DE10027988A1 - Appliance for percutaneous insertion of connection of pedicle screws has two arms of equal length with transverse connection, circular arm and circular support, - Google Patents

Appliance for percutaneous insertion of connection of pedicle screws has two arms of equal length with transverse connection, circular arm and circular support,

Info

Publication number
DE10027988A1
DE10027988A1 DE2000127988 DE10027988A DE10027988A1 DE 10027988 A1 DE10027988 A1 DE 10027988A1 DE 2000127988 DE2000127988 DE 2000127988 DE 10027988 A DE10027988 A DE 10027988A DE 10027988 A1 DE10027988 A1 DE 10027988A1
Authority
DE
Germany
Prior art keywords
spine
connection
pedicle screws
screw
percutaneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2000127988
Other languages
German (de)
Other versions
DE10027988C2 (en
Inventor
Arkadiusz Kosmala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE2000127988 priority Critical patent/DE10027988C2/en
Publication of DE10027988A1 publication Critical patent/DE10027988A1/en
Application granted granted Critical
Publication of DE10027988C2 publication Critical patent/DE10027988C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7083Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements
    • A61B17/7089Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements wherein insertion is along an arcuate path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7011Longitudinal element being non-straight, e.g. curved, angled or branched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other

Abstract

The equilateral triangle is located in a circle with a shared center point. These geometric principles determine the stereotactically guided percutaneous implantation of the lengthwise support connecting the polyaxial pedicle screws without the necessity of prolonged exposure of the spine during an operation. The appliance consists of two arms of equal length with a cross-connection on a plane on which swivels a circular arm of freely selected radius and holding the circular lengthwise support.

Description

Der aktuelle Stand der TechnikThe current state of the art

Die offene transpedikuläre Instrumentierung der Wirbelsäule ist eine bereits seit Jahrzehnten etablierte Operationsmethode (2-19, 21-28, 32, 34-37, 40-41, 44-47, 49-­ 55, 57-60). Die rasche Entwicklung der wirbelsäulenspezifischen Operationstechnik, der Zugangswege sowie die in den letzten Jahren geradezu explosionsartig gestiegene Zahl der Implantate machen es zwingend erforderlich, auch nach neuen Ideen zu suchen. Die von allen Seiten geförderte chirurgische minimalinvasive Behandlungsphilosophie wird es in der Zukunft verbieten, die häufig nur zur Unterstützung der endgültigen ventralen Instrumentation durchgeführte dorsale Stabilisierung im Sinne einer dorsalen Zuggurtung mittels der herkömmlichen Muskel- und Bandapparat zerstörenden Zugangsweise durchzuführen. Während die die Bauchmuskulatur schonenden allgemeinchirurgischen endoskopischen Zugänge bereits auf breite Zustimmung gestoßen sind und mit großem Können durchgeführt werden, wurden noch keine etablierten Methoden beschrieben, die eine komplette perkutane Implantation der Pedikelschrauben und der Längsträger standardisieren und optimal ermöglichen. Die perkutane Schraubenplazierung ist dagegen seit der Einführung 1984 (1, 20, 29, 30-31, 33 38-39, 42-44, 48, 56) eine anerkannte Methode, die jedoch per definitionem eine externe Verbindung der perkutan implantierten Schrauben zum Ziel hat. Sie hatte längst den Eingang in den klinischen Alltag gefunden, konnte sich dennoch nicht weit verbreiten, da sich die Handhabung der extrakorporalen Montage als recht problematisch erwiesen hat. Die Befürworter dieser Technik hatten allerdings diverse Verfahren entwickelt, die eine anatomisch belegbare und standardisiert sichere Plazierung der Pedikelschrauben ermöglichen (29-30, 39, 43-44, 48, 56). Die Fehlplazierungsrate wurde dadurch minimalisiert und gleicht einer offenen Schraubenimplantation.The open transpedicular instrumentation of the spine has been one since Established surgical method for decades (2-19, 21-28, 32, 34-37, 40-41, 44-47, 49- 55, 57-60). The rapid development of spinal surgery technology, the Access routes, as well as the explosion that has exploded in recent years The number of implants makes it imperative to also come up with new ideas search. The minimally invasive surgical funded from all sides Treatment philosophy will prohibit it in the future, which is often only for Support for the final ventral instrumentation performed dorsally Stabilization in the sense of a dorsal tension belt using the conventional muscle and tape apparatus destructive approach to access. While the General surgical endoscopic approaches already protect the abdominal muscles have met with broad approval and are carried out with great skill, No established methods have been described for complete percutaneous Standardize and optimally implant the pedicle screws and the side members enable. Percutaneous screw placement, on the other hand, has been since its introduction in 1984 (1, 20, 29, 30-31, 33 38-39, 42-44, 48, 56) a recognized method, which, however, by an external connection of the percutaneously implanted screws to the target Has. She had long since found her way into everyday clinical practice, could nevertheless not widely spread, since the handling of extracorporeal assembly has proven to be quite problematic. The proponents of this technique, however, had developed various procedures that ensure anatomically verifiable and standardized safety Allow placement of pedicle screws (29-30, 39, 43-44, 48, 56). The  This has minimized the misplacement rate and resembles an open one Screw implantation.

Bei der bereits seit mehreren Jahren beschriebenen Methodik der perkutanen Schraubenimplantation war es bis dato offensichtlich nicht möglich, die Schraubenköpfe im gleichen (perkutanen) Arbeitsgang mit den Stäben zu verbinden. Erst eine rein perkutane vollständige Wirbelsäuleninstrumentation einschließlich Montage der schraubenverbindenden Längsträger würde einen weiteren Schritt auf dem Gebiet der Minimalisierung des iatrogenen Traumas bedeuten. Dieses Problem wird durch die im Patentanspruch aufgeführten Geräteeigenschaften gelöst.In the percutaneous methodology that has been described for several years Screw implantation was obviously not possible until now, the screw heads to be connected to the rods in the same (percutaneous) operation. First one in percutaneous full spinal instrumentation including assembly of the screw connecting side members would be a further step in the field of Minimize iatrogenic trauma. This problem is caused by the im Device properties listed solved.

Das Wirkungsprinzip des Gerätes leitet sich aus den einfachen geometrischen Prinzipien ab (Zeichnung 1, 2). Jedes Dreieck hat einen Umkreis, dessen Mittelpunkt innerhalb dieses Dreiecks liegt und alle 3 Ecken schneidet. Der Mittelpunkt des Umkreises ist der Schnittpunkt der Mittelsenkrechten. In einem gleichschenkligen Dreieck liegt der Mittelpunkt des Umkreises in der Symmetrieachse des Dreiecks (45). Die sagittale Krümmung der Lendenwirbelsäule beschreibt einen Kreis, bzw. ein Oval. Gemessen an den Eintrittspunkten der zwei Pedikelschrauben eines oder mehrerer Bewegungssegmente, werden diese durch den Kreis geschnitten (Zeichnung 2, 3). Somit ist der ein Schraubenpaar verbindende Stab geometrisch gesehen bei vorgegebener Krümmung ein Kreisbogen mit einem definierbaren Radius und Mittelpunkt.The principle of operation of the device is derived from the simple geometric Principles from (drawing 1, 2). Each triangle has a perimeter, the center of which lies within this triangle and intersects all 3 corners. The center of the Perimeter is the intersection of the perpendicular. In an isosceles Triangle is the center of the circumference in the symmetry axis of the triangle (45). The sagittal curvature of the lumbar spine describes a circle or an oval. Measured at the entry points of the two pedicle screws of one or more Movement segments, these are cut through the circle (drawing 2, 3). Thus, the rod connecting a pair of screws is geometrically considered given curvature an arc with a definable radius and Focus.

Die perkutan auf den Schraubenköpfen sitzenden Kanülen sind gleich lang. Durch eine Brücke werden sie zu einer Verbindung geschlossen, die geometrisch betrachtet einem gleichschenkligen Dreieck entspricht. Dieses Dreieck und der Umkreis besitzen somit den gleichen Mittelpunkt, um den auf einem Schwenkstab sitzender und die Pedikelschrauben zu verbindender Längsträger gegebenenfalls bewegt werden kann (im Kreis an einem festen Arm) (Zeichnung 3). Eine vorgegebene Längsträgerkrümmung ist daher die Voraussetzung für eine derartige Implantation. Diese muss industriell gewährleistet sein, und beträgt etwa 18 cm. Folgt die Krümmung (Radius) der Wirbelsäule einem Kreis nicht, ist die Dreieckkonstruktion alleine durch eine entsprechende Schraubenpositionierung und Ankippung der beweglichen polyaxialen Schraubenköpfe zur Aufnahme des kreisförmig vorgebogenen Stabes möglich.The cannulas percutaneously on the screw heads are of the same length. By a Bridge, they are closed to form a connection that, from a geometric point of view isosceles triangle. This triangle and the perimeter therefore have the same center around the one sitting on a swivel rod and the Pedicle screws to be connected to the longitudinal beam can be moved if necessary (in a circle on a fixed arm) (drawing 3). A given one Longitudinal curvature is therefore the prerequisite for such an implantation. This must be guaranteed industrially and is approximately 18 cm. Follow the curvature (Radius) of the spine is not a circle, the triangular construction is by itself  appropriate screw positioning and tilting of the movable polyaxial screw heads for receiving the circular pre-bent rod possible.

Das Prinzip der gänzlich perkutanen Wirbelsäuleninstrumentierung stützt sich auf die bereits im Vorfeld erarbeiteten Techniken der perkutanen Schraubenimplantation (1, 20, 29, 30-31, 33 38-39, 42-44, 48, 56) Nach Erfassung der Pedikeleintrittspforte unter dem C-Bogen oder aber unterstützt mit der spinalen Navigation, beginnt die perkutane Instrumentation des Pedikels mit einem Kirschnerdraht. Danach folgt der eigentliche Hautschnitt - jeweils etwa 18 mm pro 1 Schraube. Über den im Pedikel liegenden Kirschnerdraht werden sukzessive Dehnungskanülen bis zum Erreichen eines entsprechend weiten Arbeitskanals eingebracht. Dieser wird mit einer Platzhaltekanüle festgehalten, die wiederum auch mit einem Fixierarm optional gehalten werden kann. Diese Kanüle ist bereits ein Teil des Stabeinführsystems, später "Karussell" genannt. Der Pedikel wird nun entweder mit dem üblichen lumenhaltigen Bohrer aufgebohrt und dann nach Entfernung des Kirschnerdrahtes mit einer standardmäßigen polyaxialen Schraube versehen. Dieser Vorgang wäre auch nach vorausgegangenem Gewindeschneiden (kanülierter Gewindeschneider) möglich. Über den Kirschnerdraht wird ebenso eine kanülierte polyaxiale Pedikelschraube eingeführt. Die erste Option ermöglicht die Benutzung der Standardimplantate, jedoch mit der Gefahr den Schraubenkanal durch eine unkontrollierte Verschiebung der Arbeitskanüle zu verlieren. Die zweite Möglichkeit bedarf der Spezialimplantate (perforierte polyaxiale Schrauben), jedoch in Kombination mit der spinalen Navigation bietet sie eine relevant kürzere Durchleuchtungszeit. Eine Durchleuchtung ist nur am Anfang zur Positionierung des Kirschnerdrahtes notwendig. Liegt dieser korrekt, erfolgen weitere Schritte ohne Notwendigkeit einer ausgiebigen Röntgenkontrolle.The principle of completely percutaneous spinal instrumentation is based on the Techniques for percutaneous screw implantation (1, 20, 29, 30-31, 33 38-39, 42-44, 48, 56) After recording the pedicle entry portal under Percutaneous begins with the C-arm or with spinal navigation Instrumentation of the pedicle with a Kirschner wire. Then the real one follows Skin incision - about 18 mm each for 1 screw. About the one in the pedicle Kirschner wires are successively stretch cannulas until they reach one introduced correspondingly wide working channel. This comes with a space cannula held, which in turn can optionally be held with a fixing arm. This cannula is already part of the rod insertion system, later called "carousel". The pedicle is then either drilled out with the usual lumen-containing drill and then after removing the Kirschner wire with a standard polyaxial Screw. This process would also be after the previous one Thread cutting (cannulated thread cutter) possible. Over the Kirschner wire a cannulated polyaxial pedicle screw is also inserted. The first option enables the use of standard implants, but with the risk of Losing the screw channel through an uncontrolled displacement of the working cannula. The second option requires special implants (perforated polyaxial screws), however, in combination with spinal navigation, it offers a significantly shorter time Fluoroscopy time. A fluoroscopy is only at the beginning to position the Kirschner wire necessary. If this is correct, further steps are taken without The need for extensive x-ray control.

Wünschenswert ist eine leicht (5-10 Grad) konvergierende oder aber weitgehend parallele Positionierung der einseitigen Schraubenpaare.A slightly (5-10 degrees) converging or extensive is desirable parallel positioning of the one-sided screw pairs.

Die Schraube wird durch die Arbeitskanüle eingebracht, wobei der Schraubenkopf mit einem Instrument (Zeichnung 4) festgehalten und positioniert wird. Das Instrument wird in der Arbeitskanüle durch eine in seiner Wand eingefrästen Führung eingebracht, so dass das Übereinanderliegen der seitlichen Schraubenöffnung und der auf dem Schraubenkopf sitzenden Kanüle, die ebenso im Bereich des Schraubenkopfes eine seitliche Öffnung besitzt, gewährleistet ist. Diese Vorgänge werden einseitig an der oberen und unteren Schraube durchgeführt. Auf die nach außen (extrakutan) hin verlängerten Implantate wird das eigentliche Stabeinführinstrument aufgesetzt (Zeichnung 5).The screw is inserted through the working cannula, the screw head with an instrument (drawing 4) is held and positioned. The instrument will inserted into the working cannula through a guide milled into its wall, see above that the overlapping of the side screw opening and that on the Screw head seated cannula, which is also in the area of the screw head  has side opening, is guaranteed. These processes are one-sided on the carried out upper and lower screw. On the outside (extracutaneous) the actual rod insertion instrument is placed on extended implants (Drawing 5).

Das eigentliche Instrument besteht aus zwei Aufsätzen, die auf die Arbeitskanülen aufgesteckt werden. Sie sind mit der Brücke verbunden, auf welcher der bewegliche Arm fixiert ist (Zeichnung 5). Da der interpedikuläre Abstand nicht konstant ist, ist auch eine stufenlose Verstellung und Arretierung des Kanülenabstandes notwendig. Bei Veränderung des interpedikulären Abstandes ändert sich aber auch der Winkel der Kanülen zueinander, da die Ausrichtung der frei beweglichen Schraubenköpfe der Krümmung des festgelegten Radius des Längsträgers zwangsläufig folgen muss. Damit das geometrische Prinzip eines gleichschenkligen Dreiecks im Umkreis greift, müssen die auf den Schraubenköpfen sitzenden Arbeitskanülen samt der Aufsätzen bewegbar bzw. kippbar sein. Durch ein Zahnradprinzip sind die auf den Schraubenkanülen steckenden Aufsätze verbunden, was ihre gleichmäßige Ankippung bei Abstand- und Winkelveränderung der Schraubenköpfe bedingt und der Erhaltung der geometrischen Grundsätze des gleichschenkligen Dreiecks dient.The actual instrument consists of two essays that point to the working cannulae be plugged on. They are connected to the bridge on which the movable one Arm is fixed (drawing 5). Since the interpedicular distance is not constant, too a stepless adjustment and locking of the cannula distance is necessary. at Changing the interpedicular distance also changes the angle of the Cannulas to each other, since the alignment of the freely movable screw heads of the Curvature of the defined radius of the side member must necessarily follow. In order to the geometric principle of an isosceles triangle in the vicinity must the working cannulas on the screw heads, including the attachments, can be moved or be tiltable. Due to a gear principle, they are on the screw cannulas plugged attachments connected, what their even tilting at distance and Changes in the angle of the screw heads and the preservation of the geometric Principles of the isosceles triangle.

Sitzt das Karussell auf den Pedikelschrauben, wird der vorgebogene Stab perkutan in die Schraubenköpfe über den beweglichen Arm hineingeschwenkt und mit der Innenmutter leicht fixiert.If the carousel sits on the pedicle screws, the pre-bent rod is percutaneously cut in the screw heads swung in over the movable arm and with the Inner nut slightly fixed.

Zur Verringerung des Gewebswiederstandes am Stabanfang muss diese entsprechend angespitzt sein.To reduce the tissue resistance at the start of the rod, this must be done accordingly be pointed.

Damit eine derartige Instrumentation durchgeführt werden kann, sind vier Hautinzisionen von etwa 18 mm Länge zur Einbringung der Pedikelschrauben, zwei Inzisionen von der Länge etwa 6-7 mm zur perkutanen Implantation der Längsträger nötig. Eine Fasciennaht ist bei dem Hautverschluss nicht zwingend erforderlich.In order for such an instrumentation to be carried out, there are four Skin incisions about 18 mm long to insert the pedicle screws, two Incisions about 6-7 mm in length for percutaneous implantation of the longitudinal members necessary. A fascia suture is not absolutely necessary for the skin closure.

Das Gerät lässt sich mit geringfügigen Veränderungen an jede derzeit erhältliche polyaxiale Pedikelschraube/Schraubensystem anwenden. The device can be modified with slight changes to any currently available Use polyaxial pedicle screw / screw system.  

Vorteilebenefits

Erst eine rein perkutane vollständige Stabilisierung einschließlich Montage der schraubenverbindenden Längsträger würde einen weiteren Schritt auf dem Gebiet der Minimalisierung des iatrogenen Traumas bei einer einfachen dorsalen Wirbelsäuleninstrumentation bedeuten. Sie könnte die Vorzüge und manche Indikationen der offenen und der perkutanen Schraubenimplantation vereinigen und bei weiterer Entwicklung die Behandlungsphilosophie in einem bestimmten Grad verändern. Die Vorteile liegen auf der Hand: Das intraoperative Muskeltrauma ist wesentlich kleiner, da ein echtes Muskelablösen zur Freilegung der Wirbelsäule nicht mehr nötig ist, nach entsprechender Lernkurve bedeutend kürzere Operationszeit. Effekte wie zum Beispiel wesentlich kleinere postoperative Narbe oder auch höhere Akzeptanz durch die Patienten durch das wesentlich kleinere Ausmaß des Eingriffs sind medizinisch gesehen von kleinerer Bedeutung. Die von der periduralen endoskopischen Bandscheibenchirurgie bekannte schnellere postoperative Mobilisation der Patienten im Vergleich zu der klassischen, auch mikroskopischen Operationsmethode, kommen bei offenem Zugang zur Wirbelsäulenimplementierung und der um ein Mehrfaches größeren Zugangslänge hier um so deutlicher zum Tragen.Only a purely percutaneous complete stabilization including assembly of the screw connecting side members would be a further step in the field of Minimalization of iatrogenic trauma in a simple dorsal Spinal instrumentation mean. You could have the merits and some Unite indications of open and percutaneous screw implantation and at further development the treatment philosophy to a certain degree change. The advantages are obvious: The intraoperative muscle trauma is much smaller, because a real muscle detachment to expose the spine is not more is necessary, after a corresponding learning curve, significantly shorter operation time. Effects such as significantly smaller post-operative scar or higher ones Patient acceptance due to the much smaller size of the procedure medically less important. That of the peridural endoscopic Intervertebral disc surgery known faster postoperative mobilization of patients in the Comparison to the classic, also microscopic surgical method, come in open access to the spine implementation and that many times over longer access length here the more clearly to be borne.

Es resultiert daraus ein zu vernachlässigender Blutverlust sowie ein minimales Muskeltrauma, da die Muskelfasern nicht durchtrennt sondern auseinandergedrängt werden. Die bloßliegenden Muskelfasern verschließen sofort den Zugangstunnel, Blutungen oder grobe Läsionen des Muskelgewebes sind eher eine Seltenheit. Die traumabedingten postoperativen Schmerzen werden dadurch wesentlich reduziert, die Mobilisation des Patienten erfolgt früher.The result is negligible blood loss and minimal Muscle trauma, as the muscle fibers are not severed but pushed apart become. The exposed muscle fibers immediately close the access tunnel, Bleeding or gross lesions of the muscle tissue are rather rare. The This significantly reduces trauma-related postoperative pain The patient is mobilized earlier.

Mögliche EinsetzbarkeitPossible applicability

Das Instrument setzt an der Basis der transpedikulären Wirbelsäuleninstrumentation ein und ist demnach keine hochspezifische Entwicklung für besondere Fragestellungen in der Wirbelsäulenchirurgie. Auf diese Weise wäre die potentielle Einsetzbarkeit durch den ohnehin weiten Anwenderkreis entsprechend hoch. Theoretisch könnte man damit in der Zukunft die meisten Indikationen für eine dorsale Zuggurtung ohne Notwendigkeit einer Spinalkanalinzision vollkommen ersetzen, da mit den herkömmlichen Implantaten zuzüglich des o. g. Instrumentes eine einfache und viel schonendere Option der dorsalen Stabilisierung gewährleistet wäre.The instrument is based on the transpedicular spinal instrumentation and is therefore not a highly specific development for special questions in spine surgery. In this way, the potential applicability would be through the already wide range of users accordingly high. In theory, you could in the future most indications for dorsal tensioning without need  completely replace a spinal canal incision, as with the conventional implants plus the above Instrumentes a simple and much gentler option of dorsal stabilization would be guaranteed.

Die Integration der zusätzlichen Schrauben (mehr als 2 Schrauben in einer Reihe) in das Instrument scheint auf jeden Fall möglich zu sein, bedarf jedoch einer präziseren Implantation der Schraubenlage in der mit dem Stab zu versorgenden Reihe. Die mittleren Schrauben müssen entsprechend tiefer zu liegen kommen; die primäre Verwendung der sog. Langkopfschrauben könnte von Vorteil sein. Damit wären auf diese Weise die leichteren Formen der Spondylolisthesen (Meyerding 1 bis 2) ohne eine nennenswerten Spinalkanalstenose schonend zu versorgen, vorausgesetzt, eine ventrale Abstützung folgt. Eine peridurale endoskopisch unterstützte Dyscektomie mit nachfolgendem Zwischenwirbelraumersatz sind beim rein dorsalen Zugang denkbar. Die Instrumentation der Brustwirbelsäule ist monosegmental bis bisegmental möglich. Zu bedenken ist jedoch eine etwas höhere Position der Schraubenköpfe, damit ein Konflikt des Längsträgers mit dem Wirbelsäulenabschnitt zwischen den Pedikelschrauben vermieden wird.The integration of additional screws (more than 2 screws in a row) in the instrument seems to be possible in any case, but needs a more precise one Implantation of the screw position in the row to be supplied with the rod. The middle screws have to be correspondingly lower; the primary Using the so-called long-head screws could be an advantage. That would be up this way the lighter forms of spondylolisthesis (Meyerding 1 to 2) without to treat a noteworthy spinal canal stenosis gently, provided one ventral support follows. A peridural endoscopically assisted dyscectomy Subsequent intervertebral space replacement is conceivable with purely dorsal access. The thoracic spine can be instrumented monosegmentally to bisegmentally. However, a slightly higher position of the screw heads should be considered, so that one Conflict of the longitudinal member with the spine section between the Pedicle screws is avoided.

Literaturliterature

1) ABE, J., NAGATA, K., ARIYOSHI, M., INOUE, A.: Experimental external fixation combined with percutaneous discectomy in the management of Scoliosis: SPINE 1999; 24: 646
2) AEBI, M., ETTER, C.: The internal skeletal fixation system: a new treatment of thoracolumbar fraktures and other spinal disorders. Clin Orthop 227: 30-42 (1988)
3) AEBI, M., ETTER, CH., GANZ, R.: Ein modifizierter Fixateur interne für die lumbosakrale Wirbelsäule. Die Wirbelsäule in Forschung und Praxis Bd. 107. Hippokrates, Stuttgart (1988)
4) AEBI, M., MOHLER, M.: Analysis of 75 operated thoracolumbar fraktures and fracture dislocations with and without neurological deficit. Arch Orthop Trauma Surg 105: 100-112 (1986)
5) BEEN, H. D., SLOT, G. H.: Indications, technics and results of the surgical treatment of thoracolumbar spine-fractures with Slot-Zielke-System. Die Wirbelsäule in Forschung und Praxis Bd. 107. Hippokrates, Stuttgart 1988
6) BENSON, D. R., BURKUS, J. K., MONTESANO, P. X., SUTHERLAND, T. B., McLAIN, R. F.: Unstable thoracolumbar and lumbar burst fractures treated with the AO fixateur interne. J Spin Disord 5: 335-43 (1992)
7) BOHLMAN, H. H., EISMONT, F. J.: Surgical techniques of anterior decompression and fusion for spinal cord injuries. Clin Orthop 154: 57 (1981)
8) BRADFORD, D. S., AKBARNIA, B. A., WINTER, R. B., SELJESKOG, E. L.: Surgical stabilisation of fracture dislocation of the thoracic spine. Spine 2: 185-­ 196 (1977)
9) CARL, A. L., TROMANHAUSER, S. G., ROGER, D. J.: Pedicle screw instrumentation for thoracolumbar burst fractures and fracture-dislocations. Spine 17: /Suppl./ 317-324 (1992)
10) CHANG, K-W.: A reduction-fixation system for unstable thoracolumbar burst fractures. Spine 17: 879-886 (1992)
11) CRUTSCHER, J. P. Jr., ANDERSON, P. A., KING, H. A., MONTESANO, H. X.: Indirect spinal canal decompression in patient with thoracolumbar burst fractures treated by posterior distraction rod. J Spin Disord 4: 39-48 (1991)
12) DANIAUX, H., SEYKORA, P., GENELIN, P., LANG, T., KATHERIN, A.: Application of posterior plating and modifikations in thoracolumbar spine injuries. Indikation, techniques and results. Spine 16: /Suppl./ 125-133 (1991)
13) DAVNE, S. H., MYERS, D. L.: Complications of lumbar spinal fusion with tranpedicular instrumentation. Spine 17: /Suppl./ 184-189 (1992)
14) DICK, W.: Der Fixateur interne in der Behandlung von Wirbelfrakturen und degenerativen Instabilitäten. Die Wirbelsäule in Forschung und Praxis Bd. 107. Hippokrates, Stuttgart 1988
15) DICK, W.: Innere Fixation von Brust- und Lendenwirbelsäule. Aktuelle Probleme in Chirurgie und Orthopädie. Huber, Bern 1987
16) DICKSON, J. H., HARRINGTON, P. R., ERWIN, W. D.: Results of reduetion and stabilisation of severeiy fractured thoracic and lumbar spine. J Bone Joint Surg 60 (Am): 799-805 (1978)
17) DIETRICH, U., KALFF, R., STÜRMER, K.-M., SERDAREVIC, M., KOCKS, W.: Computerised tomography after internal fixation of the spine. Neurosurg Rev 12: 211-215 (1989)
18) EDWARDS, C. C., SIMMONS,C., LEVINE, A. M., BANDS, R. E., CAMPBELL, S. E.: Primary rigid fixation of 135 thoracolumbar injuries: analysis and results. Orthop Trans 9: 479-480 (1980)
19) ESSES, S. I., BODSFORD, WRIGHT, T., BEDNAR, D., BAILEY, S.: Operative treatment of spinal fractures with the AO internal fixator. Spine 16: /Suppl./ 146-­ 150 (1991)
20) ESSES, S. I., BOTSFORD, D. J., KOSTUIK, J. P.: The rote of external spinal skeletal fixation in the assesment of low-back disorders. Spine 14: 594-600 (1989)
21) FERGUSON, R. L.: The evolution of the use of segmentally fixed instrumentations to treat unstable thoracolumbar spinal fractures. Die Wirbelsäule in Forschung und Praxis Bd. 107. Hippokrates, Stuttgart 1988
22) FRIEDL, W.: Vereinfachte Operationstechnik und verkürzte Durchleuchtungszeit bei dorsalen Stabilisierung von Wirbelsäulenfrakturen. Chirurg 63: 980-983 (1992)
23) GELDERMAN, P. W.: The operative stabilisation and grafting of thoracic and lumbar spinal fractures. Surg Neurot 23: 101-120 (1985)
24) GERTZBEIN, S. D., CROWE, P. J., SCHWARTZ, M.: Canal clearence in burst fractures using AO internal fixator. Spine 18: 977-992 (1992)
25) HARMS, J.: Der Gebrauch des USI-Systems in der Behandlung von Wirbelsäulenfrakturen. Die Wirbelsäule in Forschung und Praxis Bd. 107. Hippokrates, Stuttgart 1988
26) HARMS, J.: Screw-threated rod system in spinal fusion surgery. Spine 6: 541-­ 579 (1992)
27) HOROWITCH, A., PEEK, R. D., THOMAS, J. C., WIDELL, E. H., DiMARTINO, P. P., SPENCER, C. W., WEINSTEIN, J., WILTSE, L. L.: The Wiltse pedicle screw fixation system: early clinical results. Spine 14: 461-467 (1989)
28) JACKOBS, R. R., NORDWALL, A., NACHEMSON, A. L.: Reduction, stability and strength provided by internal fixation systems for thoracolumbar spinal injuries. Clin Orthop 171: 300-308
29) JEANNERT, B., JOVANOVIC, M., MAGERL, F.: Percutaneous diagnostic stabilisation for low back pain. Correlation with results after fusion operations. Clinical Orthopaedics And Related Research 304: 130-138 (1994)
30) JEANNERT, B., MAGERL, F.: Diagnostische Stabilisation der Lendenwirbelsäule und des Iliosacralgelenkes mit dem Wirbel - Fixateur externe.
31) JEANNERT, B., MAGERL, F.: Treatment of osteomyelitis of the spine using percutaneous suction/irrigation and percutaneous external spinal fixation. Journal of Spinal Disorders 7: 185-205 (1994)
32) KLUGER, P., GERNER, H. J.: Klinische Erfahrungen mit dem Fixateur interne und seine Weiterenwicklung. Die Wirbelsäule in Forschung und Praxis Bd. 107 Hippokrates, Stuttgart 1988
33) KLUGER, P.; GERNER, H. J.: Das mechanische Prinzip des Fixateur externe zur dorsalen Stabilisierung der Brust-und Lendenwirbelsäule. Unfallchirurgie. 12: 68-­ 79 (1986)
34) KORTMANN, H. R., CORDEY, J., WOLTER, D., SEIDE, K.: Durchdrehmoment und axiale Kraft von Corticalis- und Spongiosaschrauben bei der transpedikulären Ostheosynthese. Langenbecks Arch Chir Suppl Chir Forum 159-163 (1988)
35) KORTMANN, H. R., WOLTER, D., RECKERT, L., JÜRGENS, H.: Die Rotationsstabilität der LWS nach verschiedenen transpedikulären Ostheosynthesen. Langenbecks Arch Chir Suppl Chir Forum 405-409 (1987)
36) KRAG, M. H., BEYNNON, B. D., POPE, M. H., FRYMOYER, J. W., HAUGH, L. D., WEAFER, D. L.: An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine. Clin Orthop 203: 75-97 (1986)
37) LINDSEY, R. W., DICK, W.: The Fixateur interne in the reduction and stabilisation of thoracolumbar spine fractures in patients with neurologic deficit. Spine 3: / Suppl./ 140-145 (1991)
38) LOZES, G., FAWAS,A., MESCOLA, P., et al.: Percutaneous interbody ostheosynthesis in the treatment of thoracolumbar traumatic or tumoral lesions. Acta Neurochirurgica 102: 42-53 (1990)
39) MAGERL, F.: Stabilisation of the lower thoracic and lumbar spine with external skeletal Fixation. Clinical Orthopaedics And Related Research 189: 125-141 (1984)
40) MATSUZAKI, H., TOKUHASHI, Y., MATSUMOTO, F., HOSHINO, M., KIUCHI, T., TORIYAMA, S.: Problems and solution of pedicle screw plate fixation of lumbar spine. Spine 15: 1159-1165 (1990)
41) MAYER, H.; SCHAAF, D.; KUDERNATSCH, M.: Der Einsatz des Fixateur interne bei Verletzungen der Brust-und Lendenwirbelsäule. Chirurg 63: 944-949 (1992)
42) OLERUD, S., SJÖSTRÖM, L., KARLSTRÖM, G., HAMBERG, M.: Spontaneous effect of increased stability of the lower lumbar spine in cases of severe chronic back pain. The answer of external transpedicular fixation test. Clinical Orthopaedics And Related Research 203: 67-74 (1986)
43) PENNIG, D., BRUR, E.: A target device for placement of implants in the thoracolumbar pedicles. J Bone Joint Surg 72-B: 886-888 (1990)
44) PFAUNDLER, S., EBELING, REULEN, H.-J.: Pedicle origin and intervertebral compartment in the lumbar and upper sacral spine. A biometric study. Acta Neurochir 97: 158-165 (1989)
45) ROTH, D.: Basismathematik 8. Ausgabe B. Geometrie. B Bayerischer Schulbuch- Verlag. München 1995
46) ROY-CAMILLE, R., GAILLANT, G., MAZEL, Z.: Internat fixation of the lumbar spine and pedicle screw plating. Clin Orthop 236: 180-191 (1988)
47) SANDVOSS, G., FELDMANN, H.: Kluger's "Fixateur interne" for spinal instability. Neurosurg Rev 14: 119-125 (1991)
48) SCHULITZ, K.-P., WIESNER, L.: Der Fixateur externe zur passageren Wirbelsäulenstabilisierungen. Radiographische Anatomie des lumbalen Pedikels. Z. Orthop 133: 573-577 (1995)
49) SIMMONS, E. H., CAPICOTTO, W. N.: Posterior transpedicular Zielke instrumentation of the lumbar spine. Clin Orthop 236: 180-191 (1988)
50) SKALLI, W., ROBIN, S., LAVASTE, F., DUBOUSSET, J.: A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model. Spine 18: 536-545 (1993)
51) SLOSAR, P. J., PATWARDHAN, A. G., LORENZ, M., HAVEY, R., SARTORI, M.: Instability of the lumbar burst fracture and limitations of transpedicular instrumentation. Spine 13: 1452-1461 (1995)
52) STEFFEE, A. D., BISCUP, R.: Segmental spine plates with pedicle screw fixation. Clin Orthop 203: 45-53 (1986)
53) SUEZAWA, Y., SCHÜEPP, J., JACOB, H. A. C.: Transpedicular spinal fusion with the Balgrist fixation device. Die Wirbelsäule in Forschung und Praxis Bd. 107. Hippokrates, Stuttgart 1988
54) WEST, J. L., OGILIWE, J. W., BRADFORD, D. S.: Complication of the variable screw plate pedicle screw fixation. Spine 16: 576-579 (1991)
55) WHITECLOUD, T. S., BUTLER, J. C., COHEN, J. L., CANDELORA, P. D.: Complications with the variable spinal plating system. Spine 14: 472-475 (1989)
56) WIESNER, L., KOTHE, R., SSHULITZ, K. P., RÜTHER, W.: Clinical evaluation and computed tomography scan analysis of screw tracts after percutaneous insertion of pedicle screws in the lumbar spine. SPINE 2000; 25: 615-621
57) WOLTER, D.; KORTMANN, H.-R.: Transpedikuläre Spondylodese der Brust-und Lendenwirbelsäulenverletzung. Chirurg 63: 866-874 (1992)
58) WOOD, G. W., BOYD, R,J., CAROTHERS, T. A., MANSFIELD, F. L., RECHTINE, G. R., ROZEN, M. J., SUTTERLIN, CH. E.: The effect of pedicle screw/plate fixation on lumbar/lumbosacral autogenous bone graft fusion in patients with degenerative disc disease. Spine 7: 819-983 (1995)
59) WÖRSDORFER, O., ULRICH, CH., MAGERL, F.: Biomechanische Untersuchungen zu den verschiedenen Techniken der dorsalen und ventralen Stabilisierung im Bereich der thorakolumbalen und lumbalen Wirbelsäule. Die Wirbelsäule in Forschung und Praxis Bd. 107 Hippokrates, Stuttgart 1988
60) ZANGGER, P., PACHE, T.: Reduction and stabilisation of lumbar and thoracolumbar spine fractures with Louis'plates and internal fixator: a comparative study. Europ Spine 2: 159-164 (1993)
1) ABE, J., NAGATA, K., ARIYOSHI, M., INOUE, A .: Experimental external fixation combined with percutaneous discectomy in the management of scoliosis: SPINE 1999; 24: 646
2) AEBI, M., ETTER, C .: The internal skeletal fixation system: a new treatment of thoracolumbar fraktures and other spinal disorders. Clin Orthop 227: 30-42 (1988)
3) AEBI, M., ETTER, CH., GANZ, R .: A modified internal fixator for the lumbosacral spine. The Spine in Research and Practice Vol. 107. Hippocrates, Stuttgart (1988)
4) AEBI, M., MOHLER, M .: Analysis of 75 operated thoracolumbar fraktures and fracture dislocations with and without neurological deficit. Arch Orthop Trauma Surg 105: 100-112 (1986)
5) BEEN, HD, SLOT, GH: Indications, technics and results of the surgical treatment of thoracolumbar spine-fractures with Slot-Zielke-System. The Spine in Research and Practice Vol. 107. Hippocrates, Stuttgart 1988
6) BENSON, DR, BURKUS, JK, MONTESANO, PX, SUTHERLAND, TB, McLAIN, RF: Unstable thoracolumbar and lumbar burst fractures treated with the AO fixateur internal. J Spin Disord 5: 335-43 (1992)
7) BOHLMAN, HH, EISMONT, FJ: Surgical techniques of anterior decompression and fusion for spinal cord injuries. Clin Orthop 154: 57 (1981)
8) BRADFORD, DS, AKBARNIA, BA, WINTER, RB, SELJESKOG, EL: Surgical stabilization of fracture dislocation of the thoracic spine. Spine 2: 185-196 (1977)
9) CARL, AL, TROMANHAUSER, SG, ROGER, DJ: Pedicle screw instrumentation for thoracolumbar burst fractures and fracture-dislocations. Spine 17: / Suppl. / 317-324 (1992)
10) CHANG, KW .: A reduction-fixation system for unstable thoracolumbar burst fractures. Spine 17: 879-886 (1992)
11) CRUTSCHER, JP Jr., ANDERSON, PA, KING, HA, MONTESANO, HX: Indirect spinal canal decompression in patient with thoracolumbar burst fractures treated by posterior distraction rod. J Spin Disord 4: 39-48 (1991)
12) DANIAUX, H., SEYKORA, P., GENELIN, P., LANG, T., KATHERIN, A .: Application of posterior plating and modifications in thoracolumbar spine injuries. Indication, techniques and results. Spine 16: / Suppl. / 125-133 (1991)
13) DAVNE, SH, MYERS, DL: Complications of lumbar spinal fusion with tranpedicular instrumentation. Spine 17: / Suppl. / 184-189 (1992)
14) DICK, W .: The internal fixator in the treatment of vertebral fractures and degenerative instabilities. The Spine in Research and Practice Vol. 107. Hippocrates, Stuttgart 1988
15) DICK, W .: Internal fixation of the thoracic and lumbar spine. Current problems in surgery and orthopedics. Huber, Bern 1987
16) DICKSON, JH, HARRINGTON, PR, ERWIN, WD: Results of reduction and stabilization of severeiy fractured thoracic and lumbar spine. J Bone Joint Surg 60 (Am): 799-805 (1978)
17) DIETRICH, U., KALFF, R., STÜRMER, K.-M., SERDAREVIC, M., KOCKS, W .: Computerized tomography after internal fixation of the spine. Neurosurg Rev 12: 211-215 (1989)
18) EDWARDS, CC, SIMMONS, C., LEVINE, AM, BANDS, RE, CAMPBELL, SE: Primary rigid fixation of 135 thoracolumbar injuries: analysis and results. Orthop Trans 9: 479-480 (1980)
19) ESSES, SI, BODSFORD, WRIGHT, T., BEDNAR, D., BAILEY, S .: Operative treatment of spinal fractures with the AO internal fixator. Spine 16: / Suppl. / 146-150 (1991)
20) ESSES, SI, BOTSFORD, DJ, KOSTUIK, JP: The rote of external spinal skeletal fixation in the assesment of low-back disorders. Spine 14: 594-600 (1989)
21) FERGUSON, RL: The evolution of the use of segmentally fixed instrumentations to treat unstable thoracolumbar spinal fractures. The Spine in Research and Practice Vol. 107. Hippocrates, Stuttgart 1988
22) FRIEDL, W .: Simplified surgical technique and reduced fluoroscopy time with dorsal stabilization of spinal fractures. Surgeon 63: 980-983 (1992)
23) GELDERMAN, PW: The operative stabilization and grafting of thoracic and lumbar spinal fractures. Surg Neurot 23: 101-120 (1985)
24) GERTZBEIN, SD, CROWE, PJ, SCHWARTZ, M .: Canal clearence in burst fractures using AO internal fixator. Spine 18: 977-992 (1992)
25) HARMS, J .: The use of the USI system in the treatment of spinal fractures. The Spine in Research and Practice Vol. 107. Hippocrates, Stuttgart 1988
26) HARMS, J .: Screw-threated rod system in spinal fusion surgery. Spine 6: 541-579 (1992)
27) HOROWITCH, A., PEEK, RD, THOMAS, JC, WIDELL, EH, DiMARTINO, PP, SPENCER, CW, WEINSTEIN, J., WILTSE, LL: The Wiltse pedicle screw fixation system: early clinical results. Spine 14: 461-467 (1989)
28) JACKOBS, RR, NORDWALL, A., NACHEMSON, AL: Reduction, stability and strength provided by internal fixation systems for thoracolumbar spinal injuries. Clin Orthop 171: 300-308
29) JEANNERT, B., JOVANOVIC, M., MAGERL, F .: Percutaneous diagnostic stabilization for low back pain. Correlation with results after fusion operations. Clinical Orthopedics And Related Research 304: 130-138 (1994)
30) JEANNERT, B., MAGERL, F .: Diagnostic stabilization of the lumbar spine and the sacroiliac joint with the external vertebral fixator.
31) JEANNERT, B., MAGERL, F .: Treatment of osteomyelitis of the spine using percutaneous suction / irrigation and percutaneous external spinal fixation. Journal of Spinal Disorders 7: 185-205 (1994)
32) KLUGER, P., GERNER, HJ: Clinical experience with the internal fixator and its further development. The Spine in Research and Practice Vol. 107 Hippocrates, Stuttgart 1988
33) KLUGER, P .; GERNER, HJ: The mechanical principle of the external fixator for dorsal stabilization of the thoracic and lumbar spine. Traumatology. 12: 68-79 (1986)
34) KORTMANN, HR, CORDEY, J., WOLTER, D., SEIDE, K .: Torque and axial force of cortical and cancellous screws in transpedicular osteheosynthesis. Langenbeck's Arch Chir Suppl Chir Forum 159-163 (1988)
35) KORTMANN, HR, WOLTER, D., RECKERT, L., JÜRGENS, H .: The rotational stability of the lumbar spine after various transpedicular osteosynthesis. Langenbecks Arch Chir Suppl Chir Forum 405-409 (1987)
36) KRAG, MH, BEYNNON, BD, POPE, MH, FRYMOYER, JW, HAUGH, LD, WEAFER, DL: An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine. Clin Orthop 203: 75-97 (1986)
37) LINDSEY, RW, DICK, W .: The Fixateur internal in the reduction and stabilization of thoracolumbar spine fractures in patients with neurologic deficit. Spine 3: / Suppl./ 140-145 (1991)
38) LOZES, G., FAWAS, A., MESCOLA, P., et al .: Percutaneous interbody ostheosynthesis in the treatment of thoracolumbar traumatic or tumoral lesions. Acta Neurochirurgica 102: 42-53 (1990)
39) MAGERL, F .: Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clinical Orthopedics And Related Research 189: 125-141 (1984)
40) MATSUZAKI, H., TOKUHASHI, Y., MATSUMOTO, F., HOSHINO, M., KIUCHI, T., TORIYAMA, S .: Problems and solution of pedicle screw plate fixation of lumbar spine. Spine 15: 1159-1165 (1990)
41) MAYER, H .; SCHAAF, D .; KUDERNATSCH, M .: The use of the internal fixator for injuries to the thoracic and lumbar spine. Surgeon 63: 944-949 (1992)
42) OLERUD, S., SJÖSTRÖM, L., KARLSTRÖM, G., HAMBERG, M .: Spontaneous effect of increased stability of the lower lumbar spine in cases of severe chronic back pain. The answer of external transpedicular fixation test. Clinical Orthopedics And Related Research 203: 67-74 (1986)
43) PENNIG, D., BRUR, E .: A target device for placement of implants in the thoracolumbar pedicles. J Bone Joint Surg 72-B: 886-888 (1990)
44) PFAUNDLER, S., EBELING, REULEN, H.-J .: Pedicle origin and intervertebral compartment in the lumbar and upper sacral spine. A biometric study. Acta Neurochir 97: 158-165 (1989)
45) ROTH, D .: Basic Mathematics 8th Edition B. Geometry. B Bayerischer Schulbuch-Verlag. Munich 1995
46) ROY-CAMILLE, R., GAILLANT, G., MAZEL, Z .: Internat fixation of the lumbar spine and pedicle screw plating. Clin Orthop 236: 180-191 (1988)
47) SANDVOSS, G., FELDMANN, H .: Kluger's "Internal Fixator" for spinal instability. Neurosurg Rev 14: 119-125 (1991)
48) SCHULITZ, K.-P., WIESNER, L .: The external fixator for temporary spinal stabilization. Radiographic anatomy of the lumbar pedicle. Z. Orthop 133: 573-577 (1995)
49) SIMMONS, EH, CAPICOTTO, WN: Posterior transpedicular Zielke instrumentation of the lumbar spine. Clin Orthop 236: 180-191 (1988)
50) SKALLI, W., ROBIN, S., LAVASTE, F., DUBOUSSET, J .: A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model. Spine 18: 536-545 (1993)
51) SLOSAR, PJ, PATWARDHAN, AG, LORENZ, M., HAVEY, R., SARTORI, M .: Instability of the lumbar burst fracture and limitations of transpedicular instrumentation. Spine 13: 1452-1461 (1995)
52) STEFFEE, AD, BISCUP, R .: Segmental spine plates with pedicle screw fixation. Clin Orthop 203: 45-53 (1986)
53) SUEZAWA, Y., SCHÜEPP, J., JACOB, HAC: Transpedicular spinal fusion with the Balgrist fixation device. The Spine in Research and Practice Vol. 107. Hippocrates, Stuttgart 1988
54) WEST, JL, OGILIWE, JW, BRADFORD, DS: Complication of the variable screw plate pedicle screw fixation. Spine 16: 576-579 (1991)
55) WHITECLOUD, TS, BUTLER, JC, COHEN, JL, CANDELORA, PD: Complications with the variable spinal plating system. Spine 14: 472-475 (1989)
56) WIESNER, L., KOTHE, R., SSHULITZ, KP, RÜTHER, W .: Clinical evaluation and computed tomography scan analysis of screw tracts after percutaneous insertion of pedicle screws in the lumbar spine. SPINE 2000; 25: 615-621
57) WOLTER, D .; KORTMANN, H.-R .: Transpedicular spondylodesis of the thoracic and lumbar spine injury. Surgeon 63: 866-874 (1992)
58) WOOD, GW, BOYD, R, J., CAROTHERS, TA, MANSFIELD, FL, RECHTINE, GR, ROZEN, MJ, SUTTERLIN, CH. E .: The effect of pedicle screw / plate fixation on lumbar / lumbosacral autogenous bone graft fusion in patients with degenerative disc disease. Spine 7: 819-983 (1995)
59) WÖRSDORFER, O., ULRICH, CH., MAGERL, F .: Biomechanical studies on the various techniques of dorsal and ventral stabilization in the area of the thoracolumbar and lumbar spine. The spine in research and practice Vol. 107 Hippocrates, Stuttgart 1988
60) ZANGGER, P., PACHE, T .: Reduction and stabilization of lumbar and thoracolumbar spine fractures with Louis'plates and internal fixator: a comparative study. Europ Spine 2: 159-164 (1993)

Claims (3)

1. Gerät zur stereotaktisch geführten perkutanen Implantation der Längsverbindung der Pedikelschrauben, dadurch gekennzeichnet, dass durch Einhaltung der bestimmten geometrischen Prinzipien des gleichschenkligen Dreiecks in einem Umkreis mit gemeinsamen Mittelpunkt, die die Gerätekonstruktion charakterisieren, eine stereotaktisch geführte perkutane (geschlossene) Implantation des die polyaxialen Pedikelschrauben verbindenden Längsträgers ohne Notwendigkeit einer langstreckigen operativen Freilegung der Wirbelsäule möglich ist.1. Device for stereotaxically guided percutaneous implantation of the longitudinal connection of the pedicle screws, characterized in that by adhering to the certain geometric principles of the isosceles triangle in a radius with a common center that characterize the device construction, a stereotactically guided percutaneous (closed) implantation of the polyaxial pedicle screws connecting longitudinal member is possible without the need for long-term surgical exposure of the spine. 2. Das Gerät nach Patentanspruch 1, dadurch gekennzeichnet, dass das Gerät aus zwei gleich langen Armen, mit einer Querverbindung in einer Ebene zusammengeschlossen, zusammengesetzt ist, auf der ein schwenkbarer, zu einem Kreis von einem frei bestimmbaren Radius gebogener Arm, zur Aufnahme des ebenso kreisförmig gebogenen Längsträgers aufgesetzt ist, der perkutan eingeführt wird. Die Köpfe der zuvor perkutan in die Wirbelsäule eingebrachten polyaxialen Pedikelschrauben werden dabei in einer Ebene aufgerichtet und können bedingt durch die Gerätemerkmale entlang des Längsträgers bis zu einem Grad gleichmäßig zu- oder auseinander bewegt werden, wodurch eine Kompression und Distraktion der Wirbel erzielt wird.2. The device according to claim 1, characterized, that the device consists of two arms of equal length, with a cross connection in one Level joined together, composed, on which a swiveling, too a circle curved arm of a freely definable radius, to accommodate the is also placed in a circular curved longitudinal beam, which is inserted percutaneously becomes. The heads of the polyaxial previously inserted percutaneously into the spine Pedicle screws are erected on one level and can be conditional due to the device features along the side member to a degree even are moved towards or apart, causing compression and distraction of the Whirl is achieved. 3. Das Gerät nach Patentanspruch 1, dadurch gekennzeichnet, dass - bedingt durch die Gerätekonstruktion - die in einer Ebene erzwungene Position der Schraubenköpfe eine gleichzeitige perkutane Verbindung von mehr als einem Schraubenpaar ermöglicht.3. The device according to claim 1, characterized, that - due to the device design - the one-level enforcement Position of the screw heads a simultaneous percutaneous connection of more than allows a pair of screws.
DE2000127988 2000-06-06 2000-06-06 Device for stereotaxically guided percutaneous implantation of the longitudinal connection of the pedicle screws Expired - Fee Related DE10027988C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2000127988 DE10027988C2 (en) 2000-06-06 2000-06-06 Device for stereotaxically guided percutaneous implantation of the longitudinal connection of the pedicle screws

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000127988 DE10027988C2 (en) 2000-06-06 2000-06-06 Device for stereotaxically guided percutaneous implantation of the longitudinal connection of the pedicle screws

Publications (2)

Publication Number Publication Date
DE10027988A1 true DE10027988A1 (en) 2002-01-10
DE10027988C2 DE10027988C2 (en) 2003-08-21

Family

ID=7644871

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000127988 Expired - Fee Related DE10027988C2 (en) 2000-06-06 2000-06-06 Device for stereotaxically guided percutaneous implantation of the longitudinal connection of the pedicle screws

Country Status (1)

Country Link
DE (1) DE10027988C2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008422B2 (en) 1999-10-20 2006-03-07 Sdgi Holdings, Inc. Instruments and methods for stabilization of bony structures
WO2006052819A2 (en) 2004-11-09 2006-05-18 Depuy Spine, Inc. Minimally invasive spinal fixation guide systems and methods
US7465306B2 (en) 2004-08-13 2008-12-16 Warsaw Orthopedic, Inc. System and method for positioning a connecting member adjacent the spinal column in minimally invasive procedures
US7491218B2 (en) 2002-10-30 2009-02-17 Abbott Spine, Inc. Spinal stabilization systems and methods using minimally invasive surgical procedures
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US7547318B2 (en) 2004-03-19 2009-06-16 Depuy Spine, Inc. Spinal fixation element and methods
US7597694B2 (en) 2004-01-30 2009-10-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive spinal stabilization
US7686809B2 (en) 2006-09-25 2010-03-30 Stryker Spine Rod inserter and rod with reduced diameter end
US7695475B2 (en) 2005-08-26 2010-04-13 Warsaw Orthopedic, Inc. Instruments for minimally invasive stabilization of bony structures
DE202010005202U1 (en) 2010-04-14 2010-06-17 Aesculap Ag Orthopedic fixation system and target device for such a fixation system
US7758617B2 (en) 2005-04-27 2010-07-20 Globus Medical, Inc. Percutaneous vertebral stabilization system
US7815664B2 (en) 2005-01-04 2010-10-19 Warsaw Orthopedic, Inc. Systems and methods for spinal stabilization with flexible elements
US7854751B2 (en) 2003-12-16 2010-12-21 Dupuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7918857B2 (en) 2006-09-26 2011-04-05 Depuy Spine, Inc. Minimally invasive bone anchor extensions
WO2011128220A1 (en) 2010-04-14 2011-10-20 Aesculap Ag Orthopedic fixation system and targeting device for such a fixation system
US8157809B2 (en) 2006-09-25 2012-04-17 Stryker Spine Percutaneous compression and distraction system
US8523916B2 (en) 2003-12-16 2013-09-03 DePuy Synthes Products, LLC Methods and devices for spinal fixation element placement
US8535318B2 (en) 2010-04-23 2013-09-17 DePuy Synthes Products, LLC Minimally invasive instrument set, devices and related methods
US8540719B2 (en) 2010-02-09 2013-09-24 Aesculap Implant Systems, Llc Percutaneous rod insertion system and method
US9011447B2 (en) 2006-09-25 2015-04-21 Stryker Spine Rod contouring alignment linkage
US9539012B2 (en) 2002-10-30 2017-01-10 Zimmer Spine, Inc. Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures
US9622795B2 (en) 2013-12-13 2017-04-18 Stryker European Holdings I, Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US9655685B2 (en) 2006-02-06 2017-05-23 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
USRE46432E1 (en) 2003-09-24 2017-06-13 Stryker European Holdings I, Llc System and method for spinal implant placement
US9700357B2 (en) 2003-09-24 2017-07-11 Stryker European Holdings I, Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
US9744050B1 (en) 2013-12-06 2017-08-29 Stryker European Holdings I, Llc Compression and distraction system for percutaneous posterior spinal fusion
US9808281B2 (en) 2009-05-20 2017-11-07 DePuy Synthes Products, Inc. Patient-mounted retraction
US9827020B2 (en) 2013-03-14 2017-11-28 Stryker European Holdings I, Llc Percutaneous spinal cross link system and method
US9877750B2 (en) 2005-04-27 2018-01-30 Globus Medical, Inc. Percutaneous vertebral stabilization system
US9895182B2 (en) 2005-05-18 2018-02-20 Stryker European Holdings I. Llc System and method for orthopedic implant configuration
US10034690B2 (en) 2014-12-09 2018-07-31 John A. Heflin Spine alignment system
US10098666B2 (en) 2011-05-27 2018-10-16 DePuy Synthes Products, Inc. Minimally invasive spinal fixation system including vertebral alignment features
US10159579B1 (en) 2013-12-06 2018-12-25 Stryker European Holdings I, Llc Tubular instruments for percutaneous posterior spinal fusion systems and methods
US10441325B2 (en) 2006-04-11 2019-10-15 DePuy Synthes Products, Inc. Minimally invasive fixation system
US10568669B2 (en) 2013-03-14 2020-02-25 Stryker European Holdings I, Llc Systems and methods for percutaneous spinal fusion
USRE48250E1 (en) 2012-01-16 2020-10-13 K2M, Inc. Rod reducer, compressor, distractor system
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7909830B2 (en) 2005-08-25 2011-03-22 Synthes Usa, Llc Methods of spinal fixation and instrumentation
US8414588B2 (en) 2007-10-04 2013-04-09 Depuy Spine, Inc. Methods and devices for minimally invasive spinal connection element delivery
US9408716B1 (en) 2013-12-06 2016-08-09 Stryker European Holdings I, Llc Percutaneous posterior spinal fusion implant construction and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29703947U1 (en) * 1996-03-12 1997-06-05 Plus Endoprothetik Ag Device for percutaneous joint screwing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29703947U1 (en) * 1996-03-12 1997-06-05 Plus Endoprothetik Ag Device for percutaneous joint screwing

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9597127B2 (en) 1999-10-20 2017-03-21 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US7011660B2 (en) 1999-10-20 2006-03-14 Sdgi Holdings, Inc. Instruments and methods for stabilization of bony structures
US8361124B2 (en) 1999-10-20 2013-01-29 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US7188626B2 (en) 1999-10-20 2007-03-13 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US8721685B2 (en) 1999-10-20 2014-05-13 Kevin T. Foley Instruments and methods for stabilization of bony structures
US7008422B2 (en) 1999-10-20 2006-03-07 Sdgi Holdings, Inc. Instruments and methods for stabilization of bony structures
US7867259B2 (en) 1999-10-20 2011-01-11 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US7862595B2 (en) 1999-10-20 2011-01-04 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US8900275B2 (en) 1999-10-20 2014-12-02 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US8961524B2 (en) 1999-10-20 2015-02-24 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US7763055B2 (en) 1999-10-20 2010-07-27 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US9179948B2 (en) 1999-10-20 2015-11-10 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US9918754B2 (en) 1999-10-20 2018-03-20 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US7717944B2 (en) 1999-10-20 2010-05-18 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
US7491218B2 (en) 2002-10-30 2009-02-17 Abbott Spine, Inc. Spinal stabilization systems and methods using minimally invasive surgical procedures
US10130394B2 (en) 2002-10-30 2018-11-20 Zimmer Spine, Inc. Spinal stabilization systems and methods
US7691132B2 (en) 2002-10-30 2010-04-06 Zimmer Spine, Inc. Spinal stabilization systems and methods
US8075592B2 (en) 2002-10-30 2011-12-13 Zimmer Spine, Inc. Spinal stabilization systems and methods
US9539012B2 (en) 2002-10-30 2017-01-10 Zimmer Spine, Inc. Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures
US10052137B2 (en) 2002-10-30 2018-08-21 Zimmer Spine, Inc. Spinal stabilization systems and methods
US7563264B2 (en) 2002-10-30 2009-07-21 Zimmer Spine Austin, Inc. Spinal stabilization systems and methods
US7914558B2 (en) 2002-10-30 2011-03-29 Zimmer Spine, Inc. Spinal stabilization systems and methods using minimally invasive surgical procedures
US8034084B2 (en) 2002-10-30 2011-10-11 Zimmer Spine, Inc. Spinal stabilization systems and methods
USRE46432E1 (en) 2003-09-24 2017-06-13 Stryker European Holdings I, Llc System and method for spinal implant placement
US9700357B2 (en) 2003-09-24 2017-07-11 Stryker European Holdings I, Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
US10143502B2 (en) 2003-11-08 2018-12-04 Stryker European Holdings I, Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
USRE47348E1 (en) 2003-11-08 2019-04-16 Stryker European Holdings I, Llc System and method for spinal implant placement
USRE48376E1 (en) 2003-11-08 2021-01-05 Stryker European Operations Holdings Llc System and method for spinal implant placement
US10993747B2 (en) 2003-11-08 2021-05-04 Stryker European Operations Holdings Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US8734490B2 (en) 2003-12-16 2014-05-27 DePuy Synthes Products, LLC Methods and devices for minimally invasive spinal fixation element placement
US7708763B2 (en) 2003-12-16 2010-05-04 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US9439699B2 (en) 2003-12-16 2016-09-13 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US10413338B2 (en) 2003-12-16 2019-09-17 DePuy Synthes Products, Inc. Methods and devices for spinal fixation element placement
US9888947B2 (en) 2003-12-16 2018-02-13 DePuy Synthes Products, Inc. Methods and devices for spinal fixation element placement
US8277491B2 (en) 2003-12-16 2012-10-02 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11426216B2 (en) 2003-12-16 2022-08-30 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US8518082B2 (en) 2003-12-16 2013-08-27 Depuy Spine, Sarl Percutaneous access devices and bone anchor assemblies
US8523916B2 (en) 2003-12-16 2013-09-03 DePuy Synthes Products, LLC Methods and devices for spinal fixation element placement
US11241262B2 (en) 2003-12-16 2022-02-08 DePuy Synthes Products, Inc. Methods and devices for spinal fixation element placement
US9216040B2 (en) 2003-12-16 2015-12-22 DePuy Synthes Products, Inc. Methods and devices for spinal fixation element placement
US8617210B2 (en) 2003-12-16 2013-12-31 Depuy Spine, Sarl Percutaneous access devices and bone anchor assemblies
US9161786B2 (en) 2003-12-16 2015-10-20 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US8721692B2 (en) 2003-12-16 2014-05-13 Depuy Synthes Products Llc Methods and devices for spinal fixation element placement
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US9750547B2 (en) 2003-12-16 2017-09-05 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US7854751B2 (en) 2003-12-16 2010-12-21 Dupuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7597694B2 (en) 2004-01-30 2009-10-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive spinal stabilization
US8002804B2 (en) 2004-01-30 2011-08-23 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive spinal stabilization
US7547318B2 (en) 2004-03-19 2009-06-16 Depuy Spine, Inc. Spinal fixation element and methods
US7465306B2 (en) 2004-08-13 2008-12-16 Warsaw Orthopedic, Inc. System and method for positioning a connecting member adjacent the spinal column in minimally invasive procedures
US9179926B2 (en) 2004-11-09 2015-11-10 DePuy Synthes Products, Inc. Minimally invasive spinal fixation guide systems and methods
WO2006052819A2 (en) 2004-11-09 2006-05-18 Depuy Spine, Inc. Minimally invasive spinal fixation guide systems and methods
US8075591B2 (en) 2004-11-09 2011-12-13 Depuy Spine, Inc. Minimally invasive spinal fixation guide systems and methods
EP1820114A2 (en) * 2004-11-09 2007-08-22 DePuy Spine, Inc. Minimally invasive spinal fixation guide systems and methods
JP2008519611A (en) * 2004-11-09 2008-06-12 デピュイ・スパイン・インコーポレイテッド Minimally invasive spinal fixation guide system and method
EP1820114A4 (en) * 2004-11-09 2009-12-16 Depuy Spine Inc Minimally invasive spinal fixation guide systems and methods
US8888817B2 (en) 2005-01-04 2014-11-18 Warsaw Orthopedic, Inc. Systems and methods for spinal stabilization with flexible elements
US7815664B2 (en) 2005-01-04 2010-10-19 Warsaw Orthopedic, Inc. Systems and methods for spinal stabilization with flexible elements
US8414620B2 (en) 2005-01-04 2013-04-09 Warsaw Orthopedic, Inc. Systems and methods for spinal stabilization with flexible elements
US10499952B2 (en) 2005-04-27 2019-12-10 Globus Medical, Inc. Percutaneous vertebral stabilization system
US7758617B2 (en) 2005-04-27 2010-07-20 Globus Medical, Inc. Percutaneous vertebral stabilization system
US9877750B2 (en) 2005-04-27 2018-01-30 Globus Medical, Inc. Percutaneous vertebral stabilization system
US11510704B2 (en) 2005-04-27 2022-11-29 Globus Medical, Inc. Percutaneous vertebral stabilization system
US10898251B2 (en) 2005-05-18 2021-01-26 Stryker European Operations Holdings Llc System and method for orthopedic implant configuration
US9895182B2 (en) 2005-05-18 2018-02-20 Stryker European Holdings I. Llc System and method for orthopedic implant configuration
US11596461B2 (en) 2005-05-18 2023-03-07 Stryker European Operations Holdings Llc System and method for orthopedic implant configuration
US7695475B2 (en) 2005-08-26 2010-04-13 Warsaw Orthopedic, Inc. Instruments for minimally invasive stabilization of bony structures
US9655685B2 (en) 2006-02-06 2017-05-23 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
US10765488B2 (en) 2006-02-06 2020-09-08 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
US10070936B2 (en) 2006-02-06 2018-09-11 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
US10441325B2 (en) 2006-04-11 2019-10-15 DePuy Synthes Products, Inc. Minimally invasive fixation system
US8915925B2 (en) 2006-09-25 2014-12-23 Stryker Spine Percutaneous compression and distraction system
US10194948B2 (en) 2006-09-25 2019-02-05 Stryker European Holdings I, Llc Rod inserter and rod with reduced diameter end
US9011447B2 (en) 2006-09-25 2015-04-21 Stryker Spine Rod contouring alignment linkage
US10470752B2 (en) 2006-09-25 2019-11-12 Stryker European Holdings I, Llc Percutaneous compression and distraction system
US10085807B2 (en) 2006-09-25 2018-10-02 Stryker European Holdings I, Llc Rod contouring alignment linkage
US11523810B2 (en) 2006-09-25 2022-12-13 Stryker European Operations Holdings Llc Percutaneous compression and distraction system
US8157809B2 (en) 2006-09-25 2012-04-17 Stryker Spine Percutaneous compression and distraction system
US7686809B2 (en) 2006-09-25 2010-03-30 Stryker Spine Rod inserter and rod with reduced diameter end
US9345463B2 (en) 2006-09-25 2016-05-24 Stryker European Holdings I, Llc Percutaneous compression and distraction system
US11134990B2 (en) 2006-09-25 2021-10-05 Stryker European Operations Holdings Llc Rod inserter and rod with reduced diameter end
US8506574B2 (en) 2006-09-25 2013-08-13 Stryker Spine Percutaneous compression and distraction system
US8828007B2 (en) 2006-09-26 2014-09-09 DePuy Synthes Products, LLC Minimally invasive bone anchor extensions
US7918858B2 (en) 2006-09-26 2011-04-05 Depuy Spine, Inc. Minimally invasive bone anchor extensions
US7918857B2 (en) 2006-09-26 2011-04-05 Depuy Spine, Inc. Minimally invasive bone anchor extensions
US11737794B2 (en) 2007-07-18 2023-08-29 Zimmer Spine, Inc. Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures
US10945772B2 (en) 2007-07-18 2021-03-16 Zimmer Spine, Inc. Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures
US10993739B2 (en) 2009-05-20 2021-05-04 DePuy Synthes Products, Inc. Patient-mounted retraction
US9808281B2 (en) 2009-05-20 2017-11-07 DePuy Synthes Products, Inc. Patient-mounted retraction
US8540719B2 (en) 2010-02-09 2013-09-24 Aesculap Implant Systems, Llc Percutaneous rod insertion system and method
DE202010005202U1 (en) 2010-04-14 2010-06-17 Aesculap Ag Orthopedic fixation system and target device for such a fixation system
US9314281B2 (en) 2010-04-14 2016-04-19 Aesculap Ag Orthopaedic fixation system, targeting device for such a fixation system and orthopaedic fixation method
WO2011128220A1 (en) 2010-04-14 2011-10-20 Aesculap Ag Orthopedic fixation system and targeting device for such a fixation system
DE102010016448A1 (en) 2010-04-14 2011-10-20 Aesculap Ag Orthopedic fixation system and target device for such a fixation system
US10888360B2 (en) 2010-04-23 2021-01-12 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices, and related methods
US11389213B2 (en) 2010-04-23 2022-07-19 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices, and related methods
US8535318B2 (en) 2010-04-23 2013-09-17 DePuy Synthes Products, LLC Minimally invasive instrument set, devices and related methods
US10098666B2 (en) 2011-05-27 2018-10-16 DePuy Synthes Products, Inc. Minimally invasive spinal fixation system including vertebral alignment features
USRE48250E1 (en) 2012-01-16 2020-10-13 K2M, Inc. Rod reducer, compressor, distractor system
USRE49410E1 (en) 2012-01-16 2023-02-07 K2M, Inc. Rod reducer, compressor, distractor system
US10912590B2 (en) 2013-03-14 2021-02-09 Stryker European Operations Holdings Llc Percutaneous spinal cross link system and method
US10568669B2 (en) 2013-03-14 2020-02-25 Stryker European Holdings I, Llc Systems and methods for percutaneous spinal fusion
US9827020B2 (en) 2013-03-14 2017-11-28 Stryker European Holdings I, Llc Percutaneous spinal cross link system and method
US11779377B2 (en) 2013-03-14 2023-10-10 Stryker European Operations Holdings Llc Systems and methods for percutaneous spinal fusion
US10159579B1 (en) 2013-12-06 2018-12-25 Stryker European Holdings I, Llc Tubular instruments for percutaneous posterior spinal fusion systems and methods
US9744050B1 (en) 2013-12-06 2017-08-29 Stryker European Holdings I, Llc Compression and distraction system for percutaneous posterior spinal fusion
US10507046B2 (en) 2013-12-13 2019-12-17 Stryker European Holdings I, Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US9622795B2 (en) 2013-12-13 2017-04-18 Stryker European Holdings I, Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US11622793B2 (en) 2013-12-13 2023-04-11 Stryker European Operations Holdings Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US11419637B2 (en) 2014-12-09 2022-08-23 John A. Heflin Spine alignment system
US10034690B2 (en) 2014-12-09 2018-07-31 John A. Heflin Spine alignment system
US10736668B2 (en) 2014-12-09 2020-08-11 John A. Heflin Spine alignment system

Also Published As

Publication number Publication date
DE10027988C2 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
DE10027988A1 (en) Appliance for percutaneous insertion of connection of pedicle screws has two arms of equal length with transverse connection, circular arm and circular support,
US20230056904A1 (en) Multiple spinal surgical pathways systems and methods
US10729556B2 (en) Spinal implant system and method
US7559929B2 (en) Implants and methods for positioning same in surgical approaches to the spine
CN109998741B (en) Spinal implant system and method
US9375238B2 (en) Rotatable bone plate
US5569248A (en) Apparatus for subcutaneous suprafascial pedicular internal fixation
US7740635B2 (en) Minimally invasive method and apparatus for placing facet screws and fusing adjacent vertebrae
AU2019210628B2 (en) Spinal implant system and method
US20080262498A1 (en) Double locked hip implant
US10932841B2 (en) Spinal implant system and method
CN111616784B (en) Surgical system and method
US9161781B2 (en) Minimally invasive percutaneous pedicle screw and slotted rod assembly
US9743921B2 (en) Spinal implant system and method
US20160095627A1 (en) Spinal implant system and method
US11109894B2 (en) Apparatus, system, and method for spinal vertebrae stabilization
US11571196B2 (en) Surgical system
US9848928B2 (en) Spinal implant system and methods of use

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8304 Grant after examination procedure
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee