到约1100℃固化。粘合部位的实际固化温度取决于具体的粘合剂化学组成。
优选的玻璃质粘合材料可以包含氧化硅,氧化铝(优选至少10重量%的氧化铝)和氧化硼(优选至少10重量%的氧化硼)。在多数情况下,玻璃质粘合材料进一步包含碱金属氧化物(比如,Na2O和K2O)(在一些情况下,至少10重量%的碱金属氧化物)。
粘合材料中还可以包含填料或研磨助剂,通常是颗粒状的。通常,这些颗粒状材料是无机物质。本发明可用填料的例子包括:金属碳酸盐(比如,碳酸钙(比如,白垩,方解石,泥灰岩,石灰华,大理石和石灰石),碳酸钙镁,碳酸钠,碳酸镁),氧化硅(比如,石英,玻璃珠粒,玻璃泡和玻璃纤维),硅酸盐(比如,滑石,粘土,(蒙脱石)长石,云母,硅酸钙,硅酸钙,铝硅酸钠,硅酸钠),金属硫酸盐(比如,硫酸钙,硫酸钡,硫酸钠,硫酸铝钠,硫酸铝),石膏,蛭石,木粉,铝的三水合物,碳黑,金属氧化物(比如,氧化钙(石灰),氧化铝,二氧化钛)和金属亚硫酸盐(比如,亚硫酸钙)。
总的来说,添加研磨助剂能增加磨具的使用寿命。研磨助剂是一种能对研磨的化学和物理过程产生显著影响,从而提高其性能的物质。虽然不期望受限于理论,据信,研磨助剂能(a)降低磨具和被打磨工件之间的摩擦,(b)防止磨粒被“覆盖”(即,防止金属颗粒焊附在磨粒顶部),或者,至少降低磨粒被覆盖的趋势,(c)降低磨粒和工件之间接触界面的温度,或(d)降低磨削阻力。
研磨助剂包括多种不同物质,可以是基于无机或有机物质的。化学研磨助剂的例子包括蜡,有机卤化物,卤盐,金属和它们的合金。有机卤化物通常会在研磨时分解,析出氢卤酸或气态卤化物。这些物质的例子包括氯化蜡,比如四氯萘,五氯萘和聚氯乙烯。卤盐的例子包括氯化钠,钾冰晶石,钠冰晶石,氨冰晶石,四氟硼酸钾,四氟硼酸钠,氟化硅,氯化钾和氯化镁。金属例子包括锡,铅,铋,钴,锑,镉和铁钛。其他各种研磨助剂包括硫,有机硫化合物,石墨和金属硫化物。本发明的范围内还包括使用不同研磨助剂的组合,而且在一些情况下,这样能产生协同效应。优选研磨助剂是冰晶石;最优选的研磨助剂是四氟硼酸钾。
研磨助剂特别适合用于涂布磨具和粘结磨具中。在涂布磨具中,研磨助剂通常被用在磨粒表面上的上胶结涂层中,而上胶结涂层施加在磨粒表面上。有时研磨助剂加上胶结涂层中,通常,加在涂布磨具中研磨助剂的含量是约50-300g/m2(优选约80-160g/m2)。在玻璃质粘结磨具中,研磨助剂通常被嵌在磨具的孔隙中。
磨具中可以含有100%的本发明磨粒,或这种磨粒与其他磨粒和/或稀释颗粒的混合料。但是,磨具中至少约2重量%,优选至少约5重量%,更优选约30%-100重量%的磨粒应该是本发明的磨粒。在一些情况下,本发明的磨粒可以与另一种磨粒和/或稀释颗粒以5和95重量%,约25%和75重量%,约40%和60%或约50%和50重量%(即等重量比)混合。合适的常规磨粒的例子包括熔凝氧化铝(包括白色熔凝氧化铝,热处理氧化铝和棕色氧化铝),碳化硅,碳化硼,碳化钛,金刚石,立方氮化硼,石榴石,熔凝氧化铝-氧化锆和溶胶凝胶法磨粒等。溶胶凝胶法磨粒可以是加了晶种或不加晶种的。溶胶凝胶法磨粒可以是任意形状的或具有棒状或三角形状的。溶胶凝胶法磨粒例子包括如美国专利US4314827(Leitheiser等人),4518397(Leitheiser等人),4623364(Cottringer等人),4744802(Schwabel),4770671(Monroe等人),4881951(Wood等人),5011508(Wald等人),5090968(Pellow),5139978(Wood),5201916(Berg等人),5227104(Bauer),5366523(Rowenhorst等人),5429647(Larmie),5498269(Larmie)和5551963(Larmie)中所述。其他有关用氧化铝颗粒做原料的烧结氧化铝磨粒的进一步说明,参见美国专利US5259147(Falz),5593467(Monroe)和5665127(Moltgen)。其他有关熔凝磨粒的具体说明,参见美国专利US1161620(Coulter),1192709(Tone),1247337(Saunders等人),1268533(Allen)和2424645(Baumann等人),3891408(Rowse等人),3781172(Pett等人),3893826(Quinan等人),4126429(Watson),4457767(Poon等人),5023212(Dubots等人),5143522(Gibson等人)和5336280(Dubots等人)和于2000年2月2日提交的美国专利申请序列号为09495978,09/496422,09/496638和09/496713的申请,和于2000年7月19日提交的09/618876,09/618879,09/619106,09/619191,09/619192,09/619215,09/619289,09/619563,09/619729,09/619744和09/620262申请,和于2001年1月30日提交的09/772730申请。在一些情况下,磨粒的混合料,与含有100%的任一种磨粒相比,具有提高的研磨性能。
对于磨粒的混合料而言,其中的各种磨粒可以是相同粒径的。或者,各种磨粒可以是不同粒径的。比如,较大粒径的磨粒可以是本发明的磨粒,较小粒径的颗粒可以是另一种磨粒。或者相反,较小粒径的磨粒是本发明的磨粒,较大粒径的颗粒是另一种磨粒。
合适的稀释颗粒的例子包括大理石,石膏,燧石,氧化硅,氧化铁,硅酸铝,玻璃(包括玻璃泡和玻璃珠粒),氧化铝泡,氧化铝珠粒和稀释聚集物。本发明的磨粒也可以与磨粒聚集物结合。磨粒聚集物中通常包括许多磨粒,一种粘合剂和可用添加剂。粘合剂可以是有机的和/或无机的。磨粒聚集物可以是任意形状的,或具有一预定形状。形状可以是块状,圆柱形,棱锥形,币形,方形等。磨粒聚集物通常具有约100到约5000微米的粒径,典型粒径是约250到约2500微米。其他有关磨粒聚集物颗粒的进一步说明,参见美国专利US4311489(Kressner),4652275(Bloecher等人),4799939(Bloecher等人),5549962(Holmes等人)和5975988(Christianson),以及于2000年10月16日提交的美国专利申请系列号为09/688444和09/688484的申请。
磨粒可以均匀分布在磨具中,或集中在磨具的一些选定区域或部分中。比如,在涂布研磨助剂中,具有两层磨粒。第一层中包含本发明磨粒之外的磨粒,第二层(最外层)中包含本发明的磨粒。在粘结研磨助剂中,磨轮可以有两个不同部分。最外层部分可以包含本发明的磨粒,而内层部分不包含。或者,本发明的磨粒可以均匀分布在整个粘结磨具中。
进一步涉及涂布磨具的说明,参见美国专利US4734104(Broberg),4737163(Larkey),5203884(Buchanan等人),5152917(Pieper等人),5378251(Culler等人),5417726(Stout等人),5436063(Follett等人),5496386(Broberg等人),5609706(Benedict等人),5520711(Helmin),5954844(Law等人),5961674(Gagliardi等人)和5975988(Christinason)。进一步涉及粘结磨具的说明,参见美国专利US4543107(Rue),4741743(Narayanan等人),4800685(Haynes等人),4898597(Hay等人),4997461(Markhoff-Matheny等人),5037453(Narayanan等人),5110332(Narayanan等人)和5863308(Oi等人)。进一步涉及玻璃质粘结研磨具的具体说明,参见美国专利US4543107(Rue),4898597(Hay等人),4997461(Markhoff-Matheny等人),5094672(Giles Jr.等人),5118326(Sheldon等人),5131926(Sheldon等人),5203886(Sheldon等人),5282875(Wood等人),5738696(Wu等人)和5863308(Qi)。进一步涉及非织造磨具的说明,参见美国专利US2958593(Hoover等人)。
本发明提供了一种对表面研磨的方法,该方法包括以下步骤:将至少一个本发明磨粒与工件表面接触;移动至少一个磨粒或移动研磨接触面,从而用磨粒研磨至少一部分该表面。用本发明的磨粒进行研磨的方法包括从打磨(即,在较大压力下除去大量物质)到抛光(比如用涂布磨带抛光医用植入体),其中,后者通常使用更细级别(比如,小于ANSI 220和更细)的磨粒。磨粒还可用于精密研磨用途中,比如用玻璃质粘结磨轮抛光凸轮轴。用于具体研磨应用的磨粒的粒径对本领域技术人员是显而易见的。
用本发明磨粒进行研磨可以是干法的也可以是湿法的。对于湿法研磨,可以施加薄雾状液体或用液体洒淋。常用液体的例子包括:水,水溶性油,有机润滑剂和乳剂状液。液体能减少研磨时的热量和/或起到润滑剂的作用。液体中可以包含少量添加剂,比如杀菌剂,防沫剂等。
本发明的磨粒可以被用于研磨金属铝,碳钢,软钢,工具钢,不锈钢,硬化钢,钛,玻璃,陶瓷,木材,类似木材的材料,漆,漆过的表面,有机涂层表面等。研磨时施加的力通常是约1到约100千克。
本发明无定形材料和/或玻璃陶瓷的其他实施方式包括:应用于固体电池,固体氧化物燃料电池和其他电化学装置中的固体电解质;辐射性废物和剩余锕系元素的吸收剂;氧化催化剂;氧气监测传感器;荧光中心的基质;耐用的IR透射窗口材料;和装甲用途。比如,已知烧绿石型的稀土锆氧化物(Re2Zr2O7)可用于上述辐射性废物剩余锕系元素,氧化催化剂,氧气监控传感器和荧光中心的应用中。而且,已知含Ce的混合氧化物可以用做氧化催化剂。虽然不期望受限于理论,据信,含Ce混合氧化物的氧化还原性质和较高的储氧能力有助于其作为氧化催化剂。对于耐用IR透射窗口材料的应用而言,要求适用于潮湿,承受固体或液体颗粒撞击,高温和快速升温条件。
通过以下实施方式,进一步说明本发明的优点,但是其中引用的具体物质和用量,以及其他条件和细节,不应被理解为对本发明的不当限制。所有份数和百分数除了特别指明以外,都表示重量比的。除非另有说明,否则所有实施方式中都不含有多量的SiO2,B2O3,P2O5,GeO2,TeO2,As2O3和V2O5
实施例
实施例1-20
在一只250毫升聚乙烯瓶(直径为7.3cm)中装入50克粉末混合物(见表1,其原料列于表2),75克异丙醇和200克氧化铝研磨介质(圆柱形,高度和直径均为0.635cm;氧化铝纯度为99.9%;从Coors,Golden,CO获得)。以每分钟60转(rpm)的速度研磨聚乙烯瓶内物质16小时。搅拌后,除去研磨介质,将浆料倒入温热(约75℃)的玻璃盘(“PYREX”)上干燥。用排刷将经干燥的混合物经70目(网眼尺寸为212微米)筛子过筛。
经研磨和过筛后,将研磨过的进料颗粒混合物缓慢(0.5克/分)送入氢/氧炬焰中使颗粒熔化。用于熔化颗粒,从而产生熔化的液滴的火炬是Bethlehem台式燃烧器,型号是PM2D Model B,从Bethlehem Apparatus Co.,Hellertown,PA获得。火炬中氢气和氧气流量如下。内环的氢气流量为8升/分(SLPM),氧气的流量为3.5升/分。外环氢气的流量为23升/分,氧气流量为12升/分。经干燥和过筛后的颗粒缓慢(0.5g/分)送入火炬的火焰中,炬焰将颗粒熔化后送入19升(5加仑)圆柱形容器(直径30厘米,高34厘米)中,其内有循环的涡流水迅速将熔融的液滴淬冷。火焰与水约成45°,火焰的长度,即燃烧器到水面的距离,约18厘米(cm)。收集经熔化并迅速淬冷的颗粒,在110℃烘干。这些颗粒呈球形,而粒度则从几个微米到250微米不等。
用-100+120目级分(即150微米和125微米网眼的两个筛子之间收集的级分)计算由此火焰法制得的颗粒的无定形产率百分数。按以下方式进行测量。在玻璃载片上铺展一层颗粒。用光学显微镜对其进行观察。用光学显微镜视野中的十字线为导向,根据一直线上的颗粒的光学透明度来判断它们是无定形的还是晶态的。对500个颗粒进行了计数,用无定形颗粒数除以颗粒总数,求得无定形产率百分数。
经过肉眼观察,由实施例12到实施例20中制备的材料是无定形的,但是并没有依照上述过程进行定量分析。由于缺乏象晶界那样的光散射中心,因此无定形材料一般是透明的;而结晶颗粒的结晶结构由于光散射效应是半透明的。
相组成(玻璃态/无定形/晶态)由下述的差热分析(DTA)进行测定。如果该材料相应的DTA曲线包含有结晶放热峰(Tx)时,则该材料是无定形的。如果在同一曲线上比Tx温度低的位置还包含有吸热峰(Tg)时,则表明该材料包含有玻璃相。如果DTA曲线中没有出现这些峰,则可认为该材料含有晶体相。
按照以下方法进行差热分析(DTA)。用-140+170目级分(即,在105微米和90微米网眼的两个筛子之间收集的级分)进行差热分析(所用设备的商品名是“NETZSCH STA409 DTA/TGA”,从Netzsch Instruments,Selb,Germany获得)。将约400毫克的过筛样品装入100微升Al2O3样品容器中。每个样品在静态空气中,以10℃/分的升温速度从室温(约25℃)加热到1100℃。
图4中的曲线123是实施例1材料的DTA谱图。图4中曲线向下弯曲,表明在872℃附近是吸热的。可以认为这个峰是由玻璃材料的玻璃化转变(Tg)产生的。在大约958℃在123曲线上有个尖锐的峰,表明是放热峰。可以认为这个峰是由材料的结晶(Tx)产生的。除实施例15-20外,其它样品的Tg和Tx的值都列在表1中。
                                 表1
  实施例   批料量,g   各组分重量百分数   氧化铝最终重量百分数%   来自金属Al的最终氧化铝百分   无定形产率百分数 玻璃化转变/结晶温度
  实施例1ALZ   Al2O3:19.3La2O3:21.3ZrO2:9.5   Al2O3:38.5La2O3:42.5ZrO2:19.0 38.5 0 98 882℃932℃
  实施例2AYZ   Al2O3:16.7Al:8.8Y2O3:16ZrO2:8.6   Al2O3:33.3Al:17.6Y2O3:31.9ZrO2:17.2 57.5 50 89 900℃935℃
  实施例3AgdZ   Al2O3:20.5Gd2O3:20.5ZrO2:9   Al2O3:41.0Gd2O3:41.0ZrO2:18 41.0 0 94     872℃
                               表1(续)
  实施例   批料量,g   各组分重量百分数   氧化铝最终重量百分数%   来自金属Al的最终氧化铝百分   无定形产率百分数 玻璃化转变/结晶温度
  实施例4AY   Al2O3:19.5Al:10.3Y2O3:20.1   Al2O3:39.1Al:20.7Y2O3:40.3 66 50 93 894℃943℃
  实施例5AYMg   Al2O3:18.8Al:10.0MgO:0.0Mg:1.8Y2O3:19.4   Al2O3:37.7Al:19.9MgO:0.0Mg:3.6Y2O3:38.8 62.7 50 93 848℃996℃
  实施例6AYMg   Al2O3:18.1Al:9.6MgO:0.0Mg:3.7Y2O3:18.6   Al2O3:36.2Al:19.2MgO:0.0Mg:7.3Y2O3:37.3 59.4 50 81 832℃884℃
                               表1(续)
  实施例7AZ   Al2O3:17.0Al:9.0ZrO2:24.1   Al2O3:33.9Al:18.0ZrO2:48.1 58.5 50 63     无959℃
  实施例8AZ-Ti   Al2O3:15.5Al:8.2ZrO2:22.0TiO2:4.3   Al2O3:31.0Al:16.4ZrO2:44.0TiO2:8.6 54 50 79 无936℃
  实施例9AZ-La   Al2O3:12.3Al:6.5ZrO2:17.4La2O3:13.8   Al2O3:24.5Al:13.0ZrO2:34.8La2O3:27.7 44 50 94 889℃918℃
  实施例10AZ-La   Al2O3:9.1Al:4.8ZrO2:13.0La2O3:23.1   Al2O3:18.2Al:9.6ZrO2:25.9La2O3:46.2 34 50 96 868℃907℃
                               表1(续)
实施例l1AZ-La   Al2O3:7.5Al:4.0ZrO2:17.0La2O3:21.4   Al2O3:15.0Al:8.0ZrO2:34.0La2O3:42.8 28 50 93 870℃898℃
实施例12ACZ   Al2O3:20.3ZrO2:9.0La2O3:20.7   Al2O3:40.6ZrO2:18.0La2O3:41.4 40.6 0 NA 838℃908℃
实施例13ALZ/CaF2   Al2O3:15.6La2O3:17ZrO2:7.4CaF2:10   Al2O3:31.2La2O3:34ZrO2:14.8CaF2:20 37.04 0 NA 无676℃
实施例14ALZ/P2O5   Al2O3:17.87La2O3:21.08ZrO2:8.55P2O5:2.5   Al2O3:35.73La2O3:42.17ZrO2:17.1P2O5:5 35.73 0 NA 857℃932℃
                               表1(续)
实施例15ALZ/Nb2O5   Al2O3:17.87La2O3:21.08ZrO2:8.55Nb2O5:2.5   Al2O3:35.73La2O3:42.17ZrO2:17.1Nb2O5:5 35.73 0 NA NA
实施例16ALZ/Ta2O5   Al2O3:17.87La2O3:21.08ZrO2:8.55Ta2O5:2.5   Al2O3:35.73La2O3:42.17ZrO2:17.1Ta2O5:5 35.73 0 NA NA
实施例17ALZ/SrO   Al2O3:17.87La2O3:21.08ZrO2:8.55SrO:2.5   Al2O3:35.73La2O3:42.17ZrO2:17.1SrO:5 35.73 0 NA NA
实施例18ALZ/Mn2O3   Al2O3:17.87La2O3:21.08ZrO2:8.55Mn2O5:2.5   Al2O3:35.73La2O3:42.17ZrO2:17.1Mn2O5:5 35.73 0 NA NA
                               表1(续)
实施例19ALZ/Fe2O3   Al2O3:18.25La2O3:21.52ZrO2:8.73Fe2O3:1.5   Al2O3:36.5La2O3:43.04ZrO2:17.46Fe2O3:3 36.5 0 NA NA
实施例20ALZ/Cr2O3   Al2O3:18.25La2O3:21.52ZrO2:8.73Cr2O3:1.5   Al2O3:36.5La2O3:43.04ZrO2:17.46Cr2O3:3 36.5 0 NA NA
NA表示未测量。
                       表2
    原料         来源
氧化铝颗粒(Al2O3) 来源于Alcoa Industrial Chemicals,铝土矿,分析纯,商品名“A16SG”
铝颗粒(Al) 来源于Alfa Aesar,Ward Hill,MA
氧化铈颗粒 来源于Rhone-Poulence,France
氧化钆颗粒 来源于Molycorp Inc.,Mountain Pass,CA
氧化镧颗粒(La2O3) 来源于Molycorp Inc.,Mountain Pass,CA,混料前在700℃煅烧6小时
镁颗粒(Mg) 来源于Alfa Aesar,Ward Hill,MA
氧化镁颗粒(MgO) 来源于BDH Chemicals Ltd,Poole,England
氧化钛颗粒(TiO2) 来源于Kemira,Savannah,GA,商品名“Unitane0-110”
氧化钇颗粒(Y2O3) 来源于H.C.Stark Newton,MA
氧化锆颗粒(Zr2O3) 来源于Zirconia Sales,Inc.of Marietta,GA,商品名“DK-2”
氟化钙颗粒(CaF2) 来源于Aldrich,Milwaukee,WI
氧化磷颗粒(P2O5) 来源于Aldrich,Milwaukee,WI
氧化铌颗粒(Nb2O5) 来源于Aldrich,Milwaukee,WI
氧化钽颗粒(Ta2O5) 来源于Aldrich,Milwaukee,WI
氧化锶颗粒(SrO) 来源于Aldrich,Milwaukee,WI
氧化锰颗粒(Mn2O3) 来源于Aldrich,Milwaukee,WI
氧化铁颗粒(Fe2O3) 来源于Aldrich,Milwaukee,WI
氧化铬颗粒(Cr2O3) 来源于Aldrich,Milwaukee,WI
实施例21
取约25克实施例1的颗粒置于石墨模子里,用单向压机(从Thermal TechnologyInc.,Brea,CA获得,商品名“HP-50”)进行热压。在13.8兆帕(Mpa)(2000磅/平方英寸,或2ksi)氩气气氛下进行热压。热压炉以25℃/分的速度升温至970℃。制得直径为3.4cm,厚度为0.6cm的透明圆盘状材料。按实施例1-20所述进行差热分析。差热分析曲线向下弯曲,表明在885℃附近是吸热的。可以认为,这是由玻璃材料的玻璃化转变(Tg)产生的。曲线上的尖峰表明,该材料在928℃附近是放热的。可以认为,这是由材料结晶(Tx)产生的。
实施例22
在250ml聚乙烯瓶(直径7.3cm)中装入50g下述混合物:19.3g氧化铝颗粒(从Alcoa Industrial Chemicals,铝土矿,分析纯,商品名“A16SG”),9.5g氧化锆颗粒(从Zirconia Sales,Inc.of Marietta,GA获得,商品名“DK-2”),21.2g氧化镧颗粒(从Molycorp Inc.,Mountain Pass,CA获得),75g异丙醇,和200g氧化铝研磨介质(圆柱形,高度和直径均为0.635cm;氧化铝纯度为99.9%;从Coors,Gloden,CO获得)。以每分钟60转(rmp)的速度研磨聚乙烯瓶内物质16小时。此初始材料中的氧化铝与氧化锆的比值是2∶1,氧化铝和氧化锆的合量占约58%。研磨后,除去研磨介质,将浆料倒入温热(约75℃)的玻璃盘(“PYREX”)上干燥。用排刷将干燥的混合物经70目(网眼尺寸为212微米)筛子过筛。
研磨和过筛后,将研磨过的进料颗粒混合物缓慢(0.5克/分)送入氢/氧炬焰中使颗粒熔化。用于熔化颗粒产生熔化液滴的火焰是Bethlehem台式燃烧器,型号是PM2D Model B,从Bethlehem Apparatus Co.,Hellertown,PA获得。火炬中氢气和氧气流量如下。内环的氢气流量为8升/分(SLPM),氧气的流量为3.5升/分。外环氢气的流量为23升/分,氧气流量为12升/分。干燥和过筛后的颗粒缓慢(0.5g/分)送入炬焰中,炬焰将颗粒熔化后送到一倾斜的不锈钢表面(约51厘米(20英寸)宽,倾斜角度为45°)上,冷水流过该表面(约8升/分),很快将熔融的液滴淬冷。收集经熔融并淬冷的颗粒,在110℃烘干。这些颗粒呈球形,粒径从几个微米到250微米不等。
随后,这些火焰法制备的直径小于125微米的颗粒通过一等离子枪,沉积在下述不锈钢基片上。
按照以下方式制备四块304不锈钢基片(76.2mm×25.4mm×3.175mm)和2块1080碳钢基片(76.2mm×25.4mm×1.15mm)。它们要涂覆的表面经过喷砂,超声清洗并用异丙醇擦拭干净。四块不锈钢和一块1080碳钢基片被置于等离子枪(从Praxair SurfaceTechnologies,Concord,NH获得,商品名“Praxair SG-100 Plasma Gun”)喷嘴前约10cm处。另一块1080碳钢被置于等离子枪喷嘴前18cm处。等离子枪喷嘴前18cm处的第二块1080碳钢样品上的涂层没有进一步表征。
等离子体装置的功率为40kW。等离子气体是氩气(每平方英寸50磅,0.3Mpa),以氦气(150psi,1Mpa)为辅助气。以氩气为载气,用型号为Praxair Model 1270的计算机控制粉末进料器(从Praxair Surface Technologies,Concord,NH获得),使颗粒通过等离子枪。在沉积过程中,施加约40伏的电压和约900安培的电流,等离子枪要左右上下摇动,使基片均匀涂覆。达到要求厚度后,关闭等离子枪,制得样品。将1080碳钢基片进行弯折,使涂层从基片上分离,成为能自承的涂层材料。用光学显微镜测量,涂层材料z尺寸上的长度(厚度)为约1350微米。
用下述差热分析(DTA)测定相组成(玻璃态/无定形/晶态)。如果该材料相应的差热分析曲线包含有结晶放热峰(Tx),则是无定形的。如果在同一曲线上比Tx温度低的位置还包含有吸热峰(Tg),则表明该材料包含有玻璃相。如果差热分析曲线没有这些峰出现,则可认为该材料包含结晶相。
按照以下方法进行差热分析。用-140+170目级分(即,105微米和90微米网眼的两个筛子之间收集的级分)进行差热分析(所用设备商品名是“NETZSCH STA409DTA/TGA”,从Netzsch Instruments,Selb,Germany获得)。将约400毫克过筛样品放入100微升Al2O3样品容器中。每个样品在静态空气下,以10℃/分的升温速度从室温(约25℃)加热到1100℃。
曲线向下变化表明,涂覆材料(304不锈钢基片上的)在880℃温度附近是吸热的。可以认为,这是由玻璃材料的玻璃化转变(Tg)产生的。曲线上的尖峰表明,该材料在931℃附近是放热的。可以认为这是由材料结晶(Tx)产生的。这样,经差热分析确定,涂覆材料(304不锈钢基片上的)和自承的涂覆材料都是玻璃态的。
部分玻璃态自承材料在1300℃下热处理48小时。用X-射线粉末衍射XRD(X-射线衍射仪(从Phillips,Mahwah,NJ获得,商品名“PHILLIPS XRG 3100”),1.54050埃铜Kαl辐射)测定存在的相。将结晶材料XRD谱图中的峰与JCPDS(粉末衍射标准联合会)数据库提供的,由衍射数据国际中心出版的结晶相XRD谱图相比较,确定物相。制得的结晶材料包括LaAlO3,ZrO2(立方相,四方相),LaAl11O18和过渡Al2O3相。
另一部分的玻璃态自承材料在1100℃的电炉(从CM Furnaces,Bloomfield,NJ获得,商品名“Rapid Temp Furnace”)中结晶1小时。经结晶的涂层用锤破碎成-30+35目粒径的颗粒(即,在600微米和500微米网眼两个筛子之间收集的级分)。将颗粒放在声波清洗机(从Cole-Parmer,Vernon Hills,IL获得,商品名“8891”)中清洗15分钟,洗去碎屑,在100℃烘干,用碳胶带将若干颗粒固定在一个金属圆柱体(直径3cm,高度2cm)上。在此镶装的样品上溅射涂覆一薄层金-钯,用JEOL扫描电镜(SEM)(型号为JSM 840A)观察。从SEM观察到(附图5)断面粗糙,没有超过200纳米的晶体。
实施例23
按照实施例22所述,用50g下述混合物制备进料颗粒:21.5g氧化铝颗粒(从Alcoa Industrial Chemicals,铝土矿,分析纯,商品名“A16SG”),9g氧化锆颗粒(从Zirconia Sales,Inc.of Marietta,GA获得,商品名“DK-2”),和19.5g氧化铈颗粒(从Rhone-Poulence,France获得)。此初始材料中氧化铝与氧化锆的比值是2.4∶1,氧化铝与氧化锆的合量占约61%。按实施例22所述,将进料颗粒用火焰法制成珠粒颗粒(其粒径从几微米到250微米不等)。随后,将火焰法制备的直径在180微米到250微米之间的颗粒通过等离子枪沉积在如实施例22所述的不锈钢和碳钢基片上。
把1080碳钢基片进行弯折,使涂层从基片上分离,成为自承的涂层材料。经光学显微镜测量,制得该材料在z尺寸上的长度(厚度)为约700微米。也用光学显微镜观察其显微结构。这种材料通常由基本球形和倾斜的晶粒组成,这些晶粒是不透明的,分散在透明的无定形基质中。由于缺少象晶界那样的光散射中心,无定形材料一般是透明的,而结晶颗粒的结晶结构由于光散射作用是不透明的。用实施例22所述X射线粉末衍射方法测定的结晶相,含有Zr0.4Ce0.6O2(立方相)和过渡Al2O3
用火焰法制备的直径小于125微米的颗粒进行另一次积试验。经光学显微镜测定,所得的涂层在z尺寸上的长度(厚度)为约1100微米。其显微结构仍用光学显微镜观察。该材料与由直径在180微米到250微米之间的颗粒制备的材料有类似的特征(比如,包含存在于主要是无定形基质中的基本是球形和倾斜的晶粒)。用实施例22所述XRD方法测定的结晶相,包含Zr0.4Ce0.6O2(立方相)和过渡Al2O3
本实施例中沉积材料的平均硬度按下述方法测定。将材料样晶镶装在镶装树脂(从Buehler,Lake Bluff,IL获得,商品名“TRANSOPTIC POWDER”)中。制得圆柱体树脂直径约2.5cm,高度约1.9cm。用抛光机(从Buehler,Lake Bluff,IL获得,商品名“ECOMET 3”)按常规抛光技术处理镶装的截面。即用金刚石磨轮抛光样品约3分钟,然后分别用45,30,15,9,3和1微米磨料的浆料抛光5分钟。用常规显微硬度测试仪(从Mitutoyo Corporation,Tokyo,Japan获得,商品名“MITUTOYOMVK-VL”)和装有100g负载的Vickers压头测量其显微硬度。其测量依照ASTM测试方法E384材料显微硬度测试方法(1991)所述规则进行。本实施例材料的平均显微硬度(20次测量的平均值)是15Gpa。
实施例24
按实施例22所述,用以下50g混合物制备进料颗粒:27.9g氧化铝颗粒(从AlcoaIndustrial Chemicals,铝土矿,分析纯,商品名“A16SG”),7.8g氧化锆颗粒(从ZirconiaSales,Inc.of Marietta,GA获得,商品名“DK-2”),和14.3g氧化钇颗粒(从H.C.StarkNewton,MA获得)。此初始材料中氧化铝与氧化锆的比值是3.5∶1,氧化铝与氧化锆的合量占约72%。然后将进料颗粒过30目(网眼尺寸为600微米)的筛子,并在电炉(从CM Furnaces,Bloomfiedl,NJ获得,商品名“Rapid Temp Furnace”)中1400℃热处理2小时。热处理后的颗粒再次过筛,分离出直径在125微米和180微米之间的颗粒,然后将其通过等离子枪沉积在如实施例22所述的不锈钢基片上。
把1080碳钢基片进行弯折,使涂层从基片上分离,形成自承的涂层材料。用光学显微镜测量,该材料在z尺寸上的长度(厚度)约为700微米。用光学显微镜观察其显微结构。该材料含有存在于主要是透明的无定形基质中的基本是结晶的不透明颗粒(保持其原始形状)。用实施例22所述XRD方法测定的结晶相含有Al5Y3O12和Y0.15Zr0.85O1.93
如实施例22所述,另一部分自承的涂层材料在1300℃结晶1小时,在其断面上溅射涂覆一薄层金-钯,用JEOL扫描电镜(JEOL SEM)(型号为JSM 840A)观察。断面是粗糙的,没有观察到超过200纳米的晶体(图6)。
用热处理过的直径小于125微米的颗粒进行另一次沉积试验。制得涂层厚度(z尺寸上的长度)为约1500微米。用光学显微镜观察其显微结构。该材料具有与由直径在180微米到250微米之间的颗粒制备的材料类似的特征(在主要是透明的无定形基质中含有基本不透明的晶粒(保持其原始形状))。如实施例22所述用XRD方法测定的结晶相含有Al5Y3O12和Y0.15Zr0.85O1.93
实施例25
用实施例22-24制备的进料颗粒,采用等离子喷溅射方法,制备分别含有上述3个实施例颗粒层的厚涂层。第一层如实施例23所述,第二层如实施例22所述,第三层如实施例24所述涂覆。
基片在涂覆前不经砂磨,能很容易地用手将涂层剥下,得到一块自承的涂层材料,约为75mm×25mm×7.5mm。用金刚锯将材料的各层切透,形成一个截面。将切片镶装在镶装树脂(从Buehler,Lake Bluff,IL获得,商品名“TRANSOPTICPOWDER”)上,这样可以看到各个层。制得的镶装圆柱体树脂直径约2.5cm,高约1.9cm。用抛光机(从Buehler,Lake Bluff,IL获得,商品名“ECOMET 3”)按常规抛光技术处理镶装的截面。用金刚石磨轮抛光样品约3分钟,然后分别用45,30,15,9,3和1微米磨粒的浆料抛光5分钟。
用光学显微镜测定,第一层的z尺寸长度(厚度)约2.5mm。用光学显微镜观察其显微结构。该材料具有与实施例23(即包含存在于主要是透明的无定形基质中的基本呈球形和不透明的晶粒)的材料类似的特征。经光学显微镜测定,第二层的z尺寸长度(厚度)约2mm。仍然用光学显微镜观察其显微结构。该材料具有与实施例22(即呈现表明其是无定形的透明形态)的材料类似的特征。经光学显微镜测定,第三层的z尺寸长度(厚度)约3mm。仍用光学显微镜观察其显微结构。该材料具有与实施例24的材料(即包含存在于主要是透明的无定形基质中的基本是不透明的晶粒(保持其原始形状))类似的特征。
实施例26
用“Chipmunk”颚式破碎机(VD型,由BICO Inc.,Burbank,CA制造)将实施例21中制备的致密材料破碎成磨粒,分级后保留-30+35目的级分(即,在600微米网眼和500微米网眼的两个筛子之间收集的级分)和-35+40目的级分(即,在500微米网眼和425微米网眼的两个筛子之间收集的级分)。将这两部分以等比例混合。
用Zeiss图象分析系统(Zeiss Image Analysis System)(Zeiss Stemi SV1l显微镜和装在计算机上的软件)和摄影机(3 CCD照相机,型号330,(从Dage MTI Inc.,Michigan City,IN获得))测量颗粒的平均长径比。测得长径比为1.86。
用气体法密度计AccuPyc 1330,Mieromeritics,Norcross,GA测量颗粒的密度。测得密度为4.65克/立方厘米(g/cc)。
在电炉(从CM Furnaces,Bloomfield,NJ获得,商品名“Rapid Temp Furnace”)中1300℃对破碎后的颗粒热处理45分钟。制得的结晶颗粒保持其原来的破碎形状。测得颗粒密度为5.24克/立方厘米(g/cc)。如实施例22所述,用XRD方法测定的结晶玻璃陶瓷的相,它包含LaAlO3,立方/四方ZrO2,LaAl11O18,α-Al2O3,单斜ZrO2和少量无定形相。
实施例27-28
在250ml聚乙烯瓶(直径为7.3cm)中装入19.3g氧化铝颗粒(从Alcoa IndustrialChemicals获得,铝土矿,分析纯,商品名“A16SG”),9.5g氧化锆颗粒(从ZirconiaSales,Inc.of Marietta,GA获得,商品名“DK-2”),和21.2g氧化镧颗粒(从MolycorpInc.,Mountain Pass,CA获得),75g异丙醇,和200g氧化铝研磨介质(圆柱形,高度和直径均为0.635cm;氧化铝纯度为99.9%;从Coors,Gloden,CO获得)。以每分钟60转(rpm)的速度研磨聚乙烯瓶内物料16小时。研磨后,除去研磨介质,将浆料倒入温热(约75℃)的玻璃盘(“PYREX”)上,干燥3分钟。用排刷将干燥后的混合物经14目(网眼尺寸为1400微米)筛子过筛,并在空气中1400℃预烧结2小时。
在石墨棒(约60cm长,直径15mm)的末端钻一个孔(直径约13mm,深约8cm)。将约20g预烧结过的颗粒填入其挖空的一端。将石墨棒挖空的一端插到电阻式加热炉(从Astro Industries,Santa Barbara,CA获得)的热区。这台炉子被改造成一个具有约18mm内径石墨管的管式炉。热区温度保持在2000℃,炉子翘起大约30°,熔体也不会从棒里溢出。棒的末端在热区保持10分钟以确保熔化均匀。之后,迅速将棒取出,倾斜,将熔体倾倒在一淬冷表面上。
实施例27中,淬冷表面是两块对面放置的不锈钢板。板的三维尺寸是17.8cm×5cm×2.5cm,将两块板沿长边平行放置,间隔约1mm。将熔体倾倒进间隔中,迅速固化成一块z尺寸(厚度)约为1mm的板。熔体经淬冷后主要是透明的无定形,如实施例1-20所述测得的DTA曲线显示其玻璃化转变温度(Tg)为885℃,其结晶温度(Tx)为930C。
实施例28中,淬冷表面是两个反向旋转的钢制辊筒。这两个辊筒直径为5cm,以马达驱动,转速为80转/分。辊筒间隔约0.8mm。熔体倒入间隔中,被辊筒迅速固化成一块板,该板有很大的x和y尺寸,其z尺寸(厚度)为0.8mm。熔体主经淬冷后主要是透明的无定形,如实施例1-20所述测得的DTA曲线显示其玻璃化转变温度(Tg)为885℃,其结晶温度(Tx)为930℃。
实施例29
用“Chipmunk”颚式破碎机(VD型,由BICO Inc.,Burbank,CA制造)将实施例21制备的无定形/玻璃态材料破碎成磨粒,分级后保留-30+35目的级分(即,在600微米网眼和500微米网眼的两个筛子之间收集的级分)和-35+40目的级分(即,在500微米网眼和425微米网眼的两个筛子之间收集的级分)。将这两部分以等比例混合。
用实施例26所述的方法测量其长径比。测得长径比为1.83。
用实施例26所述的方法测量颗粒密度。测得密度为4.61g/cc。
实施例30-31
如实施例21所述制备一个热压圆盘,并用金刚锯(从Buehler,Lake Bluff,IL获得,商品名“ISOMET 1000”)分成两块(约为2cm×0.5cm×0.5cm)。每块均在电炉(从CM Furnaces,Bloomfield,NJ获得,商品名“Rapid Temp Furnace”)中800℃退火2小时。在退火过程中没有结晶发生。
在实施例30中,用锤子将其中一块破碎成-30+35目(即,在600微米网眼和500微米网眼的两个筛子之间收集的级分)的颗粒。在电炉(从CM Furnaces,Bloomfield,NJ获得,商品名“Rapid Temp Furnace”)中将破碎的颗粒1300℃热处理1小时,使其结晶。颗粒在声波清洗机(从Cole-Parmer,Vernon Hills,IL获得,商品名“8891”)中清洗15分钟,洗去碎屑,在100℃烘干,用碳胶带将若干颗粒固定在一个金属圆柱体(直径3cm,高度2cm)上。在固定的样品上溅射涂覆一薄层金-钯,用JEOL扫描电镜(JEOL SEM)(型号为JSM 840A)观察。
实施例30材料中,即使是在发生结晶后,仍然能观察到典型的玻璃破裂特征。图7所示的断面在很多玻璃破裂中是常见的,是Wallner线很好的例子。图8所示的断面是另一种常见的玻璃断面,显示为锯齿形。Wallner线和锯齿形的定义参见教科书《无机玻璃基础》( Fundamentals of Inorganic glasses,Arun K Varshneya著,第425-427页,1994。
按下述方法测定实施例30材料的平均硬度。将若干颗粒镶装在镶装树脂(从Buehler,Lake Bluff,IL获得,商品名“TRANSOPTIC POWDER”)中。制得圆柱体树脂直径约2.5cm,高度约1.9cm。用抛光机(从Buehler,Lake Bluff,IL获得,商品名“ECOMET 3”)按常规抛光技术处理抛光镶装的截面。用金刚石磨轮抛光样品约3分钟,然后分别用45,30,15,9,3和1微米磨粒浆料抛光5分钟。用常规显微硬度测试仪(从MitutoyoCorporation,Tokyo,Japan获得,商品名“MITUTOYOMVK-VL”)和具有500g负载的Vickers压头测量其显微硬度。依照ASTM测试方法E384材料显微硬度测试方法(1991)中所述规则测定显微硬度。显微硬度是20次测量的平均值。实施例30材料的平均显微硬度是16.4Gpa。
实施例31中,在电炉(从CM Furnaces,Bloomfield,NJ获得,商品名“Rapid TempFurnace”)中对另一半切片1300℃热处理1小时。用锤子将热处理过的切片破碎成-30+35目的颗粒(即,在600微米和500微米网眼的两个筛子之间收集的级分)。镶装颗粒,并用上述方法观察。
与实施例30材料的玻璃断面相比,实施例31材料表现出在多晶材料中常见的断面。图9所示的断面具有与典型穿晶断面类似的晶粒。
实施例32
在电炉中对实施例4颗粒1300℃热处理30分钟。如实施例30-31所述,将结晶的颗粒镶装并抛光,然后涂覆一薄层金-钯,并用JEOL SEM(型号JSM 840A)观察。图10是结晶颗粒微结构的典型背散射电子(BSE)显微镜照片。结晶的样品是粒径分布很窄的纳米晶粒,其显微照片上观察不到大于200nm的晶粒。
依照ASTM标准E 112-96“平均晶粒粒径标准测试方法”所述,用截线法测定平均粒径。将样品镶装在镶装树脂(从Buehler,Lake Bluff,IL获得,商品名“TRANSOPTIC POWDER”)中。制得圆柱体树脂直径约2.5cm,高约1.9cm。用抛光机(从Buehler,Lake Bluff,IL获得,商品名“ECOMET 3”)按常规抛光技术抛光镶装的截面。用金刚石磨轮抛光样品约3分钟,然后分别用45,30,15,9,3和1微米磨粒的浆料抛光5分钟。在经抛光的截面上涂覆一薄层的金-钯,并用JEOL SEM(型号JSM 840A)观察。如下所述,用样品显微结构中的典型背散射电子(BSE)的显微照片计算晶体平均粒径。统计与穿过显微照片任意直线单位长度(NL)相交的晶体数目。用以下等式从该数值计算晶粒平均粒径。
Figure A0281911300551
其中,NL是与单位长度相交的晶粒数目,M是显微照片的放大倍数。用截线法测得晶粒平均粒径是140nm。
实施例33
在电炉(从CM Furnaces,Bloomfield,NJ获得,商品名“Rapid Temp Furnace”)中对实施例21制备的致密材料1300℃热处理45分钟。用“Chipmunk”颚式破碎机(VD型,由BICO Inc.,Burbank,CA制造)将制得的结晶材料破碎成磨粒,分级后保留-30+35目的级分(即,在600微米网眼和500微米网眼两个筛子之间收集的级分)和-35+40目的部分(即,在500微米网眼和425微米网眼两个筛网之间收集的级分)。将这两部分以等比例混合。
用实施例26的方法测量长径比。测得长径比为1.84。
用实施例26的方法测量颗粒密度。测得密度为5.19g/cc。
实施例34
按实施例1所述制备约150g颗粒,置于一5cm×5cm×5cm钢罐中,然后将罐抽空密封与大气隔绝。随后用热等静压设备(从American Isostatic Pressing,OH获得,商品名“IPS Eagle-6”)对钢罐进行热等静压。热等静压在207Mpa(30ksi)的氩气气氛下进行。热等静压炉以25℃/分的速度升温到970℃,并保温30分钟。热等静压完成后,将钢罐切开,取出内容物。可以观察到,颗粒都聚结成透明的玻璃态材料。按实施例1-20所述,进行DTA测试,其玻璃化转变温度(Tg)为879℃,结晶温度(Tx)为931℃。
实施例35
在聚乙烯瓶中装入27.5g氧化铝颗粒(从Condea Vista,Tucson,AZ获得,商品名“APA-0.5”),22.5g氧化钙颗粒(从Alfa Aesar,Ward Hill,MA获得),和90g异丙醇。在瓶内装入约200克氧化锆研磨介质(从Tosoh Ceramics,Division of BoundBrook,NJ获得,商品名为“YTZ”),混合物以120转/分(rpm)的速度研磨24小时。研磨后,除去研磨介质,将浆料倒在玻璃盘(“PYREX”)上,用加热枪干燥。用研钵和研杵研磨干燥的混合物,并用70目(212微米筛孔)筛子过筛。
研磨和过筛后,将部分颗粒送入氢/氧炬焰中。炬焰将颗粒熔化,形成熔融的玻璃珠粒,所用仪器是Bethlehem台式燃烧器,型号是PM2D model B,从BethlehemApparatus Co.,Hellertown,PA获得,氢气和氧气流量:内环氢气流量是8升/分(SLPM),氧气流量是3SLPM。外环氢气流量是23SLPM,氧气流量是9.8SLPM。干燥和过筛过的颗粒被直接送入炬焰中,熔融并传送倒倾斜的不锈钢表面(宽约51厘米(em)(20英寸),倾斜角度为45度),其表面上有冷水流过(约8升/分),淬冷形成无定形珠粒。
实施例36-39
如实施例35所述制备实施例36-39的玻璃珠粒,区别在于原料及其用量不同,列在下表3中,将原料在90毫升(ml)异丙醇和200克氧化锆介质(从Tosoh Ceramics,Division of Bound Brook,NJ获得,商品名“YTZ”)中,以120rpm的速度研磨24小时。原料来源列在下表4中。
                 表3
实施例   组分重量百分数     批料量,g
    36     CaO:36Al2O3:44ZrO2:20     CaO:18Al2O3:22ZrO2:10
    37     La2O3:48Al2O3:52     La2O3:24Al2O3:26
    38     La2O3:40.9Al2O3:40.98ZrO2:18.12     La2O3:20.45Al2O3:20.49ZrO2:9.06
    39     SrO:22.95Al2O3:62.05ZrO2:15     SrO:11.47Al2O3:31.25ZrO2:7.5
                 表4
    原料                    来源
氧化铝颗粒(Al2O3) 来源于Condea Vista,Tucson,AZ,商品名“APA-0.5”
氧化钙颗粒(CaO) 来源于Alfa Aesar,Ward Hill,MA
氧化镧颗粒(La2O3) 来源于Molycorp Inc.
氧化锶颗粒(SrO) 来源于Alfa Aesar
氧化钇稳定的氧化锆颗粒(Y-PSZ) 来源于Zirconia Sales,Inc.of Marietta,GA,商品名“HSY-3”
按以下方法测定实施例35-39材料的各种性质/特征。使用X射线衍射仪(从PHILLIPS,Mahwah,NJ获得,商品名“PHILLIPS XRG 3100”)和铜Kα1的1.54050埃辐射)定性测定实施例材料中存在的相。如果存在宽的弥散强度峰,则表明材料的无定形性质。同时存在宽峰和尖峰,表示无定形基质中存在结晶体。各种实施例中检测到的相列在下表5中。
                         表5
实施例   经x射线衍射检测到的相   颜色   Tg,℃   Tx,℃  热压温度,℃
    35     无定形*   透明   850   987     985
    36     无定形*   透明   851   977     975
    37     无定形*   透明   855   920     970
    38     无定形*   透明   839   932     965
    39     无定形*   透明   875   934     975
*玻璃,因为该实施例具有Tg
将材料过筛,保留90-125微米粒径范围的颗粒,进行差热分析(DTA)(从NetzschInstruments,Selb,Germany获得,商品名“NETZSCH STA 409 DTA/TGA”)。分别取400毫克过筛样品装入100微升Al2O3样品容器中。每个样品在静态空气中,以10℃/分的速度从室温(约25℃)升温到1200℃。
参见图11,曲线345是实施例35材料的DTA谱图。图11中,曲线345向下弯曲,表示材料在799℃温度附近发生吸热现象。这是由材料的玻璃化转变(Tg)造成的。在约875℃,曲线345上有一个尖峰,表示发生放热现象。这是由材料的结晶(Tx)造成的。其他实施例的Tg和Tx的数值列在上表5中。
图12-15分别是实施例36-39的DTA谱图。
实施例35-39中,各取约25g颗粒置于石墨模子中,用单向压机(从ThermalTechnology Inc.,Brea,CA获得,商品名“HP-50”)进行热压。在13.8Mpa(2000磅/平方英寸,(2ksi))氩气气氛下进行热压。上表5列出了实施例35-39中,指出发生明显玻璃流动时的热压温度,该流动由上述热压设备的位移控制单元显示。
实施例40-46
在聚乙烯瓶中装入列在下表6中的原料(原料来源列在下表7中),和90g异丙醇。在瓶内装入约200克氧化锆研磨介质(从Tosoh Ceramics,Division of BoundBrook,NJ获得,商品名为“YTZ”),混合物以120转/分(rpm)的速度研磨24小时。研磨后,除去研磨介质,将浆料倒在玻璃盘(“PYREX”)上,用加热枪干燥。用研钵和研杵研磨干燥的混合物,并用70目(212微米筛孔)筛子过筛。研磨和过筛后,将一部分颗粒送入氢/氧炬焰中,形成如实施例1-20所述无定形珠粒。
              表6
实施例 各组分重量百分数     批料量,g
    40     Y2O3:28.08Al2O3:58.48ZrO2:13.43     Y2O3:14.04Al2O3:29.24ZrO2:6.72
    41     Y2O3:19Al2O3:51ZrO2:17.9La2O3:12.1     Y2O3:9.5Al2O3:25.5ZrO2:8.95La2O3:6.05
    42     Y2O3:19.3Al2O3:50.5ZrO2:17.8Nd2O3:12.4     Y2O3:9.65Al2O3:25.25ZrO2:8.9Nd2O3:6.2
    43     Y2O3:27.4Al2O3:50.3ZrO2:17.8Li2CO3:4.5     Y2O3:13.7Al2O3:25.15ZrO2:8.9Li2CO3:2.25
    44     Y2O3:27.4Al2O3:50.3ZrO2:17.8CaO:4.5     Y2O3:13.7Al2O3:25.15ZrO2:8.9CaO:2.25
    45     Y2O3:27.4Al2O3:50.3ZrO2:17.8NaHCO3:2.25     Y2O3:13.7Al2O3:25.15ZrO2:8.9NaHCO3:2.25
    46     Y2O3:27.4Al2O3:50.3ZrO2:17.8SiO2:2.25     Y2O3:13.7Al2O3:25.15ZrO2:8.9SiO2:2.25
                         表7
    原料         来源
氧化铝颗粒(Al2O3) 来源于Condea Vista,Tucson,AZ,商品名“APA-0.5”
氧化钙颗粒(CaO) 来源于Alfa Aesar,Ward Hill,MA
氧化镧颗粒(La2O3) 来源于Molycorp Inc.,Mountain Pass,CA
碳酸锂颗粒(Li2CO3) 来源于Aldrich Chemical Co.
氧化钕颗粒(Nd2O3) 来源于Molycorp Inc.
氧化硅颗粒(SiO2) 来源于Alfa Aesar
碳酸氢钠颗粒(NaHCO3) 来源于Aldrich Chemical Co.
氧化钇稳定的氧化锆颗粒(Y-PSZ) 来源于Zirconia Sales,Inc.of Marietta,GA,商品名“HSY-3”
按以下方法测定实施例40-46材料的各种性质/特征。使用X射线衍射仪(从Phillips,Mahwah,NJ获得,商品名“PHILLIPS XRG 3100”)和铜Kα1的1.54050埃辐射)定性测定实施例材料中存在的相。如果存在宽的弥散强度峰,则表明材料的无定形性质。同时存在宽峰和尖峰,表示无定形基质中存在结晶体。各种实施例中检测到的相列在下表8中。
                         表8
实施例     经x射线衍射检测到的相   颜色   Tg,℃   Tx,℃   热压温度,℃
    40     无定形*和结晶   透明/乳状   874   932     980
    41     无定形*   透明   843   938     970
    42     无定形*   蓝色/粉红色   848   934     970
    43     无定形*   透明   821   927     970
    44     无定形*   透明   845   922     970
    45     无定形*   透明   831   916     970
    46     无定形*   透明   826   926     970
将材料过筛,保留90-125微米粒径范围的颗粒,进行差热分析(DTA)(从NetzschInstruments,Selb,Germany获得,商品名“NETZSCH STA 409 DTA/TGA”)。分别取400毫克过筛样品装入100微升Al2O3样品容器中。每个样品在静态空气中,以10℃/分的速度从室温(约25℃)升温到1200℃。
上表8列出了如实施例36-39中,发生明显玻璃流动时的热压温度,该流动由上述热压设备的位移控制单元显示。
实施例47
在内衬聚氨酯的球磨机中装入819.6克氧化铝颗粒(“APA-0.5”),818克氧化镧颗粒(从Molycorp,Inc.获得),362.4克氧化钇稳定的氧化锆颗粒(标称组成为94.6重量%的ZrO2(+HfO2),5.4重量%的Y2O3;从Zireonia Sales,Inc.of Marietta,GA获得,商品名“HSY-3”),1050克蒸馏水和约2000克氧化锆研磨介质(从TosohCeramics,Division of Bound Brook,NJ获得,商品名“YTZ”)。以每分钟120转(rpm)的速度将混合物研磨4小时,使各组分充分混合。研磨后,除去研磨介质,将浆料倾倒在玻璃(“PYREX”)盘上,用加热枪干燥。将干燥后的混合物用研钵和研杵磨碎后,经70目筛子过筛(网眼尺寸为212微米)。在研磨和过筛后,将部分颗粒送入如实施例1-20所述氢/氧炬焰中。
将约50克颗粒置于石墨模子中,用单向压机(从Thermal Technology Inc.,Brea,CA获得,商品名为“HP-50”)进行热压。热压在13.8Mpa(2000磅/平方英寸,(2ksi))960℃氩气气氛下进行。制得直径约48mm,厚约5mm的半透明圆盘。另外再热压一些圆盘。图16是热压后材料切片(2mm厚)的光学显微照片,证明其透明度。
用阿基米德(Archimedes)法测定制得的热压玻璃材料的密度,测得密度范围大约在4.1-4.4g/cm3。用超声测试系统(从Nortek,Richland,WA获得,商品名“NDT-140”)测量制得的热压玻璃材料的杨氏模量(E),测得值范围约在130-150Gpa。
按以下方法测定制得的热压材料的平均显微硬度。将数片热压材料(尺寸约2-5mm)镶装在镶装树脂(从Buehler Ltd.,Lake Bluff,IL获得,商品名“EPOMET”)中。制得树脂圆柱体直径约2.5cm(1英寸),高约1.9cm(0.75英寸)。用常规研磨机/抛光机(从Buehler Ltd.获得,商品名“EPOMET”)抛光镶装截面,用1微米的金刚石浆料(从Buehler Ltd.获得,商品名“METADI”)做最后精抛。
用常规显微硬度测试仪(从Mitutoyo Corporation,Tokyo,Japan获得,商品名“MITUTOYO MVK-VL”)和具有500g负载的Vickers压头测量其显微硬度。显微硬度的测量依照ASTM测试方法E384材料显微硬度测试方法(1991)中所述规则进行。显微硬度是20次测量的平均值。该热压材料的平均显微硬度是8.3Gpa。
测量从Vickers压痕中心延伸出的裂纹长度,计算热压材料的平均压痕韧性。所用显微硬度测试仪(从Mitutoyo Corporation,Tokyo,Japan获得,商品名“MITUTOYOMVK-VL”)具有500克负载。依照下式计算压痕韧性(KIC):
KIC=0.016(E/H)1/2(P/c)3/2
其中,E=该材料的杨式模量;
H=Vickers硬度;
P=压头上的力(牛顿);
C=自裂纹中心到其末端的长度。
按上述显微硬度测试方法制备用于测量韧性的样品。报告的压痕韧性值是5次测量的平均值。用数字卡尺在扫描电镜(“JEOL SEM”(型号JSM6400))显微照片上测量裂纹长度(c)。热压材料的平均压痕韧性为1.4Mpa·m1/2
用一热分析仪(从Perkin Elmer,Shelton,CT获得,商品名“PERKIN ELMERTHERMAL ANALYSER”)测量热压材料的热膨胀系数。平均热膨胀系数为7.6×10-6/℃。
依照ASTM标准“D 5470-95,测试方法A”(1995)测定热压材料的热传导率。平均热传导率为1.15W/m*K。
按下述方法,将热压La2O3-Al2O3-ZrO2玻璃的半透明圆盘在电炉(从KeithFurnaceof Pico Rivera,CA获得,商品名“Model KKSK-666-3100”))中进行热处理。首先将圆盘从室温(约25℃)以约10℃/分的速度升高到约900℃,并在900℃保温约1小时。再以约10℃/分的速度从约900℃升高到约1300℃,在1300℃保温约1小时,然后,关闭电炉,冷却到室温。其它圆盘用相同的热处理程序处理。
图17是实施例47材料热处理后经抛光截面的扫描电镜(SEM)显微镜照片,照片中表现了材料很精细的结晶特征。抛光截面是用常规镶装和抛光技术制备的。用抛光机(从Buehler of Lake Bluff,IL获得,商品名“ECOMET 3 TYPE POLISHER-GRINDER”)进行抛光。用金刚石磨轮抛光样品约3分钟,再分别用45,30,15,9和3微米的金刚石浆料抛光3分钟。抛光截面上涂覆一薄层金-钯,用JEOL SEM(型号JSM 840A)观察。
对经热处理的一部分实施例47材料进行如实施例22所述X射线粉末衍射分析,对抛光样品用背散射模式SEM进行检测,根据这两个检测结果,可以认为显微照片上的黑暗部分是LaAl11O18晶体,灰色部分是LaAlO3,白色部分是立方/四方的ZrO2结晶。
用阿基米德方法测定热处理材料的密度,测得值约为5.18g/cm3。用超声测试系统(从Nortek,Richland,WA获得,商品名“NDT-140”)测定热处理材料的杨式模量(E),测得值约为260Gpa。用上述方法测定实施例47玻璃颗粒的平均显微硬度,测得值是18.3Gpa。用上述方法测定实施例47热压材料的平均断裂韧度(Kic)是3.3Mpa*m1/2
实施例48-62
如实施例47所述制备实施例48-62的玻璃珠粒,区别在于原料及其用量不同,列在下表9中,将原料在90毫升(ml)异丙醇和200克氧化锆介质(从Tosoh Ceramics,Division of Bound Brook,NJ获得,商品名“YTZ”)中,以120rpm的速度研磨24小时。原料来源列在下表10中。
                 表9
实施例 各组分重量百分数     批料量,g
    48   La2O3:36.74Al2O3:46.98ZrO2:16.28     La2O3:18.37Al2O3:23.49ZrO2:8.14
    49   La2O3:35.35Al2O3:48.98ZrO2:15.66     La2O3:17.68Al2O3:24.49ZrO2:7.83
    50   AL2O3:41.0ZrO2:17.0Eu2O3:41.0     AL2O3:20.5ZrO2:8.5Eu2O3:20.5
    51   Al2O3:41.0ZrO2:18.0Gd2O3:41.0     Al2O3:20.5ZrO2:9.0Gd2O3:20.5
    52   Al2O3:41.0ZrO2:18.0Dy2O3:41.0     Al2O3:20.5ZrO2:9.0Dy2O3:20.5
    53   La2O3:35.0Al2O3:40.98ZrO2:18.12Nd2O3:5.0     La2O3:17.5Al2O3:20.49ZrO2:9.06Nd2O3:2.50
    54   La2O3:35.0Al2O3:40.98ZrO2:18.12CeO2:5.0     La2O3:17.5Al2O3:20.49ZrO2:9.06CeO2:2.50
    55     La2O3:41.7Al2O3:35.4ZrO2:16.9MgO:6.0     La2O3:20.85Al2O3:17.7ZrO2:8.45MgO:3.0
    56     La2O3:43.02Al2O3:36.5ZrO2:17.46Li2CO3:3.0     La2O3:21.51Al2O3:18.25ZrO2:8.73Li2CO3:1.50
    57     La2O3:41.7Al2O3:35.4ZrO2:16.9Li2CO3:6.0     La2O3:20.85Al2O3:17.70ZrO2:8.45Li2CO3:3.00
    58     La2O3:38.8Al2O3:40.7ZrO2:17.5Li2CO3:3     La2O3:19.4Al2O3:20.35ZrO2:8.75Li2CO3:1.50
    59     La2O3:43.02Al2O3:36.5ZrO2:17.46TiO2:3     La2O3:21.51Al2O3:18.25ZrO2:8.73TiO2:1.50
    60     La2O3:43.02Al2O3:36.5ZrO2:17.46NaHCO3:3.0     La2O3:21.51Al2O3:18.25ZrO2:8.73NaHCO3:1.50
    61     La2O3:42.36Al2O3:35.94ZrO2:17.19NaHCO3:4.5     La2O3:21.18Al2O3:17.97ZrO2:8.60NaHCO3:2.25
    62     La2O3:43.02Al2O3:36.5ZrO2:17.46MgO:1.5NaHCO3:1.5TiO2:1.5     La2O3:21.51Al2O3:18.25ZrO2:8.73MgO:0.75NaHCO3:0.75TiO2:0.75
                                 表10
原料 来源
氧化铝颗粒(Al2O3) 来源于Condea Vista,Tucson,AZ,商品名“APA-0.5”
氧化铈颗粒(CeO2) 来源于Rhone-Poulenc,France
氧化铕颗粒(Eu2O3) 来源于Aldrich Chemical Co.
氧化钆颗粒(Gd2O3) 来源于Molycorp Inc.,Mountain Pass,CA
氧化铪颗粒(HfO2) 来源于Teledyne Wah Chang Albany Co.,Albany,OR
氧化镧颗粒(La2O3) 来源于Molycorp Inc.
碳酸锂颗粒(Li2CO3) 来源于Aldrich Chemical Co.
氧化镁颗粒(MgO) 来源于Aldrich Chemical Co.
氧化钕颗粒(Nd2O3) 来源于Molycorp Inc.
碳酸氢钠颗粒(NaHCO3) 来源于Aldrich Chemical Co.
二氧化钛颗粒(TiO2) 来源于Kemira Inc.,Savannah,GA
氧化钇稳定的氧化锆颗粒(Y-PSZ) 来源于Zirconia Sales,Inc.of Marietta,GA,商品名“HSY-3”
按以下方法测定实施例47-62材料的各种性质/特征。使用X射线衍射仪(从PHILLIPS,Mahwah,NJ获得,商品名“PHILLIPS XRG 3100”)和铜Kα1的1.54050埃辐射)定性测定实施例材料中存在的相。如果存在宽的弥散强度峰,则表明材料的玻璃态性质。同时存在宽峰和尖峰,表示玻璃态基质中存在结晶体。各种实施例中检测到的相列在下表11中。
                         表11
实施例 经x射线衍射检测到的相   颜色     Tg,℃     Tx,℃ 热压温度℃
    47   无定形*   透明     834     932     960
    48   无定形*   透明     848     920     960
    49   无定形*   透明     856     918     960
    50   无定形*   亮黄色/芥末色     874     921     975
    51   无定形*   透明     886     933     985
    52   无定形*   发绿     881     935     985
    53   无定形*   蓝色/粉红色     836     930     965
    54   无定形*   黄色     831     934     965
    55   无定形*   透明     795     901     950
    56   无定形*   透明     816     942     950
    57   无定形*   透明     809     934     950
    58   无定形*   透明/发绿     840     922     950
    59   无定形*   透明     836     934     950
    60   无定形*   透明     832     943     950
    61   无定形*   透明     830     943     950
    62   无定形*   透明/有点绿     818     931     950
*玻璃,因为该实施例具有Tg
将材料过筛,保留90-125微米粒径范围的颗粒,进行差热分析(DTA)(从NetzschInstruments,Selb,Germany获得,商品名“NETZSCH STA 409 DTA/TGA”)。分别取400毫克过筛样品装入100微升Al2O3样品容器中。每个样品在静态空气中,以10℃/分的速度从室温(约25℃)升温到1200℃。
参见附图18,曲线801是实施例47材料的DTA谱图。附图18中,曲线801向下弯曲,表示材料在840℃温度附近发生吸热现象。这是由材料的玻璃化转变(Tg)造成的。在约934℃,曲线801上有一个尖峰,表示发生放热现象。这是由材料的结晶(Tx)造成的。其他实施例的Tg和Tx的数值列在上表11中。
上表11列出了各种实施例中,发生明显玻璃流动时的热压温度,该流动由上述热压设备的位移控制单元显示。
实施例63
在聚乙烯瓶中装入20.49克氧化铝颗粒(“APA-0.5”),20.45克氧化镧颗粒(从Molycorp,Inc.获得),9.06克氧化钇稳定的氧化锆颗粒(标称组成为94.6重量%ZrO2(+HfO2),5.4重量%Y2O3(从Zirconia Sales,Inc.of Marietta,GA获得,商品名“HSY-3”)和80克蒸馏水。在瓶内装入约450克氧化铝研磨介质(10mm直径;氧化铝纯度99.9%;从Union Process,Akron,OH获得),混合物以120转/分(rpm)的速度研磨4小时,使组分充分混合。研磨后,除去研磨介质,将浆料倒在玻璃盘(“PYREX”)上,用加热枪干燥。用研钵和研杵研磨干燥的混合物,并用70目(212微米筛孔)筛子过筛。
将少量干燥的颗粒在电弧炉(型号No.5T/A 39420;从Centorr Vacuum Industries,Nashua,NH获得)中熔化。将约1克干燥颗粒置于炉室内急冷的铜板上。炉室被抽真空,然后充入压力为13.8KPa(2磅/平方英寸(psi)的氩气。电弧在电极和铜板之间产生。电弧放电产生的温度高到足以迅速熔化干燥颗粒。熔化完成后,物质被保持在熔融状态约10秒,使其均匀化。关闭电弧,使制得的熔体自行迅速冷却。由于样品量很少,水冷的铜板具有很大的热容,所以冷却速度很快。切断电弧炉功率1分钟之内,从中取出熔凝材料。虽然不期望受限于理论,估计熔体在水冷铜板表面的冷却速度超过100℃/秒。熔凝材料是透明的玻璃珠粒(测得最大直径是2.8毫米(mm))。
将制得的无定形珠粒与200克2mm氧化锆研磨介质(从Tosoh Ceramics BoundBrook,NJ获得,商品名“YTZ”)一起置于聚乙烯瓶(如实施例1)中。在瓶内加入300克蒸馏水,混合物以120rpm的速度研磨24小时,将无定形珠粒研磨成粉末。磨好的物质用加热枪干燥。将15克干燥的颗粒置于石墨模子中,如实施例21所述在960℃热压。制成圆盘是半透明的。
实施例64
如实施例63所述,制备实施例64的熔凝无定形珠粒。如实施例50所述热压约15克无定形珠粒,区别在于石墨模子的底部冲头具有2mm深的沟槽。制成的材料复制了这种沟槽,说明施加压力时加热的玻璃具有很好的流动性。
对比例A
如实施例63所述制备对比例A的熔凝材料,区别在于聚乙烯瓶中装有27克氧化铝颗粒(“APA-0.5”),23克氧化钇稳定的氧化锆颗粒(标称组成为94.6重量%ZrO2(+HfO2)和5.4重量%Y2O3;从Zirconia Sales,Inc.of Marietta,GA获得,商品名“HSY-3”)和80克蒸馏水。本对比例组合物相当于Al2O3-ZrO2二元体系的共熔组合物。制得100-150微米直径的球体是部分无定形的,大部分是结晶的,这由X射线衍射分析证明。
实施例65
如实施例47所述制备的无定形珠粒样品(31.25克)和18.75克如对比例A所述制备的无定形珠粒,置于聚乙烯瓶中。向瓶中加入80克蒸馏水和300克氧化锆研磨介质(从Tosoh Ceramics,Bound Brook,NJ获得,商品名“YTZ”)后,以120rpm的转速研磨混合物24小时。磨好的物质用加热枪干燥。将20克干燥的颗粒如实施例32所述热压。图19是实施例65材料抛光(如实施例47所述制备)截面的SEM显微镜照片。照片中,在对比例A材料(深色部分)和实施例65材料(浅色部分)之间的界面上没有裂纹,表明形成了很好的粘合。
实施例47和47A以及对比例B-D的研磨性能
用“Chipmunk”颚式破碎机(VD型,由BICO Inc.,Burbank,CA制造)将实施例47的热压材料破碎成粒,分级后保留-25+30目的级分(即在25微米网眼和30微米网眼两个筛子之间收集的级分)和-30+35目的级分(即在30微米网眼和35微米网眼的两个筛子之间收集的级分)(美国标准测试筛)。将这两部分以等比例混合。将混合好的材料按实施例47所述进行热处理。将30g制得的玻璃陶瓷磨粒制入涂布研磨圆盘中。依照常规工艺制备涂布研磨圆盘。用常规碳酸钙填充的酚醛树脂初始结合涂层(48%酚醛树脂,52%碳酸钙,用水和乙二醇醚稀释成81%固体含量)和常规冰晶石填充的酚醛树脂胶结涂层(32%酚醛树脂,2%氧化铁,66%冰晶石,用水和乙二醇醚稀释到78%固体含量)将玻璃陶瓷磨粒粘合到17.8cm直径,0.8mm厚度的硬化纤维背衬上(具有一个2.2cm直径的中间圆孔)。湿的初始结合涂层树脂重量约为185g/m2。施加了初始结合涂层后,立刻采用静电施加技术涂覆玻璃陶瓷磨粒。初始结合涂层树脂在88℃下固化120分钟。然后在该涂层和磨粒上涂覆冰晶石填充的胶结涂层酚醛树脂。潮湿的胶结涂层重量约850g/m2。此胶结涂层树脂在99℃下固化12小时。所得的涂布研磨圆盘先进行弯曲后再进行测试。
如实施例47所述,制备实施例47A的涂布研磨圆盘,区别在于,实施例47A的磨粒是通过将热压和热处理的实施例47的材料破碎获得的,而不是破碎后再热处理。
如实施例47所述,制备对比例B的涂布研磨圆盘,区别在于,用热处理的熔凝氧化铝磨粒(从Triebacher,Villach,Austria获得,商品名“ALODUR BFRPL”)代替实施例47的玻璃陶瓷磨粒。
如实施例47所述,制备对比例C的涂布研磨圆盘,区别在于用氧化铝-氧化锆磨粒(含有53%Al2O3和47%ZrO2的共熔组成;从Norton Company,Worcester,MA获得,商品名“NORZON”)代替实施例47的玻璃陶瓷磨粒。
按上述方法,制备对比例D的涂布研磨圆盘,区别在于用溶胶凝胶法磨粒(从3M Company,St.Paul,MN获得,商品名“321 CUBITRON”)代替实施例47的玻璃陶瓷磨粒。
用以下方法评价实施例47和对比例B-D的涂布研磨圆盘的研磨性能。将每个涂布研磨圆盘装在一倾斜的铝背衬垫上,用它来研磨预称重的1.25cm×18cm×10cm的1018软钢工件的表面。圆盘以5000rpm的速度旋转,圆盘覆盖与背衬垫的倾斜边缘部分以负载8.6千克与工件接触。用圆盘分别逐次研磨一个工件,每次1分钟。总磨削量是指测试期间,从工件上研磨下的材料总量。每个样品在12分钟的研磨后的总磨削量和第12分钟的磨削量(即最后一次的磨削量)列在下表12中。实施例47的结果是两个圆盘的平均值,对实施例47A和对比例B,C和D,各测试了一个圆盘。
                 表12
    实施例     总磨削量,g   最后一次磨削量,g
    47     1163     92
    47A     1197     92
    对比例B     514     28
    对比例C     689     53
    对比例D     1067     89
不偏离本发明范围和精神,对本发明的各种修改和改变,对本领域技术人员而言,都是显而易见的,本发明不应被不当限制在上述说明性实施例中。

Claims (33)

1.无定形材料,含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,其中该无定形材料具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该无定形材料进一步含有除Al2O3,CaO和ZrO2之外的一种金属氧化物,当该无定形材料结晶时,该金属氧化物的至少一部分形成明显的结晶相。
2.如权利要求1所述无定形材料,其特征在于该无定形材料不具有Tg
3.如权利要求1所述无定形材料,其特征在于该无定形材料是玻璃。
4.如权利要求3所述无定形材料,其特征在于除Al2O3之外的该金属氧化物是Y2O3
5.如权利要求3所述无定形材料,其特征在于除Al2O3之外的该金属氧化物是REO。
6.含有如权利要求1所述无定形材料的一种制品。
7.玻璃,含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该玻璃具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该玻璃进一步含有除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相。
8.一种制造玻璃陶瓷的方法,该方法包括以下步骤:
热处理无定形材料,使至少一部分该无定形材料转变成玻璃陶瓷,该无定形材料含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该无定形材料具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该无定形材料进一步含有除Al2O3,CaO和ZrO2之外的一种金属氧化物,当该无定形材料结晶时,至少一部分该金属氧化物形成明显的结晶相。
9.一种制造玻璃陶瓷的方法,该方法包括以下步骤:
热处理玻璃,使至少一部分该玻璃转变成玻璃陶瓷,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该玻璃具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该玻璃进一步含有除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相。
10.一种制造磨粒的方法,该方法包括以下步骤:
热处理无定形材料,使至少一部分该无定形材料转变成玻璃陶瓷,该无定形材料含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该无定形材料具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该无定形材料进一步含有除Al2O3,CaO和ZrO2之外的一种金属氧化物,当该无定形材料结晶时,至少一部分该金属氧化物形成明显的结晶相;
破碎该玻璃陶瓷形成含有玻璃陶瓷的磨粒。
11.一种制造磨粒的方法,该方法包括以下步骤:
热处理无定形材料,使至少一部分该无定形材料转变成玻璃陶瓷,该无定形材料含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该无定形材料具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该无定形材料进一步含有除Al2O3或CaO之外的一种金属氧化物,当该无定形材料结晶时,至少一部分该金属氧化物形成明显的结晶相;
破碎该玻璃陶瓷形成含有玻璃陶瓷的磨粒。
12.一种制造磨粒的方法,该方法包括以下步骤:
热处理含有无定形材料的颗粒,使至少一部分该无定形材料转变成玻璃陶瓷,该无定形材料含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该无定形材料具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该无定形材料进一步含有除Al2O3,CaO和ZrO2之外的一种金属氧化物,当该无定形材料结晶时,至少一部分该金属氧化物形成明显的结晶相。
13.一种制造磨粒的方法,该方法包括以下步骤:
热处理含有玻璃的颗粒,使至少一部分该玻璃转变成玻璃陶瓷,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃含有的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5合量占其总重量不超过10%,其中该玻璃具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该玻璃进一步含有除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相。
14.如权利要求13所述方法,其特征在于,在热处理含有玻璃的颗粒之前,提供许多具有规定额定级别的颗粒,其中至少一部分该颗粒是含有玻璃的颗粒,而且进行热处理形成具有规定额定级别的磨粒,其中至少一部分磨粒是玻璃陶瓷磨粒。
15.如权利要求13所述方法,其特征在于进一步包括研磨所述玻璃陶瓷磨粒,形成具有规定额定级别的磨粒的步骤,其中至少一部分磨粒是玻璃陶瓷磨粒。
16.一种制造含有玻璃的制品的方法,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该方法包括以下步骤:
提供玻璃颗粒,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该玻璃具有一个Tg
加热该玻璃颗粒至超过Tg的温度,使该玻璃颗粒聚结成一形体;
冷却该形体形成制品,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该玻璃进一步含有除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相。
17.一种制造玻璃颗粒的方法,该方法包括以下步骤:
将一种玻璃熔体喷雾,该玻璃熔体含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃熔体的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%;
冷却喷雾的玻璃熔体,形成玻璃颗粒,该玻璃颗粒含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于每个玻璃颗粒的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占该玻璃颗粒总重量不超过10%,该玻璃具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该玻璃进一步含有除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相。
18.玻璃陶瓷,该玻璃陶瓷含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃陶瓷As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%的,该玻璃陶瓷具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该玻璃陶瓷进一步含有除CaO之外的一种金属氧化物结晶。
19.如权利要求18所述玻璃陶瓷,其特征在于除Al2O3之外的该金属氧化物是Y2O3
20.如权利要求18所述玻璃陶瓷,其特征在于除Al2O3之外的该金属氧化物是REO。
21.一种含有如权利要求18所述玻璃陶瓷的制品。
22.一种制造玻璃陶瓷的方法,该方法包括以下步骤:
热处理玻璃,使至少一部分该玻璃转变成玻璃陶瓷,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该玻璃具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO或ZrO2,则该玻璃进一步含有除Al2O3,CaO和ZrO2之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相。
23.一种制造玻璃陶瓷体的方法,该方法包括以下步骤:
提供玻璃颗粒,该玻璃颗粒含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该玻璃具有一Tg
加热该玻璃颗粒至超过Tg的温度,使该玻璃颗粒聚结成一形体,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,该玻璃具有一Tg,限制条件是如果除Al2O3之外的该金属氧化物是ZrO2,则该玻璃进一步含有Y2O3或REO中的至少一种;
冷却该形体,形成一种玻璃制品;
热处理该玻璃制品,形成一种玻璃陶瓷制品。
24.一种制造玻璃陶瓷颗粒的方法,该方法包括以下步骤:
将一种玻璃熔体喷雾,该玻璃熔体含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃熔体的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%;
冷却该喷雾的玻璃熔体,形成玻璃颗粒,该玻璃颗粒含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃颗粒的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,其中该玻璃具有彼此垂直的x,y和z三维尺寸,而且x,y和z的尺寸至少是5mm,限制条件是如果除Al2O3之外的该金属氧化物是CaO,则该玻璃进一步含有除Al2O3或CaO之外的一种金属氧化物,当该玻璃结晶时,至少一部分该金属氧化物形成明显的结晶相;和
热处理至少一部分该玻璃颗粒,使其转变成玻璃陶瓷颗粒。
25.许多具有规定额定级别的磨粒,其特征在于至少一部分该磨粒是含有玻璃陶瓷的磨粒,该玻璃陶瓷含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃陶瓷的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%。
26.一种制造磨粒的方法,该方法包括以下步骤:
提供许多具有规定额定级别的颗粒,其中至少一部分颗粒是含有无定形材料的颗粒,该无定形材料含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%;
热处理该含有无定形材料的颗粒,使至少一部分无定形材料转变成玻璃陶瓷,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。
27.一种制造磨粒的方法,该方法包括以下步骤:
热处理含有玻璃的颗粒,使至少一部分玻璃转变成玻璃陶瓷,该玻璃含有占各个颗粒的玻璃总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占各个颗粒的玻璃其总重量不超过10%;和
分级该含有玻璃陶瓷的磨粒,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。
28.一种制造磨粒的方法,该方法包括以下步骤:
热处理无定形材料,使至少g部分无定形材料转变成玻璃陶瓷,该无定形材料含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%;
破碎该玻璃陶瓷,形成含有玻璃陶瓷的磨粒;
分级含有玻璃陶瓷的磨粒,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。
29.一种制造磨粒的方法,该方法包括以下步骤:
对含有无定形材料的陶瓷进行热处理,使至少一部分无定形材料转变成玻璃陶瓷,该无定形材料含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该无定形材料的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%;
破碎该玻璃陶瓷,形成含有玻璃陶瓷的磨粒;
分级含有玻璃陶瓷的磨粒,形成具有规定额定级别的磨粒,其中至少一部分磨粒是含有玻璃陶瓷的磨粒。
30.一种制造陶瓷的方法,该方法包括以下步骤:
将以下两种物质结合,(a)玻璃颗粒,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,(b)比所述玻璃颗粒更难熔的颗粒,该玻璃颗粒的玻璃具有一Tg
加热该玻璃颗粒至超过Tg的温度,使该玻璃颗粒聚结;
冷却该玻璃形成陶瓷。
31.如权利要求30所述方法,其特征在于该难熔颗粒选自金属氧化物,氮化物,碳化物和它们的组合。
32.一种制造玻璃陶瓷的方法,该方法包括以下步骤:
将以下两种物质结合,(a)玻璃颗粒,该玻璃含有占其总重量至少35%的Al2O3和除Al2O3之外的一种金属氧化物,其特征在于该玻璃的As2O3,B2O3,GeO2,P2O5,SiO2,TeO2和V2O5的合量占其总重量不超过10%,(b)比所述玻璃颗粒更难熔的颗粒,该玻璃颗粒的玻璃具有一Tg
加热该玻璃颗粒至超过Tg的温度,使该玻璃颗粒聚结;
冷却该玻璃形成陶瓷;
热处理该陶瓷中的玻璃,形成玻璃陶瓷。
33.如权利要求32所述方法,其特征在于该难熔颗粒选自金属氧化物,氮化物,碳化物和它们的组合。
CN028191137A 2001-08-02 2002-08-02 陶瓷材料、磨粒、磨具及制造和使用方法 Expired - Fee Related CN1649802B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US92253001A 2001-08-02 2001-08-02
US92252601A 2001-08-02 2001-08-02
US92252701A 2001-08-02 2001-08-02
US92252801A 2001-08-02 2001-08-02
US09/922,528 2001-08-02
US09/922,527 2001-08-02
US09/922,526 2001-08-02
US09/922,530 2001-08-02
PCT/US2002/024657 WO2003011784A2 (en) 2001-08-02 2002-08-02 Ceramic materials, abrasive particles, abrasive articles, and methods of making and using the same

Publications (2)

Publication Number Publication Date
CN1649802A true CN1649802A (zh) 2005-08-03
CN1649802B CN1649802B (zh) 2012-02-01

Family

ID=27506005

Family Applications (5)

Application Number Title Priority Date Filing Date
CNB02818937XA Expired - Fee Related CN100453486C (zh) 2001-08-02 2002-08-02 磨粒及其制备和使用方法
CNB028151275A Expired - Fee Related CN100360447C (zh) 2001-08-02 2002-08-02 玻璃陶瓷
CNB028151194A Expired - Fee Related CN100364909C (zh) 2001-08-02 2002-08-02 氧化铝锆和它们的制造与使用方法
CNB028149947A Expired - Fee Related CN100383068C (zh) 2001-08-02 2002-08-02 无定形材料和陶瓷的制备方法
CN028191137A Expired - Fee Related CN1649802B (zh) 2001-08-02 2002-08-02 陶瓷材料、磨粒、磨具及制造和使用方法

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CNB02818937XA Expired - Fee Related CN100453486C (zh) 2001-08-02 2002-08-02 磨粒及其制备和使用方法
CNB028151275A Expired - Fee Related CN100360447C (zh) 2001-08-02 2002-08-02 玻璃陶瓷
CNB028151194A Expired - Fee Related CN100364909C (zh) 2001-08-02 2002-08-02 氧化铝锆和它们的制造与使用方法
CNB028149947A Expired - Fee Related CN100383068C (zh) 2001-08-02 2002-08-02 无定形材料和陶瓷的制备方法

Country Status (9)

Country Link
US (6) US7147544B2 (zh)
EP (5) EP1430002A2 (zh)
JP (5) JP2004536768A (zh)
KR (4) KR20040024605A (zh)
CN (5) CN100453486C (zh)
AU (3) AU2002321904A1 (zh)
BR (4) BR0211580A (zh)
CA (4) CA2455952A1 (zh)
WO (6) WO2003011784A2 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358826A (zh) * 2011-08-19 2012-02-22 永州皓志稀土材料有限公司 一种铝掺杂的氧化锆复合抛光粉的制备方法
CN103282159A (zh) * 2010-12-24 2013-09-04 新东工业株式会社 滚筒研磨用无机介质
CN103551971A (zh) * 2013-10-28 2014-02-05 博深工具股份有限公司 陶瓷磨块用陶瓷结合剂及其制备方法
CN104355615A (zh) * 2014-10-27 2015-02-18 合肥市东庐机械制造有限公司 一种高硬度陶瓷刀具材料及其制备方法
CN104402412A (zh) * 2014-10-27 2015-03-11 合肥市东庐机械制造有限公司 一种切削刀具用抗热震性陶瓷及其制备方法
CN104402420A (zh) * 2014-10-27 2015-03-11 合肥市东庐机械制造有限公司 一种高韧性切削刀具用陶瓷材料及其制备方法
CN104999382A (zh) * 2014-12-16 2015-10-28 铜陵翔宇商贸有限公司 金属、树脂复合型砂轮用结合剂及其制备方法
CN106029298A (zh) * 2014-04-07 2016-10-12 新东工业株式会社 干式滚筒研磨法以及介质的制造方法
CN106132632A (zh) * 2014-04-07 2016-11-16 新东工业株式会社 筒式研磨用介质及其制造方法
US9790411B2 (en) 2014-12-30 2017-10-17 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same
CN107457713A (zh) * 2017-10-19 2017-12-12 柳州凯通新材料科技有限公司 一种金刚石砂轮用材料
US9982175B2 (en) 2014-12-30 2018-05-29 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same
CN110606739A (zh) * 2019-08-21 2019-12-24 嘉兴纳美新材料有限公司 一种氧化锆陶瓷球的配方及其生产工艺
CN112218739A (zh) * 2018-05-28 2021-01-12 法商圣高拜欧洲实验及研究中心 喷丸粉末
CN112512750A (zh) * 2018-07-30 2021-03-16 3M创新有限公司 独立式抛光制品

Families Citing this family (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2170009B2 (es) * 2000-09-21 2003-09-16 Esmalglass Sa Material base para la preparacion de piezas de naturaleza vitrea o vitrocristalina, procedimiento para preparar el material base, y metodo de fabricacion de las piezas.
US8062098B2 (en) 2000-11-17 2011-11-22 Duescher Wayne O High speed flat lapping platen
US8256091B2 (en) * 2000-11-17 2012-09-04 Duescher Wayne O Equal sized spherical beads
RU2004103084A (ru) 2001-08-02 2005-06-27 3М Инновейтив Пропертиз Компани (US) Материалы на основе al2o3, оксидов редкоземельных элементов, zro2 и (или) hfo2 и способы их получения и применения
CN101538121B (zh) 2001-08-02 2012-09-05 3M创新有限公司 从玻璃制备制品的方法以及所制备的玻璃陶瓷制品
US7625509B2 (en) * 2001-08-02 2009-12-01 3M Innovative Properties Company Method of making ceramic articles
US8056370B2 (en) 2002-08-02 2011-11-15 3M Innovative Properties Company Method of making amorphous and ceramics via melt spinning
US7179526B2 (en) * 2002-08-02 2007-02-20 3M Innovative Properties Company Plasma spraying
AU2003263011A1 (en) * 2002-09-06 2004-03-29 Cloudland Institute Llc Precision cast dental instrument
US7811496B2 (en) * 2003-02-05 2010-10-12 3M Innovative Properties Company Methods of making ceramic particles
US6984261B2 (en) 2003-02-05 2006-01-10 3M Innovative Properties Company Use of ceramics in dental and orthodontic applications
US7258707B2 (en) * 2003-02-05 2007-08-21 3M Innovative Properties Company AI2O3-La2O3-Y2O3-MgO ceramics, and methods of making the same
JP2004250251A (ja) * 2003-02-18 2004-09-09 Sumitomo Electric Ind Ltd 蛍光性ガラス、光増幅用導波路および光増幅モジュール
US7319916B1 (en) * 2003-04-04 2008-01-15 The United States Of America As Represented By The Secretary Of The Air Force High speed and repeatability serial sectioning method for 3-D reconstruction of microstructures using optical microscopy
US7292766B2 (en) * 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
JP4133586B2 (ja) * 2003-05-23 2008-08-13 Tdk株式会社 平面パネルディスプレイ用スペーサ基材、平面パネルディスプレイ用スペーサ基材の製造方法、平面パネルディスプレイ用スペーサ、及び、平面パネルディスプレイ
EP1652960B1 (en) * 2003-08-05 2017-08-30 JX Nippon Mining & Metals Corporation Sputtering target and method for production thereof
FR2859203B1 (fr) * 2003-09-01 2006-02-10 Saint Gobain Ct Recherches Piece crue destinee a la fabrication d'un produit refractaire fritte presentant un comportement au bullage ameliore
US8187990B2 (en) * 2003-09-01 2012-05-29 Saint-Gobain Centre De Recherches Et D'etudes Europeen Hollow piece for producing a sintered refractory product exhibiting improved bubbling behaviour
US7197896B2 (en) * 2003-09-05 2007-04-03 3M Innovative Properties Company Methods of making Al2O3-SiO2 ceramics
US7282272B2 (en) * 2003-09-12 2007-10-16 3M Innovative Properties Company Polymerizable compositions comprising nanoparticles
US7297171B2 (en) * 2003-09-18 2007-11-20 3M Innovative Properties Company Methods of making ceramics comprising Al2O3, REO, ZrO2 and/or HfO2 and Nb205 and/or Ta2O5
US7141523B2 (en) * 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, REO, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
US7141522B2 (en) * 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
CN1628522B (zh) * 2003-12-11 2010-09-29 前田芳聪 载有银的粒子以及其制造方法
US20050137078A1 (en) * 2003-12-18 2005-06-23 3M Innovative Properties Company Alumina-yttria particles and methods of making the same
US7232543B2 (en) * 2003-12-18 2007-06-19 3M Innovative Properties Company Power feeding method and apparatus
US20050137076A1 (en) * 2003-12-18 2005-06-23 3M Innovative Properties Company Transparent fused crystalline ceramic, and method of making the same
US8334079B2 (en) * 2004-04-30 2012-12-18 NanoCell Systems, Inc. Metastable ceramic fuel cell and method of making the same
KR101245946B1 (ko) * 2004-06-17 2013-03-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광학 필름, 어셈블리 및 디스플레이 장치
US7332453B2 (en) * 2004-07-29 2008-02-19 3M Innovative Properties Company Ceramics, and methods of making and using the same
CN101076716B (zh) 2004-10-08 2011-04-13 Sdc材料有限责任公司 采样和收集在气流中流动的粉末的装置和方法
WO2006051736A1 (ja) * 2004-11-15 2006-05-18 Nippon Mining & Metals Co., Ltd. 水素分離膜及び水素分離膜形成用スパッタリングターゲット及びその製造方法
KR20070084209A (ko) * 2004-11-15 2007-08-24 닛코 킨조쿠 가부시키가이샤 금속 유리막 제조용 스퍼터링 타겟 및 그 제조 방법
US8002166B2 (en) * 2004-12-28 2011-08-23 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
US8039175B2 (en) * 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
EP1845072B1 (en) * 2005-01-27 2016-09-28 Kyocera Corporation Composite ceramic and method for producing same
JP5139813B2 (ja) 2005-01-31 2013-02-06 テクニカル ユニバーシティ オブ デンマーク 酸化還元の安定なアノード
WO2006091951A2 (en) 2005-02-23 2006-08-31 Kennametal Inc. Alumina-boron carbide ceramics and methods of making and using the same
US20060189474A1 (en) 2005-02-23 2006-08-24 Yeckley Russell L Alumina-boron carbide ceramics and methods of making and using the same
FR2882749B1 (fr) * 2005-03-01 2007-04-27 Saint Gobain Ct Recherches Bille frittee a base de zircone et d'oxyde de cerium
US8609565B1 (en) * 2005-04-15 2013-12-17 The Regents Of The University Of California Low-temperature protonic conduction for hydrogen-related energy applications employing nanostructured functional oxides
ES2688274T3 (es) * 2005-06-30 2018-10-31 Unifrax I Llc Fibra inorgánica revestida de fosfato y métodos de preparación y uso
US7169031B1 (en) * 2005-07-28 2007-01-30 3M Innovative Properties Company Self-contained conditioning abrasive article
US7494519B2 (en) 2005-07-28 2009-02-24 3M Innovative Properties Company Abrasive agglomerate polishing method
US7883398B2 (en) 2005-08-11 2011-02-08 Saint-Gobain Abrasives, Inc. Abrasive tool
ES2434442T3 (es) * 2005-08-31 2013-12-16 Technical University Of Denmark Apilamiento sólido reversible de pilas de combustible de óxido y método para preparar el mismo
KR101214060B1 (ko) 2005-09-26 2012-12-20 플레이너 솔루션즈 엘엘씨 화학적 기계적 연마 용도로 사용되기 위한 초고순도의 콜로이드 실리카
WO2007070633A2 (en) * 2005-12-14 2007-06-21 3M Innovative Properties Company Orthodontic articles with silicon nitride coatings
US7281970B2 (en) * 2005-12-30 2007-10-16 3M Innovative Properties Company Composite articles and methods of making the same
US20070151166A1 (en) * 2005-12-30 2007-07-05 3M Innovative Properties Company Method of making abrasive articles, cutting tools, and cutting tool inserts
US20070154713A1 (en) * 2005-12-30 2007-07-05 3M Innovative Properties Company Ceramic cutting tools and cutting tool inserts, and methods of making the same
US7598188B2 (en) * 2005-12-30 2009-10-06 3M Innovative Properties Company Ceramic materials and methods of making and using the same
JP4959213B2 (ja) 2006-03-31 2012-06-20 三菱重工業株式会社 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
US20070270299A1 (en) * 2006-05-17 2007-11-22 3M Innovative Properties Company Glass-ceramics and methods of making same
WO2007136995A1 (en) * 2006-05-17 2007-11-29 3M Innovative Properties Company Transparent armor composites and methods of making same
GB0612788D0 (en) * 2006-06-28 2006-08-09 Insectshield Ltd Pest control materials
JP4631971B2 (ja) * 2006-07-13 2011-02-16 コニカミノルタオプト株式会社 ガラス基板の製造方法および磁気ディスクの製造方法
ATE550802T1 (de) 2006-11-23 2012-04-15 Univ Denmark Tech Dtu Methode zur herstellung von reversiblen festoxid- zellen
US8161862B1 (en) * 2007-01-08 2012-04-24 Corning Incorporated Hybrid laminated transparent armor
US8176829B1 (en) 2007-03-21 2012-05-15 Schott Corporation Armor system and method of manufacture
US8176828B2 (en) 2007-03-21 2012-05-15 Schott Corporation Glass-ceramic with laminates
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US20080280541A1 (en) 2007-05-10 2008-11-13 3M Innovative Properties Company Abrasive filament and brush
US20100255978A1 (en) * 2007-05-11 2010-10-07 3M Innovative Properties Company Method of making ceramic articles from glass
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
US8603616B1 (en) 2007-09-27 2013-12-10 Schott Corporation Lightweight transparent armor window
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8123828B2 (en) * 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
BRPI0821437B1 (pt) * 2007-12-27 2019-01-22 3M Innovative Properties Co método de fabricar uma pluralidade de cacos abrasivos e artigo abrasivo
JP2011508722A (ja) * 2007-12-28 2011-03-17 スリーエム イノベイティブ プロパティズ カンパニー セラミック繊維及びセラミックビーズの製造方法
CA2713829C (en) * 2008-01-31 2016-06-07 David A. Rohrbacker Molding composition and method using same to form displacements for use in a metal casting process
USD627900S1 (en) 2008-05-07 2010-11-23 SDCmaterials, Inc. Glove box
US20090297703A1 (en) * 2008-05-29 2009-12-03 Motorola, Inc. Induced phase composite transparent hard coating
JP2009302136A (ja) * 2008-06-10 2009-12-24 Panasonic Corp 半導体集積回路
US20100022378A1 (en) * 2008-07-25 2010-01-28 Nguyen Vinh Q Manufacturing process for chalcogenide glasses
US8603659B2 (en) * 2008-10-03 2013-12-10 General Electric Company Sealing glass composition and article
DE102008058177A1 (de) * 2008-11-20 2010-06-24 Eos Gmbh Electro Optical Systems Verfahren zur Identifizierung von Lasersinterpulvern
US10137556B2 (en) * 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US8142532B2 (en) * 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
US8764865B2 (en) 2008-12-17 2014-07-01 3M Innovative Properties Company Shaped abrasive particles with grooves
US8142891B2 (en) * 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US8545582B2 (en) * 2009-03-11 2013-10-01 Saint-Gobain Abrasives, Inc. Abrasive articles including fused zirconia alumina grain having an improved shape
JP5501642B2 (ja) * 2009-03-23 2014-05-28 株式会社ノリタケカンパニーリミテド 蛍光性ジルコニア材料
US20100255447A1 (en) * 2009-04-07 2010-10-07 University Of Arkansas Advanced bio-compatible polymer surface coatings for implants and tissue engineering scaffolds
US8801497B2 (en) 2009-04-30 2014-08-12 Rdc Holdings, Llc Array of abrasive members with resilient support
US20110104989A1 (en) * 2009-04-30 2011-05-05 First Principles LLC Dressing bar for embedding abrasive particles into substrates
EP2177318B1 (en) * 2009-04-30 2014-03-26 Saint-Gobain Abrasives, Inc. Abrasive article with improved grain retention and performance
US9221148B2 (en) 2009-04-30 2015-12-29 Rdc Holdings, Llc Method and apparatus for processing sliders for disk drives, and to various processing media for the same
FR2946337B1 (fr) * 2009-06-03 2011-08-05 Saint Gobain Ct Recherches Produit fritte a base d'alumine et de zircone
US8628597B2 (en) 2009-06-25 2014-01-14 3M Innovative Properties Company Method of sorting abrasive particles, abrasive particle distributions, and abrasive articles including the same
US8079428B2 (en) 2009-07-02 2011-12-20 Baker Hughes Incorporated Hardfacing materials including PCD particles, welding rods and earth-boring tools including such materials, and methods of forming and using same
CN102009374B (zh) * 2009-09-04 2012-11-21 沈阳中科超硬磨具磨削研究所 一种树脂cbn端面磨砂轮
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8480772B2 (en) 2009-12-22 2013-07-09 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
CN102107398B (zh) * 2009-12-29 2014-07-16 圣戈本磨料股份有限公司 高研磨性能的涂覆的磨料
US8679246B2 (en) 2010-01-21 2014-03-25 The University Of Connecticut Preparation of amorphous mixed metal oxides and their use as feedstocks in thermal spray coating
US9180573B2 (en) * 2010-03-03 2015-11-10 3M Innovative Properties Company Bonded abrasive wheel
SA111320374B1 (ar) 2010-04-14 2015-08-10 بيكر هوغيس انكوبوريتد طريقة تشكيل الماسة متعدد البلورات من الماس المستخرج بحجم النانو
DE102010047690A1 (de) 2010-10-06 2012-04-12 Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag Verfahren zum Herstellen von Zirkonia-verstärkten Alumina-Schleifkörnern und hierdurch hergestellte Schleifkörner
CN103370174B (zh) 2010-12-31 2017-03-29 圣戈本陶瓷及塑料股份有限公司 具有特定形状的研磨颗粒和此类颗粒的形成方法
US9366791B2 (en) * 2011-02-21 2016-06-14 Canon Kabushiki Kaisha Diffractive optical element and manufacturing method for the same
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
CN103619769A (zh) * 2011-06-28 2014-03-05 3M创新有限公司 玻璃陶瓷及其制备方法
WO2013003830A2 (en) 2011-06-30 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
KR20140057258A (ko) * 2011-08-09 2014-05-12 아사히 가라스 가부시키가이샤 유리 세라믹스체, 발광 소자 탑재용 기판, 및 발광 장치
AU2012299065B2 (en) 2011-08-19 2015-06-04 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
JP5802336B2 (ja) 2011-09-26 2015-10-28 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 研磨粒子材料を含む研磨製品、研磨粒子材料を使用する研磨布紙および形成方法
CN103074032B (zh) * 2011-10-26 2014-03-05 詹学良 一种稀土刚玉复合磨料
KR101681526B1 (ko) 2011-12-30 2016-12-01 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 복합 형상화 연마입자들 및 이의 형성방법
JP6033886B2 (ja) 2011-12-30 2016-11-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子および同粒子を形成する方法
CA2862453A1 (en) 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
BR112014017050B1 (pt) 2012-01-10 2021-05-11 Saint-Gobain Ceramics & Plastics, Inc. partícula abrasiva moldada
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2013149209A1 (en) 2012-03-30 2013-10-03 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
JP5454747B1 (ja) * 2012-05-22 2014-03-26 愛知製鋼株式会社 ショットブラスト用研削材及びその製造方法
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
EP2866977B8 (en) 2012-06-29 2023-01-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
CN103567891B (zh) * 2012-07-31 2017-06-23 圣戈班磨料磨具有限公司 切割轮及其制备方法
EP2692311B1 (en) 2012-08-03 2016-06-22 3M Innovative Properties Company Dental blank comprising a pre-sintered porous zirconia material , process of its production and dental article formed from said dental blank
EP2885109B1 (en) * 2012-08-17 2020-02-19 3M Innovative Properties Company Coated abrasive article having alumina-zirconia abrasive particles and glass diluent particles
EP2891638A4 (en) 2012-08-31 2016-06-29 Asahi Glass Co Ltd PROCESS FOR PRODUCING LITHIUM ION-CONDUCTING VITRO CERAMIC
EP2906392A4 (en) 2012-10-15 2016-07-13 Saint Gobain Abrasives Inc GRINDING PARTICLES WITH SPECIAL FORMS AND METHOD FOR FORMING SUCH PARTICLES
CN103113831A (zh) * 2012-11-13 2013-05-22 湖北天马研磨材料有限公司 一种稀土复合刚玉微粉抛光液
CN102936461B (zh) * 2012-11-14 2014-07-30 内蒙古科技大学 一种富铈稀土抛光粉及其制备方法
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
WO2014085276A1 (en) * 2012-11-30 2014-06-05 Ceralink Inc. Method of sintering ceramic articles by exothermic heating
CN103042475B (zh) * 2012-12-20 2015-04-22 郑州新安华砂轮有限公司 不锈钢及钛合金磨削用网布基体陶瓷砂轮
CN103042473B (zh) * 2012-12-20 2015-04-22 郑州新安华砂轮有限公司 石材、玻璃或钨钼合金磨削用网布基体陶瓷砂轮
JP6153103B2 (ja) * 2012-12-28 2017-06-28 国立大学法人大阪大学 ビーズタイプ蛍光ガラス線量計素子を用いた放射線吸収線量の可視化方法及び装置、そのためのビーズタイプ蛍光ガラス線量計素子の製造方法及び装置
EP2938459B1 (en) 2012-12-31 2021-06-16 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9140072B2 (en) 2013-02-28 2015-09-22 Baker Hughes Incorporated Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements
EP2978566A4 (en) 2013-03-29 2017-01-25 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9708713B2 (en) 2013-05-24 2017-07-18 Applied Materials, Inc. Aerosol deposition coating for semiconductor chamber components
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
US9711334B2 (en) 2013-07-19 2017-07-18 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
US9583369B2 (en) 2013-07-20 2017-02-28 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
CN105592921A (zh) 2013-07-25 2016-05-18 Sdc材料公司 用于催化转化器的洗涂层和经涂覆基底及其制造和使用方法
EP3808338A1 (en) 2013-09-11 2021-04-21 Eagle Biologics, Inc. Liquid protein formulations containing ionic liquids
AU2014324453B2 (en) 2013-09-30 2017-08-03 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
DE102013111006B4 (de) * 2013-10-04 2015-10-22 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Polykristalline poröse Al2O3-Körper auf Basis von geschmolzenem Aluminiumoxid mit erhöhter Zähigkeit
KR20160074574A (ko) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 희박 NOx 트랩의 조성물
JP2016536120A (ja) 2013-10-22 2016-11-24 エスディーシーマテリアルズ, インコーポレイテッド ヘビーデューティディーゼルの燃焼機関のための触媒デザイン
US9725799B2 (en) 2013-12-06 2017-08-08 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
JP6290428B2 (ja) 2013-12-31 2018-03-07 サンーゴバン アブレイシブズ,インコーポレイティド 成形研磨粒子を含む研磨物品
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
KR101576052B1 (ko) * 2014-03-27 2015-12-09 연세대학교 산학협력단 다공성 중공 이산화티타늄 나노입자를 포함하는 이산화탄소 분리막 및 이의 제조방법
CN111331524B (zh) 2014-04-14 2022-04-29 圣戈本陶瓷及塑料股份有限公司 包括成形磨粒的研磨制品
KR101884178B1 (ko) 2014-04-14 2018-08-02 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마 입자들을 포함하는 연마 물품
WO2015158009A1 (en) * 2014-04-19 2015-10-22 Shengguo Wang Alumina zirconia abrasive grain especially designed for light duty grinding applications
US9869013B2 (en) 2014-04-25 2018-01-16 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US9359243B2 (en) 2014-05-13 2016-06-07 Corning Incorporated Transparent glass-ceramic articles, glass-ceramic precursor glasses and methods for forming the same
WO2015184355A1 (en) 2014-05-30 2015-12-03 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
CN104004497B (zh) * 2014-06-11 2015-12-09 浙江湖磨抛光磨具制造有限公司 一种氧化铁红粉体超细化研磨介质
US20170157582A1 (en) * 2014-07-02 2017-06-08 Corning Incorporated Spray drying mixed batch material for plasma melting
SG10201902915VA (en) 2014-10-01 2019-04-29 Eagle Biologics Inc Polysaccharide and nucleic acid formulations containing viscosity-lowering agents
KR101944695B1 (ko) * 2014-10-28 2019-02-01 반도 카가쿠 가부시키가이샤 연마재 및 연마재의 제조방법
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
CN104526581A (zh) * 2014-12-26 2015-04-22 常熟市海虞砂轮有限责任公司 一种改良的陶瓷结合剂及其制备方法
CN107636109A (zh) 2015-03-31 2018-01-26 圣戈班磨料磨具有限公司 固定磨料制品和其形成方法
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
TWI621590B (zh) * 2015-05-21 2018-04-21 聖高拜陶器塑膠公司 研磨顆粒及形成研磨顆粒之方法
PL3307483T3 (pl) 2015-06-11 2020-11-16 Saint-Gobain Ceramics&Plastics, Inc. Wyrób ścierny zawierający ukształtowane cząstki ścierne
US20160367620A1 (en) 2015-06-19 2016-12-22 Harry B. Demopoulos Glutathione
RU2616645C1 (ru) * 2016-01-12 2017-04-18 Акционерное общество "Научно-исследовательский и технологический институт оптического материаловедения Всероссийского научного центра "Государственный оптический институт им. С.И. Вавилова" (АО "НИТИОМ ВНЦ "ГОИ им. С.И. Вавилова") Прозрачная стеклокерамика на основе кристаллов ZnO и способ ее получения
FR3047733B1 (fr) * 2016-02-12 2018-03-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Grains d'alumine-zircone fondus
US10889899B2 (en) 2016-02-19 2021-01-12 Nippon Steel Corporation Ceramic laminate, ceramic insulating substrate, and method for manufacturing ceramic laminate
US9868087B2 (en) * 2016-03-31 2018-01-16 Toyota Jidosha Kabushiki Kaisha Core-shell oxide material, method for producing the same, and catalyst and method for purification of exhaust gas using the core-shell oxide material
EP3455321B1 (en) 2016-05-10 2022-04-20 Saint-Gobain Ceramics&Plastics, Inc. Methods of forming abrasive particles
WO2018005677A1 (en) * 2016-06-29 2018-01-04 Saint-Gobain Ceramics & Plastics, Inc. Coated abrasive articles and methods for forming same
KR101703345B1 (ko) * 2016-08-05 2017-02-06 성기영 세라믹 코팅 조성물의 제조방법, 그 코팅 조성물 및 이를 이용한 코팅방법
CN106395649B (zh) * 2016-09-23 2018-09-28 四川欧瑞建设集团有限公司 一种工程用塔机的标准节结构
WO2018064642A1 (en) 2016-09-29 2018-04-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
JP6854634B2 (ja) * 2016-12-07 2021-04-07 株式会社ディスコ ビトリファイドボンド砥石
CN106737118A (zh) * 2016-12-26 2017-05-31 银川市恒益达机械有限公司 含钇元素的珩磨油石、制备方法及其应用
JP6789319B2 (ja) * 2016-12-26 2020-11-25 京セラ株式会社 刃物
CN108251056A (zh) * 2016-12-29 2018-07-06 圣戈本陶瓷及塑料股份有限公司 研磨颗粒、固定研磨制品以及形成该固定研磨制品的方法
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2018207132A1 (en) 2017-05-12 2018-11-15 3M Innovative Properties Company Articles comprising ceramics and method of making the same
US10988399B2 (en) 2017-05-12 2021-04-27 3M Innovative Properties Company Articles comprising crystalline materials and method of making the same
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
JP6946791B2 (ja) * 2017-07-07 2021-10-06 トヨタ自動車株式会社 硫化物固体電解質微粒子の製造方法
EP3658519A1 (en) * 2017-07-28 2020-06-03 3M Innovative Properties Company Nanocrystalline ceramic oxide beads
CN107352983A (zh) * 2017-08-18 2017-11-17 连云港龙塔研磨材料有限公司 一种纳米陶瓷磨料的制备方法
CN107686338B (zh) * 2017-08-24 2020-09-04 马长江 一种y-psz强化耐火材料及其制备工艺
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber
CN110561282B (zh) * 2018-06-06 2021-07-30 江苏华东砂轮有限公司 砂轮用补强剂、补强砂轮及制备方法
CN108956699B (zh) * 2018-06-22 2020-11-10 西安创联电气科技(集团)有限责任公司 一种nox传感器陶瓷芯片用绝缘膜带及绝缘层制备工艺
CN112437759A (zh) * 2018-07-16 2021-03-02 康宁股份有限公司 具有改善的翘曲的玻璃制品的陶瓷化方法
CN108975884A (zh) * 2018-08-22 2018-12-11 嘉兴晶驰特种陶瓷有限公司 高耐磨锆铝复合陶瓷球及其生产工艺
CN109531446A (zh) * 2018-11-09 2019-03-29 郑州磨料磨具磨削研究所有限公司 一种陶瓷结合剂、利用其得到的陶瓷结合剂金刚石修整滚轮及该滚轮的制备方法
CN114867582A (zh) 2019-12-27 2022-08-05 圣戈本陶瓷及塑料股份有限公司 磨料制品及其形成方法
WO2021149498A1 (ja) * 2020-01-23 2021-07-29 第一稀元素化学工業株式会社 複合酸化物粉末、摩擦材組成物、及び、摩擦材
US20220396494A1 (en) * 2021-06-14 2022-12-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Complex oxide powder, friction material composition, and friction material
CN113582517B (zh) * 2021-09-01 2022-12-20 Oppo广东移动通信有限公司 玻璃注塑胚体的烧结工艺、玻璃制品的加工方法及玻璃制品
CN114262226B (zh) * 2021-09-26 2022-08-16 河南省瑞泰科实业集团有限公司 一种熔铸高纯氧化锆耐火制品及其制备方法

Family Cites Families (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1314061A (en) 1919-08-26 Abrasive material and j
US139344A (en) * 1873-05-27 Improvement in water-wheels
US597988A (en) * 1898-01-25 Mund bensel
US659926A (en) 1900-05-04 1900-10-16 Gen Electro Chemical Company Process of manufacturing abrasive material.
US906339A (en) 1908-03-17 1908-12-08 Carborundum Co Composition of matter containing alumina and silica.
US1037999A (en) 1908-12-26 1912-09-10 Morton Company Article of alumina and method of making same.
US960712A (en) * 1909-09-14 1910-06-07 Norton Co Process of purifying aluminous materials.
US1107011A (en) 1913-03-11 1914-08-11 Carborundum Co Method of bonding fused crystalline alumina.
US1192709A (en) 1914-12-01 1916-07-25 Carborundum Co Crystalline fused alumina and the manufacture thereof.
US1161620A (en) 1915-02-24 1915-11-23 Carborundum Co Crystalline fused alumina and method of making the same.
US1149064A (en) 1915-06-11 1915-08-03 Exolon Company Electric-furnace abrasive and method of making the same.
US1268532A (en) 1916-11-11 1918-06-04 Carborundum Co Process of making aluminous abrasives.
US1247337A (en) 1917-02-12 1917-11-20 Norton Co Aluminous abrasive.
US1240490A (en) 1917-02-12 1917-09-18 Norton Co Composition containing alumina and zirconia.
US1263708A (en) * 1917-03-02 1918-04-23 Norton Co PRODUCT CONTAINING β-ALUMINA AND PROCESS OF PREPARING THE SAME.
US1263710A (en) 1917-08-02 1918-04-23 Norton Co Aluminous abrasive and process of making same.
US1263709A (en) 1917-08-02 1918-04-23 Norton Co Aluminous abrasive and process of making the same.
US1268533A (en) 1917-08-07 1918-06-04 Carborundum Co Aluminous abrasive.
US1257356A (en) * 1917-11-14 1918-02-26 Carborundum Co Aluminous composition and method of preparing the same.
US1339344A (en) 1919-09-18 1920-05-04 Carborundum Co Aluminous compostion and method of making the same
US1402714A (en) * 1920-10-21 1922-01-03 Abrasive Company Method of manufacturing artificial abrasives from bauxite and emery
US1448586A (en) * 1922-04-22 1923-03-13 Abrasive Company Process of manufacturing aluminous abrasives
US2000857A (en) * 1930-12-01 1935-05-07 Swann Res Inc Aluminum oxide abrasive and method of making the same
US1910444A (en) 1931-02-13 1933-05-23 Carborundum Co Process of making abrasive materials
US2206081A (en) 1935-09-03 1940-07-02 Eastman Kodak Co Optical glass
US2424645A (en) 1943-07-13 1947-07-29 Carborundum Co Fused aluminum oxide abrasive material
US2618567A (en) 1950-10-19 1952-11-18 Norton Co Molded alumina
US2805166A (en) 1954-01-18 1957-09-03 Loffler Johannes Glasses containing oxides of rare earth metals
DE1694594C3 (de) 1960-01-11 1975-05-28 Minnesota Mining And Manufacturing Co., Saint Paul, Minn. (V.St.A.) Reinigungs- und Polierkörper
US2961296A (en) 1957-09-27 1960-11-22 Aluminium Lab Ltd Production of fused alumina
DE1075807B (de) 1958-08-07 1960-02-18 JENAer Glaswerk Schott &. Gen Mainz Alumimumoxydreiches Lanthanborosilikatglas
US3181938A (en) 1959-07-13 1965-05-04 Texaco Inc Motor fuel containing octane appreciator
US3041156A (en) 1959-07-22 1962-06-26 Norton Co Phenolic resin bonded grinding wheels
US3181939A (en) * 1961-01-27 1965-05-04 Norton Co Fused alumina-zirconia abrasives
US3377660A (en) * 1961-04-20 1968-04-16 Norton Co Apparatus for making crystal abrasive
US3141747A (en) 1961-08-24 1964-07-21 Norton Co Alumina abrasive
US3216794A (en) 1961-10-20 1965-11-09 Norton Co Process for producing crystalline alumina
GB1112969A (en) 1964-08-22 1968-05-08 Nippon Sheet Glass Co Ltd Process for the manufacture of sheet glass
GB1121875A (en) * 1965-10-12 1968-07-31 British Periclase Company Ltd Abrasive implements
US3519448A (en) * 1968-01-26 1970-07-07 Corhart Refractories Co Zirconia-alumina fused refractory materials and structures
US3926603A (en) 1968-04-10 1975-12-16 Philips Corp Method of manufacturing a glass ceramic material which is resistant to sodium vapour
NL6905353A (zh) * 1968-04-10 1969-10-14
US3625717A (en) 1968-04-29 1971-12-07 Avco Corp Spray coating compositions
US3498769A (en) * 1969-01-16 1970-03-03 Norton Co Fused zirconia-spinel abrasives and articles made therewith
FR2038019A5 (zh) * 1969-03-22 1970-12-31 Sumitomo Chemical Co
US3650780A (en) * 1969-05-01 1972-03-21 Corning Glass Works Fiber optic core glass
US3635739A (en) 1969-06-04 1972-01-18 Corning Glass Works Silica-free calcium aluminate glass-ceramic articles
US3947281A (en) * 1969-11-06 1976-03-30 United Technologies Corporation High modulus rare earth and beryllium containing silicate glass compositions
US3646713A (en) 1970-03-16 1972-03-07 Norton Co Method of making fragmented crystalline material
DE2034011A1 (en) * 1970-07-09 1972-01-13 Wuestefeld A Tri-and tetravalent glasses - contg carbides or nitrides
US3781172A (en) 1970-12-14 1973-12-25 G Kinney Process for the manufacture of microcrystalline fused abrasives
US3717583A (en) * 1971-03-10 1973-02-20 American Optical Corp Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm.
US3714059A (en) 1971-03-10 1973-01-30 American Optical Corp Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm
US3726621A (en) 1971-06-15 1973-04-10 Carborundum Co Apparatus for producing oxide refractory material having fine crystal structure
US3928515A (en) 1971-06-15 1975-12-23 Carborundum Co Semicontinuous process for producing oxide refractory material having fine crystal structure
US4415510A (en) 1971-06-15 1983-11-15 Kennecott Corporation Process for making oxide refractory material having fine crystal structure
US3754978A (en) * 1971-08-06 1973-08-28 Corning Glass Works Devitrification-resistant coating for high-silica glasses
US3792553A (en) 1971-09-28 1974-02-19 Wallace Murray Corp Abrasive powder of fused alumina containing vanadium tetroxide
US3893826A (en) 1971-11-08 1975-07-08 Norton Co Coated abrasive material comprising alumina-zirconia abrasive compositions
US4070796A (en) * 1971-12-27 1978-01-31 Norton Company Method of producing abrasive grits
US3791553A (en) * 1972-03-06 1974-02-12 Aidlin Automation Hopper-type apparatus for orienting and feeding tubular containers or like articles
US4261706A (en) 1972-05-15 1981-04-14 Corning Glass Works Method of manufacturing connected particles of uniform size and shape with a backing
US3859407A (en) 1972-05-15 1975-01-07 Corning Glass Works Method of manufacturing particles of uniform size and shape
US3891408A (en) 1972-09-08 1975-06-24 Norton Co Zirconia-alumina abrasive grain and grinding tools
US3916584A (en) 1973-03-22 1975-11-04 Minnesota Mining & Mfg Spheroidal composite particle and method of making
US3881282A (en) 1973-10-24 1975-05-06 Norton Co Abrasive grain of fused alumina-zirconia-ceria alloy
US3940276A (en) 1973-11-01 1976-02-24 Corning Glass Works Spinel and aluminum-base metal cermet
US3973977A (en) 1973-11-01 1976-08-10 Corning Glass Works Making spinel and aluminum-base metal cermet
US4035162A (en) 1973-11-09 1977-07-12 Corning Glass Works Fused abrasive grains consisting essentially of corundum, zirconia and R2 O3
DE2420551B2 (de) 1974-04-27 1981-01-08 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von gekörnten Schleifmitteln aus hochfeuerfesten anorganischen Hartstoffen
DE2560066B1 (de) 1974-05-29 1979-12-13 Treibacher Chemische Werke Ag Verfahren zur Herstellung von Schleifmaterialien auf der Basis von Aluminiumoxid,gegebenenfalls zusammen mit anderen Oxiden
US3996702A (en) 1974-11-26 1976-12-14 Minnesota Mining And Manufacturing Company Coated abrasive product comprising fused zirconia grains and method for abrading iron
US4014122A (en) * 1975-09-22 1977-03-29 Woods Oscar J Paperweight with screw threaded bottom cap
US4073096A (en) 1975-12-01 1978-02-14 U.S. Industries, Inc. Process for the manufacture of abrasive material
US4194887A (en) * 1975-12-01 1980-03-25 U.S. Industries, Inc. Fused alumina-zirconia abrasive material formed by an immersion process
US4126429A (en) 1975-12-15 1978-11-21 Norton Company Co-fused alumina-zirconia alloy abrasive containing magnesium oxide
USRE31725E (en) 1976-06-01 1984-11-06 Kennecott Corporation Fused aluminum oxide abrasive grain containing reduced titanium oxide
USRE31128E (en) 1976-06-01 1983-01-18 Kennecott Corporation Fused aluminum oxide abrasive grain containing reduced titanium oxide
US4111668A (en) 1976-06-01 1978-09-05 The Carborundum Company Fused aluminum oxide abrasive grain containing reduced titanium oxide
US4157898A (en) 1976-06-01 1979-06-12 The Carborundum Company Fused aluminum oxide abrasive grain containing reduced titanium oxide
US4217264A (en) 1977-04-01 1980-08-12 American Dental Association Health Foundation Microporous glassy fillers for dental resin composites
DE2744700C2 (de) 1977-10-05 1987-05-27 Feldmühle AG, 4000 Düsseldorf Sinterwerkstoff auf Basis von dichten, nichtmetallischen Hartstoffen wie hochschmelzenden Metallcarbiden, Metallnitriden, Metallboriden und Metalloxiden mit darin eingelagerten Zirkon- und/oder Hafniumoxid
US4140494A (en) * 1977-10-21 1979-02-20 Norton Company Method for rapid cooling molten alumina abrasives
US4111707A (en) 1977-12-14 1978-09-05 Kabushiki Kaisha Ohara Kogaku Garasu Seizosho Optical glass
US4182437A (en) 1978-05-08 1980-01-08 Ferro Corporation Unstable devitrifiable glasses and friction materials containing them
US4311489A (en) 1978-08-04 1982-01-19 Norton Company Coated abrasive having brittle agglomerates of abrasive grain
US4238213A (en) 1979-04-05 1980-12-09 Johns-Manville Corporation Method of operation of a refractory fiber production process
US4518397A (en) * 1979-06-29 1985-05-21 Minnesota Mining And Manufacturing Company Articles containing non-fused aluminum oxide-based abrasive mineral
US4314827A (en) 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
FR2460315A1 (fr) 1979-07-05 1981-01-23 Sofrem Produit abrasif, a haute durete, a base d'alumine et d'oxycarbures d'aluminium et procede de preparation
JPS608985B2 (ja) 1979-08-10 1985-03-07 富士写真フイルム株式会社 結晶化ガラスおよびその製造方法
DE3022213C2 (de) 1980-06-13 1987-12-23 Feldmühle AG, 4000 Düsseldorf Keramischer Formkörper mit eutektischen Gefügebestandteilen und Verfahren zu seiner Herstellung
US4316964A (en) * 1980-07-14 1982-02-23 Rockwell International Corporation Al2 O3 /ZrO2 ceramic
US4588419A (en) 1980-10-08 1986-05-13 Carborundum Abrasives Company Resin systems for high energy electron curable resin coated webs
FR2499061A1 (fr) 1981-01-30 1982-08-06 Sofrem Procede et appareillage de solidification et de refroidissement rapides par coulee continue de produits fondus a base d'oxydes metalliques
IT1150318B (it) 1981-03-21 1986-12-10 Bosch Gmbh Robert Pompa di iniezione del carburante per motori endotermici
DE3138137C2 (de) 1981-09-25 1985-05-15 Schott Glaswerke, 6500 Mainz ThO↓2↓ - und Ta↓2↓O↓5↓-freie optische Gläser mit Brechwerten von 1.87 - 1.93 und Abbezahlen von 30 - 35
US4489022A (en) * 1981-11-25 1984-12-18 Glaverbel Forming coherent refractory masses
US4439845A (en) * 1981-12-03 1984-03-27 Westinghouse Electric Corp. Sonar system
US4800685A (en) 1984-05-31 1989-01-31 Minnesota Mining And Manufacturing Company Alumina bonded abrasive for cast iron
CA1181558A (en) 1982-04-08 1985-01-29 Takashi Onoyama Apparatus for producing flake particles
JPS5969443A (ja) 1982-10-14 1984-04-19 Natl Inst For Res In Inorg Mater Y↓2o↓3を含有するアルミノけい酸塩ガラスの製造法
US4543107A (en) * 1984-08-08 1985-09-24 Norton Company Vitrified bonded grinding wheels containing sintered gel aluminous abrasive grits
US4457767A (en) 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
DE3343418A1 (de) 1983-12-01 1985-06-20 Schott Glaswerke, 6500 Mainz Optisches glas mit brechwerten>= 1.90, abbezahlen>= 25 und mit hoher chemischer bestaendigkeit
US5395407B1 (en) * 1984-01-19 1997-08-26 Norton Co Abrasive material and method
US4623364A (en) 1984-03-23 1986-11-18 Norton Company Abrasive material and method for preparing the same
JPS60170565A (ja) 1984-02-10 1985-09-04 Nippon Yakin Kogyo Co Ltd 球状金属粒子の製造方法
CA1266568A (en) * 1984-05-09 1990-03-13 Minnesota Mining And Manufacturing Company Coated abrasive product incorporating selective mineral substitution
CA1266569A (en) * 1984-05-09 1990-03-13 Minnesota Mining And Manufacturing Company Coated abrasive product incorporating selective mineral substitution
JPS61201683A (ja) * 1985-03-06 1986-09-06 オリンパス光学工業株式会社 人工骨用複合材料
CA1254238A (en) * 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4812422A (en) * 1985-06-17 1989-03-14 Matsushita Electric Industrial Co., Ltd. Dielectric paste and method of manufacturing the paste
US4652275A (en) 1985-08-07 1987-03-24 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
US4741743A (en) * 1985-08-19 1988-05-03 Norton Company Grinding wheel with combination of fused and sintered abrasive grits
CA1259080A (en) * 1985-09-06 1989-09-05 Nobuo Kimura High density alumina zirconia ceramics and a process for production thereof
US4772511A (en) * 1985-11-22 1988-09-20 Minnesota Mining And Manufacturing Company Transparent non-vitreous zirconia microspheres
CA1267164A (en) * 1985-12-13 1990-03-27 Harold G. Sowman Microcrystalline transition metal oxide spinel articles
US4770671A (en) * 1985-12-30 1988-09-13 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith
US5057018A (en) * 1986-05-13 1991-10-15 American Dental Association - Health Foundation Microcrystalline inserts for megafilled composite dental restorations
US4829031A (en) * 1986-08-01 1989-05-09 Research Corporation Method of preparing ceramic compositions at lower sintering temperatures
US5045402A (en) * 1986-08-01 1991-09-03 International Business Machines Corporation Zirconia toughening of glass-ceramic materials
SU1455569A1 (ru) * 1986-10-04 1996-07-27 Всесоюзный научно-исследовательский институт технического и специального строительного стекла Способ приготовления шихты
US4799939A (en) * 1987-02-26 1989-01-24 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
JPS63225548A (ja) * 1987-03-13 1988-09-20 Toshiba Ceramics Co Ltd 封着用組成物
AR245484A1 (es) * 1987-05-11 1994-01-31 Norton Co Cuerpo ceramico que comprende microcristales bien intermezclados de alfa alumina y zirconia, y procedimiento para su preparacion.
AU604899B2 (en) * 1987-05-27 1991-01-03 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US5312789A (en) * 1987-05-27 1994-05-17 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US5185299A (en) * 1987-06-05 1993-02-09 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
CH675250A5 (zh) * 1988-06-17 1990-09-14 Lonza Ag
US4898597A (en) * 1988-08-25 1990-02-06 Norton Company Frit bonded abrasive wheel
US5011508A (en) * 1988-10-14 1991-04-30 Minnesota Mining And Manufacturing Company Shelling-resistant abrasive grain, a method of making the same, and abrasive products
US4898587A (en) * 1988-11-15 1990-02-06 Mera Csaba L Intravenous line stabilizing device
US4964883A (en) * 1988-12-12 1990-10-23 Minnesota Mining And Manufacturing Company Ceramic alumina abrasive grains seeded with iron oxide
EP0408771B1 (en) * 1989-02-01 1993-08-04 Showa Denko Kabushiki Kaisha Alumina ceramic, abrasive material, and production thereof
JP2715527B2 (ja) * 1989-03-14 1998-02-18 ソニー株式会社 立体形状形成方法
US5378682A (en) * 1989-03-25 1995-01-03 Hoechst Aktiengesellschaft Dense superconducting bodies with preferred orientation
US5009676A (en) * 1989-04-28 1991-04-23 Norton Company Sintered sol gel alumina abrasive filaments
FR2648806B1 (fr) * 1989-06-21 1993-02-12 Ceram Composites Materiau composite a matrice vitroceramique renforcee et son procede de preparation
GB8918178D0 (en) * 1989-08-09 1989-09-20 Evans Philip A Dental veneers and crowns
JP2639121B2 (ja) * 1989-08-25 1997-08-06 三菱マテリアル株式会社 微細α―アルミナ粉末の製造方法
US4997461A (en) * 1989-09-11 1991-03-05 Norton Company Nitrified bonded sol gel sintered aluminous abrasive bodies
US5037453A (en) 1989-09-13 1991-08-06 Norton Company Abrasive article
US5013696A (en) * 1989-09-25 1991-05-07 General Electric Company Preparation of high uniformity polycrystalline ceramics by presintering, hot isostatic pressing and sintering and the resulting ceramic
US5007943A (en) * 1989-11-03 1991-04-16 Norton Company Sol-gel process alumina abrasive grain blends in coated abrasive material
US5094672A (en) * 1990-01-16 1992-03-10 Cincinnati Milacron Inc. Vitreous bonded sol-gel abrasive grit article
US5122176A (en) * 1990-01-17 1992-06-16 Mcdonnell Douglas Corporation A method of densifying a glass or glass composite structure
KR950001661B1 (ko) * 1990-03-27 1995-02-28 아사히가세이고오교가부시끼가이샤 알루미늄계 산화물, 그의 성형품 및 알루미늄계 산화물의 제조방법
FI84979C (fi) * 1990-04-06 1992-02-25 Ahlstroem Oy Filter foer separering av partiklar fraon en het gasstroem.
US5085671A (en) * 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
US5108477A (en) * 1990-05-21 1992-04-28 Corning Incorporated Method for making a glass article
US5071801A (en) * 1990-07-25 1991-12-10 Uop High density leucite based ceramics from zeolite
US5153070A (en) * 1990-08-01 1992-10-06 Corning Incorporated Coated refractory article and method
JPH04119941A (ja) * 1990-09-06 1992-04-21 Mitsubishi Heavy Ind Ltd 結晶化ガラスの製造方法
JPH06104817B2 (ja) * 1990-10-09 1994-12-21 日本研磨材工業株式会社 アルミナ―ジルコニア系ラップ研磨材とその製造方法及び研磨用組成物
US6123743A (en) * 1991-01-07 2000-09-26 Norton Company Glass-ceramic bonded abrasive tools
AU646120B2 (en) * 1991-01-07 1994-02-10 Norton Company Glass ceramic bonded abrasive articles
US5090968A (en) * 1991-01-08 1992-02-25 Norton Company Process for the manufacture of filamentary abrasive particles
US5378251A (en) * 1991-02-06 1995-01-03 Minnesota Mining And Manufacturing Company Abrasive articles and methods of making and using same
US5641469A (en) * 1991-05-28 1997-06-24 Norton Company Production of alpha alumina
US5203886A (en) * 1991-08-12 1993-04-20 Norton Company High porosity vitrified bonded grinding wheels
US5316812A (en) * 1991-12-20 1994-05-31 Minnesota Mining And Manufacturing Company Coated abrasive backing
ATE176883T1 (de) * 1991-12-20 1999-03-15 Minnesota Mining & Mfg Ueberzogenes schleifband mit endlosem, verbandfreiem traeger und herstellungsverfahren
US5282875A (en) * 1992-03-18 1994-02-01 Cincinnati Milacron Inc. High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
US5203884A (en) * 1992-06-04 1993-04-20 Minnesota Mining And Manufacturing Company Abrasive article having vanadium oxide incorporated therein
IT1262947B (it) * 1992-06-17 1996-07-22 Bayer Italia Spa Granulati, processo per la loro preparazione e loro impiego
JP2711618B2 (ja) * 1992-06-30 1998-02-10 ティーディーケイ株式会社 誘電体組成物、多層配線基板および積層セラミックコンデンサ
US5201916A (en) * 1992-07-23 1993-04-13 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
US5213591A (en) * 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
DE4228355C1 (de) * 1992-08-26 1994-02-24 Didier Werke Ag Feuerfeste Leichtformkörper
BR9307112A (pt) * 1992-09-25 1999-03-30 Minnesota Mining & Mfg Processo para preparação de material de grão abrasivo grão abrasivo e artigo abrasivo
CA2142466A1 (en) * 1992-09-25 1994-04-14 Henry A. Larmie Abrasive grain including rare earth oxide therin
JPH0715095B2 (ja) * 1992-10-23 1995-02-22 日本研磨材工業株式会社 セラミック砥粒及びその製造方法並びに研磨製品
JP3375181B2 (ja) * 1992-11-21 2003-02-10 日本山村硝子株式会社 低温焼成基板用ガラス組成物およびそれから得られる低温焼成基板
DE4241625C1 (de) * 1992-12-10 1994-06-30 Veitsch Radex Ag Verfahren zur Herstellung von sinteraktivem, weitestgehend sphärischem Aluminiumoxid sowie dessen Verwendung
BR9307725A (pt) * 1992-12-23 1999-08-31 Minnesota Mining & Mfg Grão abrasivo, artigo abrasivo, processo para a produção de grão abrasivo e precursor de grão abrasivo
US5273566A (en) * 1993-01-26 1993-12-28 International Environmelting Corporation Process for producing an environmentally acceptable abrasive product from hazardous wastes
CA2115889A1 (en) * 1993-03-18 1994-09-19 David E. Broberg Coated abrasive article having diluent particles and shaped abrasive particles
FI92465C (fi) * 1993-04-14 1994-11-25 Risto Tapani Lehtinen Menetelmä endo-osteaalisten materiaalien käsittelemiseksi
US5441549A (en) * 1993-04-19 1995-08-15 Minnesota Mining And Manufacturing Company Abrasive articles comprising a grinding aid dispersed in a polymeric blend binder
US5605870A (en) * 1993-05-28 1997-02-25 Martinex Science, Inc. Ceramic fibers, and methods, machines and compositions of matter for making same
AU683050B2 (en) * 1993-06-24 1997-10-30 Dentsply Gmbh Dental prosthesis
JP3738454B2 (ja) * 1993-08-11 2006-01-25 住友化学株式会社 複合金属酸化物粉末およびその製造方法
JP3733599B2 (ja) * 1993-08-11 2006-01-11 住友化学株式会社 金属酸化物粉末およびその製造方法
JP3216683B2 (ja) * 1993-10-08 2001-10-09 宇部興産株式会社 セラミックス複合材料
EP0728123B1 (en) 1993-11-12 1999-03-31 Minnesota Mining And Manufacturing Company Abrasive grain and method for making the same
US5484752A (en) * 1993-11-12 1996-01-16 Ube Industries, Ltd. Ceramic composite material
US5593467A (en) * 1993-11-12 1997-01-14 Minnesota Mining And Manufacturing Company Abrasive grain
AU685205B2 (en) * 1993-12-28 1998-01-15 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain
AU1370595A (en) * 1993-12-28 1995-07-17 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain having an as sintered outer surface
CN1090563A (zh) * 1993-12-31 1994-08-10 天津大学 氧化锆基微晶复相陶瓷
US6054093A (en) * 1994-10-19 2000-04-25 Saint Gobain-Norton Industrial Ceramics Corporation Screen printing shaped articles
US5534470A (en) * 1994-10-27 1996-07-09 Corning Incorporated Lithium aluminoborate glass-ceramics
US5643840A (en) * 1994-12-29 1997-07-01 Nippon Electric Glass Co., Ltd. Low temperature sealing composition with reduced SiO2 content but
US5721188A (en) * 1995-01-17 1998-02-24 Engelhard Corporation Thermal spray method for adhering a catalytic material to a metallic substrate
EP0722919B1 (en) * 1995-01-19 1999-08-11 Ube Industries, Ltd. Ceramic composite
EP0812456B1 (en) * 1995-03-02 2000-01-12 Minnesota Mining And Manufacturing Company Method of texturing a substrate using a structured abrasive article
US5689374A (en) * 1995-03-08 1997-11-18 Lightpath Technologies, Inc. GRIN lens and method of manufacturing
US5725162A (en) * 1995-04-05 1998-03-10 Saint Gobain/Norton Industrial Ceramics Corporation Firing sol-gel alumina particles
US5611829A (en) * 1995-06-20 1997-03-18 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain containing silica and iron oxide
US5645619A (en) * 1995-06-20 1997-07-08 Minnesota Mining And Manufacturing Company Method of making alpha alumina-based abrasive grain containing silica and iron oxide
JP3215839B2 (ja) * 1995-08-04 2001-10-09 ユニオン化成株式会社 セラミックス用合成粘土及びその製造方法
US5811361A (en) * 1995-09-28 1998-09-22 Nippon Electric Glass Co., Ltd. Alkali-free glass substrate
WO1997011920A1 (fr) * 1995-09-28 1997-04-03 Nippon Electric Glass Co., Ltd. Substrat de verre exempt d'alcalis
US5693239A (en) * 1995-10-10 1997-12-02 Rodel, Inc. Polishing slurries comprising two abrasive components and methods for their use
CN1201443A (zh) * 1995-11-01 1998-12-09 美国3M公司 用火焰熔融法制备凝颗粒的方法
US6254981B1 (en) * 1995-11-02 2001-07-03 Minnesota Mining & Manufacturing Company Fused glassy particulates obtained by flame fusion
JPH09190626A (ja) * 1995-11-10 1997-07-22 Kao Corp 研磨材組成物、磁気記録媒体用基板及びその製造方法並びに磁気記録媒体
US5903951A (en) * 1995-11-16 1999-05-18 Minnesota Mining And Manufacturing Company Molded brush segment
JP3858293B2 (ja) * 1995-12-11 2006-12-13 日本電気硝子株式会社 無アルカリガラス基板
US5653775A (en) * 1996-01-26 1997-08-05 Minnesota Mining And Manufacturing Company Microwave sintering of sol-gel derived abrasive grain
US5856254A (en) * 1996-02-15 1999-01-05 Vaw Silizium Gmbh Spherical metal-oxide powder particles and process for their manufacture
US5738696A (en) * 1996-07-26 1998-04-14 Norton Company Method for making high permeability grinding wheels
US5682082A (en) * 1996-07-29 1997-10-28 Osram Sylvania Inc. Translucent polycrystalline alumina and method of making same
KR19980019046A (ko) * 1996-08-29 1998-06-05 고사이 아키오 연마용 조성물 및 이의 용도(Abrasive composition and use of the same)
US6214429B1 (en) * 1996-09-04 2001-04-10 Hoya Corporation Disc substrates for information recording discs and magnetic discs
US5648302A (en) * 1996-09-13 1997-07-15 Sandia Corporation Sealing glasses for titanium and titanium alloys
US5747397A (en) * 1996-11-04 1998-05-05 Bay Glass Research Optical glass
US6447937B1 (en) * 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
JP3113604B2 (ja) * 1997-03-25 2000-12-04 株式会社オハラ 負の異常分散性を有する光学ガラス
WO1998047830A1 (en) * 1997-04-18 1998-10-29 Minnesota Mining And Manufacturing Company Transparent beads and their production method
JP3993269B2 (ja) * 1997-04-18 2007-10-17 スリーエム カンパニー 透明ビーズおよびその製造方法
CN1138402C (zh) * 1997-05-22 2004-02-11 冲电气工业株式会社 传真通信装置及其方法
CN1261332A (zh) * 1997-06-23 2000-07-26 康宁股份有限公司 用于光学波导制品的组合物和连续包层纤维长丝的制造方法
US5876470A (en) * 1997-08-01 1999-03-02 Minnesota Mining And Manufacturing Company Abrasive articles comprising a blend of abrasive particles
US5827791A (en) * 1997-09-12 1998-10-27 Titanium Metals Corporation Facecoat ceramic slurry and methods for use thereof in mold fabrication and casting
US5863308A (en) * 1997-10-31 1999-01-26 Norton Company Low temperature bond for abrasive tools
US6251813B1 (en) * 1998-04-28 2001-06-26 Hoya Corporation Optical glass and its use
US6053956A (en) * 1998-05-19 2000-04-25 3M Innovative Properties Company Method for making abrasive grain using impregnation and abrasive articles
US6355536B1 (en) * 1998-06-08 2002-03-12 Micron Technology, Inc. Selective method to form roughened silicon
US5981413A (en) * 1998-07-02 1999-11-09 Howard J. Greenwald Abrasive composition
US6268303B1 (en) * 1998-07-06 2001-07-31 Corning Incorporated Tantalum containing glasses and glass ceramics
JP2000119042A (ja) * 1998-08-10 2000-04-25 Ohara Inc 磁気情報記憶媒体用ガラスセラミック基板
US6395368B1 (en) * 1998-08-10 2002-05-28 Kabushiki Kaisha Ohara Glass-ceramic substrate for a magnetic information storage medium
US6306926B1 (en) * 1998-10-07 2001-10-23 3M Innovative Properties Company Radiopaque cationically polymerizable compositions comprising a radiopacifying filler, and method for polymerizing same
EP0999191A1 (en) * 1998-11-03 2000-05-10 Corning Incorporated Glasses compatible with aluminium
US6355586B1 (en) * 1999-02-25 2002-03-12 Asahi Glass Company, Limited Low melting point glass and glass ceramic composition
US6362119B1 (en) * 1999-06-09 2002-03-26 Asahi Glass Company, Limited Barium borosilicate glass and glass ceramic composition
US6245700B1 (en) * 1999-07-27 2001-06-12 3M Innovative Properties Company Transparent microspheres
JP2001064075A (ja) * 1999-08-30 2001-03-13 Sumitomo Chem Co Ltd 透光性アルミナ焼結体およびその製造方法
US6277161B1 (en) * 1999-09-28 2001-08-21 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
US6287353B1 (en) * 1999-09-28 2001-09-11 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
US6482758B1 (en) 1999-10-14 2002-11-19 Containerless Research, Inc. Single phase rare earth oxide-aluminum oxide glasses
US6592640B1 (en) * 2000-02-02 2003-07-15 3M Innovative Properties Company Fused Al2O3-Y2O3 eutectic abrasive particles, abrasive articles, and methods of making and using the same
US6596041B2 (en) * 2000-02-02 2003-07-22 3M Innovative Properties Company Fused AL2O3-MgO-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
US6451077B1 (en) * 2000-02-02 2002-09-17 3M Innovative Properties Company Fused abrasive particles, abrasive articles, and methods of making and using the same
US6669749B1 (en) * 2000-02-02 2003-12-30 3M Innovative Properties Company Fused abrasive particles, abrasive articles, and methods of making and using the same
WO2001056950A1 (en) * 2000-02-02 2001-08-09 3M Innovative Properties Company Fused abrasive particles, abrasive articles, and methods of making and using the same
US6607570B1 (en) * 2000-02-02 2003-08-19 3M Innovative Properties Company Fused Al2O3-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
US6361414B1 (en) * 2000-06-30 2002-03-26 Lam Research Corporation Apparatus and method for conditioning a fixed abrasive polishing pad in a chemical mechanical planarization process
WO2002008146A1 (en) * 2000-07-19 2002-01-31 3M Innovative Properties Company Fused al2o3-rare earth oxide-zro2 eutectic materials, abrasive particles, abrasive articles, and methods of making and using the same
US6666750B1 (en) * 2000-07-19 2003-12-23 3M Innovative Properties Company Fused AL2O3-rare earth oxide-ZrO2 eutectic abrasive particles, abrasive articles, and methods of making and using the same
EP1177734B1 (en) * 2000-08-03 2005-09-14 CEO Centro di Eccellenza Optronica Protective helmet with an improved rear-view optical system
US6521004B1 (en) * 2000-10-16 2003-02-18 3M Innovative Properties Company Method of making an abrasive agglomerate particle
MXPA03003063A (es) * 2000-10-16 2004-02-12 3M Innovative Properties Co Metodo para elaborar particulas de agregado ceramico.
US6682082B1 (en) * 2001-01-16 2004-01-27 Steven Lloyd Dalen Removable bidirectional skis for trailers and the like
TWI293947B (zh) * 2001-03-26 2008-03-01 Tosoh Corp
US6878456B2 (en) * 2001-12-28 2005-04-12 3M Innovative Properties Co. Polycrystalline translucent alumina-based ceramic material, uses, and methods
US6749653B2 (en) * 2002-02-21 2004-06-15 3M Innovative Properties Company Abrasive particles containing sintered, polycrystalline zirconia
US6833014B2 (en) * 2002-07-26 2004-12-21 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US6984261B2 (en) * 2003-02-05 2006-01-10 3M Innovative Properties Company Use of ceramics in dental and orthodontic applications
US20040148868A1 (en) * 2003-02-05 2004-08-05 3M Innovative Properties Company Methods of making ceramics
CA2483484A1 (en) * 2003-10-02 2005-04-02 Fujiuchi Toshiro Interchangeable eyewear assembly

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282159A (zh) * 2010-12-24 2013-09-04 新东工业株式会社 滚筒研磨用无机介质
CN102358826A (zh) * 2011-08-19 2012-02-22 永州皓志稀土材料有限公司 一种铝掺杂的氧化锆复合抛光粉的制备方法
CN103551971B (zh) * 2013-10-28 2016-04-20 博深工具股份有限公司 陶瓷磨块用陶瓷结合剂
CN103551971A (zh) * 2013-10-28 2014-02-05 博深工具股份有限公司 陶瓷磨块用陶瓷结合剂及其制备方法
CN106132632A (zh) * 2014-04-07 2016-11-16 新东工业株式会社 筒式研磨用介质及其制造方法
CN106029298A (zh) * 2014-04-07 2016-10-12 新东工业株式会社 干式滚筒研磨法以及介质的制造方法
CN104402412B (zh) * 2014-10-27 2016-05-04 合肥市东庐机械制造有限公司 一种切削刀具用抗热震性陶瓷及其制备方法
CN104402420A (zh) * 2014-10-27 2015-03-11 合肥市东庐机械制造有限公司 一种高韧性切削刀具用陶瓷材料及其制备方法
CN104402412A (zh) * 2014-10-27 2015-03-11 合肥市东庐机械制造有限公司 一种切削刀具用抗热震性陶瓷及其制备方法
CN104355615A (zh) * 2014-10-27 2015-02-18 合肥市东庐机械制造有限公司 一种高硬度陶瓷刀具材料及其制备方法
CN104999382A (zh) * 2014-12-16 2015-10-28 铜陵翔宇商贸有限公司 金属、树脂复合型砂轮用结合剂及其制备方法
US9790411B2 (en) 2014-12-30 2017-10-17 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same
US9982175B2 (en) 2014-12-30 2018-05-29 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same
TWI630267B (zh) * 2014-12-30 2018-07-21 聖高拜磨料有限公司 磨料製品及其成形方法
CN107457713A (zh) * 2017-10-19 2017-12-12 柳州凯通新材料科技有限公司 一种金刚石砂轮用材料
CN112218739A (zh) * 2018-05-28 2021-01-12 法商圣高拜欧洲实验及研究中心 喷丸粉末
CN112512750A (zh) * 2018-07-30 2021-03-16 3M创新有限公司 独立式抛光制品
CN110606739A (zh) * 2019-08-21 2019-12-24 嘉兴纳美新材料有限公司 一种氧化锆陶瓷球的配方及其生产工艺

Also Published As

Publication number Publication date
WO2003011784A2 (en) 2003-02-13
JP4532898B2 (ja) 2010-08-25
WO2003011785A2 (en) 2003-02-13
US20030126802A1 (en) 2003-07-10
EP1414767A1 (en) 2004-05-06
CN100360447C (zh) 2008-01-09
US20030115805A1 (en) 2003-06-26
CA2454646A1 (en) 2003-02-13
KR100912306B1 (ko) 2009-08-14
WO2003011783A2 (en) 2003-02-13
KR20040024602A (ko) 2004-03-20
US20030145525A1 (en) 2003-08-07
JP2004536771A (ja) 2004-12-09
JP4567970B2 (ja) 2010-10-27
AU2002321904A1 (en) 2003-02-17
US7501001B2 (en) 2009-03-10
CA2454079A1 (en) 2003-02-13
JP2004536768A (ja) 2004-12-09
WO2003011784A8 (en) 2003-03-20
WO2003011999A2 (en) 2003-02-13
WO2003011786A1 (en) 2003-02-13
JP2004536767A (ja) 2004-12-09
CN1537082A (zh) 2004-10-13
WO2003011999A3 (en) 2003-08-14
CN100453486C (zh) 2009-01-21
CA2454076A1 (en) 2003-02-13
CN1582262A (zh) 2005-02-16
KR20040024603A (ko) 2004-03-20
US20030126804A1 (en) 2003-07-10
CN1537084A (zh) 2004-10-13
US7168267B2 (en) 2007-01-30
EP1440043A1 (en) 2004-07-28
AU2002330959A1 (en) 2003-02-17
EP1414765A2 (en) 2004-05-06
JP5153988B2 (ja) 2013-02-27
US20030110709A1 (en) 2003-06-19
WO2003011783A3 (en) 2003-07-03
US20030110707A1 (en) 2003-06-19
BR0211558A (pt) 2004-07-13
CN1558876A (zh) 2004-12-29
BR0211633A (pt) 2004-11-09
JP4955192B2 (ja) 2012-06-20
KR20040024606A (ko) 2004-03-20
CA2455952A1 (en) 2003-02-13
US7501000B2 (en) 2009-03-10
KR100895911B1 (ko) 2009-05-07
US7101819B2 (en) 2006-09-05
KR20040024605A (ko) 2004-03-20
CN100383068C (zh) 2008-04-23
JP2004536769A (ja) 2004-12-09
CN100364909C (zh) 2008-01-30
AU2002319749A1 (en) 2003-02-17
WO2003011782A2 (en) 2003-02-13
BR0211579A (pt) 2004-07-13
CN1649802B (zh) 2012-02-01
KR100885327B1 (ko) 2009-02-26
JP2004536770A (ja) 2004-12-09
US7510585B2 (en) 2009-03-31
EP1432659A1 (en) 2004-06-30
BR0211580A (pt) 2004-07-13
EP1430002A2 (en) 2004-06-23
US7147544B2 (en) 2006-12-12

Similar Documents

Publication Publication Date Title
CN1649802A (zh) 陶瓷材料、磨粒、磨具及制造和使用方法
CN1993442A (zh) 陶瓷及其制造和使用方法
CN1688735A (zh) 等离子喷涂
CN1745042A (zh) 制造陶瓷颗粒的方法
CN1537085A (zh) Al2O3-稀土元素氧化物-ZrO2/HfO2材料以及其制造和使用方法
CN1906266A (zh) 氧化铝-氧化钇颗粒及其制备方法
CN1608036A (zh) Al2O3-Y2O3-ZrO2/HfO2材料及其制备和使用方法
CN1852870A (zh) 制备包含Al2O3、REO、ZrO2和/或HfO2及Nb2O5、和/或Ta2O5的陶瓷的方法
CN1675136A (zh) 通过熔纺制备无定形陶瓷材料的方法
CN1636046A (zh) 磨粒及其制造和使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120201

Termination date: 20190802