CN1671883B - 铜膜沉积方法 - Google Patents

铜膜沉积方法 Download PDF

Info

Publication number
CN1671883B
CN1671883B CN03817559.2A CN03817559A CN1671883B CN 1671883 B CN1671883 B CN 1671883B CN 03817559 A CN03817559 A CN 03817559A CN 1671883 B CN1671883 B CN 1671883B
Authority
CN
China
Prior art keywords
base material
copper
chamber
reducing gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN03817559.2A
Other languages
English (en)
Other versions
CN1671883A (zh
Inventor
陈玲
约翰·A·诺曼
张梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1671883A publication Critical patent/CN1671883A/zh
Application granted granted Critical
Publication of CN1671883B publication Critical patent/CN1671883B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition

Abstract

本发明记载了一种在基材上形成铜膜的方法,利用循环沉积技术在基材上交替吸附一种含铜前驱物与还原气体来形成铜膜。在循环沉积工艺的一或一个以上的沉积循环周期中,一或一个以上的含铜前驱物时程、还原气体时程以及非脉冲时程可能具有不同的数值。此铜膜形成方法适用于集成电路工艺。在集成电路工艺中,此铜膜可作为内联线金属层。

Description

铜膜沉积方法
技术领域
本发明的实施方式涉及一种铜膜沉积的方法,特别是涉及利用循环沉积技术的铜膜沉积方法。 
背景技术
亚四分之一微米多层金属化法是大规模集成电路和超大规模集成电路半导体器件的多种关键技术之一。此技术的主要核心「多层内联」需要对接触、通孔、线路及在高深宽比(aspect ratio)的孔中形成的其它特征进行填充。可靠地形成这些特征对于大规模和超大规模集成电路的成功及持续致力于增加单个基材与晶粒上的电路密度及品质来说非常重要。 
随着电路密度增加,接触、通孔、线路及其它特征的宽度以及在接触、通孔、线路及其它特征之间的介电材料的宽度可能缩小至小于约250nm(纳米),但由于介电层的厚度大致保持恒定,因而特征的深宽比(即高度除以宽度)增加。许多传统沉积工艺对于填充深宽比超过4∶1,特别是深宽比超过10∶1的结构会有困难。因此目前致力形成特征深宽比达到8∶1或更高的无空隙、纳米级结构。 
此外,随着特征宽度减小,器件电流通常会维持恒定或增加,而使得该特征的电流密度增加。铝因为电阻低、对多数介电材料具有良好附着力、容易构图及能以高纯度获得等特性,使得元素铝及铝合金一度被用来形成半导体器件内的通孔与线路。然而,铝相对于诸如铜的其它更导电金属来说具有较高的电阻,并且铝会发生电迁移而在导体中产生空隙。 
相较于铝,铜及铜合金具有更低的电阻以及明显较高的电迁移抗性。这些特性对于支持在高集成水平时的较高电流密度以及增加器件速度来说很重要。铜也具有良好的导热性。因此铜渐渐成为用来填充半导体基材中的亚四分之一微米、高深宽比的内联线特征的选用金属。 
尽管在半导体器件工艺中使用铜是有利的,但是在深宽比大于8∶1的特征中沉积铜的方法有限。图1A至1B显示在基材1上,在高深宽比的特征6中的材料层沉积的可能结果。高深宽比的特征6可能是任何开口,例如形成于邻接的两个介电层2之间,该介电层2例如接触、通孔或沟槽。如图1A所示,利用传统沉积技术如化学气相沉积法(CVD)、物理气相沉积法(PVD)或电镀法形成的铜层11在特征6的边缘6T的沉积速度较特征6的底部6B或侧壁6S的沉积速度快,而产生了悬凸。悬凸或材料过度沉积有时也称作成冠(crowning)。过多的材料会持续堆积在特征6的上边缘6T,直到开口被沉积的铜层11封闭为止,而产 生内部的空隙14。此外,如图1B所示,当沉积在特征6的开口两侧壁6S的铜层11闭合时会产生接缝8。不论出现空隙或接缝都会造成不可靠的集成电路性能。 
因此,目前需要一种能提供无空隙与无接缝填充的高深宽比结构的铜沉积方法。 
发明内容
本发明描述了一种在基材上形成铜膜的方法。该铜膜是利用循环沉积技术在基材上交替吸附一种含铜前驱物与一还原气体而形成的。 
附图说明
此铜膜形成方法适用于集成电路工艺。在集成电路工艺中,铜膜可以作为内联线金属化。对于内联线金属化工艺中,较佳的工艺步骤包括提供一基材,所述基材上形成有一或多层介电层,介电层中具有内联线图案。该内联线图案包括一阻障层顺势地沉积在内联线图案上方。利用循环沉积技术在基材上交替吸附一种含铜前驱物与一还原气体而以铜金属化填充内联线图案。 
为了更详细地了解及获得本发明的上述特征,参考附图中所示的本发明实施方式,可以得到对上面简述的本发明内容的更详细叙述。 
需注意附图仅表示本发明的较佳实施方式,而并非用以限定本发明,本发明允许其它等效实施方式。 
图1A-1B为利用传统沉积工艺来填充高深宽比特征的可能沉积结果的剖面图。 
图2图示一个可用于本发明实施方式的工艺室的示意剖面图。 
图3图示一个根据本文所述的实施方式利用循环沉积技术来形成铜膜的工艺流程。 
图4图示一个根据本文所述的另一实施方式利用循环沉积技术来形成铜膜的工艺流程。 
图5A-5B为一内联线工艺不同阶段的集成电路示意剖面图。 
附图标记说明 
1  基材                        2  介电层 
4  空隙                        6  特征 
6B 底部                        6S 侧壁 
6T 边缘                        8  接缝 
11 铜层                        200制程室 
210基材                        212基材支撑装置 
214位移装置                    230气体输送系统 
232反应器盖子                  234延伸信道 
236A  气体入口                 236B  气体入口 
238气体来源                    239气体来源 
240气体来源                    242A  电子式控制阀 
242B  电子式控制阀             252A  电子式控制阀 
252B  电子式控制阀             260底面 
278真空帮浦                    279泵送信道 
280微处理器控制器              288未标示 
300循环沉积制程                302步骤 
304步骤                        306步骤 
308步骤                        310步骤 
312步骤                        400铜膜沉积制程 
402步骤                        404步骤 
406步骤                        408步骤 
410步骤                        412步骤 
414步骤                        500基材 
502绝缘层                      504铜接触窗 
504H  开口                     506阻障层 
508铜内联线 
实施方式 
图2图示一个用来执行本发明实施方式的工艺室200的示意剖面图。工艺室200包括一个基材支撑装置212,该基材支撑装置用于在工艺室200中支撑基材210。可利用位移装置214使基材支撑装置212在工艺室200内沿垂直方向移动。基材支撑装置212也可包括真空夹盘(未图示)、静电夹盘(未图示)或夹环(未图示),用来在沉积步骤中使基材210固定在基材支撑装置上。 
根据特定的沉积工艺,可在进行沉积工艺之前或者在沉积期间将基材210加热至指定温度。例如可利用内嵌的加热元件(未图示)来加热基材支撑装置212。亦可使用直流电 源(未图示)向加热元件施加电流,使基材支撑装置212因电阻而发热。基材支撑装置212进而加热基材210。或者,可利用辐射加热装置,如灯(未图示)来加热该基材支撑装置。 
真空泵278与泵送通道279连通,该真空泵278用来抽空工艺室200以及维持工艺室200内部的压力。气体输送系统230安置在工艺室200的上方部分。该气体输送系统230将工艺气体提供至工艺室200中。 
气体输送系统230可包括室盖232。该室盖232包括一个从室盖232中心部位延伸的扩大通道234以及一个底面260,该底面260从扩大通道234延伸至室盖232的边缘部位。室盖232的底面260的尺寸与形状以基本上能覆盖住在基材支撑装置212上的基材210为准。扩大通道234也包括气体入口236A与236B,可透过气体入口236A与236B向扩大通道234提供气体。 
气体入口236A与236B结合至电子式控制阀242A、242B、252A与252B。电子式控制阀242A与242B可分别与工艺气体源238及239耦合,同时电子式控制阀252A与252B则可与气体源240耦合。此处,电子式控制阀242A、242B、252A、252B指任一种能够以短于1-2秒的开-闭阀循环,甚至更短如约0.1秒的开-闭阀循环来将气流快速且精确地提供至工艺室200中的控制阀。可通过微处理器控制器280来进行适当控制与调节气流。 
微处理器控制器280可以是任一种能应用在工业仪器装配中用来控制各种反应室与次处理器的通用计算机处理器(CPU)。并且该计算机可以使用任何适当的内存,例如随机存取内存、只读式内存、软盘、硬盘或其它近端或远程数字储存装置。各种支持电路可与中央处理器耦合以通过传统方法来支持中央处理器。需要的软件程序则可储存于内存中,或利用一个远程的第二中央处理器来执行。 
执行软件程序可使通用计算机处理器转换成控制反应室运作的特定工艺计算机,使得反应室工艺得以执行。例如,软件程序可用来精准地控制电子式控制阀的激活,以执行根据本发明实施方式的工艺步骤。或者,这些软件程序可在如特殊应用集成电路或其它硬设备等的硬件中执行,或是结合其它软件或硬件来使用。 
形成铜层
本发明描述了一种在基材上形成铜层的方法。该铜层是利用循环沉积技术来形成的。 
图3图示一个根据本发明的循环沉积工艺300的实施方式,该实施方式详述利用一恒定载体气流来形成铜层的各步骤。这些步骤可在类似于图2所示的工艺室中执行。 
参考步骤302,在工艺室中提供基材。该基材可为,例如硅基材,该硅基材上形成有一或多个介电层,介电层中定义有内联线图案。该工艺室的条件,如温度与压力等可加以调整,以加强基材表面对工艺气体的吸附能力。通常,对铜层沉积来说,工艺室需将温度维持在约180℃以下,且压力约介于1torr至10torr之间。 
在一个需要使用恒定载体气流的实施方式中,如步骤304所示,将载体气流导入工艺室中。载体气体可选择那些同时可作为清洗气流的气体,用来移除工艺室内的挥发性反应物和/或副产物。载体气体可如氦气(He)或氩气(Ar)、或两者的组合,也可使用其它气体。 
参考步骤306,当载体气体通入工艺室中以后,向载体气流中加入含铜前驱物的脉冲。此处,脉冲指加入到载体气流中的物质剂量。此含铜前驱物的脉冲持续一段既定时间。 
含铜前驱物脉冲的时程视多种因素而有所不同,所述因素例如工艺室的体积容量、与工艺室耦合的真空系统以及所选用的反应物的挥发性与反应活性。举例来说,(1)大体积的工艺室可能需要较长的时程使工艺室的条件(例如,载体清洗气流和温度)稳定,所以需要较长的脉冲时间;(2)工艺气体的流速较低时,亦可能需要较长的时间来稳定反应条件,故也需要较长的脉冲时间;以及(3)较低的反应室压力代表工艺气体更快地自反应室内被抽出,因此也需要较长的脉冲时间。通常,会选择较有利的工艺条件使得一次的含铜前驱物脉冲便能提供足够的前驱物剂量,让基材能够吸附至少单层的含铜前驱物。随后,利用恒定载体气流配合真空系统来移除残留在反应室中的过量含铜前驱物。 
步骤308中,通过恒定载体气流移除工艺室内过剩的含铜前驱物后,在载体气流中加入还原气体的脉冲。还原气体的脉冲亦持续一段既定时间,并且此既定时间可参考上述含铜前驱物来做调整。通常,还原气体脉冲的时间需足够长,以使含铜前驱物吸附至少一层的还原气体。随后,可用恒定载体气流配合真空系统来移除残留在反应室中的过量还原气体。 
步骤304至308叙述铜层沉积工艺中的一个沉积循环的实施方式。针对此实施方式,将载体气体以恒定流速导入工艺室中,并且通过脉冲周期及非脉冲周期交替来调控该载体气流,其中脉冲周期是在含铜前驱物连同载体气流与还原气体连同载体气流之间交替,而非脉冲周期则仅包括载体气流。 
含铜前驱物及还原气体脉冲各自的时程可具有相同的持续时间。即,含铜前驱物脉冲的时程可与还原气体脉冲的时程相同。在此实施方式中,含铜前驱物脉冲的时程(T1)与还原气体脉冲的时程(T2)相等。 
或者,含铜前驱物及还原气体脉冲的时程亦可具有不同的持续时间。即,含铜前驱物脉冲的时程可较还原气体脉冲的时程长或短。在此实施方式中,含铜前驱物脉冲的时程(T1)与还原气体脉冲的时程(T2)不相等。 
此外,介于各含铜前驱物脉冲与还原气体脉冲之间的非脉冲周期则可具有相同的持续时间。即,介于每个含铜前驱物脉冲与每个还原气体脉冲间的非脉冲周期的持续时间是相等的。在此实施方式中,介于含铜前驱物脉冲与还原气体脉冲之间的非脉冲时间(T3)等于介于还原气体脉冲与含铜前驱物脉冲之间的非脉冲时间(T4)。在非脉冲周期内,仅对工艺室提供恒定载体气流。 
或者,介于各含铜前驱物脉冲与还原气体脉冲之间的非脉冲周期可具有不同的持续时间。即,介于每个含铜前驱物脉冲与每个还原气体脉冲间的非脉冲周期的持续时间可比介于每个还原气体脉冲与每个含铜前驱物脉冲间的非脉冲周期的持续时间长或短。在此实施方式中,介于含铜前驱物脉冲与还原气体脉冲之间的非脉冲时间(T3)不同于介于还原气体脉冲与含铜前驱物脉冲之间的非脉冲时间(T4)。在非脉冲周期内,仅对工艺室提供恒定载体气流。 
此外,每个含铜前驱物脉冲的时程、每个还原气体脉冲的时程及每个介于上述两种脉冲之间的非脉冲时程,可具有相同的持续时间。在此实施方式中,对于每个沉积循环来说,该含铜前驱物脉冲的时程(T1)、该还原气体的时程(T2)、介于该含铜前驱物脉冲与该还原气体前驱物脉冲之间的时程(T3)、以及介于该还原气体前驱物脉冲与该含铜前驱物脉冲之间的时程(T4)分别具有相同数值。举例来说,第一沉积循环中(C1)中的含铜前驱物脉冲的时程,与后续每个沉积循环(C2...Cn)中的含铜前驱物脉冲的时程具有相同的持续时间。同样地,第一沉积循环中(C1)中的还原气体脉冲以及介于含铜前驱物脉冲与还原气体脉冲之间的非脉冲周期的时程,亦会分别与后续每个沉积循环(C2...Cn)中的还原气体脉冲时程及介于含铜前驱物脉冲与还原气体脉冲之间的非脉冲周期具有相同的持续时间。 
或者,在铜层的一或多个沉积循环内,含铜前驱物脉冲、还原气体脉冲以及介于上述两种脉冲之间的非脉冲周期中,至少有一种脉冲时程具有不同的持续时间。对此实施方式的循环沉积工艺中的一或多个沉积循环来说,在含铜前驱物脉冲、还原气体脉冲、介于含铜前驱物脉冲与还原气体脉冲之间的非脉冲、以及介于还原气体脉冲与含铜前驱物脉冲之间的非脉冲周期之间,至少有一或多个的脉冲周期具有不同的数值。例如,第一沉积循环(C1)的含铜前驱物脉冲的时程(T1),可长于或短于后续沉积循环(C2...Cn)中的含铜前驱物脉冲的时程(T1)。同样地,第一沉积循环中(C1)中的还原气体脉冲时程及介于含铜前驱物脉冲与还原气体脉冲之间的非脉冲周期的时程,亦可分别与后续每个沉积循环(C2...Cn)中相对应的还原气体脉冲时程及介于含铜前驱物脉冲与还原气体脉冲之间的非脉冲周期具有相同或不同的持续时间。 
参考步骤310,完成每个沉积循环(步骤204至308)后,将在基材上产生具有一厚度的铜层。视特定器件需求,可能需后续沉积循环以达到想要的铜层厚度。因此,可反复执行步骤304至308直到达到想要的铜层厚度为止。随后,当达到想要的铜层厚度时,可根据步骤212所示停止执行工艺。 
在图4叙述的变化的工艺步骤顺序中,该铜层沉积循环包括分开的含铜前驱物脉冲、还原气体脉冲及清洗气流脉冲。在此实施方式中,铜层沉积工艺400包括下列步骤:向工艺反应室提供一基材并调整该工艺室条件(步骤402),向该工艺室通过一道第一清洗气流脉冲(步骤404),向该工艺室提供一含铜前驱物脉冲(步骤406),向该工艺室提供一 道第二清洗气流脉冲(步骤408),向该工艺室提供一清洗气流脉冲(步骤410),以及重复步骤404至410,或是根据步骤412来判断铜层是否达到想要的厚度,以决定是否停止该沉积工艺(步骤414)。 
如同上述根据图3所叙述内容,含铜前驱物脉冲的时程、还原气体脉冲的时程、及清洗气流各自的时程可相同或不同。或者,在铜层沉积工艺的一或多个沉积循环中,含铜前驱物脉冲、还原气体脉冲、及清洗气流中一或多个的相对应时程可以具有不同的持续时间。 
在图3至图4中,铜层沉积循环先提供一个含铜前驱物脉冲,随后是一个还原气体脉冲。或者,铜层沉积循环可先执行一个还原气体脉冲后再执行一个含铜前驱物脉冲。 
含铜前驱物可包括有机金属铜配合物,例如铜+1(β-二酮酸)硅烷基烯烃配合物,包括铜 -1六氟乙酰丙酮酸三甲基乙烯基硅烷(Cu+1(hafc)(TMVS))、铜+2六氟乙酰丙酮酸(Cu+2(hafc)2)、铜+2二乙酰丙酮酸(Cu+2(acac)2)及2CuMe2NSiMe2CH2CH2SiNMe2、或其它含铜配合物。适合的还原气体可包括如硅烷、乙硅烷、二甲基硅烷、甲基硅烷、乙基硅烷、硼烷、乙硼烷、丙硼烷、丁硼烷、戊硼烷、己硼烷、庚硼烷、辛硼烷、壬硼烷及十硼烷,或其它气体。 
一个沉积铜层的范例工艺依序包括提供铜+1六氟乙酰丙酮酸三甲基乙烯基硅烷(Cu+1(hafc)(TMVS))的脉冲及乙硼烷的脉冲。可利用适当的流量控制阀,如电子式控制阀以约介于0.01sccm(标准立方厘米/分钟)至5sccm的流速来供应铜+1六氟乙酰丙酮酸三甲基乙烯基硅烷(Cu+1(hafc)(TMVS)),优选流速范围介于约0.1sccm至1sccm,并使此铜+1六氟乙酰丙酮酸三甲基乙烯基硅烷的脉冲持续5秒钟或更短时间,以约1秒或更短为佳。同样利用适当的流量控制阀,如电子式流量控制阀以约介于1sccm至80sccm的流速来供应乙硼烷,优选流速范围介于约10sccm至50sccm,并使乙硼烷的脉冲持续10秒或更短的时间,以约2秒或更短为佳。基材维持低于180℃的温度,最好约保持在120℃。而反应室压力范围约介于0.1torr至10torr之间,更佳为保持在约1torr的压力。 
另一个沉积铜层的范例工艺依序包括提供铜+1六氟乙酰丙酮酸三甲基乙烯基硅烷(Cu+1(hafc)(TMVS))的脉冲及硅烷的脉冲。可利用适当的流量控制阀,如电子式控制阀以约介于0.1sccm至5sccm的流速来供应铜+1六氟乙酰丙酮酸三甲基乙烯基硅烷(Cu+1(hafc)(TMVS)),优选流速范围介于约0.1sccm至1sccm,并使此铜+1六氟乙酰丙酮酸三甲基乙烯基硅烷的脉冲持续5秒钟或更短时间,以约1秒或更短为佳。利用适当的流量控制阀,如电子式流量控制阀以约介于1sccm至100sccm的流速来供应硅烷,优选流速范围介于约10sccm至50sccm,并使乙硼烷的脉冲持续10秒或更短的时间,以约2秒或更短为佳。基材维持低于180℃的温度,最好约保持在120℃。而反应室压力范围约介于0.1torr至10torr之间,更佳为保持在约1torr的压力。 
形成铜内联线
图5A至图5B图示根据本发明铜层形成方法的铜内联线制造步骤不同阶段的剖面图。图5示范一个基材500的剖面图,该基材上形成有金属接触504及介电层502。基材500可包括半导体基材,如硅、锗或砷化镓。介电层502可包括绝缘材料,如氧化硅或氮化硅,或其它绝缘材料。金属接触504可包括如铜接触或其它接触。可利用传统平版印刷和蚀刻技术在介电层502中产生开口504H。 
在介电层502中的开口504H上方形成阻障层506。阻障层506可能包括一或多种含耐火金属层,如钛、氮化钛、钽、氮化钽、钨、氮化钨、氮硅化钽及氮硅化钛,或其它材料。并且可利用适当的沉积工艺来形成阻障层506。举例来说,可使用四氯化钛(TiCl4)与氨(NH3)作为反应物并利用化学气相沉积法来产生氮化钛(TiN)。可利用热分解四(二甲基胺基)钛(tetrakis(dimethylamino)titanium,TDMAT)来形成氮化钛层,随后使氮化钛层暴露于硅烷中即可形成钛硅氮化物(TiSiN)。 
随后,参考图5B,用铜金属层填满开口504H而完成铜内联线。该铜金属层是参考图3至图4、使用根据本发明上述的循环沉积技术来形成铜金属层。 
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明和精神和范围内,可作各种更动与润饰,因此本发明的保护范围以权利要求的界定为准。 

Claims (31)

1.一种于工艺室内在基材上沉积铜层的方法,其中该基材上包括介电层和阻障层,介电层形成于该基材上,阻障层形成于该介电层中的开口上,所述方法包括:
将该基材暴露于含铜前驱物以在该基材上形成该含铜前驱物的单层,其中所述含铜前驱物包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I);
利用清洗气体清洗所述工艺室;
将所述基材暴露于还原气体以在该基材上形成铜层,所述还原气体包含乙硼烷;以及
利用所述清洗气体清洗所述工艺室。
2.根据权利要求1所述的方法,其中,所述阻障层包含选自由钽、钛、钨组成组的元素及所述元素的组合。
3.根据权利要求2所述的方法,其中,所述阻障层包含选自由钽、氮化钽、氮硅化钽、钛、氮化钛、氮硅化钛和钨组成组的材料。
4.根据权利要求1所述的方法,其中,在循环沉积工艺期间将所述基材维持低于180℃的温度。
5.根据权利要求4所述的方法,其中,所述温度为120℃。
6.根据权利要求1所述的方法,其中,所述阻障层包含钽或钛并且在循环沉积工艺期间将所述基材维持低于180℃的温度。
7.根据权利要求6所述的方法,其中,所述温度是120℃。
8.一种于工艺室内在基材上沉积铜层的方法,其中该基材包括介电层和阻障层,介电层形成于该基材上,阻障层形成于该介电层中的开口上,所述方法包括:
通过包括多个工艺循环的循环沉积工艺在所述基材上形成该铜层,其中每个工艺循环包含将所述基材顺序地暴露于含铜前驱物、清洗气体、还原气体和该清洗气体,其中:
所述含铜前驱物包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I);和
所述还原气体包含乙硼烷。
9.根据权利要求8所述的方法,其中,所述阻障层包含选自由钽、钛、钨组成组的元素及所述元素的组合。
10.根据权利要求9所述的方法,其中,所述阻障层包含选自由钽、氮化钽、氮硅化钽、钛、氮化钛、氮硅化钛和钨组成组的材料。
11.根据权利要求8所述的方法,其中,在循环沉积工艺期间将所述基材维持低于180℃的温度。
12.根据权利要求11所述的方法,其中,所述温度为120℃。
13.根据权利要求8所述的方法,其中,所述阻障层包含钽或钛并且在循环沉积工艺期间将所述基材维持低于180℃的温度。
14.根据权利要求13所述的方法,其中,所述温度是120℃。
15.一种在基材上沉积铜层的方法,该方法包括:
在包括多个工艺循环的循环沉积工艺期间,于工艺室内在所述基材上沉积所述铜层,其中每个工艺循环包括在所述工艺室内建立载气流并以暴露于含铜前驱物和还原气体其中之一的交替周期来调整所述载气流,其中:
在第一暴露周期期间将所述基材暴露于包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I)的所述含铜前驱物;以及
在第二暴露周期期间将所述基材暴露于还原气体,该还原气体包括乙硼烷。
16.根据权利要求15所述的方法,其中,所述铜层沉积在设置于所述基材上的阻障层上。
17.根据权利要求16所述的方法,其中,所述阻障层包含选自由钽、钛、钨组成组的元素及所述元素的组合。
18.根据权利要求17所述的方法,其中,所述阻障层包含选自由钽、氮化钽、氮硅化钽、钛、氮化钛、氮硅化钛和钨组成组的材料。
19.根据权利要求15所述的方法,其中,在所述循环沉积工艺期间将所述基材维持低于180℃的温度。
20.根据权利要求19所述的方法,其中,所述温度为120℃。
21.根据权利要求17所述的方法,其中,所述阻障层包含钽或钛,并且在所述循环沉积工艺期间将所述基材维持低于180℃的温度。
22.一种于工艺室内在基材上沉积铜层的方法,该方法包括:
将所述基材暴露于含铜前驱物持续第一时间周期,其中所述含铜前驱物包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I);
利用清洗气体清洗所述工艺室;
将所述基材暴露于还原气体持续第二时间周期,其中所述还原气体包含乙硼烷;以及
利用所述清洗气体清洗所述工艺室。
23.根据权利要求22所述的方法,其中,所述第一时间周期持续5秒或更短。
24.根据权利要求23所述的方法,其中,所述第一时间周期持续1秒或更短。
25.根据权利要求23所述的方法,其中,所述第二时间内周期持续10秒或更短。
26.根据权利要求24所述的方法,其中,所述第二时间内周期持续2秒或更短。
27.一种在基材上沉积铜层的方法,该方法包括:
通过包括多个工艺循环的循环沉积工艺,于工艺室中在所述基材上形成所述铜层,其中每个工艺循环包括将所述基材顺序地暴露于含铜前驱物、清洗气体、还原气体和该清洗气体,其中所述含铜前驱物包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I)并且所述还原气体包含乙硼烷。
28.一种于工艺室内在基材上沉积铜层的方法,其中该基材包括介电层和阻障层,介电层形成于该基材上,阻障层形成于该介电层中的开口上,所述方法包括:
将所述基材放置在工艺室内,其中该基材上的所述阻障层包含钽或钛;以及
通过包括多个工艺循环的循环沉积工艺在所述基材上形成所述铜层,其中每个工艺循环包含将所述基材顺序地暴露于含铜前驱物、清洗气体、还原气体和该清洗气体,其中所述含铜前驱物包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I)并且所述还原气体包含乙硼烷。
29.一种于工艺室内在基材上沉积铜层的方法,其中该基材包括介电层和阻障层,介电层形成于该基材上,阻障层形成于该介电层中的开口上,所述方法包括:
将所述基材放置在工艺室内,其中该基材上的所述阻障层包含钽或钛;
将所述基材维持低于180℃的温度;以及
通过包括多个工艺循环的循环沉积工艺在所述基材上形成所述铜层,其中每个工艺循环包含将所述基材顺序地暴露于含铜前驱物、清洗气体、还原气体和该清洗气体,其中所述含铜前驱物包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I)并且所述还原气体包含乙硼烷。
30.一种于工艺室内在基材上沉积铜层的方法,该方法包括:
将所述基材维持低于180℃的温度;
将该基材暴露于含铜前驱物以在该基材上形成该含铜前驱物的单层,其中所述含铜前驱物包含(三甲基乙烯基硅烷)(六氟乙酰丙酮酸)化铜(I);
利用清洗气体清洗所述工艺室;
将所述基材暴露于还原气体以在该基材上形成铜层,其中所述还原气体包含乙硼烷;以及
利用所述清洗气体清洗所述工艺室。
31.根据权利要求30所述的方法,其中,所述温度为120℃。
CN03817559.2A 2002-06-04 2003-06-02 铜膜沉积方法 Expired - Fee Related CN1671883B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US38571502P 2002-06-04 2002-06-04
US60/385,715 2002-06-04
US10/441,242 US20040009665A1 (en) 2002-06-04 2003-05-19 Deposition of copper films
US10/441,242 2003-05-19
PCT/US2003/017367 WO2003102266A1 (en) 2002-06-04 2003-06-02 Deposition of copper films

Publications (2)

Publication Number Publication Date
CN1671883A CN1671883A (zh) 2005-09-21
CN1671883B true CN1671883B (zh) 2011-12-21

Family

ID=29715381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03817559.2A Expired - Fee Related CN1671883B (zh) 2002-06-04 2003-06-02 铜膜沉积方法

Country Status (4)

Country Link
US (1) US20040009665A1 (zh)
JP (1) JP2005528808A (zh)
CN (1) CN1671883B (zh)
WO (1) WO2003102266A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049226B2 (en) * 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
US7204886B2 (en) * 2002-11-14 2007-04-17 Applied Materials, Inc. Apparatus and method for hybrid chemical processing
US7780785B2 (en) * 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US6911391B2 (en) * 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6972267B2 (en) 2002-03-04 2005-12-06 Applied Materials, Inc. Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor
JP4601975B2 (ja) * 2004-03-01 2010-12-22 東京エレクトロン株式会社 成膜方法
US7604840B2 (en) * 2004-08-16 2009-10-20 E. I. Du Pont De Nemours And Company Atomic layer deposition of copper using surface-activation agents
CN100537837C (zh) * 2004-09-27 2009-09-09 株式会社爱发科 含铜膜形成方法
JP4934595B2 (ja) * 2005-01-18 2012-05-16 エーエスエム アメリカ インコーポレイテッド 薄膜成長用反応装置
JP5151082B2 (ja) * 2006-07-20 2013-02-27 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
WO2009072187A1 (ja) * 2007-12-04 2009-06-11 Full-Tech Co., Ltd. 加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置
US20120164449A1 (en) * 2010-12-23 2012-06-28 Stephen Woodrow Foss Fibers with improving anti-microbial performance
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10872803B2 (en) 2017-11-03 2020-12-22 Asm Ip Holding B.V. Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
US10872804B2 (en) 2017-11-03 2020-12-22 Asm Ip Holding B.V. Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
CN111936664A (zh) 2018-03-19 2020-11-13 应用材料公司 在航空航天部件上沉积涂层的方法
EP3784815A4 (en) 2018-04-27 2021-11-03 Applied Materials, Inc. PROTECTION OF COMPONENTS AGAINST CORROSION
US11009339B2 (en) 2018-08-23 2021-05-18 Applied Materials, Inc. Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries
EP3959356A4 (en) 2019-04-26 2023-01-18 Applied Materials, Inc. METHODS FOR PROTECTING AEROSPACE ELEMENTS AGAINST CORROSION AND OXIDATION
US11794382B2 (en) 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11466364B2 (en) 2019-09-06 2022-10-11 Applied Materials, Inc. Methods for forming protective coatings containing crystallized aluminum oxide
US11519066B2 (en) 2020-05-21 2022-12-06 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same
EP4175772A1 (en) 2020-07-03 2023-05-10 Applied Materials, Inc. Methods for refurbishing aerospace components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1142894A2 (en) * 2000-04-03 2001-10-10 Air Products And Chemicals, Inc. Volatile precursors for deposition of metals and metal-containing films

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430520A (en) * 1945-03-06 1947-11-11 Glass Science Inc Deposition of metal on glass from metal formates
US3356527A (en) * 1964-04-23 1967-12-05 Ross W Moshier Vapor-plating metals from fluorocarbon keto metal compounds
US3482740A (en) * 1968-01-08 1969-12-09 Frank M Evans Cleaning and waxing appliances
US3594216A (en) * 1969-06-19 1971-07-20 Westinghouse Electric Corp Vapor phase deposition of metal from a metal-organic beta-ketoamine chelate
JPH01313927A (ja) * 1988-06-14 1989-12-19 Fujitsu Ltd 化合物半導体結晶成長方法
US5273775A (en) * 1990-09-12 1993-12-28 Air Products And Chemicals, Inc. Process for selectively depositing copper aluminum alloy onto a substrate
US5098516A (en) * 1990-12-31 1992-03-24 Air Products And Chemicals, Inc. Processes for the chemical vapor deposition of copper and etching of copper
US5085731A (en) * 1991-02-04 1992-02-04 Air Products And Chemicals, Inc. Volatile liquid precursors for the chemical vapor deposition of copper
US5354712A (en) * 1992-11-12 1994-10-11 Northern Telecom Limited Method for forming interconnect structures for integrated circuits
US5322712A (en) * 1993-05-18 1994-06-21 Air Products And Chemicals, Inc. Process for improved quality of CVD copper films
US5464666A (en) * 1995-02-06 1995-11-07 Air Products And Chemicals, Inc. Process for chemical vapor codeposition of copper and aluminum alloys
US5736192A (en) * 1995-07-05 1998-04-07 Fujitsu Limited Embedded electroconductive layer and method for formation thereof
US6891269B1 (en) * 1995-07-05 2005-05-10 Fujitsu Limited Embedded electroconductive layer structure
US6342277B1 (en) * 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5916365A (en) * 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
JPH10189493A (ja) * 1996-10-29 1998-07-21 Nippon Steel Corp 金属薄膜の形成方法
KR100261017B1 (ko) * 1997-08-19 2000-08-01 윤종용 반도체 장치의 금속 배선층을 형성하는 방법
KR100287180B1 (ko) * 1998-09-17 2001-04-16 윤종용 계면 조절층을 이용하여 금속 배선층을 형성하는 반도체 소자의 제조 방법
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6305314B1 (en) * 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6613383B1 (en) * 1999-06-21 2003-09-02 Regents Of The University Of Colorado Atomic layer controlled deposition on particle surfaces
US6391785B1 (en) * 1999-08-24 2002-05-21 Interuniversitair Microelektronica Centrum (Imec) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
US6475276B1 (en) * 1999-10-15 2002-11-05 Asm Microchemistry Oy Production of elemental thin films using a boron-containing reducing agent
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
FI20000099A0 (fi) * 2000-01-18 2000-01-18 Asm Microchemistry Ltd Menetelmä metalliohutkalvojen kasvattamiseksi
AU2001245388A1 (en) * 2000-03-07 2001-09-17 Asm America, Inc. Graded thin films
US6759325B2 (en) * 2000-05-15 2004-07-06 Asm Microchemistry Oy Sealing porous structures
US6679951B2 (en) * 2000-05-15 2004-01-20 Asm Intenational N.V. Metal anneal with oxidation prevention
TW508658B (en) * 2000-05-15 2002-11-01 Asm Microchemistry Oy Process for producing integrated circuits
US6482733B2 (en) * 2000-05-15 2002-11-19 Asm Microchemistry Oy Protective layers prior to alternating layer deposition
US6878628B2 (en) * 2000-05-15 2005-04-12 Asm International Nv In situ reduction of copper oxide prior to silicon carbide deposition
AU2002225761A1 (en) * 2000-11-30 2002-06-11 Asm America, Inc. Thin films for magnetic devices
KR100386034B1 (ko) * 2000-12-06 2003-06-02 에이에스엠 마이크로케미스트리 리미티드 확산 방지막의 결정립계를 금속산화물로 충진한 구리 배선구조의 반도체 소자 제조 방법
US6428859B1 (en) * 2000-12-06 2002-08-06 Angstron Systems, Inc. Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US6949450B2 (en) * 2000-12-06 2005-09-27 Novellus Systems, Inc. Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber
US20020197402A1 (en) * 2000-12-06 2002-12-26 Chiang Tony P. System for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US20020104481A1 (en) * 2000-12-06 2002-08-08 Chiang Tony P. System and method for modulated ion-induced atomic layer deposition (MII-ALD)
US20020076481A1 (en) * 2000-12-15 2002-06-20 Chiang Tony P. Chamber pressure state-based control for a reactor
US20020073924A1 (en) * 2000-12-15 2002-06-20 Chiang Tony P. Gas introduction system for a reactor
US6630201B2 (en) * 2001-04-05 2003-10-07 Angstron Systems, Inc. Adsorption process for atomic layer deposition
US20020076507A1 (en) * 2000-12-15 2002-06-20 Chiang Tony P. Process sequence for atomic layer deposition
US20020127336A1 (en) * 2001-01-16 2002-09-12 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US6811814B2 (en) * 2001-01-16 2004-11-02 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US6464779B1 (en) * 2001-01-19 2002-10-15 Novellus Systems, Inc. Copper atomic layer chemical vapor desposition
US7348042B2 (en) * 2001-03-19 2008-03-25 Novellus Systems, Inc. Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US20020144655A1 (en) * 2001-04-05 2002-10-10 Chiang Tony P. Gas valve system for a reactor
US20020144657A1 (en) * 2001-04-05 2002-10-10 Chiang Tony P. ALD reactor employing electrostatic chuck
US20030042630A1 (en) * 2001-09-05 2003-03-06 Babcoke Jason E. Bubbler for gas delivery
WO2003025243A2 (en) * 2001-09-14 2003-03-27 Asm International N.V. Metal nitride deposition by ald using gettering reactant
US6657406B2 (en) * 2001-09-19 2003-12-02 Delphi Technologies, Inc. Soft start control method for a motor-driven actuator
US20030064153A1 (en) * 2001-10-01 2003-04-03 Rajendra Solanki Method of depositing a metallic film on a substrate
US6960537B2 (en) * 2001-10-02 2005-11-01 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
US6620956B2 (en) * 2001-11-16 2003-09-16 Applied Materials, Inc. Nitrogen analogs of copper II β-diketonates as source reagents for semiconductor processing
US6821891B2 (en) * 2001-11-16 2004-11-23 Applied Materials, Inc. Atomic layer deposition of copper using a reducing gas and non-fluorinated copper precursors
JP2005520053A (ja) * 2002-01-18 2005-07-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 原子層堆積によって銅薄膜を堆積させるための揮発性銅(ii)錯体
US6824816B2 (en) * 2002-01-29 2004-11-30 Asm International N.V. Process for producing metal thin films by ALD
TWI230544B (en) * 2002-07-25 2005-04-01 Veutron Corp Light source control method and apparatus of image scanner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1142894A2 (en) * 2000-04-03 2001-10-10 Air Products And Chemicals, Inc. Volatile precursors for deposition of metals and metal-containing films

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Atomic layer deposition of copper seed layers.electrochemical and solid-state letters3 10.2000,3(10),479-480.
Atomic layer deposition of copper seed layers.electrochemical and solid-state letters3 10.2000,3(10),479-480. *
Martensson p et al.Atomic layer epitaxy of copper.growth andselectivityinthecu(II)-2,2,6,6-tetramethyl-3,5-heptanedionate/H2 process.journal of the electrochemical society145 8.1998,145(8),2926-2931.
Martensson p et al.Atomic layer epitaxy of copper.growth andselectivityinthecu(II)-2,2,6,6-tetramethyl-3,5-heptanedionate/H2 process.journal of the electrochemical society145 8.1998,145(8),2926-2931. *

Also Published As

Publication number Publication date
JP2005528808A (ja) 2005-09-22
CN1671883A (zh) 2005-09-21
US20040009665A1 (en) 2004-01-15
WO2003102266A1 (en) 2003-12-11

Similar Documents

Publication Publication Date Title
CN1671883B (zh) 铜膜沉积方法
CN105453230B (zh) 用六氟化钨(wf6)回蚀进行钨沉积
JP6980020B2 (ja) ルテニウムドーピングにより強化される耐コバルト凝集性及び間隙充填作用
US7745333B2 (en) Methods for depositing tungsten layers employing atomic layer deposition techniques
CN102265383B (zh) 用于沉积具有降低电阻率及改良表面形态的钨膜的方法
US7262133B2 (en) Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7494908B2 (en) Apparatus for integration of barrier layer and seed layer
US6827978B2 (en) Deposition of tungsten films
US7799674B2 (en) Ruthenium alloy film for copper interconnects
US8513116B2 (en) Atomic layer deposition of tungsten materials
US7244683B2 (en) Integration of ALD/CVD barriers with porous low k materials
TWI385730B (zh) 銅金屬化用之具有變化組成的阻障層之製造方法
KR20230026514A (ko) 루테늄 라이너로 구리 전자 이동을 개선하기 위한 도핑된 선택적 금속 캡
US11282745B2 (en) Methods for filling features with ruthenium
US20060177601A1 (en) Method of forming a ruthenium thin film using a plasma enhanced atomic layer deposition apparatus and the method thereof
US20030082307A1 (en) Integration of ALD tantalum nitride and alpha-phase tantalum for copper metallization application
US20030203616A1 (en) Atomic layer deposition of tungsten barrier layers using tungsten carbonyls and boranes for copper metallization
US20080223287A1 (en) Plasma enhanced ALD process for copper alloy seed layers
WO2003038892A2 (en) Atomic-layer-deposited tantalum nitride and alpha-phase tantalum as barrier layers for copper metallization
TW492173B (en) Method of forming metal wiring in a semiconductor device
JP2000299296A (ja) 半導体素子の銅金属配線形成方法
WO2000065126A1 (en) Cvd tantalum nitride plug formation from tantalum halide precursors
TW202309325A (zh) 催化劑增強之鉬沉積與間隙填充
KR20050016511A (ko) 구리 필름의 증착

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
DD01 Delivery of document by public notice

Addressee: Liang Hui Xu Jinguo

Document name: Notice of examination of N notice

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: Applied Materials Inc.

Address before: American California

Patentee before: Applied Materials Inc.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111221

Termination date: 20140602