DE10055465A1 - Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix - Google Patents

Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix

Info

Publication number
DE10055465A1
DE10055465A1 DE10055465A DE10055465A DE10055465A1 DE 10055465 A1 DE10055465 A1 DE 10055465A1 DE 10055465 A DE10055465 A DE 10055465A DE 10055465 A DE10055465 A DE 10055465A DE 10055465 A1 DE10055465 A1 DE 10055465A1
Authority
DE
Germany
Prior art keywords
filler particles
implant
bone replacement
bone
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10055465A
Other languages
German (de)
Inventor
Katja Tangermann
Jochen Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BLZ GmbH
Original Assignee
BLZ GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BLZ GmbH filed Critical BLZ GmbH
Priority to DE10055465A priority Critical patent/DE10055465A1/en
Priority to PCT/EP2001/012867 priority patent/WO2002070031A1/en
Publication of DE10055465A1 publication Critical patent/DE10055465A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/443Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with carbon fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30065Properties of materials and coating materials thermoplastic, i.e. softening or fusing when heated, and hardening and becoming rigid again when cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30948Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using computerized tomography, i.e. CT scans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30952Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/3097Designing or manufacturing processes using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0071Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof thermoplastic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses

Abstract

Bone replacement material (I) comprises nonmetallic inorganic filler particles (3) embedded in a laser-sinterable biocompatible polymer matrix (2). Independent claims are also included for the following: (1) (1) a process for producing a bone replacement implant, comprising: (a) preparing (I) as a powder mixture; (b) depositing a layer of the powder; (c) laser-sintering the layer according to predetermined implant geometry data; and (d) repeating step (b) and (c); and (2) (2) a bone implant comprising (I) in which the filler particles on the surface are only partially embedded in the matrix.

Description

Die Erfindung betrifft einen Knochenersatzwerkstoff, insbesondere für die Versorgung von Knochendefekten nach operativen Eingriffen, ein Verfah­ ren zur Herstellung eines Knochenersatz-Implantats aus einem solchen Knochenersatzwerkstoff und ein Knochenimplantat selbst.The invention relates to a bone replacement material, in particular for the Treatment of bone defects after surgery, a procedure ren for the production of a bone replacement implant from such Bone replacement material and a bone implant itself.

Die vorliegende Erfindung liegt auf dem Gebiet der Implantatmedizin im Zusammenhang mit Knochendefekten, wie z. B. nach einer Tumorresektion, Traumabehandlung oder bei der Rekonstruktion angeborener Fehlbildun­ gen. Hauptanwendungsgebiet sind Defekte von Schädelkalotte und Orbita­ dach und alle weiteren Knochendefekte, die rekonstruktive oder funktions­ bedingte Eingriffe am Patienten nötig machen. Daraus ergeben sich für die Entwicklung sogenannter "Taylored Implants" folgende Entwicklungsziele:
The present invention is in the field of implant medicine in connection with bone defects, such as. B. after tumor resection, trauma treatment or in the reconstruction of congenital malformations. Main areas of application are defects of the skull and orbital roof and all other bone defects that require reconstructive or functional interventions on the patient. This results in the following development goals for the development of so-called "Taylored Implants":

  • - Entwicklung von Prothesen und Implantaten., welche die bildgebende Diagnostik nicht stören,- Development of prostheses and implants., Which the imaging Do not interfere with diagnostics,
  • - Entwicklung von Prothesen mit einem dem Knochen angepaßten E- Modul und einer im Belastungsfall ausreichenden Festigkeit,- Development of prostheses with an E-adapted bone Module and a sufficient strength in case of load,
  • - Optimale Fixierung und Positionierung der Prothesen und Implantate im/am Knochen,- Optimal fixation and positioning of the prostheses and implants in / on the bone,
  • - Verfolgungsmöglichkeit des postoperativen Verlaufes durch bildge­ bende Diagnostik,- Possibility of tracking the postoperative course by imaging practicing diagnostics,
  • - Individuelle, aus ästhetischen Gründen dem Patienten angepaßte Im­ plantatgeometrie, - Individual, for aesthetic reasons adapted to the patient plantatgeometrie,  
  • - Überprüfung der Passgenauigkeit der Implantate an anatomischen Fak­ similes und- Checking the accuracy of fit of the implants on anatomical fac similes and
  • - Geringe Patientenbelastung.- Low patient burden.

Zum Hintergrund der Erfindung und zum Stand der Technik ist auf folgen­ des zu verweisen:
Bei der Rekonstruktion und Versorgung von knöchernen Defekten werden körpereigene (autogene) und körperfremde (alloplastische) Materialien ein­ gesetzt.
With regard to the background of the invention and the prior art, reference should be made to the following:
The body's own (autogenous) and foreign (alloplastic) materials are used in the reconstruction and care of bony defects.

Die Verwendung körpereigenen Knochens oder Knorpels besitzt den Nachteil, daß eine zweite Operation an einer weiteren Stelle des Patienten zur Entnahme des autogenen Materials nötig ist. Dies kann zu einer Beein­ trächtigung der Spenderregion meist Wadenbein, Rippe oder Beckenkamm fuhren. Es entsteht eine zusätzliche Belastung für den Patienten. Eine weitere Beschränkung liegt in der Menge des zur Verfügung stehenden Transplantatmaterials. Ein Nachteil besteht auch in nicht vorhersagbaren Um- und Abbauprozessen von transplantierten Knochen, die bei vollständi­ gem Abbau des Transplantats nach einigen Jahren zu erneuten operativen Eingriffen am Patienten führen.The use of the body's own bone or cartilage has the Disadvantage that a second operation on another part of the patient is necessary to remove the autogenous material. This can be a leg pregnancy of the donor region usually fibula, rib or iliac crest to lead. There is an additional burden on the patient. A another limitation is the amount of what is available Graft material. A disadvantage is also unpredictable Remodeling and dismantling processes of transplanted bones, which with complete after dismantling of the graft after a few years, it becomes operative again Perform interventions on the patient.

Die Versorgung von Knochendefekten mittels alloplastischer Materialien konzentriert sich auf die Verwendung von Methylmetacrylaten und Titan. Der große Vorteil von körperfremden Materialien liegt in der unbegrenzten Verfügbarkeit. Biologisch verträgliche alloplastische Materialien (Kunststoff, Keramik, Metall) werden in den verschiedensten Bereichen der modernen Medizin bereits erfolgreich und komplikationsfrei als Im­ plantate eingesetzt. Diese Materialien benötigen dementsprechend keine zusätzliche Entnahmestelle am Knochen und unterliegen im menschlichen Körper in der Regel keinen Um- oder Abbauprozessen. The treatment of bone defects using alloplastic materials focuses on the use of methyl methacrylates and titanium. The great advantage of foreign materials lies in the unlimited Availability. Biologically compatible alloplastic materials (Plastic, ceramic, metal) are used in a wide variety of areas of modern medicine already successful and without complications as Im plantate used. Accordingly, these materials do not require additional sampling point on the bone and are subject in human Body usually no conversion or degradation processes.  

Die Verwendung von Polymethylmetacrylaten führt durch die Aushärtung der Kunststoffmasse während der Operation zu verschiedenen Komplika­ tionen. Insbesondere die Hitzeentwicklung während der Polymerisation und die Monomerfreisetzung nach unvollständiger Reaktion können zu Entzün­ dungsreaktionen führen. Weiterhin muß das Implantat im plastischen Zu­ stand vorgeformt und danach ausgehärtet werden. Eine Folge ist, daß durch die vollständige Aushärtung eine Formänderung eintritt, die eine Nachbe­ arbeitung erforderlich macht.The use of polymethyl methacrylates leads to curing the plastic mass during the operation to various complications tions. In particular the development of heat during the polymerization and the monomer release after incomplete reaction can ignite lead reactions. Furthermore, the implant must be closed in plastic was preformed and then cured. One consequence is that through the complete hardening occurs a change in shape, which is a aftermath requires work.

Entscheidend bei der Versorgung von Knochendefekten ist neben der äs­ thetischen Anpassung in erster Linie die Passgenauigkeit zu den Defekträn­ dern. Das durch die sterile Abdeckung eingeschränkte Operationsfeld er­ laubt während der Operation keine umfassende Beurteilung der Kontur. Der exakten individuellen Anpassung sind daher Grenzen gesetzt.In addition to the ashes, a decisive factor in the care of bone defects The first step is to adapt the fit to the defect countries. The operating field restricted by the sterile cover does not allow a comprehensive assessment of the contour during the operation. The exact individual adjustment is therefore limited.

Wünschenswert sind daher Implantatformen, die gezielt dem Patienten an­ gepaßt werden. Mittels Computertomographie (CT) können knöcherne Strukturen exakt abgegriffen und die daraus gewonnenen 3D-Daten für die Implantatfertigung genutzt werden. Basierend auf diesen Datensätzen wer­ den bereits individuelle Hüftendoprothesen und Kranioplastiken über das Computer Aided Design- und Manufacturing (CAD/CAM) aus dem Werk­ stoff Titan gefertigt.It is therefore desirable to have implant shapes that specifically target the patient be fitted. Computed tomography (CT) can scan bones Structures exactly tapped and the 3D data obtained from them for the Implant production can be used. Based on these records who the already individual hip endoprostheses and cranioplasties via the Computer Aided Design and Manufacturing (CAD / CAM) from the factory fabric made of titanium.

Der Nachteil dieser metallischen Implantate sind Komplikationen oder Ar­ tefakte, die bei der bildgebenden Diagnostik über Röntgen, Computertomo­ graphie (CT) oder Kernspintomographie (MRI) entstehen. Besonders nachteilig wirken sich diese Artefakte für die exakte Beurteilung des post­ operativen Heilungsverlaufes und insbesondere bei jüngeren Patienten aus, die aufgrund einer anderen medizinischen Indikation genau auf eine derar­ tige bildgebende Diagnostik im Gebiet des Implantats angewiesen sind.The disadvantage of these metallic implants are complications or ar tefacts in imaging diagnostics via x-ray, computer tomo graphie (CT) or magnetic resonance imaging (MRI) arise. Especially these artifacts are disadvantageous for the exact assessment of the post surgical healing process and especially in younger patients,  which due to another medical indication exactly on one imaging diagnostics in the area of the implant.

Ebenfalls kritisch wird in der Fachliteratur bei Langzeitanwendungen von Metallen die Freisetzung von Metallionen und deren Wirkung auf den Or­ ganismus diskutiert. Weiterhin kann es aufgrund der stark variierenden E- Modul-Werte von Metallimplantat und Knochengewebe (Ti: 110 GPa, Knochen: spongiös 0,5-3 GPa, cortical 10-25 GPa) zum Knochenabbau infolge des sogenannten "stress shielding"-Effektes kommen. Ein weiterer Nachteil beim Einsatz von Metallen ist, daß diese zur Gruppe der inerten Materialien gehören, so daß sich in der Regel keine kraftschlüssige Verbin­ dung zwischen Implantat und Empfängergewebe ausbilden kann. Die Fixie­ rung des Metallimplantates am Knochen erfolgt daher durch Schrauben und Platten.Also critical in the specialist literature for long-term applications of Metals the release of metal ions and their effect on the Or Ganism discussed. Furthermore, due to the strongly varying e- Modulus values of metal implant and bone tissue (Ti: 110 GPa, Bones: cancellous 0.5-3 GPa, cortical 10-25 GPa) for bone loss come as a result of the so-called "stress shielding" effect. Another The disadvantage of using metals is that they belong to the group of inert Materials belong, so that there is usually no non-positive connection can form between the implant and the recipient tissue. The fixie The metal implant on the bone is therefore screwed and Plates.

Angesichts dieser bekannten Lösungen und ihrer Nachteile bzw. Beschrän­ kungen besteht die Aufgabe der vorliegenden Erfindung darin, einen Kno­ chenersatzwerkstoff bereitzustellen, der eine kraftschlüssige Anbindung an den Knochen ermöglicht, dessen E-Modul an den des Knochens angepaßt ist und der über ein schnelles und einfaches Verfahren zu individuell ge­ formten, patientenspezifischen Endoprothesen zu verarbeiten ist.In view of these known solutions and their disadvantages or limitations kungen is the object of the present invention is a kno to provide a substitute for a non-positive connection allows the bone, the modulus of elasticity adapted to that of the bone is and the ge over a quick and easy procedure to individual shaped, patient-specific endoprostheses.

Diese Aufgabe wird durch die im Kennzeichnungsteil der Ansprüche 1, 6 bzw. 10 angegebenen Merkmale gelöst. Kern der Erfindung ist dabei die Auswahl der an dem erfindungsgemäßen Knochenersatzwerkstoff beteilig­ ten Materialien, die im Hinblick auf die ganz unterschiedlichen Aufgabe­ stellungen einen optimalen Kompromiß darstellen. Ausgegangen wird da­ bei von einer Mischung aus einem biokompatiblen, lasersinterbaren Poly­ mermaterial als Matrixwerkstoff und Füllstoffpartikeln aus anorganischen, nichtmetallischen Materialien wie z. B. Keramikpulver. Auch ein Poly­ mer/Keramik-Compound in Pulverform ist möglich. Die anorganischen Füllstoffe sind zumindest bioinert oder vorzugsweise bioaktiv, wie z. B. osteoinduktiv oder osteokonduktiv.This object is achieved by the in the characterizing part of claims 1, 6 or 10 specified features solved. The essence of the invention is Selection of those involved in the bone replacement material according to the invention materials that are used in view of the very different tasks represent an optimal compromise. It goes out there with a mixture of a biocompatible, laser-sinterable poly material as matrix material and filler particles made of inorganic,  non-metallic materials such. B. ceramic powder. Also a poly mer / ceramic compound in powder form is possible. The inorganic Fillers are at least bioinert or preferably bioactive, such as. B. osteoinductive or osteoconductive.

Bezüglich der Materialauswahl für die biokompatiblen Polymermaterialien stehen eine Vielzahl von Kunststoffen zur Verfügung, wie z. B. Polyethy­ len, Polypropylen, Polyethylenterephthalat, Polyvinylchlorid, Polyamid, Polyurethan, Polysulfon, Polysiloxan oder Polytetraflourethylen. Besonders bevorzugt ist das Material Polyetheretherketon (PEEK), das zur Gruppe der Hochtemperaturthermoplasten gehört. Nähere Ausführungen hierzu sind der Erörterung des Ausführungsbeispiels entnehmbar.Regarding the choice of materials for the biocompatible polymer materials a variety of plastics are available, such as B. Polyethy len, polypropylene, polyethylene terephthalate, polyvinyl chloride, polyamide, Polyurethane, polysulfone, polysiloxane or polytetrafluoroethylene. Especially preferred is the material polyether ether ketone (PEEK), which belongs to the group of High temperature thermoplastics are one of them. More detailed explanations on this are the discussion of the embodiment can be seen.

Für die Füllstoffpartikel eignen sich u. a. Calciumphosphate, biokompatible Glaspartikel, wie sie unter der Marke "Bioglas" kommerziell verfügbar sind, oder Kohlenstoffpartikel. Diese Partikel können in Form von Fasern, Kugeln, Whiskern oder Platelets vorliegen. Ihre Teilchengröße liegt vor­ zugsweise im Bereich von 0,1 bis 200 µm, was im übrigen auch für die Partikelgröße des pulverförmigen Rohmaterials bei der erfindungsgemäßen Herstellung eines Knochenersatz-Implantats zutrifft.For the filler particles are u. a. Calcium phosphates, biocompatible Glass particles as commercially available under the "Bioglas" brand are, or carbon particles. These particles can be in the form of fibers, Balls, whiskers or platelets are present. Your particle size is available preferably in the range of 0.1 to 200 microns, which also for the rest Particle size of the powdered raw material in the invention Manufacture of a bone replacement implant applies.

Die Füllstoffpartikel weisen bevorzugtermaßen einen Gewichtsanteil von 5 bis 80% bezogen auf die Werkstoffgesamtmenge auf.The filler particles preferably have a weight fraction of 5 up to 80% based on the total amount of materials.

Das gemäß Anspruch 6 vorgesehene Verfahren zur Herstellung eines Kno­ chenersatz-Implantats aus dem erfindungsgemäßen Knochenersatzwerkstoff setzt auf das im Zusammenhang mit dem sogenannten "Rapid Prototyping " bekannte Verfahren des Laserstrahlsinterns auf. Das Laserstrahlsintern ist ein generatives Verfahren, mit dessen Hilfe direkt aus einem 3D-Datensatz Bauteile hergestellt werden können. Über das Laserstrahlsintern können kurzfristig formkomplizierte Bauteilstrukturen einschließlich Hinterschnei­ dungen gefertigt werden. Im Gegensatz zu spanenden Verfahren entsteht das Werkstück durch einen Werkstoffauftrag. Der entscheidende Vorteil des Laserstrahlsinterns von Kunststoffen ist die hohe Flexibilität mit der innerhalb kürzester Zeit komplizierte und individuell geformte Bauteil­ strukturen gefertigt werden können. Insoweit ist dieses Verfahren auch für die Herstellung eines Knochenersatz-Implantats hervorragend geeignet, da derartige Werkstücke grundsätzlich jeweils individuell anzufertigen sind.The method for producing a kno provided according to claim 6 Chen replacement implant made from the bone replacement material according to the invention relies on this in connection with the so-called "rapid prototyping" known methods of laser beam sintering. The laser beam sintering is  a generative process, with the help of a 3D data set Components can be manufactured. About laser beam sintering short-term complex component structures including undercut be manufactured. In contrast to cutting processes the workpiece through a material application. The decisive advantage of laser beam sintering of plastics is the high flexibility with the complicated and individually shaped component within a very short time structures can be manufactured. In this respect, this procedure is also for the production of a bone replacement implant is ideally suited because such workpieces are always to be made individually.

Schließlich ist es erfindungsgemäß vorgesehen, die Füllstoffpartikel derart in den Matrixwerkstoff aus dem biokompatiblen Polymermaterial einzu­ betten, daß diese Füllstoffpartikel an der Implantatoberfläche nur teilweise in den Matrixwerkstoff eingebettet sind. Insbesondere bei Verwendung von bioaktiven Füllstoffen, wie Calciumphosphaten oder den erwähnten bio­ kompatiblen Glaspartikeln ist dann keine dauerhafte Verankerung durch Fixierungsmittel notwendig, da durch die freiliegenden Füllstoffpartikel ein kraftschlüssiges Verwachsen zwischen dem Knochen und dem daran anlie­ genden Implantat erzielt wird. Weitere Funktionen der Füllstoffpartikel liegen darin, daß durch ihren Anteil im Matrixwerkstoff die mechanischen Eigenschaften des Knochenersatzwerkstoffes, wie E-Modul, Festigkeit und Kriechverhalten an das umliegende Knochengewebe adaptierbar sind. Fer­ ner sind solche anorganischen Füllstoffe vorteilhaft zur Sichtbarmachung des polymeren Implantates auf röntgenographischen Aufnahmen, wobei jedoch die bildgebende Diagnostik durch diese Füllstoffe nicht gestört wird. Schließlich beeinflussen die anorganischen Füllstoffpartikel in positi­ ver Weise das Schrumpfverhalten des Matrixwerkstoffes, in dem ein solches Schrumpfen weitgehend unterbunden wird. Die aus dem Knochener­ satzwerkstoff hergestellten Implantate weisen daher also eine hohe Maß­ haltigkeit auf.Finally, the filler particles are provided according to the invention into the matrix material from the biocompatible polymer material bed that these filler particles on the implant surface only partially are embedded in the matrix material. Especially when using bioactive fillers, such as calcium phosphates or the aforementioned bio compatible glass particles is no permanent anchoring Fixing agent necessary because of the exposed filler particles positive adhesion between the bone and the bone attached to it the implant is achieved. Other functions of the filler particles lie in the fact that the mechanical Properties of the bone replacement material, such as modulus of elasticity, strength and Creep behavior can be adapted to the surrounding bone tissue. Fer Such inorganic fillers are advantageous for visualization of the polymeric implant on radiographs, where however, the imaging diagnostics are not disturbed by these fillers becomes. Finally, the inorganic filler particles have a positive effect ver the shrinking behavior of the matrix material in which such  Shrinkage is largely prevented. The one from the bone Implants made from a composite material therefore have a high degree hold on.

Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich, aus der nachfolgenden Beschreibung, in der ein Ausführungsbeispiel des Erfindungsgegenstandes näher erläutert wird. Es zeigen:Further features, details and advantages of the invention result from from the following description, in which an embodiment of the Subject of the invention is explained in more detail. Show it:

Fig. 1 eine perspektivische, ausschnittsweise vergrößerte Schema­ darstellung eines Knochenersatz-Implantats, Fig. 1 is a perspective, fragmentary enlarged schematic illustration of a bone replacement implant,

Fig. 2 einen schematischen, extrem vergrößerten Teilschnitt durch die Grenzfläche zwischen Knochenersatz-Implantat und um­ liegenden Knochengewebe, und Fig. 2 is a schematic, extremely enlarged partial section through the interface between the bone replacement implant and lying bone tissue, and

Fig. 3 eine Prinzipdarstellung einer Lasersinteranlage zur Herstel­ lung eines Knochenersatz-Implantats. Fig. 3 is a schematic diagram of a laser sintering system for the produc- tion of a bone replacement implant.

Wie aus Fig. 1 deutlich wird, besteht ein lasergesintertes Knochenersatz- Implantat 1 aus einem Matrixwerkstoff 2 und darin eingebetteten Füllstoff­ partikeln 3. Bei dem Matrixwerkstoff handelt es sich um Polyethenether­ keton (PEEK), dessen Eigenschaftsprofil hervorragend für die Verwendung als Matrixwerkstoff ausgelegt ist. PEEK ist gekennzeichnet durch hervor­ ragende mechanische Eigenschaften, eine hohe chemische Beständigkeit und damit Langzeitbeständigkeit sowie eine hohe Strahlen- und Ver­ schleißbeständigkeit. Insoweit ist dieser Werkstoff für einen Einsatz im aggressiven Körpermilieu gut geeignet. Ein weiterer Vorteil dieses gegen­ über äußeren Einflüssen wenig anfälligen Materials liegt in seiner problemlosen Sterilisierbarkeit. Die Eignung dieses Materials für den medizi­ nischen Bereich wird auch durch die bestehende FDA-(American Food and Drug Association-)Zulassung dokumentiert.As is clear from FIG. 1, a laser-sintered bone replacement implant 1 consists of a matrix material 2 and filler particles 3 embedded therein. The matrix material is polyethylene ether ketone (PEEK), the property profile of which is outstandingly designed for use as a matrix material. PEEK is characterized by excellent mechanical properties, high chemical resistance and thus long-term resistance as well as high radiation and wear resistance. In this respect, this material is well suited for use in an aggressive body environment. Another advantage of this material, which is less susceptible to external influences, is its ease of sterilization. The suitability of this material for the medical field is also documented by the existing FDA (American Food and Drug Association) approval.

Für den Einsatz von PEEK als Knochenersatzwerkstoff sind zwei Punkte zu beachten:
There are two points to consider when using PEEK as a bone substitute:

  • - PEEK wird, wie alle Kunststoffe, der Gruppe der bioinerten Materialien zugeordnet, d. h. daß das Implantat keine Verbindung mit dem Kno­ chengewebe eingehen kann.- PEEK, like all plastics, belongs to the group of bio-inert materials assigned, d. H. that the implant has no connection with the kno tissue.
  • - Der E-Modul von PEEK liegt mit 3,7 GPa im unteren E-Modulbereich des menschlichen Knochens (Spongiosa: 0,5-3 GPa; Compacta: 10-25 GPa), wobei in lasttragenden Endoprothesen ein dem Knochen ange­ paßter E-Modul eingestellt werden muß.- The modulus of elasticity from PEEK is 3.7 GPa in the lower range of modulus of elasticity human bone (cancellous bone: 0.5-3 GPa; Compacta: 10-25 GPa), being attached to the bone in load-bearing endoprostheses suitable modulus of elasticity must be set.

Die damit einhergehenden Probleme werden durch die Füllstoffpartikel 3 gelöst. Als besonders geeignet haben sich bioaktive Füllstoffe auf der Basis von Calciumphosphaten herauskristallisiert. Zur Gruppe der Calciumphos­ phate gehören z. B. der osteoinduktive Hydroxylapatit (Ca10(PO4)6(OH)2) und das osteokonduktive, vollständig resorbierbare Tricalciumphosphat (Ca3(PO4)2). Beide Materialien werden bereits in der Medizin als syntheti­ sches Knochenmaterial in meist granularer Form für die Auffüllung von Knochendefekten verwendet. Hydroxylapatit ist die anorganische minerali­ sche Phase im Zahn (98 Gew.%) und Knochen (60-70 Gew.%). Aufgrund der geringen Festigkeit sind Hydroxylapatit-Implantate nur für nicht­ lasttragende Anwendungen bei kleinen Knochendefekten geeignet. The problems associated with this are solved by the filler particles 3 . Bioactive fillers based on calcium phosphates have emerged as particularly suitable. The group of calcium phosphates include z. B. the osteoinductive hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) and the osteoconductive, fully absorbable tricalcium phosphate (Ca 3 (PO 4 ) 2 ). Both materials are already used in medicine as synthetic bone material in mostly granular form for the filling of bone defects. Hydroxyapatite is the inorganic mineral phase in the tooth (98% by weight) and bone (60-70% by weight). Due to their low strength, hydroxyapatite implants are only suitable for non-load-bearing applications with small bone defects.

Durch die Zugabe solcher Füllstoffpartikeln wird zum einen der E-Modul und damit die Festigkeit des Materials an den jeweiligen Einsatzzweck an­ gepaßt und eingestellt. So erhöht sich der oben angegebene E-Modul von reinem PEEK bei Zugabe von 30% technischem Glas auf 10 GPa der Mi­ schung. Bei Zugabe von 30% Carbon wird ein E-Modul von 20 GPa er­ reicht.By adding such filler particles, on the one hand, the modulus of elasticity becomes and thus the strength of the material to the respective application fit and set. The modulus of elasticity given above increases from pure PEEK with the addition of 30% technical glass to 10 GPa of Mi. research. When 30% carbon is added, an elastic modulus of 20 GPa is achieved enough.

Ferner wird durch die nur teilweise Einbettung der Füllstoffpartikel 3 im Bereich der Oberfläche S des Implantats 1 ein Anknüpfungspunkt für das Einwachsen von Knochengewebe 4 geschaffen. Durch dieses Anwachsen des Knochengewebes 4 an die Füllstoffpartikel 3 entsteht eine kraftschlüs­ sige Verbindung zwischen Implantat 1 und Knochengewebe 4, wie dies in Fig. 2 durch die aus dem Knochengewebe 4 in die Füllstoffpartikel 3 hin­ einreichenden Schraffurlinien bildlich angedeutet ist.Furthermore, the only partial embedding of the filler particles 3 in the area S of the implant 1 creates a point of contact for the ingrowth of bone tissue 4 . This growth of the bone tissue 4 to the filler particles 3 creates a positive connection between the implant 1 and bone tissue 4 , as is shown in FIG. 2 by the hatching lines extending from the bone tissue 4 into the filler particles 3 .

Die Herstellung des Knochenersatz-Implantats 1 erfolgt über eine in Fig. 3 schematisch dargestellte Lasersinteranlage. Dessen Kernstück ist ein CO2-Laser 5 mit einer Wellenlänge λ = 10,64 µm, dessen Strahl mit 6 be­ zeichnet ist. Über einen Auftragsbehälter 7 wird pulverförmiges Aus­ gangsmaterial 8, bestehend aus dem pulverförmigen Matrixwerkstoff 2 und den Füllstoffpartikeln 3 in einer Schichtdicke 9 auf eine Bauplattform 10 aufgebracht. Oberhalb dieser Bauplattform 10 liegt der Bauraum 11 für das Implantat. Die Bauplattform 10 ist über einen schematisch angedeuteten Höhenantrieb 12 in vertikaler Richtung verfahrbar.The bone replacement implant 1 is produced by means of a laser sintering system shown schematically in FIG. 3. Its core is a CO 2 laser 5 with a wavelength λ = 10.64 µm, the beam of which is 6. Via an order container 7 , powdery starting material 8 , consisting of the powdery matrix material 2 and the filler particles 3, is applied in a layer thickness 9 to a building platform 10 . Above this construction platform 10 is the installation space 11 for the implant. The construction platform 10 can be moved in the vertical direction via a schematically indicated height drive 12 .

Zur Vorbereitung der Herstellung eines Implantats 1 werden durch geeig­ nete Vermessungsverfahren, wie beispielsweise die Computertomographie, die dreidimensionalen Geometriedaten für das Implantat 1 ermittelt und in ein entsprechendes CAD/CAM-System 13 eingeben. Die entsprechenden Daten werden in geeigneter Weise eingelesen und bearbeitet, damit der gesamte Sinterprozeß vollautomatisch gesteuert werden kann. Entsprechend der gewünschten Bauteilgeometrie wird nun der Laserstrahl über einen vom CAD/CAM-System 13 gesteuerten Scannerspiegel 14 und eine entspre­ chende Fokussieroptik 15 über die jeweils oberste Schicht des Pulvers 8 geführt. In dem abgescannten Bereich werden der Matrixwerkstoff 2 und die Füllstoffpartikel 3 durch Aufschmelzen zusammengesintert und ver­ klebt. Anschließend wird die Bauplattform 10 um die Schichtdicke 9, die in Abhängigkeit von Pulverkorngröße 10-250 µm betragen kann, nach unten gefahren und eine neue Schicht Pulvermaterial 8 aus dem Auftragsbehälter 7 aufgebracht. Es wird wiederum entsprechend den CAD-Daten des Im­ plantats 1 ein bestimmter Bereich dieser Schicht vom Laser 5 abgescannt und das Polymermaterial und die Füllstoffpartikel miteinander versintert. Dabei findet auch eine fester Verbindung mit der vorher gesinterten Schicht statt. Dieser Vorgang wird sukzessiv wiederholt, bis das gesamte Implantat 1 fertiggestellt ist.To prepare the manufacture of an implant 1 , the three-dimensional geometry data for the implant 1 are determined by suitable measurement methods, such as, for example, computed tomography, and input into a corresponding CAD / CAM system 13 . The corresponding data are read in and processed in a suitable manner so that the entire sintering process can be controlled fully automatically. According to the desired component geometry, the laser beam is now guided over a scanner mirror 14 controlled by the CAD / CAM system 13 and a corresponding focusing optics 15 over the topmost layer of the powder 8 . In the scanned area, the matrix material 2 and the filler particles 3 are sintered together by melting and glued ver. Subsequently, the build platform 10 is driven and the layer thickness of 9 microns may be a function of the powder particle size 10-250 down a new layer of powder material applied from the applicator container 7. 8 Again, according to the CAD data of the implant 1, a certain area of this layer is scanned by the laser 5 and the polymer material and the filler particles are sintered together. There is also a firm connection with the previously sintered layer. This process is repeated successively until the entire implant 1 is completed.

Bei der Wahl des Lasers 5 ist im übrigen darauf zu achten, daß das dazu verwendete Thermoplastmaterial für den Matrixwerkstoff eine gute Ab­ sorption im Wellenlängenbereich des Lasers 5 aufweist, damit die zum Schmelzen der Materialien benötigte Energiemenge aufgenommen werden kann. Ferner ist für eine optimale Verarbeitung der Kunststoffpulver die Erwärmung des Materiales im Auftragsbehälter 7 und im Bauraum 11 bis kurz unter die Glasübergangstemperatur Tg bzw. bei teilkristallinen Pul­ vern bis kurz oberhalb der Kristallitschmelztemperatur Tm notwendig. Bei­ spiele für diese Temperaturen für das Material PEEK sind Tg = 143°C und Tm = 334°C. Für Polyamid lauten die entsprechenden Werte Tg = 78°C und Tm = 260°C.When choosing the laser 5 , it should also be ensured that the thermoplastic material used for the matrix material has a good absorption in the wavelength range of the laser 5 , so that the amount of energy required to melt the materials can be absorbed. Furthermore, for optimal processing of the plastic powder, the heating of the material in the application container 7 and in the installation space 11 is necessary to just below the glass transition temperature Tg or, in the case of partially crystalline powder, to just above the crystallite melting temperature Tm. Examples for these temperatures for the material PEEK are Tg = 143 ° C and Tm = 334 ° C. For polyamide, the corresponding values are Tg = 78 ° C and Tm = 260 ° C.

Durch die Verarbeitung eines Knochenersatzwerkstoffes aus biokompati­ blen Thermoplastwerkstoffen 2, wie z. B. Polyetheretherketon, und funktio­ nellen Füll- bzw. Verstärkungskomponenten 3, wie z. B. Hydroxylapatit über das Laserstrahlsintern ergeben sich zusammenfassend mehrere Vor­ teile:
By processing a bone replacement material made of biocompatible thermoplastic materials 2 , such as. B. polyether ether ketone, and functional fill or reinforcement components 3 , such as. B. Hydroxyapatite on laser beam sintering summarizes several parts before:

  • - Anpassung des E-Moduls des Implantates 1 an den des Knochens 4 über die Variation des Füllstoffgehaltes,Adaptation of the modulus of elasticity of the implant 1 to that of the bone 4 by varying the filler content,
  • - direktes kraftschlüssiges Verwachsen des Implantates 1 mit dem Kno­ chengewebe 4 durch eingelagertes Calciumphosphat 3,- Direct non-positive growth of the implant 1 with the bone tissue 4 through embedded calcium phosphate 3 ,
  • - die strukturierte Oberfläche des lasergesinterten Implantates 1 wirkt stimulierend auf ein kraftschlüssige Verwachsen mit dem umgebenden Knochengewebe 4,the structured surface of the laser-sintered implant 1 has a stimulating effect on a positive connection with the surrounding bone tissue 4 ,
  • - im Gegensatz zu metallischen Implantaten ergeben sich keine Kompli­ kationen oder Artefakte bei der bildgebenden Diagnose über Röntgen, CT oder MRI,- In contrast to metallic implants, there are no compliments cations or artifacts in imaging diagnosis via X-ray, CT or MRI,
  • - schnelle und direkte Implantatherstellung aus einem 3D-Datensatz (CT-Daten),- Fast and direct implant creation from a 3D data set (CT) data,
  • - an den Patienten angepaßte, individuelle Endoprothesegeometrie,- individual endoprosthesis geometry adapted to the patient,
  • - Verkürzung der Operationszeit und der Belastung für den Patienten.- Reduction of the operating time and the burden on the patient.

Claims (10)

1. Knochenersatzwerkstoff, insbesondere für die Versorgung von Kno­ chendefekten nach operativen Eingriffen, gekennzeichnet durch fol­ gende Hauptbestandteile:
ein Matrixwerkstoff (2) aus einem biokompatiblen, lasersinterbaren, insbesondere thermoplastischen Polymermaterial, und
in den Matrixwerkstoff (2) zumindest teilweise eingebettete Füll­ stoffpartikel (3) aus anorganischen, nichtmetallischen, insbesondere bioinerten oder bioaktiven Materialien.
1. Bone replacement material, particularly for the treatment of bone defects after surgery, characterized by the following main components:
a matrix material ( 2 ) made of a biocompatible, laser sinterable, in particular thermoplastic polymer material, and
in the matrix material ( 2 ) at least partially embedded filler particles ( 3 ) made of inorganic, non-metallic, especially bio-inert or bioactive materials.
2. Knochenersatzwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß als biokompatible Polymermaterialien vorzugsweise Polyethe­ retherketon (PEEK) oder Polyethylen (PE), Polypropylen (PP), Polye­ thylenterephthalat (PET), Polyvinylchlorid (PVC), Polyamid (PA), Po­ lyurethan (PUR), Polysulfon (PSU), Polysiloxan oder Polytetrafluo­ rethylen (PTFE) verwendbar sind.2. Bone replacement material according to claim 1, characterized in that that as biocompatible polymer materials preferably Polyethe retherketone (PEEK) or polyethylene (PE), polypropylene (PP), polye ethylene terephthalate (PET), polyvinyl chloride (PVC), polyamide (PA), Po lyurethan (PUR), polysulfone (PSU), polysiloxane or polytetrafluo rethylene (PTFE) can be used. 3. Knochenersatzwerkstoff nach Anspruch 1 oder 2, dadurch gekenn­ zeichnet, daß die Füllstoffpartikel (3) aus Calciumphosphaten, biokom­ patiblen Glaspartikeln oder Kohlenstoffpartikeln bestehen.3. Bone replacement material according to claim 1 or 2, characterized in that the filler particles ( 3 ) consist of calcium phosphates, biocompatible glass particles or carbon particles. 4. Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Füllstoffpartikel (3) in Form von Fasern, Ku­ geln, Whiskern oder Platelets vorliegen.4. Bone replacement material according to one of claims 1 to 3, characterized in that the filler particles ( 3 ) are in the form of fibers, Ku gels, whiskers or platelets. 5. Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Füllstoffpartikel (3) eine Teilchengröße im Bereich von 0,1 bis 200 µm aufweisen.5. Bone replacement material according to one of claims 1 to 4, characterized in that the filler particles ( 3 ) have a particle size in the range from 0.1 to 200 µm. 6. Verfahren zur Herstellung eines Knochenersatz-Implantats aus dem Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 5, gekenn­ zeichnet durch folgende Verfahrensschritte:
  • - Bereitstellen eines als pulverförmiges Gemisch oder Compound- Material aus biokompatiblem, lasersinterbaren, insbesondere thermoplastischen Matrix-Polymermaterial (2) und Füllstoffpartikeln (3) aus anorganischen, nichtmetallischen, insbesondere bioinerten oder bioaktiven Materialien vorliegenden Ausgangsmaterials (8),
  • - schichtweises Anordnen des Ausgangsmaterials (8) in einer Pulver­ schicht (9),
  • - Lasersintern einer Lage des Implantats (1) entsprechend vorgegebe­ ner Daten der Implantatgeometrie unter Verfestigung des Matrix- Polymermaterials (2) und zumindest teilweiser Einbettung der Füll­ stoffpartikel (3), sowie
  • - sukzessives Wiederholen der beiden vorstehenden Schritte unter Verbindung einer gesinterten Schicht mit der vorher gesinterten Schicht bis zur Fertigstellung des Implantats (1).
6. The method for producing a bone replacement implant from the bone replacement material according to one of claims 1 to 5, characterized by the following method steps:
  • - Providing a starting material ( 8 ) as a powdery mixture or compound material made of biocompatible, laser-sinterable, in particular thermoplastic matrix polymer material ( 2 ) and filler particles ( 3 ) made of inorganic, non-metallic, in particular bio-inert or bioactive materials,
  • - Layer-by-layer arrangement of the starting material ( 8 ) in a powder layer ( 9 ),
  • - Laser sintering a position of the implant ( 1 ) in accordance with predetermined data of the implant geometry while solidifying the matrix polymer material ( 2 ) and at least partially embedding the filler particles ( 3 ), and
  • - successively repeating the two above steps by connecting a sintered layer with the previously sintered layer until the implant ( 1 ) is finished.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Laser­ sintern derart erfolgt, daß Füllstoffpartikel (3) an der Oberfläche (S) des Implantats (1) freiliegen.7. The method according to claim 6, characterized in that the laser sintering takes place such that filler particles ( 3 ) on the surface (S) of the implant ( 1 ) are exposed. 8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Partikelgröße des pulverförmigen Matrix-Polymermaterials (2) zwi­ schen 0,1 und 200 µm liegt. 8. The method according to claim 6 or 7, characterized in that the particle size of the powdery matrix polymer material ( 2 ) is between 0.1 and 200 µm. 9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das Ausgangsmaterial (8) vor dem Lasersintern materialabhängig auf eine Temperatur kurz unter der Glasübergangstemperatur oder bei teilkristallinen Materialien kurz über der Kristallitschmelztemperatur erwärmt wird.9. The method according to any one of claims 6 to 8, characterized in that the starting material ( 8 ) is heated depending on the material prior to laser sintering to a temperature just below the glass transition temperature or, in the case of partially crystalline materials, just above the crystallite melting temperature. 10. Knochenimplantat bestehend aus einem Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Füll­ stoffpartikel (3) an der Implantatoberfläche (S) nur teilweise in den Matrixwerkstoff (2) eingebettet sind.10. Bone implant consisting of a bone replacement material according to one of claims 1 to 5, characterized in that the filler particles ( 3 ) on the implant surface (S) are only partially embedded in the matrix material ( 2 ).
DE10055465A 2000-11-09 2000-11-09 Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix Withdrawn DE10055465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10055465A DE10055465A1 (en) 2000-11-09 2000-11-09 Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix
PCT/EP2001/012867 WO2002070031A1 (en) 2000-11-09 2001-11-07 Bone replacement material and method for the production of a bone replacement implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10055465A DE10055465A1 (en) 2000-11-09 2000-11-09 Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix

Publications (1)

Publication Number Publication Date
DE10055465A1 true DE10055465A1 (en) 2002-05-23

Family

ID=7662645

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10055465A Withdrawn DE10055465A1 (en) 2000-11-09 2000-11-09 Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix

Country Status (2)

Country Link
DE (1) DE10055465A1 (en)
WO (1) WO2002070031A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395927A (en) * 2002-12-02 2004-06-09 Ono & Co Ltd Producing artificial bones by laser sintering
FR2848856A1 (en) * 2002-12-24 2004-06-25 Cadorel Catherine Production of a material useful for making bone implants and prostheses by molding a mixture of a binder and calcium and phosphorus compounds comprises cleaning the surface of the molded piece
DE10350570A1 (en) * 2003-10-30 2005-06-16 Bego Semados Gmbh Making bone replacement material employs laser beam to sinter or melt loose particles, bonding them together into granular unit with controlled porosity
DE102004012411A1 (en) * 2004-03-13 2005-09-29 Dot Gmbh Composite materials based on polysilicic acids and process for their preparation
WO2006091097A2 (en) * 2005-01-14 2006-08-31 Cam Implants B.V. Two-dimensional and three-dimensional structures with a pattern identical to that of e.g. cancellous bone
WO2007016795A1 (en) * 2005-08-09 2007-02-15 Dr.H.C. Robert Mathys Stiftung Device for the artificial replacement of a joint articulation in humans and animals
EP1806113A1 (en) * 2006-01-06 2007-07-11 Karl-Dieter Lerch Method of forming customized cranial implants and cranial implant
WO2008101090A2 (en) * 2007-02-14 2008-08-21 Conformis, Inc. Implant device and method for manufacture
DE10338201C5 (en) * 2003-08-20 2008-11-13 Audi Ag Friction pairing for clutch systems
US7881768B2 (en) 1998-09-14 2011-02-01 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
WO2011107803A1 (en) * 2010-03-05 2011-09-09 Invibio Limited Polymeric materials
US8036729B2 (en) 1998-09-14 2011-10-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
WO2012059599A1 (en) 2010-11-04 2012-05-10 Cadorel, Catherine Method for preparing a bone filler material and material prepared by such a method
US8247492B2 (en) 2006-11-09 2012-08-21 Valspar Sourcing, Inc. Polyester powder compositions, methods and articles
US8265730B2 (en) 1998-09-14 2012-09-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US8313087B2 (en) 2004-03-21 2012-11-20 Eos Gmbh Electro Optical Systems Powder for rapid prototyping and associated production method
EP2571542A2 (en) * 2010-05-07 2013-03-27 Difusion Technologies Inc. Medical implants with increased hydrophilicity
WO2013052361A1 (en) * 2011-10-03 2013-04-11 The Cleveland Clinic Foundation Synthetic bone model and method for providing same
EP2634207A1 (en) * 2012-03-02 2013-09-04 Pobi Concept Oy A multifunctional filler granule
US8710144B2 (en) 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US8821912B2 (en) 2009-12-11 2014-09-02 Difusion Technologies, Inc. Method of manufacturing antimicrobial implants of polyetheretherketone
US9233505B2 (en) 2006-11-09 2016-01-12 3D Systems, Inc. Powder compositions and methods of manufacturing articles therefrom
US9286686B2 (en) 1998-09-14 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and assessing cartilage loss
US9408686B1 (en) 2012-01-20 2016-08-09 Conformis, Inc. Devices, systems and methods for manufacturing orthopedic implants
US9439767B2 (en) 2001-05-25 2016-09-13 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US9492584B2 (en) 2009-11-25 2016-11-15 Difusion Technologies, Inc. Post-charging of zeolite doped plastics with antimicrobial metal ions
US9636229B2 (en) 2012-09-20 2017-05-02 Conformis, Inc. Solid freeform fabrication of implant components
US9833788B2 (en) 2004-03-21 2017-12-05 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
WO2017211522A1 (en) * 2016-06-07 2017-12-14 Karl Leibinger Medizintechnik Gmbh & Co. Kg Implant production method using additive selective laser sintering, and implant
US9849019B2 (en) 2012-09-21 2017-12-26 Conformis, Inc. Methods and systems for optimizing design and manufacture of implant components using solid freeform fabrication
EP3320877A1 (en) * 2016-11-14 2018-05-16 Andreas Schwitalla Implant made from fibre-reinforced plastic
WO2019068903A1 (en) 2017-10-06 2019-04-11 Dsm Intellectual Property Method of making an osteoconductive polymer article and an osteoconductive polymer article thus made
CN112276109A (en) * 2020-09-10 2021-01-29 华中科技大学 Forming method and product of polyether-ether-ketone bio-philic metal porous bone implant
CN114191617A (en) * 2021-11-12 2022-03-18 华中科技大学 Polyether-ether-ketone implant with controllable drug slow release and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808908B2 (en) * 2001-05-30 2004-10-26 Porex Technologies Corporation Functionalized porous substrate for binding chemical and biological moieties
DE102007016656B4 (en) 2007-04-05 2018-10-11 Eos Gmbh Electro Optical Systems PAEK powder, in particular for use in a process for producing a three-dimensional object in layers, and method for its production
US8592531B2 (en) 2007-09-11 2013-11-26 Solvay Advanced Polymers, L.L.C. Prosthetic devices

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171884A1 (en) * 1984-06-15 1986-02-19 Imperial Chemical Industries Plc Prosthetic devices
US4655777A (en) * 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
US4849285A (en) * 1987-06-01 1989-07-18 Bio Med Sciences, Inc. Composite macrostructure of ceramic and organic biomaterials
EP0371491A1 (en) * 1988-11-29 1990-06-06 Thomas Dr. Heinl Implant
DE4029714A1 (en) * 1990-09-19 1992-03-26 Klaus Draenert Implant for e.g. stiffening bones and anchoring prostheses - consists of polymer and/or copolymer in which filler particles are at least partially embedded
WO1992018549A1 (en) * 1991-04-11 1992-10-29 E.I. Du Pont De Nemours And Company Ultrahigh molecular weight polyethylene and lightly-filled composites thereof
DE4219321A1 (en) * 1992-06-12 1993-12-16 Draenert Klaus Polymer granules and process for their production
DE4230339A1 (en) * 1992-09-10 1994-03-17 Man Ceramics Gmbh Implant
DE9390076U1 (en) * 1992-03-23 1994-11-10 Howmedica Orthopedic composite implant
DE4400073A1 (en) * 1994-01-04 1995-07-06 Burghardt Krebber Dentures made of fiber-reinforced dressing materials and process for their production and use
EP0684046A1 (en) * 1993-12-10 1995-11-29 Kabushiki Kaisya Advance Implantation material and process for producing the same
US5522894A (en) * 1984-12-14 1996-06-04 Draenert; Klaus Bone replacement material made of absorbable beads
DE19728131A1 (en) * 1997-07-02 1999-01-07 Gerd Hoermansdoerfer Versatile sliding surface for joint prostheses
US5981619A (en) * 1995-09-14 1999-11-09 Takiron Co., Ltd. Material for osteosynthesis and composite implant material, and production processes thereof
US6080801A (en) * 1990-09-13 2000-06-27 Klaus Draenert Multi-component material and process for its preparation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7704659A (en) * 1976-05-12 1977-11-15 Battelle Institut E V BONE REPLACEMENT, BONE JOINT, OR PROSTHESIS ANCHORING MATERIAL.
EP0049720B1 (en) * 1980-10-09 1986-08-13 National Research Development Corporation Prosthesis comprising composite material
WO1990009152A1 (en) * 1989-02-15 1990-08-23 Microtek Medical, Inc. Biocompatible material and prosthesis
US5977204A (en) * 1997-04-11 1999-11-02 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
US6083264A (en) * 1998-06-30 2000-07-04 Mcdonnell Douglas Corporation Implant material for replacing or augmenting living bone tissue involving thermoplastic syntactic foam

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655777A (en) * 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
EP0171884A1 (en) * 1984-06-15 1986-02-19 Imperial Chemical Industries Plc Prosthetic devices
US5522894A (en) * 1984-12-14 1996-06-04 Draenert; Klaus Bone replacement material made of absorbable beads
US4849285A (en) * 1987-06-01 1989-07-18 Bio Med Sciences, Inc. Composite macrostructure of ceramic and organic biomaterials
EP0371491A1 (en) * 1988-11-29 1990-06-06 Thomas Dr. Heinl Implant
US6080801A (en) * 1990-09-13 2000-06-27 Klaus Draenert Multi-component material and process for its preparation
DE4029714A1 (en) * 1990-09-19 1992-03-26 Klaus Draenert Implant for e.g. stiffening bones and anchoring prostheses - consists of polymer and/or copolymer in which filler particles are at least partially embedded
WO1992018549A1 (en) * 1991-04-11 1992-10-29 E.I. Du Pont De Nemours And Company Ultrahigh molecular weight polyethylene and lightly-filled composites thereof
DE9390076U1 (en) * 1992-03-23 1994-11-10 Howmedica Orthopedic composite implant
DE4219321A1 (en) * 1992-06-12 1993-12-16 Draenert Klaus Polymer granules and process for their production
DE4230339A1 (en) * 1992-09-10 1994-03-17 Man Ceramics Gmbh Implant
EP0684046A1 (en) * 1993-12-10 1995-11-29 Kabushiki Kaisya Advance Implantation material and process for producing the same
DE4400073A1 (en) * 1994-01-04 1995-07-06 Burghardt Krebber Dentures made of fiber-reinforced dressing materials and process for their production and use
US5981619A (en) * 1995-09-14 1999-11-09 Takiron Co., Ltd. Material for osteosynthesis and composite implant material, and production processes thereof
DE19728131A1 (en) * 1997-07-02 1999-01-07 Gerd Hoermansdoerfer Versatile sliding surface for joint prostheses

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881768B2 (en) 1998-09-14 2011-02-01 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US9286686B2 (en) 1998-09-14 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and assessing cartilage loss
US8369926B2 (en) 1998-09-14 2013-02-05 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8862202B2 (en) 1998-09-14 2014-10-14 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US8036729B2 (en) 1998-09-14 2011-10-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
USRE43282E1 (en) 1998-09-14 2012-03-27 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8306601B2 (en) 1998-09-14 2012-11-06 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8265730B2 (en) 1998-09-14 2012-09-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US8112142B2 (en) 1998-09-14 2012-02-07 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US9700971B2 (en) 2001-05-25 2017-07-11 Conformis, Inc. Implant device and method for manufacture
US9439767B2 (en) 2001-05-25 2016-09-13 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
GB2395927B (en) * 2002-12-02 2006-08-16 Ono & Co Ltd Process for producing an artifical bone model and an artificial bone model produced by the process
US6932610B2 (en) 2002-12-02 2005-08-23 Ono & Co., Ltd. Process for producing an artificial bone model and an artificial bone model produced by the process
GB2395927A (en) * 2002-12-02 2004-06-09 Ono & Co Ltd Producing artificial bones by laser sintering
WO2004058319A1 (en) * 2002-12-24 2004-07-15 Cadorel, Catherine Medical or veterinary material, method for the production and use thereof
EP2292279A3 (en) * 2002-12-24 2011-05-25 Cadorel, Catherine Material for medical or veterinary use comprising PEEK and calcium phosphate
AU2003302201B2 (en) * 2002-12-24 2010-08-26 Ethical Medical Implants Medical or veterinary material, method for the production and use thereof
FR2848856A1 (en) * 2002-12-24 2004-06-25 Cadorel Catherine Production of a material useful for making bone implants and prostheses by molding a mixture of a binder and calcium and phosphorus compounds comprises cleaning the surface of the molded piece
DE10338201C5 (en) * 2003-08-20 2008-11-13 Audi Ag Friction pairing for clutch systems
DE10350570A1 (en) * 2003-10-30 2005-06-16 Bego Semados Gmbh Making bone replacement material employs laser beam to sinter or melt loose particles, bonding them together into granular unit with controlled porosity
DE102004012411A1 (en) * 2004-03-13 2005-09-29 Dot Gmbh Composite materials based on polysilicic acids and process for their preparation
US8710144B2 (en) 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
US8313087B2 (en) 2004-03-21 2012-11-20 Eos Gmbh Electro Optical Systems Powder for rapid prototyping and associated production method
US9833788B2 (en) 2004-03-21 2017-12-05 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
WO2006091097A2 (en) * 2005-01-14 2006-08-31 Cam Implants B.V. Two-dimensional and three-dimensional structures with a pattern identical to that of e.g. cancellous bone
WO2006091097A3 (en) * 2005-01-14 2006-11-16 Cam Implants Bv Two-dimensional and three-dimensional structures with a pattern identical to that of e.g. cancellous bone
WO2007016795A1 (en) * 2005-08-09 2007-02-15 Dr.H.C. Robert Mathys Stiftung Device for the artificial replacement of a joint articulation in humans and animals
EP1806113A1 (en) * 2006-01-06 2007-07-11 Karl-Dieter Lerch Method of forming customized cranial implants and cranial implant
US10870232B2 (en) 2006-11-09 2020-12-22 3D Systems, Inc. Polyester powder compositions, methods and articles
US10150256B2 (en) 2006-11-09 2018-12-11 3D Systems, Inc. Polyester powder compositions, methods and articles
US9561625B2 (en) 2006-11-09 2017-02-07 3D Systems, Inc. Polyester powder compositions, methods and articles
US8247492B2 (en) 2006-11-09 2012-08-21 Valspar Sourcing, Inc. Polyester powder compositions, methods and articles
US8592519B2 (en) 2006-11-09 2013-11-26 Valspar Sourcing, Inc. Polyeste powder compositions, methods and articles
US9233505B2 (en) 2006-11-09 2016-01-12 3D Systems, Inc. Powder compositions and methods of manufacturing articles therefrom
US9517134B2 (en) 2007-02-14 2016-12-13 Conformis, Inc. Implant device and method for manufacture
WO2008101090A2 (en) * 2007-02-14 2008-08-21 Conformis, Inc. Implant device and method for manufacture
EP2591756A1 (en) * 2007-02-14 2013-05-15 Conformis, Inc. Implant device and method for manufacture
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
WO2008101090A3 (en) * 2007-02-14 2008-11-27 Conformis Inc Implant device and method for manufacture
US9492584B2 (en) 2009-11-25 2016-11-15 Difusion Technologies, Inc. Post-charging of zeolite doped plastics with antimicrobial metal ions
US8821912B2 (en) 2009-12-11 2014-09-02 Difusion Technologies, Inc. Method of manufacturing antimicrobial implants of polyetheretherketone
US8840914B2 (en) 2009-12-11 2014-09-23 Difusion Technologies, Inc. Method of manufacturing antimicrobial implants of polyetheretherketone
US9132576B2 (en) 2009-12-11 2015-09-15 Difusion Technologies, Inc. Method of manufacturing antimicrobial implants of polyetheretherketone
WO2011107803A1 (en) * 2010-03-05 2011-09-09 Invibio Limited Polymeric materials
EP2571542A2 (en) * 2010-05-07 2013-03-27 Difusion Technologies Inc. Medical implants with increased hydrophilicity
US9107765B2 (en) 2010-05-07 2015-08-18 Difusion Technologies, Inc. Medical implants with increased hydrophilicity
US9375321B2 (en) 2010-05-07 2016-06-28 Difusion Technologies, Inc. Medical implants with increased hydrophilicity
EP2571542A4 (en) * 2010-05-07 2013-10-02 Difusion Technologies Inc Medical implants with increased hydrophilicity
WO2012059599A1 (en) 2010-11-04 2012-05-10 Cadorel, Catherine Method for preparing a bone filler material and material prepared by such a method
WO2013052361A1 (en) * 2011-10-03 2013-04-11 The Cleveland Clinic Foundation Synthetic bone model and method for providing same
US9408686B1 (en) 2012-01-20 2016-08-09 Conformis, Inc. Devices, systems and methods for manufacturing orthopedic implants
US10456261B2 (en) 2012-01-20 2019-10-29 Conformis, Inc. Devices, systems and methods for manufacturing orthopedic implants
US11419726B2 (en) 2012-01-20 2022-08-23 Conformis, Inc. Systems and methods for manufacturing, preparation and use of blanks in orthopedic implants
EP2634207A1 (en) * 2012-03-02 2013-09-04 Pobi Concept Oy A multifunctional filler granule
US9636229B2 (en) 2012-09-20 2017-05-02 Conformis, Inc. Solid freeform fabrication of implant components
US10485676B2 (en) 2012-09-20 2019-11-26 Conformis, Inc. Solid freeform fabrication of implant components
US9849019B2 (en) 2012-09-21 2017-12-26 Conformis, Inc. Methods and systems for optimizing design and manufacture of implant components using solid freeform fabrication
WO2017211522A1 (en) * 2016-06-07 2017-12-14 Karl Leibinger Medizintechnik Gmbh & Co. Kg Implant production method using additive selective laser sintering, and implant
AU2017278382B2 (en) * 2016-06-07 2021-07-08 Karl Leibinger Medizintechnik Gmbh & Co. Kg Implant production method using additive selective laser sintering, and implant
WO2018087383A1 (en) 2016-11-14 2018-05-17 Andreas Schwitalla Implant made of fibre-reinforced plastic
EP3320877A1 (en) * 2016-11-14 2018-05-16 Andreas Schwitalla Implant made from fibre-reinforced plastic
US11589961B2 (en) 2016-11-14 2023-02-28 Andreas Schwitalla Implant made of fibre-reinforced plastic
WO2019068903A1 (en) 2017-10-06 2019-04-11 Dsm Intellectual Property Method of making an osteoconductive polymer article and an osteoconductive polymer article thus made
CN111526896A (en) * 2017-10-06 2020-08-11 帝斯曼知识产权资产管理有限公司 Method of making an osteoconductive polymer article and osteoconductive polymer article made thereby
EP3974006A1 (en) 2017-10-06 2022-03-30 DSM IP Assets B.V. Method of making an osteoconductive polymer article and an osteoconductive polymer article thus made
CN111526896B (en) * 2017-10-06 2022-05-10 帝斯曼知识产权资产管理有限公司 Method of making an osteoconductive polymer article and osteoconductive polymer article made thereby
US11400184B2 (en) 2017-10-06 2022-08-02 Dsm Ip Assets B.V. Method of making an osteoconductive polymer article and an osteoconductive polymer article thus made
CN112276109A (en) * 2020-09-10 2021-01-29 华中科技大学 Forming method and product of polyether-ether-ketone bio-philic metal porous bone implant
CN112276109B (en) * 2020-09-10 2021-12-17 华中科技大学 Forming method and product of polyether-ether-ketone bio-philic metal porous bone implant
CN114191617A (en) * 2021-11-12 2022-03-18 华中科技大学 Polyether-ether-ketone implant with controllable drug slow release and preparation method thereof

Also Published As

Publication number Publication date
WO2002070031A1 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
DE10055465A1 (en) Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix
DE60315366T2 (en) Production method of a composite prosthesis bearing element with a networked joint surface
Saringer et al. Cranioplasty with individual carbon fibre reinforced polymere (CFRP) medical grade implants based on CAD/CAM technique
EP3320877B1 (en) Implant made from fibre-reinforced plastic
CN105013006A (en) Bioabsorbable bone repair material and its use and manufacturing method
Jindal et al. 3D printed composite materials for craniofacial implants: current concepts, challenges and future directions
EP0023608A1 (en) Bone implant for prostheses and bone fixation parts and process for its manufacture
DE3909545A1 (en) BONE IMPLANT
DE2700621A1 (en) IMPLANT MADE OF GRAPHITE FIBER REINFORCED POLYAETHYLENE WITH ULTRA HIGH MOLECULAR WEIGHT
DE102011011191A1 (en) Device for covering and / or reconstruction of a bone defect site; A method of making an attachment of a bone defect covering device
DE102010008781B4 (en) Device for the layered production of components, and method for the layered production of components
EP3007739B1 (en) Production of semifinished goods for implants based on plastic
DE102007014285A1 (en) implant
US20230089343A1 (en) Implantable medical device with varied composition and porosity, and method for forming same
Hao et al. Customised implants for bone replacement and growth
Parthasarathy of Medical Devices
EP2564881B1 (en) Implantable medical or veterinary device and use thereof
DE202007004509U1 (en) Implant for insertion into vertebral body of human or animal spinal column, has X-ray marker designed as marker coating of side surfaces of implant, where marker is inclined around inclination angle relative to supporting surfaces
DE19945529A1 (en) Implant for reconstructing bone defects, useful in e.g. cranial, especially facial, area, consists of highly pure alumina and/or zirconium oxide bioceramic with coating having bone affinity, e.g. tricalcium phosphate or hydroxyapatite
DE2857621C2 (en)
WO2014015262A1 (en) Metal composite hybrid orthopaedic implants
Eng Daniel Martinez-Marquez
EP3138584A1 (en) Implant and method for producing an implant
Elhattab Fabrication and Evaluation of 3D Printed Composite Scaffolds in Orthopedic Applications
Suresh et al. Three-Dimentional Printing Materials for Maxillofacial Structure Development: A Review

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee