DE10297198T5 - Kohlenstoff enthaltende Zwischenschicht für einen Phasenübergangsspeicher - Google Patents

Kohlenstoff enthaltende Zwischenschicht für einen Phasenübergangsspeicher Download PDF

Info

Publication number
DE10297198T5
DE10297198T5 DE10297198T DE10297198T DE10297198T5 DE 10297198 T5 DE10297198 T5 DE 10297198T5 DE 10297198 T DE10297198 T DE 10297198T DE 10297198 T DE10297198 T DE 10297198T DE 10297198 T5 DE10297198 T5 DE 10297198T5
Authority
DE
Germany
Prior art keywords
memory
intermediate layer
carbon
layer
phase change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10297198T
Other languages
English (en)
Other versions
DE10297198B4 (de
DE10297198T8 (de
Inventor
Daniel Mountain View Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Ovonyx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ovonyx Inc filed Critical Ovonyx Inc
Publication of DE10297198T5 publication Critical patent/DE10297198T5/de
Application granted granted Critical
Publication of DE10297198T8 publication Critical patent/DE10297198T8/de
Publication of DE10297198B4 publication Critical patent/DE10297198B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Abstract

Verfahren umfassend:
Aufbringen einer Kohlenstoff enthaltenden Zwischenschicht auf einem Halbleiter; und
Aufbringen eines Phasenübergangsmaterials über der Kohlenstoff enthaltenden Zwischenschicht.

Description

  • Hintergrund
  • Die Erfindung betrifft im Allgemeinen Speicher, die Phasenübergangsmaterialien verwenden.
  • Phasenübergangsmaterialien können mindestens zwei verschiedene Zustände aufweisen. Die Zustände können amorpher und kristalliner Zustand genannt werden. Übergänge zwischen diesen Zuständen können gezielt hervorgerufen werden. Die Zustände können unterschieden werden, weil der amorphe Zustand im Allgemeinen einen höheren Widerstand aufweist als der kristalline Zustand. Der amorphe Zustand umfasst eine ungeordnetere Atomstruktur und der kristalline Zustand eine geordnetere Atomstruktur. Im Allgemeinen kann jedes Phasenübergangsmaterial verwendet werden, jedoch sind in einigen Ausführungsformen Dünnfilm-Chalcogenid-Legierungsmaterialien besonders geeignet.
  • Der Phasenübergang kann reversiv induziert werden. Daher kann der Speicher von dem amorphen zu dem kristallinen Zustand und danach zurück zu dem amorphen Zustand wechseln oder umgekehrt. Tatsächlich kann man sich jede Speicherzelle als einen programmierbaren Widerstand vorstellen, der reversiv zwischen einem höheren und einem niedrigeren Widerstandszustand wechselt.
  • In einigen Fällen kann die Zelle eine große Anzahl von Zuständen aufweisen. Weil jeder Zustand durch seinen Widerstand unterschieden werden kann, kann eine Anzahl von durch den Widerstand bestimmten Zuständen möglich sein, die das Speichern von mehreren Datenbits in einer einzigen Zelle ermöglichen.
  • Eine Vielzahl von Phasenübergangslegierungen ist bekannt. Im Allgemeinen enthalten Chalcogenidlegierungen eines oder mehre re Elemente aus der sechsten Gruppe des Periodensystems. Eine besonders geeignete Gruppe von Legierungen sind GeSeTe-Legierungen.
  • Ein Phasenübergangsmaterial kann in einem Durchgang oder einer Pore durch ein dielektrisches Material gebildet werden. Das Phasenübergangsmaterial kann mit Kontakten an beiden Enden des Durchgangs gekoppelt sein.
  • Der Phasenübergang kann durch Erwärmen des Phasenübergangsmaterials induziert werden. Bei einigen Ausführungsformen der Phasenübergangsspeicher wird ein Strom durch eine untere Elektrode angelegt, die einen ausreichenden Widerstand oder andere Eigenschaften aufweist, um das Phasenübergangsmaterial zu erwärmen und so den geeigneten Phasenübergang zu induzieren. Bei einigen Ausführungsformen kann die untere Elektrode Temperaturen in der Größenordnung von 600 Grad Celsius erzeugen.
  • Ein Problem bei der bestehenden Elektrodenanordnung ist, dass je größer die Temperatur ist desto niedriger ist der Widerstand des Materials. Dadurch wird die untere Elektrode zunehmend leitfähiger, wenn sich die untere Elektrode erwärmt um den Phasenübergang zu induzieren, wodurch die generierte Wärmemenge abnimmt.
  • Somit gibt es einen Bedarf in steuerbarer Weise, einen ausreichenden Widerstand nahe des Phasenübergangsmaterials auch bei erhöhten Temperaturen zur Verfügung zu stellen.
  • Kurze Beschreibung der Zeichnungen:
  • 1 zeigt eine stark vergrößerte Querschnittsansicht gemäß einer Ausführungsform der vorliegenden Erfindung;
  • 2 zeigt eine stark vergrößerte Querschnittsansicht eines frühen Herstellungszustandes des Bauelementes, das in 1 gezeigt ist, gemäß einer Ausführungsform der vorliegenden Erfindung;
  • 3 zeigt eine stark vergrößerte Querschnittsansicht der Ausführungsform, die in 2 bei einem nachfolgenden Herstellungszustand gemäß einer Ausführungsform der Erfindung gezeigt ist;
  • 4 zeigt eine stark vergrößerte Querschnittsansicht der Ausführungsform, die in 3 bei einem nachfolgenden Herstellungszustand gemäß einer Ausführungsform der vorliegenden Erfindung gezeigt ist;
  • 5 zeigt eine stark vergrößerte Querschnittsansicht der Ausführungsform der 4 bei einem nachfolgenden Herstellungszustand gemäß einer Ausführungsform der vorliegenden Erfindung;
  • 6 zeigt eine stark vergrößerte Querschnittsansicht eines nachfolgenden Herstellungszustandes gemäß einer Ausführungsform der vorliegenden Erfindung;
  • 7 zeigt eine vergrößerte Querschnittsansicht eines weiteren nachfolgenden Herstellungszustandes gemäß einer Ausführungsform der vorliegenden Erfindung;
  • 8 zeigt eine schematische Darstellung eines Systems gemäß einer Ausführungsform der vorliegenden Erfindung.
  • Ausführliche Beschreibung
  • Mit Bezug auf 1 kann eine Speicherzelle 10 eine Phasenübergangsmaterialschicht 24 aufweisen. Die Phasenübergangsma terialschicht 24 kann zwischen einer oberen Elektrode 26 und einer unteren Elektrode 14 angeordnet sein. Bei einer Ausführungsform kann die untere Elektrode 14 aus Kobaltsilizid sein. Jedoch kann die untere Elektrode 14 aus jedem leitfähigen Material sein. In ähnlicher Weise kann die obere Elektrode 26 aus jedem leitfähigen Material sein.
  • Die untere Elektrode 14 kann über einem Halbleitersubstrat 12 definiert sein. Über der unteren Elektrode 14 kann außerhalb des Bereichs mit der Phasenübergangsmaterialschicht 14 ein isolierendes Material 16, wie beispielsweise Siliziumdioxid oder Siliziumnitrid angeordnet sein. Eine vergrabene Wortleitung (nicht gezeigt) in dem Substrat 12 kann Signale und einen Strom an das Phasenübergangsmaterial 24 über die untere Elektrode 14 anlegen.
  • Eine Kohlenstoff enthaltende Zwischenschicht 20 kann zwischen der Phasenübergangsmaterialschicht 24 und dem Isolator 16 angeordnet sein. Bei einer Ausführungsform kann ein zylindrisches Seitenwandbegrenzungselement 22 mit einer röhrenförmigen Pore definiert sein, die durch die Kohlenstoff enthaltende Zwischenschicht 20 und die Phasenübergangsmaterialschicht 24 bedeckt ist.
  • Bei einer Ausführungsform der vorliegenden Erfindung kann die Kohlenstoff enthaltende Zwischenschicht 20 aus Siliziumcarbid gebildet sein. Siliziumcarbid ist in seiner einfachen Kristallform ein Halbleiter mit einem großen Bandabstand mit abwechselnd angeordneten hexagonalen Ebenen von Silizium und Kohlenstoffatomen. Siliziumcarbid kann bis 600 Grad Celsius im Betrieb erwärmt werden und kann einen spezifischen Widerstand aufweisen der bei steigenden Temperaturen nicht wesentlich abnimmt. Daher ist Siliziumcarbid sehr leistungsfähig, um die Phasenübergangsmaterialschicht 24 zu erwärmen. Wiederum ist es wünschenswert, die Phasenübergangsmaterialschicht 24 zu erwär men, um Übergänge der Phasenübergangsmaterialschicht 24 zwischen dem amorphen und kristallinen Zustand zu induzieren.
  • Die Zwischenschicht 20 erhöht ihre Leitfähigkeit bei steigenden Temperaturen nicht im gleichen Maße wie andere verfügbare Materialien wie beispielsweise Kobaltsilizid. Der reduzierte spezifische Widerstand bei steigenden Temperaturen macht herkömmliche Materialien weniger als ideal für Heizelektroden für die Phasenübergangsmaterialschicht 24. Bei relativ hohen Temperaturen, wie beispielsweise 600 Grad Celsius, bei denen der spezifische Widerstand anderer Materialien abnimmt, ist die Leistungsfähigkeit der Zwischenschicht 20 als ein Heizelement, um Phasenübergänge zu induzieren im wesentlichen nicht verschwunden.
  • Siliziumcarbid neigt, insbesondere weniger dazu, seinen spezifischen Widerstand bei höheren Temperaturen zu verlieren, weil es ein Material mit einem großen Bandabstand ist. Andere Materialien mit großem Bandabstand sind Galliumnitrid und Aluminiumnitrid. Andere Kohlenstoff enthaltende Materialien die bei Ausführungsformen der vorliegenden Erfindung als Zwischenschicht 20 verwendet werden können, können gesputterten Kohlenstoff und Diamant umfassen.
  • Die Zwischenschicht 20 kann z.B. durch chemisches Aufdampfen im Falle von Siliziumcarbid und durch Sputtern im Falle von Diamant oder Kohlenstoff abgeschieden werden. Andere Schichtbildungsverfahren können ebenso verwendet werden.
  • Bei anderen Ausführungsformen kann es wünschenswert sein, die Zwischenschicht 20 zu dotieren, um ihre Leitfähigkeit zu erhöhen. Bei einigen Ausführungsformen kann undotiertes Siliziumcarbid z.B. einen zu hohen spezifischen Widerstand aufweisen, der in entweder einer zu hohen Temperatur oder einen zu großen Spannungsabfall über den Elektroden 14 und 26 führt. Somit kann z.B. Innenimplantation verwendet werden, um die Schicht 20 mit Dotiermaterialien eines p-Typs oder eines p-Typs zu dotieren, um ihre Leitfähigkeit nach dem Ausheilen zu verbessern.
  • Bei einigen Ausführungsformen der vorliegenden Erfindung kann eine Schicht (nicht gezeigt) vorgesehen werden, um den Zusammenhalt zwischen der Phasenübergangsmaterialschicht 24 und der Kohlenstoff enthaltenden Zwischenschicht 20 zu verbessern. Geeignete Schichten, die den Zusammenhalt unterstützen, können leitfähige Materialien, die Titan, Titannitrid und Wolfram enthalten, umfassen, um nur einige Beispiele zu nennen.
  • Mit Bezug auf 2 kann bei einer Ausführungsform ein Halbleitersubstrat 12 mit einer unteren Elektrode 14 bedeckt werden. Die Elektrode 14 kann dann durch einen Isolator 16 und eine geeignete Pore 18, die durch den Isolator 16 gebildet wird, bedeckt werden.
  • Die resultierende Struktur kann flächig abgeschieden werden, z.B. mit Hilfe chemischen Aufdampfens der Kohlenstoff enthaltenden Zwischenschicht 20 abgeschieden werden, wie in 3 gezeigt ist. Danach kann bei einigen Ausführungsformen die Kohlenstoff enthaltende Zwischenschicht 20 mit einer Innenimplantation beaufschlagt werden, wie in 4 gezeigt ist, um ihre Leitfähigkeit zu erhöhen und ihren spezifischen Widerstand nach dem Ausheilen zu verringern.
  • Wie in 5 gezeigt ist, kann ein Begrenzungsmaterial 22 über der Schicht 20 abgeschieden werden. Das Abstandsmaterial 22 kann bei einer Ausführungsform ein Oxid sein, das chemisch aufgedampft ist. Das Oxidmaterial 22 kann dann anisotrop geätzt werden, um das zylindrische Seitenwandbegrenzungselement 22, das in 6 gezeigt ist, in der Pore 18 zu bilden.
  • Mit Bezug auf 7 kann bei einer Ausführungsform die Phasenübergangsmaterialschicht 24 in der Pore 18 gebildet werden und insbesondere in dem Bereich, der durch das Seitenwandbegrenzungselement 22 definiert ist, um die Schicht 20 zu kontaktieren. Eine obere Elektrode 26 kann auf dem Phasenübergangsmaterial 24 abgeschieden werden. Dann können die Elektrode 26 und das Phasenübergangsmaterial 24 strukturiert und geätzt werden, um die Struktur, die in 1 dargestellt ist, zu bilden.
  • Durch die Verwendung einer Kohlenstoff enthaltenden Zwischenschicht 20, kann der spezifische Widerstand des Heizelementes des Phasenübergangsmaterials im Wesentlichen erhöht werden, während gleichzeitig die Heizleistungsfähigkeit des Heizelementes bei höheren Temperaturen verbessert ist. Das Heizelement umfasst effektiv die Serienkombination der unteren Elektrode 14 und der Kohlenstoff enthaltenden Zwischenschicht 20. Jedoch wird eine Serienwiderstandskombination durch das Element mit dem größeren Widerstand dominiert, das bei einigen Ausführungsformen die Kohlenstoff enthaltende Zwischenschicht 20 sein kann. Als Folge kann der Widerstand der Serienkombination der Schichten 20 und 14 durch den Widerstand der Zwischenschicht 20 dominiert sein.
  • Mit Bezug auf 8 kann die Speicherzelle, die in 1 dargestellt ist, repliziert werden, um ein Speicherfeld mit einer großen Anzahl von Zellen zu bilden. Der Speicher kann als Speicher in einer großen Vielfalt von Prozessor basierten Systemen verwendet werden, wie das System 40, das in 8 darstellt ist. Z.B. kann der Speicher als Systemspeicher oder anderen Speicher von einer Vielzahl von Personalcomputerprodukten wie Laptop-Produkten oder Desktop-Produkten oder Servern verwendet werden. In ähnlicher Weise kann der Speicher in einer Vielzahl von Prozessor basierten Anwendungen verwendet werden. So kann er als Speicher in Prozessor basierten Telefonen inklusive Mobiltelefonen verwendet werden.
  • Im Allgemeinen kann die Verwendung des Phasenübergangsspeichers bei einer Anzahl von Ausführungsformen bezüglich der niedrigeren Kosten und/oder der besseren Leistungsfähigkeit vorteilhaft sein. Mit Bezug auf 8 kann der Speicher 48, der entsprechend den hierin beschriebenen Verfahren gebildet ist, als ein Systemspeicher betrieben werden. Der Speicher 48 kann z.B. mit einer Schnittstelle 44 gekoppelt sein, die wiederum mit einem Prozessor 42, einer Anzeigeeinheit 46 und einem Bios 50 verbunden ist. Der Bus 50 ist in einer solchen Ausführungsform mit einer Schnittstelle 52 verbunden, die wiederum mit einem weiteren Bus 54 verbunden ist.
  • Der Bus 54 kann mit einem Haupt-Eingabe-/Ausgabe-Systemspeicher (BIOS) 62 und mit einer seriellen Eingabe-/Ausgabeeinrichtung (SIO) 56 verbunden sein. Die Einrichtung 56 kann beispielsweise mit einer Maus 58 und einer Tatstatur 60 verbunden sein. Selbstverständlich ist die in 8 gezeigte Architektur nur ein Beispiel einer möglichen Architektur, die den Speicher 48, der das Phasenübergangsmaterial verwendet, enthält.
  • Während die vorliegende Erfindung mit Bezug auf eine begrenzte Anzahl von Ausführungsformen beschrieben worden ist, sind dem Fachmann zahlreiche Modifikationen und Variationen davon offensichtlich. Es ist beabsichtigt, das die beigefügten Ansprüche all diese Modifikationen und Variationen, die in den wahren Geist und Bereich der vorliegenden Erfindung fallen, umfassen.
  • Zusammenfassung
  • Kohlenstoff enthaltende Zwischenschicht für einen Phasenübergangsspeicher Eine Phasenübergangsspeicherzelle (10) kann mit einer Kohlenstoff enthaltenden Zwischenschicht (20) gebildet sein, die ein Phasenübergangsmaterial (24) erwärmt. Durch das Bilden des Phasenübergangsmaterial (24) in Kontakt mit der Kohlenstoff enthaltenden Zwischenschicht (20) bei einer Ausführungsform kann die Wärmemenge, die dem Phasenübergangsmaterial (24) bei einem bestimmten Strom und Temperatur bereitgestellt wird, erhöht werden. Bei einigen Ausführungsformen kann die Leistungsfähigkeit der Zwischenschicht (20) bei hohen Temperaturen verbessert werden, indem ein Halbleitermaterial mit großem Bandabstand verwendet wird, wie beispielsweise Siliziumcarbid.

Claims (30)

  1. Verfahren umfassend: Aufbringen einer Kohlenstoff enthaltenden Zwischenschicht auf einem Halbleiter; und Aufbringen eines Phasenübergangsmaterials über der Kohlenstoff enthaltenden Zwischenschicht.
  2. Verfahren nach Anspruch 1, wobei das Aufbringen einer Kohlenstoff enthaltenden Zwischenschicht auf einem Halbleiter das Aufbringen der Zwischenschicht auf einer leitfähigen Schicht, die auf dem Halbleiter aufgebracht ist, umfasst.
  3. Verfahren nach Anspruch 1, wobei das Aufbringen einer Kohlenstoff enthaltenden Zwischenschicht das Aufbringen einer Schicht eines Halbleitermaterials mit einem großen Bandabstand umfasst.
  4. Verfahren nach Anspruch 3, wobei das Aufbringen einer Kohlenstoff enthaltenden Zwischenschicht das Aufbringen einer Siliziumcarbidschicht umfasst.
  5. Verfahren nach Anspruch 4, das weiterhin das Dotieren der Siliziumcarbidschicht umfasst.
  6. Verfahren nach Anspruch 5, das weiterhin das Dotieren der Siliziumcarbidschicht mit Hilfe einer Innenimplantation umfasst.
  7. Verfahren nach Anspruch 1, das das Bilden einer Pore durch einen Isolator, und das Abscheiden der Kohlenstoff enthaltenen Zwischenschicht auf dem Halbleiter und in der Pore umfasst.
  8. Verfahren nach Anspruch 7, das das Abscheiden des Phasenübergangsmaterials auf der Kohlenstoff enthaltenden Zwischenschicht in der Pore umfasst.
  9. Verfahren nach Anspruch 8, das das Bilden eines Seitenwandbegrenzungselementes zwischen der Zwischenschicht und dem Phasenübergangsmaterial umfasst.
  10. Verfahren nach Anspruch 1, wobei das Aufbringen eines Phasenübergangsmaterials das Aufbringen einer Chalcogenidschicht auf der Zwischenschicht umfasst.
  11. Speicher umfassend: eine Oberfläche; eine Kohlenstoff enthaltende Zwischenschicht auf der Oberfläche; ein Phasenübergangsmaterial auf der Kohlenstoff enthaltenden Zwischenschicht.
  12. Speicher nach Anspruch 11, wobei die Oberfläche eine leitfähige Schicht auf einem Halbleitersubstrat umfasst.
  13. Speicher nach Anspruch 11, wobei die Kohlenstoff enthaltende Zwischenschicht ein Halbleitermaterial mit großem Bandabstand aufweist.
  14. Speicher nach Anspruch 13, wobei die Kohlenstoff enthaltende Zwischenschicht Siliziumcarbid enthält.
  15. Speicher nach Anspruch 14, wobei die Siliziumcarbidschicht mit den Leitfähigkeitstyp bestimmenden Dotierstoffen dotiert ist.
  16. Speicher nach Anspruch 15, der ein Isolator, der auf der Oberfläche angeordnet ist, und eine Pore, die durch den Isolator gebildet ist, aufweist, wobei die Kohlenstoff enthaltende Zwischenschicht in der Pore auf der Oberfläche gebildet ist.
  17. Speicher nach Anspruch 16, wobei das Phasenübergangsmaterial auf der Kohlenstoff enthaltenden Zwischenschicht und in der Pore gebildet ist.
  18. Speicher nach Anspruch 17, der ein Seitenwandbegrenzungselement in der Pore aufweist.
  19. Speicher nach Anspruch 18, wobei das Seitenwandbegrenzungselement zwischen der Zwischenschicht und dem Isolator angeordnet ist.
  20. Speicher nach Anspruch 11, wobei das Phasenübergangsmaterial ein Chalcogenidmaterial enthält.
  21. Elektronisches Bauelement umfassend: eine Oberfläche; eine Kohlenstoff enthaltende Zwischenschicht auf der Oberfläche; und ein Phasenübergangsmaterial auf der Kohlenstoff enthaltenden Zwischenschicht.
  22. Bauelement nach Anspruch 21, wobei das Bauelement ein Speicherbauelement ist.
  23. Bauelement nach Anspruch 22, wobei das Speicherbauelement Teil eines Computers ist.
  24. Bauelement nach Anspruch 23, das einen Prozessor, eine Schnittstelle und einen Bus, der mit dem Speicher verbunden sind, umfasst.
  25. Speicher umfassend: ein Halbleitersubstrat; eine Siliziumcarbidschicht, die auf dem Substrat angeordnet ist; und ein Phasenübergangsmaterial auf der Siliziumcarbidschicht.
  26. Speicher nach Anspruch 25, der eine leitfähige Schicht zwischen dem Halbleitersubstrat und der Siliziumcarbidschicht aufweist.
  27. Speicher nach Anspruch 26, der einen Isolator auf der leitfähigen Schicht aufweist, wobei der Isolator eine darin angeordnete Pore aufweist und das Phasenübergangsmaterial und die Siliziumcarbidschicht in der Pore gebildet sind.
  28. Speicher nach Anspruch 25, wobei die Siliziumcarbidschicht dotiert ist.
  29. Speicher nach Anspruch 28, wobei das Phasenübergangsmaterial ein Chalcogenid enthält.
  30. Speicher nach Anspruch 29, der ein Seitenwandbegrenzungselement zwischen dem Phasenübergangsmaterial und der Siliziumcarbidschicht aufweist.
DE10297198T 2001-10-11 2002-09-12 Speicher mit Kohlenstoff enthaltende Zwischenschicht, insbesondere für einen Phasenübergangsspeicher und Verfahren zur Herstellung Expired - Fee Related DE10297198B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/975,272 US6566700B2 (en) 2001-10-11 2001-10-11 Carbon-containing interfacial layer for phase-change memory
US09/975,272 2001-10-11
PCT/US2002/029021 WO2003038831A1 (en) 2001-10-11 2002-09-12 Carbon-containing interfacial layer for phase-change memory

Publications (3)

Publication Number Publication Date
DE10297198T5 true DE10297198T5 (de) 2004-08-12
DE10297198T8 DE10297198T8 (de) 2005-07-28
DE10297198B4 DE10297198B4 (de) 2011-12-15

Family

ID=25522853

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10297198T Expired - Fee Related DE10297198B4 (de) 2001-10-11 2002-09-12 Speicher mit Kohlenstoff enthaltende Zwischenschicht, insbesondere für einen Phasenübergangsspeicher und Verfahren zur Herstellung

Country Status (6)

Country Link
US (2) US6566700B2 (de)
KR (1) KR100558149B1 (de)
CN (1) CN100470666C (de)
DE (1) DE10297198B4 (de)
TW (1) TWI222146B (de)
WO (1) WO2003038831A1 (de)

Families Citing this family (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638820B2 (en) 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
JP4742429B2 (ja) * 2001-02-19 2011-08-10 住友電気工業株式会社 ガラス微粒子堆積体の製造方法
US6727192B2 (en) * 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US7102150B2 (en) * 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6873538B2 (en) * 2001-12-20 2005-03-29 Micron Technology, Inc. Programmable conductor random access memory and a method for writing thereto
US6885021B2 (en) * 2001-12-31 2005-04-26 Ovonyx, Inc. Adhesion layer for a polymer memory device and method therefor
US6909656B2 (en) * 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
US20030143782A1 (en) * 2002-01-31 2003-07-31 Gilton Terry L. Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures
US6867064B2 (en) * 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) * 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US6891749B2 (en) * 2002-02-20 2005-05-10 Micron Technology, Inc. Resistance variable ‘on ’ memory
US7151273B2 (en) * 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US7087919B2 (en) * 2002-02-20 2006-08-08 Micron Technology, Inc. Layered resistance variable memory device and method of fabrication
US6809362B2 (en) * 2002-02-20 2004-10-26 Micron Technology, Inc. Multiple data state memory cell
US6937528B2 (en) * 2002-03-05 2005-08-30 Micron Technology, Inc. Variable resistance memory and method for sensing same
US6849868B2 (en) * 2002-03-14 2005-02-01 Micron Technology, Inc. Methods and apparatus for resistance variable material cells
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6855975B2 (en) * 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
US6858482B2 (en) * 2002-04-10 2005-02-22 Micron Technology, Inc. Method of manufacture of programmable switching circuits and memory cells employing a glass layer
US6825135B2 (en) * 2002-06-06 2004-11-30 Micron Technology, Inc. Elimination of dendrite formation during metal/chalcogenide glass deposition
US6890790B2 (en) * 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
JP4027282B2 (ja) * 2002-07-10 2007-12-26 キヤノン株式会社 インクジェット記録ヘッド
US7015494B2 (en) * 2002-07-10 2006-03-21 Micron Technology, Inc. Assemblies displaying differential negative resistance
US7209378B2 (en) * 2002-08-08 2007-04-24 Micron Technology, Inc. Columnar 1T-N memory cell structure
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US7018863B2 (en) * 2002-08-22 2006-03-28 Micron Technology, Inc. Method of manufacture of a resistance variable memory cell
US7163837B2 (en) * 2002-08-29 2007-01-16 Micron Technology, Inc. Method of forming a resistance variable memory element
US6831019B1 (en) * 2002-08-29 2004-12-14 Micron Technology, Inc. Plasma etching methods and methods of forming memory devices comprising a chalcogenide comprising layer received operably proximate conductive electrodes
US7010644B2 (en) * 2002-08-29 2006-03-07 Micron Technology, Inc. Software refreshed memory device and method
US6856002B2 (en) * 2002-08-29 2005-02-15 Micron Technology, Inc. Graded GexSe100-x concentration in PCRAM
US6867114B2 (en) * 2002-08-29 2005-03-15 Micron Technology Inc. Methods to form a memory cell with metal-rich metal chalcogenide
US7364644B2 (en) * 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
US6864521B2 (en) * 2002-08-29 2005-03-08 Micron Technology, Inc. Method to control silver concentration in a resistance variable memory element
US6867996B2 (en) * 2002-08-29 2005-03-15 Micron Technology, Inc. Single-polarity programmable resistance-variable memory element
US20040040837A1 (en) * 2002-08-29 2004-03-04 Mcteer Allen Method of forming chalcogenide sputter target
US6985377B2 (en) * 2002-10-15 2006-01-10 Nanochip, Inc. Phase change media for high density data storage
KR100481866B1 (ko) * 2002-11-01 2005-04-11 삼성전자주식회사 상변환 기억소자 및 그 제조방법
US6791102B2 (en) * 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US7049623B2 (en) * 2002-12-13 2006-05-23 Ovonyx, Inc. Vertical elevated pore phase change memory
US7242019B2 (en) * 2002-12-13 2007-07-10 Intel Corporation Shunted phase change memory
US6869883B2 (en) * 2002-12-13 2005-03-22 Ovonyx, Inc. Forming phase change memories
US6813178B2 (en) 2003-03-12 2004-11-02 Micron Technology, Inc. Chalcogenide glass constant current device, and its method of fabrication and operation
US7022579B2 (en) * 2003-03-14 2006-04-04 Micron Technology, Inc. Method for filling via with metal
KR100504698B1 (ko) * 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
US7050327B2 (en) * 2003-04-10 2006-05-23 Micron Technology, Inc. Differential negative resistance memory
KR100979710B1 (ko) * 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US6930909B2 (en) * 2003-06-25 2005-08-16 Micron Technology, Inc. Memory device and methods of controlling resistance variation and resistance profile drift
US6961277B2 (en) 2003-07-08 2005-11-01 Micron Technology, Inc. Method of refreshing a PCRAM memory device
US7061004B2 (en) * 2003-07-21 2006-06-13 Micron Technology, Inc. Resistance variable memory elements and methods of formation
US7012273B2 (en) * 2003-08-14 2006-03-14 Silicon Storage Technology, Inc. Phase change memory device employing thermal-electrical contacts with narrowing electrical current paths
US6903361B2 (en) * 2003-09-17 2005-06-07 Micron Technology, Inc. Non-volatile memory structure
US6937507B2 (en) * 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
KR100533958B1 (ko) * 2004-01-05 2005-12-06 삼성전자주식회사 상변화 메모리 장치 및 그 제조 방법
US7153721B2 (en) * 2004-01-28 2006-12-26 Micron Technology, Inc. Resistance variable memory elements based on polarized silver-selenide network growth
US7105864B2 (en) * 2004-01-29 2006-09-12 Micron Technology, Inc. Non-volatile zero field splitting resonance memory
US7098068B2 (en) * 2004-03-10 2006-08-29 Micron Technology, Inc. Method of forming a chalcogenide material containing device
US7583551B2 (en) * 2004-03-10 2009-09-01 Micron Technology, Inc. Power management control and controlling memory refresh operations
KR100546406B1 (ko) * 2004-04-10 2006-01-26 삼성전자주식회사 상변화 메모리 소자 제조 방법
US7301887B2 (en) * 2004-04-16 2007-11-27 Nanochip, Inc. Methods for erasing bit cells in a high density data storage device
US20050232061A1 (en) * 2004-04-16 2005-10-20 Rust Thomas F Systems for writing and reading highly resolved domains for high density data storage
US7326950B2 (en) * 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
US7190048B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. Resistance variable memory device and method of fabrication
US7354793B2 (en) 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element
KR100612853B1 (ko) * 2004-07-21 2006-08-14 삼성전자주식회사 와이어 형태의 실리사이드를 포함하는 Si 계열 물질층및 그 제조방법
US7365411B2 (en) * 2004-08-12 2008-04-29 Micron Technology, Inc. Resistance variable memory with temperature tolerant materials
KR100653701B1 (ko) * 2004-08-20 2006-12-04 삼성전자주식회사 반도체 소자의 작은 비아 구조체 형성방법 및 이를 사용한상변화 기억 소자의 제조방법
DE102004041894B3 (de) * 2004-08-30 2006-03-09 Infineon Technologies Ag Speicherbauelement (CBRAM) mit Speicherzellen auf der Basis eines in seinem Widerstandswert änderbaren aktiven Festkörper-Elektrolytmaterials und Herstellungsverfahren dafür
US7151688B2 (en) * 2004-09-01 2006-12-19 Micron Technology, Inc. Sensing of resistance variable memory devices
US20060056233A1 (en) * 2004-09-10 2006-03-16 Parkinson Ward D Using a phase change memory as a replacement for a buffered flash memory
US7687830B2 (en) * 2004-09-17 2010-03-30 Ovonyx, Inc. Phase change memory with ovonic threshold switch
US7135696B2 (en) * 2004-09-24 2006-11-14 Intel Corporation Phase change memory with damascene memory element
US7023008B1 (en) * 2004-09-30 2006-04-04 Infineon Technologies Ag Resistive memory element
US7338857B2 (en) * 2004-10-14 2008-03-04 Ovonyx, Inc. Increasing adherence of dielectrics to phase change materials
US20060108667A1 (en) * 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) * 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
US6972429B1 (en) * 2004-12-16 2005-12-06 Macronix International Co, Ltd. Chalcogenide random access memory and method of fabricating the same
US20060131555A1 (en) * 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US7374174B2 (en) * 2004-12-22 2008-05-20 Micron Technology, Inc. Small electrode for resistance variable devices
EP1677371A1 (de) * 2004-12-30 2006-07-05 STMicroelectronics S.r.l. Zweiteiliger Widerstandsheizer für Phasenwechselspeicher und Herstellungsmethode
US7709334B2 (en) 2005-12-09 2010-05-04 Macronix International Co., Ltd. Stacked non-volatile memory device and methods for fabricating the same
US7282730B2 (en) * 2005-01-18 2007-10-16 Intel Corporation Forming a carbon layer between phase change layers of a phase change memory
US7317200B2 (en) 2005-02-23 2008-01-08 Micron Technology, Inc. SnSe-based limited reprogrammable cell
US8022382B2 (en) * 2005-03-11 2011-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory devices with reduced programming current
US7709289B2 (en) 2005-04-22 2010-05-04 Micron Technology, Inc. Memory elements having patterned electrodes and method of forming the same
US7427770B2 (en) * 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
JP2006310662A (ja) * 2005-04-28 2006-11-09 Toshiba Corp 不揮発性半導体メモリ装置
US7408240B2 (en) * 2005-05-02 2008-08-05 Infineon Technologies Ag Memory device
US7269079B2 (en) * 2005-05-16 2007-09-11 Micron Technology, Inc. Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory
DE602006004729D1 (de) * 2005-05-19 2009-02-26 Imec Inter Uni Micro Electr Verfahren zum regeln des zuerst schmelzenden bereihtungen
US8237140B2 (en) * 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7598512B2 (en) * 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7696503B2 (en) * 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7514367B2 (en) * 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7514288B2 (en) * 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7367119B2 (en) * 2005-06-24 2008-05-06 Nanochip, Inc. Method for forming a reinforced tip for a probe storage device
US7233520B2 (en) * 2005-07-08 2007-06-19 Micron Technology, Inc. Process for erasing chalcogenide variable resistance memory bits
US7309630B2 (en) * 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
CN100379047C (zh) * 2005-07-28 2008-04-02 复旦大学 一种纳米相变存储器单元的制备方法
KR100687747B1 (ko) * 2005-07-29 2007-02-27 한국전자통신연구원 상변화 메모리소자 및 그 제조방법
US7274034B2 (en) * 2005-08-01 2007-09-25 Micron Technology, Inc. Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication
US7332735B2 (en) * 2005-08-02 2008-02-19 Micron Technology, Inc. Phase change memory cell and method of formation
US7317567B2 (en) * 2005-08-02 2008-01-08 Micron Technology, Inc. Method and apparatus for providing color changing thin film material
US20070037316A1 (en) * 2005-08-09 2007-02-15 Micron Technology, Inc. Memory cell contact using spacers
US7579615B2 (en) 2005-08-09 2009-08-25 Micron Technology, Inc. Access transistor for memory device
CN100382330C (zh) * 2005-08-11 2008-04-16 上海交通大学 可实现多位存储的单元结构
US7304368B2 (en) * 2005-08-11 2007-12-04 Micron Technology, Inc. Chalcogenide-based electrokinetic memory element and method of forming the same
US7251154B2 (en) * 2005-08-15 2007-07-31 Micron Technology, Inc. Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance
US7277313B2 (en) * 2005-08-31 2007-10-02 Micron Technology, Inc. Resistance variable memory element with threshold device and method of forming the same
EP1764847B1 (de) * 2005-09-14 2008-12-24 STMicroelectronics S.r.l. Ringförmiger Heizer für eine Phasenübergangsspeichervorrichtung
US7615770B2 (en) * 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) * 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7397060B2 (en) * 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) * 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7786460B2 (en) * 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) * 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7449710B2 (en) * 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
CN100524878C (zh) * 2005-11-21 2009-08-05 旺宏电子股份有限公司 具有空气绝热单元的可编程电阻材料存储阵列
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7479649B2 (en) * 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7829876B2 (en) * 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7521364B2 (en) 2005-12-02 2009-04-21 Macronix Internation Co., Ltd. Surface topology improvement method for plug surface areas
US7605079B2 (en) * 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
FR2895531B1 (fr) * 2005-12-23 2008-05-09 Commissariat Energie Atomique Procede ameliore de realisation de cellules memoires de type pmc
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
KR100660287B1 (ko) * 2005-12-29 2006-12-20 동부일렉트로닉스 주식회사 상변화 메모리 및 그 제조 방법
US8062833B2 (en) * 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US20070158632A1 (en) * 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7741636B2 (en) * 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7595218B2 (en) * 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) * 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) * 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7432206B2 (en) * 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) * 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) * 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US8013711B2 (en) * 2006-03-09 2011-09-06 Panasonic Corporation Variable resistance element, semiconductor device, and method for manufacturing variable resistance element
US7910907B2 (en) * 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US7646006B2 (en) * 2006-03-30 2010-01-12 International Business Machines Corporation Three-terminal cascade switch for controlling static power consumption in integrated circuits
US7554144B2 (en) 2006-04-17 2009-06-30 Macronix International Co., Ltd. Memory device and manufacturing method
KR100717286B1 (ko) * 2006-04-21 2007-05-15 삼성전자주식회사 상변화 물질층의 형성 방법과, 그 방법을 이용한 상변화기억 소자의 형성 방법 및 상변화 기억 소자
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US8129706B2 (en) * 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) * 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US20070267618A1 (en) * 2006-05-17 2007-11-22 Shoaib Zaidi Memory device
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7732800B2 (en) * 2006-05-30 2010-06-08 Macronix International Co., Ltd. Resistor random access memory cell with L-shaped electrode
US7820997B2 (en) * 2006-05-30 2010-10-26 Macronix International Co., Ltd. Resistor random access memory cell with reduced active area and reduced contact areas
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7750333B2 (en) * 2006-06-28 2010-07-06 Intel Corporation Bit-erasing architecture for seek-scan probe (SSP) memory storage
US7785920B2 (en) * 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
KR100791477B1 (ko) * 2006-08-08 2008-01-03 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법, 이를 포함하는상변화 메모리 장치 및 그 제조 방법
US7800092B2 (en) * 2006-08-15 2010-09-21 Micron Technology, Inc. Phase change memory elements using energy conversion layers, memory arrays and systems including same, and methods of making and using
US7442603B2 (en) * 2006-08-16 2008-10-28 Macronix International Co., Ltd. Self-aligned structure and method for confining a melting point in a resistor random access memory
US7560723B2 (en) * 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US7772581B2 (en) * 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7510929B2 (en) * 2006-10-18 2009-03-31 Macronix International Co., Ltd. Method for making memory cell device
US7863655B2 (en) * 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US7388771B2 (en) 2006-10-24 2008-06-17 Macronix International Co., Ltd. Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
US20080094885A1 (en) * 2006-10-24 2008-04-24 Macronix International Co., Ltd. Bistable Resistance Random Access Memory Structures with Multiple Memory Layers and Multilevel Memory States
US7527985B2 (en) * 2006-10-24 2009-05-05 Macronix International Co., Ltd. Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
US8067762B2 (en) 2006-11-16 2011-11-29 Macronix International Co., Ltd. Resistance random access memory structure for enhanced retention
US7767994B2 (en) * 2006-12-05 2010-08-03 Electronics And Telecommunications Research Institute Phase-change random access memory device and method of manufacturing the same
US7476587B2 (en) * 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7682868B2 (en) 2006-12-06 2010-03-23 Macronix International Co., Ltd. Method for making a keyhole opening during the manufacture of a memory cell
US20080137400A1 (en) * 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7473576B2 (en) * 2006-12-06 2009-01-06 Macronix International Co., Ltd. Method for making a self-converged void and bottom electrode for memory cell
US7697316B2 (en) * 2006-12-07 2010-04-13 Macronix International Co., Ltd. Multi-level cell resistance random access memory with metal oxides
KR100889743B1 (ko) * 2006-12-07 2009-03-24 한국전자통신연구원 상변화 메모리 소자 및 그 제조 방법
US7903447B2 (en) * 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US8344347B2 (en) * 2006-12-15 2013-01-01 Macronix International Co., Ltd. Multi-layer electrode structure
US7718989B2 (en) * 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7515461B2 (en) * 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) * 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7433226B2 (en) 2007-01-09 2008-10-07 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on multiple programmable resistive memory cell
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
KR100851548B1 (ko) * 2007-01-23 2008-08-11 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
US7663135B2 (en) 2007-01-31 2010-02-16 Macronix International Co., Ltd. Memory cell having a side electrode contact
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7619311B2 (en) * 2007-02-02 2009-11-17 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7701759B2 (en) * 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7483292B2 (en) * 2007-02-07 2009-01-27 Macronix International Co., Ltd. Memory cell with separate read and program paths
US7463512B2 (en) * 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) * 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US7884343B2 (en) * 2007-02-14 2011-02-08 Macronix International Co., Ltd. Phase change memory cell with filled sidewall memory element and method for fabricating the same
US7619237B2 (en) * 2007-02-21 2009-11-17 Macronix International Co., Ltd. Programmable resistive memory cell with self-forming gap
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US7956344B2 (en) * 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US8610098B2 (en) 2007-04-06 2013-12-17 Macronix International Co., Ltd. Phase change memory bridge cell with diode isolation device
US7569844B2 (en) * 2007-04-17 2009-08-04 Macronix International Co., Ltd. Memory cell sidewall contacting side electrode
US7755076B2 (en) 2007-04-17 2010-07-13 Macronix International Co., Ltd. 4F2 self align side wall active phase change memory
US7483316B2 (en) * 2007-04-24 2009-01-27 Macronix International Co., Ltd. Method and apparatus for refreshing programmable resistive memory
KR100883412B1 (ko) * 2007-05-09 2009-02-11 삼성전자주식회사 자기 정렬된 전극을 갖는 상전이 메모리소자의 제조방법,관련된 소자 및 전자시스템
US7888719B2 (en) * 2007-05-23 2011-02-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memory structures
US8410607B2 (en) * 2007-06-15 2013-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memory structures
KR100911473B1 (ko) * 2007-06-18 2009-08-11 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법, 이를 포함하는상변화 메모리 장치 및 그 제조 방법
US7663134B2 (en) * 2007-07-10 2010-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array with a selector connected to multiple resistive cells
US8513637B2 (en) 2007-07-13 2013-08-20 Macronix International Co., Ltd. 4F2 self align fin bottom electrodes FET drive phase change memory
TWI402980B (zh) * 2007-07-20 2013-07-21 Macronix Int Co Ltd 具有緩衝層之電阻式記憶結構
US7884342B2 (en) * 2007-07-31 2011-02-08 Macronix International Co., Ltd. Phase change memory bridge cell
US7729161B2 (en) * 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US9018615B2 (en) 2007-08-03 2015-04-28 Macronix International Co., Ltd. Resistor random access memory structure having a defined small area of electrical contact
US8178386B2 (en) 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US7642125B2 (en) * 2007-09-14 2010-01-05 Macronix International Co., Ltd. Phase change memory cell in via array with self-aligned, self-converged bottom electrode and method for manufacturing
US7893420B2 (en) * 2007-09-20 2011-02-22 Taiwan Seminconductor Manufacturing Company, Ltd. Phase change memory with various grain sizes
US7551473B2 (en) * 2007-10-12 2009-06-23 Macronix International Co., Ltd. Programmable resistive memory with diode structure
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US7804083B2 (en) * 2007-11-14 2010-09-28 Macronix International Co., Ltd. Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
US7646631B2 (en) * 2007-12-07 2010-01-12 Macronix International Co., Ltd. Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
US7639527B2 (en) 2008-01-07 2009-12-29 Macronix International Co., Ltd. Phase change memory dynamic resistance test and manufacturing methods
US7879643B2 (en) * 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US7879645B2 (en) * 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8003971B2 (en) * 2008-03-19 2011-08-23 Qimonda Ag Integrated circuit including memory element doped with dielectric material
US8084842B2 (en) 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
US8558213B2 (en) * 2008-04-01 2013-10-15 Nxp B.V. Vertical phase change memory cell
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7977667B2 (en) * 2008-04-11 2011-07-12 Sandisk 3D Llc Memory cell that includes a carbon nano-tube reversible resistance-switching element and methods of forming the same
US8467224B2 (en) * 2008-04-11 2013-06-18 Sandisk 3D Llc Damascene integration methods for graphitic films in three-dimensional memories and memories formed therefrom
US7791057B2 (en) * 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8133793B2 (en) * 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8415651B2 (en) * 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8742387B2 (en) * 2008-06-25 2014-06-03 Qimonda Ag Resistive memory devices with improved resistive changing elements
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US8569730B2 (en) * 2008-07-08 2013-10-29 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US8309407B2 (en) * 2008-07-15 2012-11-13 Sandisk 3D Llc Electronic devices including carbon-based films having sidewall liners, and methods of forming such devices
US20100012914A1 (en) * 2008-07-18 2010-01-21 Sandisk 3D Llc Carbon-based resistivity-switching materials and methods of forming the same
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US20100019215A1 (en) * 2008-07-22 2010-01-28 Macronix International Co., Ltd. Mushroom type memory cell having self-aligned bottom electrode and diode access device
US8467236B2 (en) * 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US8557685B2 (en) * 2008-08-07 2013-10-15 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7719913B2 (en) * 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US7848139B2 (en) * 2008-09-18 2010-12-07 Seagate Technology Llc Memory device structures including phase-change storage cells
IT1391864B1 (it) * 2008-09-30 2012-01-27 St Microelectronics Rousset Cella di memoria resistiva e metodo per la fabbricazione di una cella di memoria resistiva
US8324605B2 (en) * 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US8586962B2 (en) * 2008-10-06 2013-11-19 Samsung Electronics Co., Ltd. Cross point memory arrays, methods of manufacturing the same, masters for imprint processes, and methods of manufacturing masters
US7897954B2 (en) 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US8421050B2 (en) * 2008-10-30 2013-04-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US20100108976A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon-based films, and methods of forming such devices
US8835892B2 (en) * 2008-10-30 2014-09-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US8036014B2 (en) * 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8907316B2 (en) * 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8664689B2 (en) 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US7869270B2 (en) * 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8089137B2 (en) * 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US8183121B2 (en) 2009-03-31 2012-05-22 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US20100306453A1 (en) * 2009-06-02 2010-12-02 Edward Doller Method for operating a portion of an executable program in an executable non-volatile memory
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8551855B2 (en) * 2009-10-23 2013-10-08 Sandisk 3D Llc Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8481396B2 (en) * 2009-10-23 2013-07-09 Sandisk 3D Llc Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US8551850B2 (en) * 2009-12-07 2013-10-08 Sandisk 3D Llc Methods of forming a reversible resistance-switching metal-insulator-metal structure
US8389375B2 (en) * 2010-02-11 2013-03-05 Sandisk 3D Llc Memory cell formed using a recess and methods for forming the same
US8237146B2 (en) * 2010-02-24 2012-08-07 Sandisk 3D Llc Memory cell with silicon-containing carbon switching layer and methods for forming the same
US20110210306A1 (en) * 2010-02-26 2011-09-01 Yubao Li Memory cell that includes a carbon-based memory element and methods of forming the same
US8471360B2 (en) 2010-04-14 2013-06-25 Sandisk 3D Llc Memory cell with carbon switching material having a reduced cross-sectional area and methods for forming the same
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
KR101071191B1 (ko) 2010-07-06 2011-10-10 주식회사 하이닉스반도체 상변화 메모리 장치 및 그 제조방법
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8273598B2 (en) * 2011-02-03 2012-09-25 International Business Machines Corporation Method for forming a self-aligned bit line for PCRAM and self-aligned etch back process
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
KR20130087929A (ko) * 2012-01-30 2013-08-07 에스케이하이닉스 주식회사 트랜치 소자분리층을 갖는 반도체소자 및 그 제조방법
KR102117124B1 (ko) 2012-04-30 2020-05-29 엔테그리스, 아이엔씨. 유전체 물질로 중심-충전된 상 변화 합금을 포함하는 상 변화 메모리 구조체
US8841649B2 (en) 2012-08-31 2014-09-23 Micron Technology, Inc. Three dimensional memory array architecture
US8729523B2 (en) 2012-08-31 2014-05-20 Micron Technology, Inc. Three dimensional memory array architecture
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure
US10204989B2 (en) 2013-12-23 2019-02-12 Intel Corporation Method of fabricating semiconductor structures on dissimilar substrates
US9698222B2 (en) 2013-12-23 2017-07-04 Intel Corporation Method of fabricating semiconductor structures on dissimilar substrates
US9336879B2 (en) 2014-01-24 2016-05-10 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9159412B1 (en) 2014-07-15 2015-10-13 Macronix International Co., Ltd. Staggered write and verify for phase change memory
US9318531B1 (en) * 2014-10-16 2016-04-19 Intermolecular, Inc. SiC—Si3N4 nanolaminates as a semiconductor for MSM snapback selector devices
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
US10461125B2 (en) 2017-08-29 2019-10-29 Micron Technology, Inc. Three dimensional memory arrays
US11038106B1 (en) 2019-11-22 2021-06-15 International Business Machines Corporation Phase change memory cell with a metal layer
CN112635667B (zh) * 2020-12-30 2022-11-25 上海集成电路装备材料产业创新中心有限公司 一种相变存储器单元及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433342A (en) * 1981-04-06 1984-02-21 Harris Corporation Amorphous switching device with residual crystallization retardation
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5825046A (en) * 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) * 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6404665B1 (en) * 2000-09-29 2002-06-11 Intel Corporation Compositionally modified resistive electrode
US6429064B1 (en) * 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding

Also Published As

Publication number Publication date
DE10297198B4 (de) 2011-12-15
DE10297198T8 (de) 2005-07-28
KR20040044882A (ko) 2004-05-31
KR100558149B1 (ko) 2006-03-10
US6869841B2 (en) 2005-03-22
CN1610950A (zh) 2005-04-27
US20030164515A1 (en) 2003-09-04
WO2003038831A1 (en) 2003-05-08
US20030073295A1 (en) 2003-04-17
TWI222146B (en) 2004-10-11
CN100470666C (zh) 2009-03-18
US6566700B2 (en) 2003-05-20

Similar Documents

Publication Publication Date Title
DE10297198T5 (de) Kohlenstoff enthaltende Zwischenschicht für einen Phasenübergangsspeicher
DE102014108256A1 (de) Phasenänderungs-Speicherzellen
DE10297191B4 (de) Phasenwechselmaterial-Speicherbauteil und Verfahren zur Herstellung
DE69723252T2 (de) Multibiteinzelzellenspeicher mit spitz zulaufendem kontakt
DE102008016522B4 (de) Phasenwechselspeicherzelle mit Phasenwechsel-Speichermaterial mit begrenztem Widerstand, Verfahren zur Herstellung einer deratigen Speicherzelle und integrierte Schaltung mit entsprechender Speicherzelle
DE3046721C2 (de) Programmierbare Speicherzelle und Verfahren zu ihrer Herstellung
DE102005014645B4 (de) Anschlusselektrode für Phasen-Wechsel-Material, zugehöriges Phasen-Wechsel-Speicherelement sowie zugehöriges Herstellungsverfahren
DE112011101925T5 (de) Integration eines Phasenwechselspeicherprozesses mit einer Maske
DE102008041810A1 (de) Phasenwechselspeicherbauelement für eine Mehr-Bit-Speicherung
DE102007036246B4 (de) Verfahren zur Herstellung eines integrierten Schaltkreises mit einem resistiven Speicherelement, ein integrierter Schaltkreis, Verwendung in einem Verfahren zum Speichern von Informationen und ein Speichermodul
DE10128482A1 (de) Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
DE102015207969A1 (de) Integrierbarer resistiver Speicher in Backend-Metallschichten
DE112018000142T5 (de) Integration eines abgegrenzten Phasenwechselspeichers mit bei einem Schwellenwert schaltendem Material
DE102016204201A1 (de) Silicidierte Nanodrähte für Nanobrücken-Weak-Links
DE112006000612T5 (de) Nichtflüchtiges Speicherelement
DE102005001902A1 (de) Verfahren zur Herstellung einer sublithographischen Kontaktstruktur in einer Speicherzelle
DE102007017252A1 (de) Phasenwechselspeicher
DE102011101192A1 (de) Phasenwechselspeicher und herstellungsverfahren
EP1687855A1 (de) Integrierter halbleiterspeicher und verfahren zum herstellen eines integrierten halbleiterspeichers
DE102011118291A1 (de) Halbleitervorrichtung und verfahren zur herstellung
DE112010004406B4 (de) Phasenwechsel-Speichervorrichtung geeignet zum Betrieb bei hoher Temperatur und Verfahren zum Betreiben derselben
DE112021001020T5 (de) Phasenwechselspeicher mit mehrfachstapeln von pcm-materialien
DE102021122555A1 (de) Phasenänderungsspeicher (pcm) mit einem die widerstandsdrift reduzierenden liner
DE112010003917T5 (de) Einkristallines Phasenwechselmaterial
DE112021005680T5 (de) Phasenwechselspeicherzelle

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law

Ref document number: 10297198

Country of ref document: DE

Date of ref document: 20040812

Kind code of ref document: P

8125 Change of the main classification

Ipc: H01L 27115

8127 New person/name/address of the applicant

Owner name: INTEL CORPORATION, SANTA CLARA, CALIF., US

OP8 Request for examination as to paragraph 44 patent law
8125 Change of the main classification

Ipc: H01L 27/24 AFI20051017BHDE

R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120316

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee