CN1891859A - 氮氧化硅膜的形成方法、形成装置以及程序 - Google Patents

氮氧化硅膜的形成方法、形成装置以及程序 Download PDF

Info

Publication number
CN1891859A
CN1891859A CNA2006101005718A CN200610100571A CN1891859A CN 1891859 A CN1891859 A CN 1891859A CN A2006101005718 A CNA2006101005718 A CN A2006101005718A CN 200610100571 A CN200610100571 A CN 200610100571A CN 1891859 A CN1891859 A CN 1891859A
Authority
CN
China
Prior art keywords
gas
field
supply
gases
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101005718A
Other languages
English (en)
Other versions
CN1891859B (zh
Inventor
松浦广行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN1891859A publication Critical patent/CN1891859A/zh
Application granted granted Critical
Publication of CN1891859B publication Critical patent/CN1891859B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour

Abstract

本发明提供一种成膜方法,在能够选择性地供给含有氯硅烷类气体的第一处理气体、含有氧化气体的第二处理气体和含有氮化气体的第三处理气体的处理区域内,利用CVD在被处理基板上形成氮氧化硅膜。该成膜方法具有相互交替的第一至第六工序。在第一、第三和第五工序中,分别供给第一、第二和第三处理气体,停止其他两种处理气体的供给。在第二、第四和第六工序中,停止第一、第二和第三处理气体的供给。所述第三和第五工序具有激励期间,所述第二和第三处理气体在由激励机构所激励的状态下被供给至所述处理区域。

Description

氮氧化硅膜的形成方法、形成装置以及程序
技术领域
本发明涉及在半导体晶片等被处理基板上形成氮氧化硅膜的半导体处理用的成膜方法和装置。其中,所谓的半导体处理是指,为了在晶片或者LCD(Liquid Crystal Display:液晶显示器)或者FPD(Flat PanelDisplay:平板显示器)用的玻璃基板等被处理基板上,通过以规定的图案形成半导体层、绝缘层、导电层等,在该被处理基板上制造包括半导体器件、连接在半导体器件上的配线、电极等结构物,而实施的各种处理。
背景技术
在制造构成半导体集成电路的半导体器件中,在被处理基板上,例如在半导体晶片上,实施成膜、蚀刻、氧化、扩散、改性、退火、自然氧化膜的去除等各种处理。例如,在半导体晶片上形成硅氧化膜的情况下,在立式(所谓批量式)热处理装置中,可以使用四乙氧基硅烷(tetraethoxysilane:TEOS:Si(OC2H5)4),进行成膜处理之一的CVD(化学气相沉积:Chemical Vapor Deposition)处理。在该处理中,首先,将半导体晶片从晶片盒转移至立式的晶舟(wafer boat)上,多段地被支撑。在晶片盒中,例如可收容25块晶片,在晶舟上能够载置30~150块晶片。然后,从处理容器的下方将晶舟装载在其内部,并使处理容器在气密状态下关闭。然后,在控制处理气体的流量、处理压力、处理温度等各种处理条件的状态下,进行规定的热处理。
近年来,随着对半导体集成电路的集成化和微细化要求的进一步提高,而希望减少半导体器件制造工序中的热履历,以提高器件的特性。在立式处理装置中,也希望对按照这样要求的半导体处理方法进行改进。例如,在CVD处理中,采用的是间断地供给原料气体,并每一层或者每几层地重复形成原子或者分子级别厚度的层的成膜方法。这种成膜方法一般被称为ALD(Atomic Layer Deposition:原子层沉积),因此,即使不将晶片暴露在那种程度的高温下,也可以进行所要求目的的处理。此外,利用ALD进行的成膜因其阶梯覆盖(stepcoverage)良好,所以随着器件的微细化,适合添埋在成为狭窄的半导体器件内的凹部,例如添埋在门极间的间隙。
例如,在日本特开2004-281853号公报(专利文献1)中揭示有一种使用ALD法在300℃~600℃的低温条件下形成硅氮化膜的方法。但是,对于氮氧化硅膜来说,并没有揭示出使用ALD法的适当的成膜方法。
发明内容
本发明的目的在于供给一种形成氮氧化硅膜的方法和装置,能够在低温条件下形成具有良好阶梯覆盖的氮氧化硅膜。
本发明的第一方面是一种半导体处理用的成膜方法,其是在能够选择性地供给含有氯硅烷类气体的第一处理气体、含有氧化气体的第二处理气体和含有氮化气体的第三处理气体的处理区域内,利用CVD在被处理基板上形成氮氧化硅膜的半导体处理用的成膜方法,其中,按照下述顺序交替地包括:
第一工序,对上述处理区域供给上述第一处理气体,另一方面,停止对上述处理区域供给上述第二以及第三处理气体;
第二工序,停止对上述处理区域供给第一、第二以及第三处理气体;
第三工序,对上述处理区域供给上述第二处理气体,另一方面,停止对上述处理区域供给上述第一以及第三处理气体,其中,上述第三工序具有激励期间,在上述激励期间内,上述第二处理气体在由激励机构所激励的状态下被供给至上述处理区域;
第四工序,停止对上述处理区域供给第一、第二以及第三处理气体;
第五工序,对上述处理区域供给上述第三处理气体,另一方面,停止对上述处理区域供给上述第一以及第二处理气体,其中,上述第五工序具有激励期间,在上述激励期间内,上述第三处理气体在由激励机构所激励的状态下被供给至上述处理区域;以及
第六工序,停止对上述处理区域供给第一、第二以及第三处理气体。
本发明的第二方面是一种半导体处理用的成膜装置,其包括:
处理容器,具有收纳被处理基板的处理区域;
支撑部件,在上述处理区域内支撑上述被处理基板;
加热器,对上述处理区域内的上述被处理基板进行加热;
排气系统,对上述处理区域内进行排气;
第一处理气体供给系统,将含有氯硅烷类气体的第一处理气体供给至上述处理区域;
第二处理气体供给系统,将含有氧化气体的第二处理气体供给至上述处理区域;
第三处理气体供给系统,将含有氮化气体的第三处理气体供给至上述处理区域;
激励机构,选择性地激励供给至上述处理区域的上述第二和第三处理气体;以及
控制部,控制上述装置的动作,其中,
上述控制部为了通过CVD在上述被处理基板上形成氮氧化硅膜,按照下述顺序交替地实施:
第一工序,对上述处理区域供给上述第一处理气体,另一方面,停止对上述处理区域供给上述第二以及第三处理气体;
第二工序,停止对上述处理区域供给第一、第二以及第三处理气体;
第三工序,对上述处理区域供给上述第二处理气体,另一方面,停止对上述处理区域供给上述第一以及第三处理气体,其中,上述第三工序具有激励期间,在上述激励期间内,上述第二处理气体在由激励机构所激励的状态下被供给至上述处理区域;
第四工序,停止对上述处理区域供给第一、第二以及第三处理气体;
第五工序,对上述处理区域供给上述第三处理气体,另一方面,停止对上述处理区域供给上述第一以及第二处理气体,其中,上述第五工序具有激励期间,在上述激励期间内,上述第三处理气体在由激励机构所激励的状态下被供给至上述处理区域;以及
第六工序,停止对上述处理区域供给第一、第二以及第三处理气体。
本发明的第三方面是一种包括用于在处理器上可实施的程序指令的计算机可读取介质,其中,
在上述程序指令通过处理器运行时,在能够选择性地供给含有氯硅烷类气体的第一处理气体、含有氧化气体的第二处理气体和含有氮化气体的第三处理气体的处理区域内,利用CVD在被处理基板上形成氮氧化硅膜的半导体处理用成膜装置中,按照下述顺序交替地实施:
第一工序,对上述处理区域供给上述第一处理气体,另一方面,停止对上述处理区域供给上述第二以及第三处理气体;
第二工序,停止对上述处理区域供给第一、第二以及第三处理气体;
第三工序,对上述处理区域供给上述第二处理气体,另一方面,停止对上述处理区域供给上述第一以及第三处理气体,其中,上述第三工序具有激励期间,在上述激励期间内,上述第二处理气体在由激励机构所激励的状态下被供给至上述处理区域;
第四工序,停止对上述处理区域供给第一、第二以及第三处理气体;
第五工序,对上述处理区域供给上述第三处理气体,另一方面,停止对上述处理区域供给上述第一以及第二处理气体,其中,上述第五工序具有激励期间,在上述激励期间内,上述第三处理气体在由激励机构所激励的状态下被供给至上述处理区域;以及
第六工序,停止对上述处理区域供给第一、第二以及第三处理气体。
下面将具体说明本发明的具体实施方式及其优点,其中部分内容明显可由文字说明得知,其它则可由本发明实施方式得知。本发明的具体实施方式及其优点可通过此后的实施例及其结合而得到说明。
附图说明
附带的合并于说明书并属于说明书一部分的附图用于说明本发明的具体实施方式,与上述简要说明以及下述具体实施方式的说明一起用于解释本发明的原理。
图1是表示本发明实施方式中的成膜装置(立式CVD装置)的截面图。
图2是表示图1所示的装置的一部分的横截面平面图。
图3是表示图1所示的装置的控制部的构成的图。
图4是表示本发明实施方式的成膜处理的方案的时间流程图。
具体实施方式
下面,参照附图对本发明的实施方式进行说明。其中,在以下的说明中,对具有大体相同功能和结构的构成要素标注相同的符号,并仅在必要的情况下进行重复说明。
图1是表示本发明实施方式中的成膜装置(立式CVD装置)的截面图。图2是表示图1所示装置的一部分的横截面平面图。该成膜装置2具有处理区域,能够选择性地供给含有作为氯硅烷(chlorosilane)类气体的二氯硅烷(dichlorosilane:DCS:SiH2Cl2)的第一处理气体、含有作为氧化气体的氧气(O2)的第二处理气体、和含有作为氮化气体的氨气(NH3)的第三处理气体。成膜装置2构成为利用CVD在这样的处理区域内,在被处理基板上形成氮氧化硅膜。
成膜装置2具有下端开口的呈有顶圆筒形的处理容器4,在其内部划分出处理区域5,用于收纳隔开间隔而重叠的多块半导体晶片(被处理基板)并对其进行处理。处理容器4的整体例如由石英制成。在处理容器4内的顶部,配置有石英制成的顶板6以对其进行封堵。形成为圆筒形的总管(manifold)8通过O型环等密封部件10而连接在处理容器4的下端开口。其中,也可以不另外设置总管8而以圆筒形的石英制成的处理容器整体构成。
总管8例如由不锈钢构成,用于支撑处理容器4的下端。石英制成的晶舟12可以通过总管8的下端开口来进行升降,这样,相对处理容器4进行晶舟12的装卸。将多块半导体晶片W作为被处理基板,多层地放置在晶舟12上。例如,在本实施方式的情况下,在晶舟12的支柱12A上,能够大体等间隔地分多层而支撑有例如50~100块直径为300mm的晶片W。
晶舟12通过石英制成的保温筒14而被放置在工作台16上。工作台16被支撑在旋转轴20上,旋转轴20贯通能够开闭总管8的下端开口的例如由不锈钢制成的盖体18。
在旋转轴20的贯通部分,例如夹设有磁性流体密封垫22,气密且可旋转地支撑旋转轴20。在盖体18的周边部和总管8的下端部,例如夹设有由O型环构成的密封部件24,以保持容器内的密封性。
旋转轴20被安装在支撑于例如晶舟升降机等升降机构25上的臂26的前端。晶舟12和盖体18等利用升降机构25来实现整体升降。其中,也可以将工作台16设置成固定在盖体18一侧,不使晶舟12旋转来对晶片W进行处理。
在总管8的侧部,连接有用于向处理容器4内的处理区域5供给规定处理气体的气体供给部。气体供给部包括:第一处理气体供给系统30、第二处理气体供给系统32、三处理气体供给系统34、以及吹扫气体供给系统36。第一处理气体供给系统30供给含有作为氯硅烷类气体的二氯硅烷(DCS:SiH2Cl2)气体的第一处理气体。第二处理气体供给系统32供给含有作为氧化气体的氧气(O2)的第二处理气体。第三处理气体供给系统34供给含有作为氮化气体的氨气(NH3)气体的第三处理气体。吹扫气体供给系统36供给作为吹扫气体的惰性气体,例如N2气体。在第一至第三处理气体中,根据需要而混入适量的运载气体,但是,在下面为了容易说明,不再提及运载气体。
具体地说,第一处理气体供给系统30具有气体分散喷嘴40,第二和第三处理气体供给系统32、34具有共同的气体分散喷嘴42。各气体分散喷嘴40、42由向内侧贯通总管8的侧壁,并向上方弯曲延伸的石英管构成(参照图1)。在各气体分散喷嘴40、42上,以沿其长度方向且跨越晶舟12上的全部晶片W的方式而隔开规定间隔形成多个气体喷射孔40A、42A。气体喷射孔40A、42A以相对于晶舟12上的多块晶片W形成平行气流的方式,而分别向水平方向大体均匀地供给对应的处理气体。另一方面,吹扫气体供给系统36具有贯通总管8的侧壁而设置的较短的气体喷嘴46。
喷嘴40、46通过气体供给管线(气体通路)50、56而分别与DCS气体和N2气体的气体源30S、36S连接。喷嘴42通过气体供给管线(气体通路)52、54而分别与O2气体以及NH3气体的气体源32S、34S连接。在气体供给管线50、52、54、56上,配置有开关阀50A、52A、54A、56A以及如质量流量控制器那样的流量控制器50B、52B、54B、56B。这样,可以分别控制DCS气体、O2气体、NH3气体、N2气体的流量来进行供给。
在处理容器4的侧壁的一部分上,沿其高度方向而配置有气体激励部66。在与气体激励部66相对的处理容器4的相反一侧,配置有用于对该内部气氛进行真空排气的细长的排气口68,该排气口68是通过例如沿上下方向对处理容器4的侧壁进行切削而制成。
具体地说,气体激励部66在上下方向配置有细长的开口70,该开口70是通过沿上下方向以规定宽度对处理容器4的侧壁进行切削而制成。对于开口70来说,其通过气密地焊接接合在处理容器4的外壁上的石英制成的盖72所覆盖。盖72向处理容器4的外侧突出,截面成凹形,并且具有上下方向细长的形状。
按照该构成,形成从处理容器4的侧壁突出,而且一侧向处理容器4内开口的气体激励部66。即,气体激励部66的内部空间与处理容器4内的处理区域5连通。开口70在上下方向做成足够长,可以在高度方向上盖住支撑在晶舟12的全部晶片W。
在盖72的两侧壁的外侧面上,沿其长度方向(上下方向)相互面对地配置有一对细长的电极74。产生等离子体用的高频电源76通过供电线78而连接在电极74上。通过对电极74施加例如13.56MHz的高频电压,而在一对电极74之间形成用于激励等离子体的高频电场。此外,高频电压的频率不限定于13.56MHz,也可以使用其他的频率,例如使用400MHz等。
第二以及第三处理气体的气体分散喷嘴42在比晶舟12上的最下面高度的晶片W还靠下的位置,向处理容器4的半径方向外侧弯曲。此后,气体分散喷嘴42在气体激励部66内的最里边(离处理容器4的中心最远的部分)的位置处垂直立起。此外,如图2所示,气体分散喷嘴42被设置在比由一对相对电极74夹着的区域(高频电场最强的位置),即实际上主要产生等离子体的等离子体生成区域PS更靠外侧的位置。从气体分散喷嘴42的气体喷射孔42A喷射出来的含有O2气体的第二处理气体和含有NH3气体的第三处理气体,分别向等离子体生成区域PS喷射,在此被激励(分解或者活化),并在该状态下被供给至晶舟12上的晶片W。
在盖72的外侧安装有对其进行覆盖并由例如石英构成的绝缘保护盖80。在绝缘保护盖80的内侧与电极74相对的部分,配置有由冷却介质通路构成的冷却机构(图未示出)。通过在冷却介质通路中流过作为冷却介质的例如被冷却的氮气,而使电极74冷却。其中,在绝缘保护盖80的外侧,配置有覆盖其的用于防止高频波泄漏的屏蔽板(图未示出)。
在气体激励部66的开口70的外侧附近,也就是在开口70的外侧(处理容器4内)的一侧,垂直立起地配置有第一处理气体的气体分散喷嘴40。从形成于气体分散喷嘴40上的气体喷射孔40A,向处理容器4的中心方向喷射含有DCS气体的第一处理气体。
另一方面,在面对气体激励部66而设置的排气口68上,通过焊接而安装有覆盖其并由石英构成的截面呈日文假名“コ”字形的排气口盖部件82。排气盖部件82沿着处理容器4的侧壁向上方延伸,在处理容器4的上方形成气体出口84。配置有真空泵等的真空排气系统GE连接在气体出口84上。
包围处理容器4的方式配置有加热处理容器4内的气氛和晶片W的加热器86。用于控制加热器86的热电偶(图未示出)被配置在处理容器4内的排气口68附近。
此外,成膜装置2还具有由控制整个装置动作的计算机等构成的主控制部100。图3表示主控制部100的构成图。如图3所示,在主控制部100上连接有操作面板121、温度传感器(组)122、压力计(组)123、加热控制器124、MFC125(对应于图1的流量控制器50B、52B、54B、56B)、阀控制部126、真空泵127(对应于图1的真空排气系统GE)、晶舟升降机128(对应于图1的升降机构25)、以及等离子体控制部129等。
操作面板121具有显示画面和操作按钮,将操作员的操作指示传递给主控制部100,此外,在显示画面上显示来自主控制部100的各种信息。温度传感器(组)122测量处理容器4内以及排气管内各部位的温度,将其测量值通知给主控制部100。压力计(组)123测量处理容器4内和排气管内各部位的压力,并将测量值通知给主控制部100。
加热控制器124用于单独控制加热器86的各部分。加热控制器124响应来自主控制部100的指示,对加热器86的各部分通电,使其加热。加热控制器124还单独测量加热器86的各部分的耗电量,通知主控制部100。
MFC125配置在气体供给管线上。MFC125将各配管中流动的气体流量控制成来自于主控制部100指示的量。MFC125还对实际流动的气体流量进行测量,通知主控制部100。
阀控制部126被配置在各配管上,将配置在各配管上的阀的开度控制成来自于主控制部100指示的值。真空泵127连接在排气管上,对处理容器4内的气体进行排气。
晶舟升降机128通过使盖体18上升,将放置在旋转工作台16上的晶舟11(半导体晶片W)装入到处理容器4内。晶舟升降机128通过使盖体18下降,将放置在旋转工作台16上的晶舟11(半导体晶片W)从处理容器4内取出。
等离子体控制部129响应来自主控制部100的指示,控制气体激励部66。这样,使供给至气体激励部66内的氧气和氨气活化,产生等离子体。
主控制部100包括:方案存储部111、ROM112、RAM113、I/O端口114、以及CPU115。它们通过母线116而相互连接,信息通过母线116在各部分之间传递。
在方案存储部111中存储有组合用方案和多个工序用方案。成膜装置2的制造最初仅存储组合用方案。组合用方案是在生成对应于各成膜装置的热模式等时实施的。工序用方案用于规定从将半导体晶片W装入处理容器4开始到将处理后的晶片W取出为止的各部分的温度变化、处理容器4内的压力变化、供给处理气体的开始以及停止时刻和供给量等。
ROM112由EEPRON、闪存器(flash memory)、硬盘等构成,是存储CPU115的动作程序等的存储介质。RAM113具有CPU115的工作区等的功能。
I/O端口114连接有操作面板121、温度传感器122、压力计123、加热控制器124、MFC 125、阀控制部126、真空泵127、晶舟升降机128、等离子体控制部129等,控制数据和信号的输入输出。
CPU(Central Processing Unit:中央处理单元)115构成主控制部100的中枢。CPU115实施存储在ROM112中的控制程序,按照来自操作面板121的指示,按照存储在方案存储部111的方案(工序用方案),控制成膜装置2的动作。即,CPU115使温度传感器(组)122、压力计(组)123、MFC125等测量处理容器4内和排气管内的各部分的温度、压力、流量等。此外,CPU115根据其测量的数据,将控制信号等输出到加热器控制器124、MFC125、阀控制部126、真空泵127等,所述各部分按照工序用方案进行控制。
接着,对使用图1所示的装置,在主控制部100的控制下进行的成膜方法(所谓的ALD(Atomic Layer Deposition:原子层沉积)成膜)进行说明。在该实施方式的方法中,利用CVD在半导体晶片W上形成氮氧化硅膜。因此,在收纳有晶片W的处理区域5内可以选择性地供给含有作为氯硅烷类气体的二氯硅烷(DCS:SiH2Cl2)的第一处理气体、含有作为氧化气体的氧气(O2)的第二处理气体和含有作为氮化气体的氨气(NH3)气体的第三处理气体。
首先,将多块、例如50~100块的尺寸为300mm的晶片W支撑在常温的晶舟12上,将晶舟12装入设定成规定温度的处理容器4内,使处理容器密闭。然后,对处理容器4内进行抽真空,保持在规定的处理压力,同时,使晶片温度升高,并稳定在成膜用的处理温度下待机。然后,使晶舟12旋转,并分别控制第一至第三处理气体的流量,间断地从气体分散喷嘴40、42进行供给。
简单地说,首先,从气体分散喷嘴40的气体喷射孔40A供给含有DCS气体的第一处理气体,相对于晶舟12上的多块晶片W形成平行的气流。其间,DCS气体的分子或者因其分解而产生的分解产物的分子或者原子被吸附在晶片上,形成吸附层(第一阶段:吸附DCS)。
然后,从气体分散喷嘴42的气体喷射孔42A供给含有O2气体的第二处理气体,相对于晶舟12上的多块晶片W形成平行的气流。第二处理气体在通过一对电极74之间的等离子体生成区域PS时,有选择地被激励,使其一部分等离子体化。此时,生成O*、O2 *等的氧自由基(活性种)(记号“*”表示自由基)。这些自由基从气体激励部66的开口70向处理容器4的中心流动,在晶片W相互之间以层流状态供给。若在晶片W上供给氧自由基,则与晶片W上的吸附层的Si反应,这样,在晶片W上形成硅氧化物的薄膜(第二阶段:氧化)。
然后,从气体分散喷嘴42的气体喷射孔42A供给含有NH3气体的第三处理气体,相对于晶舟12上的多块晶片W形成平行的气流。第三处理气体在通过一对电极74之间的等离子体生成区域PS时,有选择地被激励,使其一部分等离子体化。此时,生成N*、NH*、NH2 *、NH3 *等的氮自由基或者氨自由基(活性种)。这些自由基从气体激励部66的开口70向处理容器4的中心流动,在晶片W相互之间以层流状态供给。若在晶片W上供给氮自由基和氨自由基,则使晶片W上的硅氧化物薄膜被氮化,这样,在晶片W上形成氮氧化硅物的薄膜(第三阶段:氮化)。
图4是表示本发明的实施方式的成膜处理的方案的时间流程图。如图4所示,在此实施方式的成膜方法中,按第一步到第三步ST1~ST3的顺序例如相互交替重复200次。即,多次重复由第一步到第三步ST1~ST3构成的循环,通过使每次循环得到的氮氧化硅膜的薄膜层叠,而得到最终厚度的氮氧化硅膜。下面,对各步骤进行具体地说明。
【第一步ST1:吸附DCS】
首先,如图4(c)所示,向处理区域5内供给例如0.5slm(standardliter per minute)的氮气。与此同时,如图4(a)所示,将处理区域5内的温度设定成例如450℃。此外,对处理区域5进行排气,如图4(b)所示,将处理区域5设定成例如400Pa的规定压力。然后,进行此操作,直到处理区域5稳定在规定的压力和温度(稳定化工序)。
若处理区域5内稳定在规定的压力和温度下,则如图4(d)所示,向处理区域5内供给规定量的例如1slm的DCS气体,向处理区域5内供给规定量的例如0.5slm的氮气(流动(flow)工序)。供给到处理区域5内的DCS在处理区域5内被加热而活化,在晶片W的表面形成吸附层。
处理区域5内的温度优选为400℃~550℃。若低于400℃,则担心不能形成氮氧化硅膜。若处理区域5内的温度高于550℃,则吸附层变得不均匀,担心形成的氮氧化硅膜的膜的质量和厚度的均匀性恶化。处理区域5内的温度更优选为450℃~500℃。通过采用这样范围的温度,可以进一步提高形成的氮氧化硅膜的膜的质量和厚度的均匀性。
处理区域5内的压力优选为400Pa~1200Pa。通过采用这样范围的压力,可以促进DCS相对晶片W的吸附。处理区域5内的压力更优选为800Pa~1000Pa。通过采用这样范围的压力,容易对处理区域5内的压力进行控制。
DCS气体的供给量优选为0.5slm~2slm。若少于0.5slm,则担心会产生在晶片W上不能充分吸附DCS。若高于2slm,则担心给予向晶片W的吸附的DCS的比例过低。DCS气体的供给量更优选为1slm~2slm。通过采用这样的范围,可以促进DCS相对晶片W的吸附。
在供给规定时间的DCS后,停止供给DCS气体。然后,增加氮气的供给量,如图4(c)所示,在处理区域5内供给例如5slm的规定量。此时,对处理区域5内进行排气,这样,将处理区域5内的气体排放到处理区域5外(吹扫工序)。
其中,在成膜顺序上优选的是在第一至第三步的整个过程中使处理区域5内的温度不变。为此,在本实施方式中,将第一至第三步骤整个过程中的处理区域5内的温度设定为450℃。此外,在第一至第三步骤整个过程中持续对处理区域5内进行排气。
【第二步ST2:氧化】
然后,如图4(c)所示,例如向处理区域5内供给0.5slm规定量的氮气。与此同时,如图4(a)所示,例如将处理区域5内的温度设定成规定的450℃。此外,对处理区域5内进行排气,如图4(b)所示,例如将处理区域5设定成400Pa规定的压力。然后,进行此操作,直到处理区域5稳定在规定的压力和温度(稳定化工序)。
若处理区域5内稳定在规定的压力和温度,则如图4(g)所示,在电极11之间施加高频电力(RF:ON)。与此同时,如图4(e)所示,例如将3slm的规定量的氧气供给到一对电极11之间(气体激励部66内)。供给到一对电极11之间的氧气被等离子激励(活化),生成氧自由基。这样生成的氧自由基从气体激励部66供给到处理区域5内。此外,如图4(c)所示,例如将0.5slm的规定量的氮气供给到处理区域5内(流动工序)。
其中,氧气的供给量优选为0.5slm~5slm。通过采用这样的范围,可以毫无问题地产生等离子体,并且可以充分地供给使在晶片W上的吸附层的Si氧化的氧自由基。氧气的供给量更优选为2.5slm~3.5slm。通过采用这样的范围,可以稳定地产生氧等离子体。
RF功率优选为10W~1500W,若小于10W,则难以生成氧的自由基。若超过1500W,则担心会对构成气体激励部66的石英壁产生损伤。RF功率更优选为300W~500W。通过采用这样的范围,可以有效地产生氧自由基。
处理区域5内的压力优选为40Pa~400Pa。通过采用这样范围的压力,容易产生氧自由基,而且在处理区域5内的氧自由基的平均自由行程变大。处理区域5内的压力更优选为50Pa~70Pa。通过采用这样范围的压力,容易对处理区域5内的压力进行控制。
此外,气体激励部66内的压力(气体喷射孔的压力)优选为70Pa~400Pa,更优选为350Pa~400Pa。通过采用这样范围的压力,可以毫无问题地产生等离子体,并且可以充分地供给使晶片W上的吸附层的Si氧化的氧自由基。
在供给规定时间的氧气后,停止供给氧气,并停止施加高频电力。然后,保持氮气的供给量,如图4(c)所示,在处理区域5内供给例如0.5slm的规定量。此时,对处理区域5内进行排气,这样,将处理区域5内的气体排放到处理区域5外(吹扫工序)。该吹扫工序与第一和第三步ST1、ST3的吹扫工序相比,氮气(作为惰性气体而使用)的供给量少,例如不足1/5,优选不足1/8。即,此时供给的氮气仅仅是从气体分散喷嘴40、42供给的防止逆流用的氮气。
【第三步ST3:氮化】
然后,如图4(c)所示,例如向处理区域5内供给例如0.5slm的规定量的氮气。与此同时,如图4(a)所示,将处理区域5内的温度设定成例如450℃。此外,对处理区域5内进行排气,如图4(b)所示,将处理区域5设定成例如40Pa的规定压力。然后,进行此操作,直到处理区域5稳定在规定的压力和温度(稳定化工序)。
若处理区域5内稳定在规定的压力和温度,则如图4(g)所示,在电极11之间施加高频电力(RF:ON)。与此同时,如图4(f)所示,例如将3slm的规定量的氨气供给到一对电极11之间(气体激励部66内)。供给到一对电极11之间的氨气被等离子激励(活化),生成氮自由基和氨自由基。这样生成的自由基从气体激励部66供给到处理区域5内。此外,如图4(c)所示,例如将0.5slm的规定量的氮气供给到处理区域5内(流动工序)。
其中,氨气的供给量优选为1slm~8slm。通过采用这样的范围,可以毫无问题地产生等离子体,并且可以充分地供给使在晶片W上的硅氧化膜氮化的自由基。氨气的供给量更优选为3slm~4slm。通过采用这样的范围,可以稳定地产生氨等离子体。
RF功率优选为10W~1500W,若小于10W,则难以生成氮自由基和氨自由基。若超过1500W,则担心会对构成气体激励部66的石英壁产生损伤。RF功率更优选为300W~500W。通过采用这样的范围,可以有效地产生自由基。
处理区域5内的压力优选为40Pa~100Pa。通过采用这样范围的压力,容易产生氮自由基和氨自由基,而且,在处理区域5内的氧自由基的平均自由行程变大。处理区域5内的压力更优选为50Pa~70Pa。通过采用这样范围的压力,容易对处理区域5内的压力进行控制。
此外,气体激励部66内的压力(气体喷射孔的压力)优选为70Pa~600Pa,更优选为280Pa~330Pa。通过采用这样范围的压力,可以毫无问题地产生等离子体,并且可以充分地供给使晶片W上的硅氧化膜氮化的自由基。
在供给规定时间的氨气后,停止供给氨气,并停止施加高频电力。然后,增加氮气的供给量,如图4(c)所示,在处理区域5内供给例如5slm的规定量。此时,对处理区域5内进行排气,这样将处理区域5内的气体排放到处理区域5外(吹扫工序)。然后,一边对处理区域5进行排气,一边将氮气的供给量减少到0.5slm。也可以省略使用该低供给量的氮气的追加吹扫。
在第三步ST3中,当使用氨自由基使晶片W上的硅氧化膜氮化时,存在于硅氧化膜表面的-OH基的一部分和-H基的一部分被-NH2基置换。因此,在第三步后,在开始第一步时,在氮氧化硅膜的表面存在有-NH2基。若在此状态下供给DCS,则在氮氧化硅膜表面发生式(1)所示的反应,促进DCS的吸附。因此,可以使氮氧化硅膜的成膜速度提高。
……(1)
【总结和变化例】
在此实施方式的成膜方法中,按第一步到第三步ST1~ST3的顺序例如相互交替重复200次。这样向晶片W供给DCS来形成吸附层,然后,通过供给氧自由基使吸附层氧化而形成硅氧化膜,然后,供给氮自由基,使硅氧化膜氮化。这样能够以有效且高质量的状态形成氮氧化硅膜。
若在晶片W上形成所希望厚度的氮氧化硅膜,则晶片W取出。具体地说,向处理区域5内供给规定量的氮气,使处理区域5内的压力返回到常压,同时,使处理区域5内保持规定温度。然后,利用升降机25使盖体18下降,将晶片W与晶舟12一起从处理容器4中取出。
对于这样形成的氮氧化硅膜,在确认了阶梯覆盖时,可以确认几乎近100%是阶梯覆盖。此外,膜厚的均匀性也好。因此,可以确认在低温下能形成氮氧化硅膜。
在所述实施方式中,作为成膜装置2,以将形成等离子体的激励部66与处理容器4组成一体的构成为例。也可以对其取代,将激励部66与处理容器4分开设置,预先在处理容器4外激励气体(所谓远程等离子体),将该激励气体向处理容器4内供给。此外,在不使气体活化来供给的情况下,为了补偿因不用等离子体造成的能量降低,需要提高过程的温度。
在上述实施方式中,是以DCS气作为第一处理气体中的氯硅烷类气体为例。作为氯硅烷类气体可以使用选自二氯硅烷(DCS)、六氯乙硅烷(Hexachlorodisilane:HCD:Si2Cl6)、三氯硅烷(trichlorosilane:SiHCl3)、四氯硅烷(tetrachlorosilane:TCS:SiCl4)中的一种以上的气体。
在上述实施方式中,以氧气作为第二处理气体中的氧化气体为例。关于此方面,作为氧化气体可以使用选自氧气、一氧化氮(NO)、一氧化二氮(N2O)中的一种以上的气体。
在上述实施方式中,以通过实施200个循环而在半导体晶片W上形成氮氧化硅膜的情况为例。关于此方面,例如也可以是循环数少的50个循环、100个循环。此外,例如也可以是循环数多的300个循环、400个循环。在这种情况下,根据循环次数对例如DCS气体、氧气以及氨气等的供给量、RF功率等进行调整,可以形成希望厚度的氮氧化硅膜。此外,通过调整这些参数,而可以控制氮氧化硅膜中的氧和氮的比例。
在上述实施方式中,是以利用等离子体生成氧自由基和氨自由基的情况为例。关于这方面,可以使用其他能量,例如可以使用磁力、紫外线等,使氧和氨活化。
在上述实施方式中,是以在供给DCS气体等处理气体时供给氮气的情况为例。关于此方面,也可以在供给处理气体时不供给氮气。但是,通过含有氮气作为稀释气体,使处理时间的设定等变得容易,所以优选含有稀释气体。作为稀释气体优选的是惰性气体,除了氮气以外,例如可以使用氦气(He)、氖气(Ne)、氩气(Ar)等。
在上述实施方式中,氧气和氨气从共同的气体供给喷嘴供给。也可以对其进行取代,对每种气体配置气体供给喷嘴。此外,在处理容器4的下端附近侧面穿通有多根气体供给喷嘴,从多根导入相同气体。在这种情况下,由于从多根气体供给喷嘴向处理容器4内供给处理气体,所以可以更均匀地向处理容器4内导入处理气体。
在上述实施方式中,作为成膜装置使用单管构造的间断式热处理装置。例如,本发明也适用于处理容器由内管和外管构成的双重管构造的间断式立式热处理装置。此外,本发明也可以使用单张式热处理装置。被处理基板并不限定是半导体晶片W,例如也可以是LCD用的玻璃基板。
对于热处理装置的控制部100来说,不使用专门的系统,使用通常的计算机系统可以实现。例如在通用计算机中,通过从存储有用于实施上述处理的程序的记录介质(软盘、CD-ROM等)安装该程序,而可以构成实施上述处理的控制部100。
用于供给这些程序的方法是任意的。程序除了如上述那样通过规定的记录介质可以供给以外,例如也可以通过通信线路、通信网络、通讯系统等供给。在这种情况下,例如在通信网络的公告牌(BBS)上公告该程序,可以使其通过网络重叠在输送波上供给。而启动这样供给的程序,在OS的控制下,通过与实施其他的应用程序相同,可以实施所述的处理。
本领域技术人员可据此发现其它特点和变换形式。因此,本发明范围并不限于具体实施方式和实施例所述,而是只要在不偏离与权利要求及其等效变换所述的本发明主旨或范围,就可以做出各种变换。

Claims (21)

1.一种半导体处理用的成膜方法,其特征在于:
其是在能够选择性地供给含有氯硅烷类气体的第一处理气体、含有氧化气体的第二处理气体和含有氮化气体的第三处理气体的处理区域内,利用CVD在被处理基板上形成氮氧化硅膜的半导体处理用的成膜方法,其中,按照下述顺序交替地包括:
第一工序,对所述处理区域供给所述第一处理气体,另一方面,停止对所述处理区域供给所述第二以及第三处理气体;
第二工序,停止对所述处理区域供给第一、第二以及第三处理气体;
第三工序,对所述处理区域供给所述第二处理气体,另一方面,停止对所述处理区域供给所述第一以及第三处理气体,其中,所述第三工序具有激励期间,在所述激励期间内,所述第二处理气体在由激励机构所激励的状态下被供给至所述处理区域;
第四工序,停止对所述处理区域供给第一、第二以及第三处理气体;
第五工序,对所述处理区域供给所述第三处理气体,另一方面,停止对所述处理区域供给所述第一以及第二处理气体,其中,所述第五工序具有激励期间,在所述激励期间内,所述第三处理气体在由激励机构所激励的状态下被供给至所述处理区域;以及
第六工序,停止对所述处理区域供给第一、第二以及第三处理气体。
2.如权利要求1所述的方法,其特征在于:
在所述第一至第六工序中,将所述处理区域设定在400℃~550℃。
3.如权利要求1所述的方法,其特征在于:
在所述第一工序中,将所述处理区域设定为400Pa~1200Pa,在所述第三工序中,将所述处理区域设定为40Pa~400Pa,在所述第五工序中,将所述处理区域设定为40Pa~100Pa。
4.如权利要求1所述的方法,其特征在于:
所述氯硅烷类气体具有选自二氯硅烷、六氯乙硅烷、三氯硅烷和四氯硅烷中的一种以上的气体。
5.如权利要求1所述的方法,其特征在于:
所述氧化气体具有选自氧气、一氧化氮和一氧化二氮中的至少一种以上的气体。
6.如权利要求1所述的方法,其特征在于:
所述氮化气体具有氨气。
7.如权利要求1所述的方法,其特征在于:
从所述第一工序到所述第六工序,持续进行所述处理区域内的排气。
8.如权利要求7所述的方法,其特征在于:
所述第二工序和第六工序具有对所述处理区域供给惰性气体的期间。
9.如权利要求8所述的方法,其特征在于:
所述第四工序具有对所述处理区域供给惰性气体的期间,所述第四工序中的惰性气体流量不足所述第二工序和第六工序中的惰性气体流量的五分之一。
10.如权利要求1所述的方法,其特征在于:
所述第二和第三处理气体从共同的供给口供给,激励所述第二处理气体的所述激励机构和激励所述第三处理气体的所述激励机构具有共同的激励机构。
11.如权利要求10所述的方法,其特征在于:
所述共同的激励机构具有等离子体生成区域,其被配设于设置在与所述处理区域连通的空间内的所述共同供给口和所述被处理基板之间,其中,所述第二以及第三处理气体分别在通过所述等离子体生成区域时被激励。
12.如权利要求11所述的方法,其特征在于:
所述第一处理气体在所述等离子体产生区域和所述基板之间而被供给至所述处理区域。
13.如权利要求11所述的方法,其特征在于:
在所述第三工序中,将所述共同供给口设定为70Pa~400Pa,在所述第五工序中,将所述共同供给口设定为70Pa~600Pa。
14.如权利要求1所述的方法,其特征在于:
多块被处理基板以在上下设置一定间隔而层叠的状态被收纳在所述处理区域内,所述多块被处理基板由配置在所述处理区域周围的加热器所加热。
15.如权利要求14所述的方法,其特征在于:
以相对于所述多块被处理基板形成平行气流的方式,从横跨所述多块被处理基板在上下方向配置的多个气体喷射孔分别供给所述第一、第二以及第三处理气体。
16.一种半导体处理用的成膜装置,其特征在于,包括:
处理容器,具有收纳被处理基板的处理区域;
支撑部件,在所述处理区域内支撑所述被处理基板;
加热器,对所述处理区域内的所述被处理基板进行加热;
排气系统,对所述处理区域内进行排气;
第一处理气体供给系统,将含有氯硅烷类气体的第一处理气体供给至所述处理区域;
第二处理气体供给系统,将含有氧化气体的第二处理气体供给至所述处理区域;
第三处理气体供给系统,将含有氮化气体的第三处理气体供给至所述处理区域;
激励机构,选择性地激励供给至所述处理区域的所述第二和第三处理气体;以及
控制部,控制所述装置的动作,其中,
所述控制部为了通过CVD在所述被处理基板上形成氮氧化硅膜,按照下述顺序交替地实施:
第一工序,对所述处理区域供给所述第一处理气体,另一方面,停止对所述处理区域供给所述第二以及第三处理气体;
第二工序,停止对所述处理区域供给第一、第二以及第三处理气体;
第三工序,对所述处理区域供给所述第二处理气体,另一方面,停止对所述处理区域供给所述第一以及第三处理气体,其中,所述第三工序具有激励期间,在所述激励期间内,所述第二处理气体在由激励机构所激励的状态下被供给至所述处理区域;
第四工序,停止对所述处理区域供给第一、第二以及第三处理气体;
第五工序,对所述处理区域供给所述第三处理气体,另一方面,停止对所述处理区域供给所述第一以及第二处理气体,其中,所述第五工序具有激励期间,在所述激励期间内,所述第三处理气体在由激励机构所激励的状态下被供给至所述处理区域;以及
第六工序,停止对所述处理区域供给第一、第二以及第三处理气体。
17.如权利要求16所述的装置,其特征在于:
所述激励机构具有等离子体生成区域,其被配设于设置在与所述处理区域连通的空间内的所述第二以及第三处理气体的共同供给口和所述被处理基板之间,其中,所述第二以及第三处理气体在分别通过所述等离子体生成区域时而被激励。
18.如权利要求17所述的装置,其特征在于:
所述等离子体生成区域具有高频电场,其是利用附设在所述处理容器上的电极以及高频电源而在所述共同供给口和所述被处理基板之间形成。
19.如权利要求16所述的装置,其特征在于:
所述处理区域构成为以在上下设置一定间隔而层叠的状态下收纳所述多块被处理基板,所述多块被处理基板由配置在所述处理区域周围的加热器所加热。
20.如权利要求19所述的半导体处理用的成膜装置,其特征在于,
以相对于所述多块被处理基板形成平行气流的方式,从横跨所述多块被处理基板在上下方向配置的多个气体喷射孔分别供给所述第一、第二以及第三处理气体。
21.一种包括用于在处理器上运行的程序指令的计算机可读取介质,其特征在于:
在所述程序指令通过处理器运行时,在能够选择性地供给含有氯硅烷类气体的第一处理气体、含有氧化气体的第二处理气体和含有氮化气体的第三处理气体的处理区域内,利用CVD在被处理基板上形成氮氧化硅膜的半导体处理用成膜装置中,按照下述顺序交替地实施:
第一工序,对所述处理区域供给所述第一处理气体,另一方面,停止对所述处理区域供给所述第二以及第三处理气体;
第二工序,停止对所述处理区域供给第一、第二以及第三处理气体;
第三工序,对所述处理区域供给所述第二处理气体,另一方面,停止对所述处理区域供给所述第一以及第三处理气体,其中,所述第三工序具有激励期间,在所述激励期间内,所述第二处理气体在由激励机构所激励的状态下被供给至所述处理区域;
第四工序,停止对所述处理区域供给第一、第二以及第三处理气体;
第五工序,对所述处理区域供给所述第三处理气体,另一方面,停止对所述处理区域供给所述第一以及第二处理气体,其中,所述第五工序具有激励期间,在所述激励期间内,所述第三处理气体在由激励机构所激励的状态下被供给至所述处理区域;以及
第六工序,停止对所述处理区域供给第一、第二以及第三处理气体。
CN2006101005718A 2005-07-06 2006-07-06 氮氧化硅膜的形成方法 Expired - Fee Related CN1891859B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005197283A JP2007019145A (ja) 2005-07-06 2005-07-06 シリコン酸窒化膜の形成方法、シリコン酸窒化膜の形成装置及びプログラム
JP2005-197283 2005-07-06
JP2005197283 2005-07-06

Publications (2)

Publication Number Publication Date
CN1891859A true CN1891859A (zh) 2007-01-10
CN1891859B CN1891859B (zh) 2010-11-24

Family

ID=37597047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101005718A Expired - Fee Related CN1891859B (zh) 2005-07-06 2006-07-06 氮氧化硅膜的形成方法

Country Status (5)

Country Link
US (1) US7632757B2 (zh)
JP (1) JP2007019145A (zh)
KR (1) KR100980127B1 (zh)
CN (1) CN1891859B (zh)
TW (1) TWI358769B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015672A1 (zh) * 2021-08-12 2023-02-16 长鑫存储技术有限公司 一种半导体薄膜形成方法、半导体结构及存储器

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916257B2 (ja) * 2006-09-06 2012-04-11 東京エレクトロン株式会社 酸化膜の形成方法、酸化膜の形成装置及びプログラム
JP4476313B2 (ja) * 2007-07-25 2010-06-09 東京エレクトロン株式会社 成膜方法、成膜装置、および記憶媒体
JP5090097B2 (ja) * 2007-07-26 2012-12-05 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
JP4611414B2 (ja) * 2007-12-26 2011-01-12 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP5575582B2 (ja) * 2007-12-26 2014-08-20 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP4886021B2 (ja) * 2008-12-16 2012-02-29 エルピーダメモリ株式会社 半導体装置及びその製造方法
JP5490585B2 (ja) * 2009-05-29 2014-05-14 株式会社日立国際電気 基板処理装置、基板処理方法および半導体装置の製造方法
US8980382B2 (en) * 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9611544B2 (en) * 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US8728956B2 (en) 2010-04-15 2014-05-20 Novellus Systems, Inc. Plasma activated conformal film deposition
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
US8524612B2 (en) 2010-09-23 2013-09-03 Novellus Systems, Inc. Plasma-activated deposition of conformal films
WO2012060379A1 (ja) * 2010-11-04 2012-05-10 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP6022166B2 (ja) * 2011-02-28 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US8647993B2 (en) 2011-04-11 2014-02-11 Novellus Systems, Inc. Methods for UV-assisted conformal film deposition
CN107342216B (zh) * 2011-09-23 2022-05-31 诺发系统公司 等离子体活化保形电介质膜沉积
US8592328B2 (en) 2012-01-20 2013-11-26 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
US8728955B2 (en) 2012-02-14 2014-05-20 Novellus Systems, Inc. Method of plasma activated deposition of a conformal film on a substrate surface
WO2014050808A1 (ja) * 2012-09-26 2014-04-03 株式会社日立国際電気 統合管理システム、管理装置、基板処理装置の情報表示方法及び記録媒体
TWI595112B (zh) 2012-10-23 2017-08-11 蘭姆研究公司 次飽和之原子層沉積及保形膜沉積
SG2013083241A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Conformal film deposition for gapfill
JP6538300B2 (ja) 2012-11-08 2019-07-03 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated 感受性基材上にフィルムを蒸着するための方法
US9105062B2 (en) 2012-12-13 2015-08-11 Addepar, Inc. Transaction effects
JP6577695B2 (ja) * 2013-12-18 2019-09-18 大陽日酸株式会社 シリコン窒化膜の形成方法
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9424333B1 (en) 2014-09-05 2016-08-23 Addepar, Inc. Systems and user interfaces for dynamic and interactive report generation and editing based on automatic traversal of complex data structures
US9244899B1 (en) 2014-10-03 2016-01-26 Addepar, Inc. Systems and user interfaces for dynamic and interactive table generation and editing based on automatic traversal of complex data structures including time varying attributes
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
CN107112235B (zh) * 2015-01-07 2020-11-20 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
US10732810B1 (en) 2015-11-06 2020-08-04 Addepar, Inc. Systems and user interfaces for dynamic and interactive table generation and editing based on automatic traversal of complex data structures including summary data such as time series data
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
JP6909762B2 (ja) 2018-07-23 2021-07-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
KR20220085674A (ko) * 2020-12-15 2022-06-22 주식회사 원익아이피에스 박막 형성 방법 및 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745495B1 (ko) * 1999-03-10 2007-08-03 동경 엘렉트론 주식회사 반도체 제조방법 및 반도체 제조장치
US6566186B1 (en) * 2000-05-17 2003-05-20 Lsi Logic Corporation Capacitor with stoichiometrically adjusted dielectric and method of fabricating same
JP2002299329A (ja) 2001-03-28 2002-10-11 Tokyo Electron Ltd 熱処理装置、熱処理方法及びクリーニング方法
KR100829327B1 (ko) * 2002-04-05 2008-05-13 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반응 용기
WO2004017383A2 (en) * 2002-08-18 2004-02-26 Aviza Technology, Inc. Low termperature deposition of silicon oxides and oxynitrides
CN100350574C (zh) * 2003-01-24 2007-11-21 东京毅力科创株式会社 在被处理基板上形成硅氮化膜的cvd方法
JP2004281853A (ja) 2003-03-18 2004-10-07 Hitachi Kokusai Electric Inc 基板処理装置
JP4410497B2 (ja) * 2003-06-17 2010-02-03 東京エレクトロン株式会社 成膜方法
JP4259247B2 (ja) * 2003-09-17 2009-04-30 東京エレクトロン株式会社 成膜方法
JP4541864B2 (ja) * 2004-12-14 2010-09-08 東京エレクトロン株式会社 シリコン酸窒化膜の形成方法、形成装置及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015672A1 (zh) * 2021-08-12 2023-02-16 长鑫存储技术有限公司 一种半导体薄膜形成方法、半导体结构及存储器

Also Published As

Publication number Publication date
US20070010071A1 (en) 2007-01-11
TW200721306A (en) 2007-06-01
JP2007019145A (ja) 2007-01-25
US7632757B2 (en) 2009-12-15
TWI358769B (en) 2012-02-21
CN1891859B (zh) 2010-11-24
KR100980127B1 (ko) 2010-09-03
KR20070005507A (ko) 2007-01-10

Similar Documents

Publication Publication Date Title
CN1891859A (zh) 氮氧化硅膜的形成方法、形成装置以及程序
KR100957879B1 (ko) 반도체 처리용 성막 방법 및 장치와, 컴퓨터로 판독 가능한 매체
KR101160722B1 (ko) 반도체 처리용 성막 장치, 그 사용 방법 및 컴퓨터로판독가능한 매체
CN1841676A (zh) 使用原子层沉积法的氮化硅膜的形成方法
KR100954243B1 (ko) 반도체 처리용 성막 장치 및 방법과 컴퓨터로 판독 가능한 매체
KR101122964B1 (ko) 반도체 처리용 종형 플라즈마 처리 장치 및 처리 방법과 반도체 처리용 종형 플라즈마 성막 장치
US8563096B2 (en) Vertical film formation apparatus and method for using same
US9970110B2 (en) Plasma processing apparatus
KR20080029846A (ko) 실리콘 산화막을 형성하기 위한 성막 방법 및 장치
US20070032047A1 (en) Method and apparatus for forming silicon-containing insulating film
KR101131645B1 (ko) 반도체 처리용의 성막 방법 및 장치
CN1831192A (zh) 半导体处理用成膜方法、成膜装置和存储介质
US9263269B2 (en) Reaction tube, substrate processing apparatus and method of manufacturing semiconductor device
CN1837404A (zh) 成膜装置和成膜方法
CN1881541A (zh) 半导体工艺的成膜方法和装置
KR101577964B1 (ko) 질화 티탄막의 형성 방법, 질화 티탄막의 형성 장치 및 프로그램을 기록한 기록 매체
JP6999596B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
CN111066122A (zh) 基板处理装置、半导体装置的制造方法以及程序
JP5247781B2 (ja) シリコン窒化膜の形成方法、シリコン窒化膜の形成装置及びプログラム
CN1716538A (zh) 成膜方法和成膜装置
JP2013179321A (ja) 成膜方法および成膜装置
WO2021181450A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP7058338B2 (ja) 基板処理装置、基板保持部、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101124

Termination date: 20160706