DE19750043A1 - Novel cuff electrode and method for producing it - Google Patents

Novel cuff electrode and method for producing it

Info

Publication number
DE19750043A1
DE19750043A1 DE1997150043 DE19750043A DE19750043A1 DE 19750043 A1 DE19750043 A1 DE 19750043A1 DE 1997150043 DE1997150043 DE 1997150043 DE 19750043 A DE19750043 A DE 19750043A DE 19750043 A1 DE19750043 A1 DE 19750043A1
Authority
DE
Germany
Prior art keywords
electrodes
arrangement according
electrode
electrode arrangement
nerve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1997150043
Other languages
German (de)
Inventor
Johann W Prof Dr Bartha
Hans-Werner Prof Dr Bothe
Juergen Prof Dr Chlebek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOTHE HANS WERNER PROF DR
Original Assignee
BOTHE HANS WERNER PROF DR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOTHE HANS WERNER PROF DR filed Critical BOTHE HANS WERNER PROF DR
Priority to DE1997150043 priority Critical patent/DE19750043A1/en
Priority to PCT/DE1998/003328 priority patent/WO1999024109A2/en
Priority to AU20454/99A priority patent/AU2045499A/en
Priority to DE19881702T priority patent/DE19881702D2/en
Publication of DE19750043A1 publication Critical patent/DE19750043A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0556Cuff electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes

Abstract

The present invention relates to a configuration which comprises multiple electrodes placed on a flexible substrate and which can be used in the fields of medicine and biology. State-of-the-art electrodes are commonly made of wires introduced into the tissues or comprise metal plates inserted by hand in between silicon layers. These electrodes usually cause wounds in the nerve tissues and finally induce nerve cell death or restrain the positioning precision as well as the number of electrodes. The purpose of this invention is to provide electrode configurations with a large number of electric poles, well-defined electrode surfaces and a precise distance between the different electrodes as well as between the electrodes and the tissues. To this end, the method implies the special use and the perfecting of micro-structure and micro-system techniques on bio-compatible and flexible materials such as polyimide and silicone. This method comprises forming and encapsulating metallic electrodes and inter-connection tracks on bio-compatible materials according to the thin-film techniques. The new Cuff electrode is manufactured by joining two polymer sheets having a high E modulus on an intermediate elastomer layer having a low E modulus so as to obtain the desired final shape.

Description

Die Erfindung betrifft eine Anordnung von Elektroden entsprechend dem Oberbegriff in Anspruch 1 zur Anwendung im biologischen und medizinischen Bereich.The invention relates to an arrangement of electrodes according to the preamble in claim 1 for use in the biological and medical field.

Die heute bekannten, zur Stimulation oder zur Messung elektrischer Signale im menschlichen Körper eingesetzten Elektroden bestehen entweder aus einzelnen Drähten, die in das Gewebe eingebracht werden, oder aus manuell zwischen Silikonschichten eingebetteten, flächigen Metallplättchen (selfsizing Cuff-electrodes, Claude Verrat et al "Selective Control of Muscle Activation with a Multipolar Nerve Cuff Electrode", IEEE Transaction of Bioamedical Engineering, Vol. 40 No 7, July 93).The ones known today for stimulating or measuring electrical signals in human beings Body electrodes are either made up of individual wires attached to the tissue be introduced, or from flat, manually embedded between silicone layers Metal plates (selfsizing cuff electrodes, Claude Verrat et al "Selective Control of Muscle Activation with a Multipolar Nerve Cuff Electrode ", IEEE Transaction of Bioamedical Engineering, Vol. 40 No 7, July 93).

Die einzelnen, im Gewebe plazierten Drahtelektroden führen zu einer Verletzung des Nervengewebes, was über eine starke Vernarbung zunächst zu einer schlechteren Versorgung und letztlich zum Absterben der entsprechenden Nervenzellen führt. Dieser Nachteil wird bei Verwendung von Cuft-Elektroden, die in Silikonplättchen eingelagert sind und sich um den Nerv herumlegen, vermieden. Andererseits begrenzt die manuelle Herstellung der Cuff-Elektroden (manuelles Ausschneiden der Platinelektroden, manuelle Positionierung zwischen Silikon- Schichten) die Plazierungsgenauigkeit, die Reproduzierbarkeit der Elektrodenflächen und die Anzahl der Elektroden. Dadurch ist ihre Verwendung im medizinischen Bereich stark eingeschränkt.The individual wire electrodes placed in the tissue lead to an injury to the Nerve tissue, which leads to severe scarring initially leading to poorer care and ultimately leads to the death of the corresponding nerve cells. This disadvantage is at Use of cuft electrodes, which are embedded in silicon plates and around the nerve laying around, avoided. On the other hand, the manual production of the cuff electrodes limits (manual cutting of the platinum electrodes, manual positioning between silicone Layers) the placement accuracy, the reproducibility of the electrode surfaces and the  Number of electrodes. This makes their use in the medical field strong limited.

Eine Weiterentwicklung der o.g. manuell gefertigten Cuff-Elektroden stellt die von Grill, Creasey, Ksienski, Verrart und Mortimer vorgeschlagene Variante dar (WO 93/20887). Hier werden die Elektroden auf einer Folie aus Polymer-Material mit Hilfe der Dünnschichttechnik erzeugt. Der Vorteil ist hier, das die Elektrodenstrukturen mit wesentlich höherer Präzision erzeugt werden können als in der manuell gefertigten Variante. Damit diese Elektrode um den Nerv herum angelegt werden kann, muß sie ebenso wie die manuell hergestellte Variante zwischen zwei Elastomerplättchen (vorzugsweise Silikon) eingebettet werden, wobei bei einem Plättchen vor dem Verkleben des Stapels durch wohldefiniertes Recken eine bestimmte Zugspannung erzeugt wird. Nach Entspannen des Stapels rollt sich dieser zu einer zylindrischen Rolle auf, wobei der sich ergebende Durchmesser der Rolle von der Dicke der Plättchen, dem Elastizitätsmodul der verwendeten Materialien, sowie der zuvor eingestellten Zugspannung abhängt. Die o.g. Autoren der Veröffentlichung WO 93/20887 schlagen auch weitere Verfahren vor, die alle darauf hinauslaufen, bei den (die eingebettete Trägerfolie bedeckenden) Polymerplättchen, innen eine Zugspannung und/oder außen eine Druckspannung zu erzeugen. Diese Art der Cuff-Elektrodenherstellung wird auch in WO 96/08290 von Stieglitz und Meyer erwähnt. Alternativ schlagen Stieglitz und Meyer die Verwendung von Formgedächtnislegierungen (Shape Memory Alloy) vor. Die technische Realisierbarkeit mit Hilfe von Formgedächtnislegierungen erscheint jedoch zweifelhaft.A further development of the above manually made cuff electrodes are made by Grill, Creasey, Ksienski, Verrart and Mortimer proposed variant (WO 93/20887). Here are the Electrodes on a film made of polymer material using thin-film technology. Of the The advantage here is that the electrode structures are produced with much higher precision can be as in the manually made variant. So that this electrode is placed around the nerve can be, just like the manually made variant between two Elastomeric platelets (preferably silicone) are embedded, with a platelet in front of the Adhesion of the stack is generated by well-defined stretching a certain tensile stress. After relaxing the stack, it rolls up into a cylindrical roll, whereby the resulting diameter of the roll from the thickness of the platelets, the modulus of elasticity of the used materials, as well as the previously set tension. The above Authors of the Publication WO 93/20887 also propose other methods, all of which result in in the case of the polymer platelets (covering the embedded carrier film), a tensile stress on the inside and / or to generate a compressive stress on the outside. This type of cuff electrode manufacture will also mentioned in WO 96/08290 by Stieglitz and Meyer. Alternatively, Stieglitz and Meyer beat the use of shape memory alloys. The technical Realizability with the help of shape memory alloys, however, seems doubtful.

Bis heute ist nach unserer Kenntnis eine technische Realisierung einer Cuff-Elektrode entsprechend den genannten Beschreibungen WO 93/20887 und WO 96/08290 nicht erfolgt. Der Grund hierfür ist möglicherweise, daß für die eingebettete Polymerfolie nur Materialien (PI, PE, PTFE; . . .) mit einem verhältnismäßig hohen E-Modul in Frage kommen, für die äußeren Elastomer-Plättchen, auf Grund der Biokompatibilität jedoch nur Silikon mit seinem sehr niedrigen E-Modul in Frage kommt. Hieraus ergibt sich, daß die notwendige Dicke der gereckten Silikonplatte sehr groß sein muß, und die praktische Einsetzbarkeit der gesamten Cuff-Elektrode in Frage gestellt wird.To our knowledge, a technical implementation of a cuff electrode is still appropriate today the descriptions WO 93/20887 and WO 96/08290 are not carried out. The reason for that It is possible that only materials (PI, PE, PTFE;...) are used for the embedded polymer film a relatively high modulus of elasticity come into question for the outer elastomer platelets Due to the biocompatibility only silicone with its very low modulus of elasticity is in question is coming. It follows that the necessary thickness of the stretched silicone plate can be very large must, and the practical applicability of the entire cuff electrode is questioned.

Weiterhin ist mit bisher zur Verfügung stehenden Elektrodenanordnungen nicht gleichzeitig eine ortsspezifische und nervendurchmesserspezifische Stimulation möglich. Da ein Nerv (Hirnnerv, Rückenmarksnerv oder peripherer Nerv) aber aus vielen Tausend einzelnen Nervenfasern besteht, muß es Ziel jeder Stimulation sein, möglichst selektiv einzelne Nervenfasern eines Gesamtnerven zu reizen, ohne die Zellstruktur des Nerven zu verletzen. Einzelne Nervenfasern eines Nerven unterscheiden sich hinsichtlich ihrer Lokalisation im Nerv und hinsichtlich ihres Faserdurchmessers. Bisher war es nur möglich, selektiv zu stimulieren hinsichtlich des Faserdurchmessers oder hinsichtlich der Faserlokalisation, aber nicht gleichzeitig beide Selektionskriterien zu berücksichtigen.Furthermore, electrode arrangements that were previously available are not simultaneously one site-specific and nerve-diameter-specific stimulation possible. Since a nerve (cranial nerve, Spinal cord nerve or peripheral nerve) but consists of many thousands of individual nerve fibers,  it must be the goal of every stimulation, as selectively as possible individual nerve fibers of an entire nerve irritate without damaging the cell structure of the nerve. Individual nerve fibers of a nerve differ in their location in the nerve and in their Fiber diameter. So far, it has only been possible to selectively stimulate with regard to the Fiber diameter or fiber localization, but not both at the same time Selection criteria to be considered.

Aufgabe der Erfindung ist es, Elektrodenanordnungen mit höherer Anzahl elektrischer Pole, gut definierten Elektrodenflächen, präzisem Abstand der Elektroden untereinander sowie zum Gewebe bereitzustellen, um eine gleichzeitige orts- und diameterselektive Stimulation im µm-Bereich durchführen zu können. Eine weitere Anforderung an die Elektrode ist, daß sie in ihrer Ausführung sehr dünnwandig (<100 µm) sein sollte. Solche Elektrodenanordnungen können beispielsweise zur Stimulation von Spinalnerven oder des Sehnervs eingesetzt werden.The object of the invention is to make electrode arrangements with a higher number of electrical poles defined electrode areas, precise distance between the electrodes and the tissue to provide simultaneous location and diameter selective stimulation in the µm range to be able to perform. Another requirement of the electrode is that it be designed should be very thin-walled (<100 µm). Such electrode arrangements can for example Stimulation of spinal nerves or the optic nerve can be used.

Hierzu muß ein Polymerträger, auf dem eine Leiterzugstruktur aufgebracht wurde, zu einer "Manschette" mit einem der Nervengröße entsprechenden Durchmesser im Bereich von einigen Millimetern bis zu einigen zehntel Millimetern geformt werden. Sie muß sich um einen Nerven herumwickeln, ohne diesen zu "quetschen", aber auch fest genug sein um eine Bewegung relativ zum Nerven zu verhindern. Eine Besonderheit bezüglich der Anforderungen an diese "Manschette" ist, das der Nervenform entsprechend, diese nicht zwangsläufig kreisrund sein muß, sondern dem Profil des Nervenquerschnitts angepaßt sein sollte. Ein Verfahren hierzu wird im Folgenden beschrieben.For this purpose, a polymer carrier on which a conductor track structure has been applied must form a "Cuff" with a diameter corresponding to the nerve size in the range of a few Millimeters up to a few tenths of a millimeter. You must be nervous wrap around without "squeezing" it, but also be firm enough to move relatively to prevent nerves. A peculiarity regarding the requirements for this "cuff" is that the shape of the nerve does not necessarily have to be circular, but that Profile of the nerve cross section should be adapted. A procedure for this is as follows described.

Die Aufgabe wird durch eine spezielle Anwendung und Weiterentwicklung von Mikrostrukturtechniken und Mikrosystemtechnik auf biokompatible, flexible Materialien (Polyimide, Silikon) gelöst. Hierbei werden Metallelektroden und Leiterzüge in Dünnschichttechnik auf biokompatiblen Materialien erzeugt und verkapselt. Die Erzeugung der neuartigen Cuff- Elektrode erfolgt durch Verbinden von zwei Polymerfolien mit hohem E-Modul über eine Zwischenschicht bestehend aus einem Elastomer mit niedrigem E-Modul in der gewünschten Endform, entsprechend der Beschreibung in Anspruch 1.The task is accomplished through a special application and further development of Microstructure techniques and microsystem technology on biocompatible, flexible materials (Polyimide, silicone) solved. Metal electrodes and conductor tracks are made using thin-film technology produced and encapsulated on biocompatible materials. The generation of the novel cuff Electrode is made by connecting two polymer films with high modulus of elasticity via one Intermediate layer consisting of an elastomer with a low modulus of elasticity in the desired Final shape, as described in claim 1.

Vorteile der Erfindung sind:
Advantages of the invention are:

  • - Ermöglichung extrem dünnwandiger Elektroden (eine Wandstärke < 100 µm wurde schon verwirklicht!),- Enabling extremely thin-walled electrodes (a wall thickness <100 µm has already been realized!),
  • - Adaption des Elektrodenträgers auch an nicht zylindersymmetrische Gewebeformen,- adaptation of the electrode carrier to tissue shapes that are not cylindrical symmetrical,
  • - Gute Anpassung des Elektrodenaufbaus an die Materialeigenschaften geeigneter biokompatibler Werkstoffe (Polyimide, Silikon),- Good adaptation of the electrode structure to the material properties of suitable biocompatible Materials (polyimide, silicone),
  • - Gleichzeitige orts- und diameterselektive Stimulation des Nerven mit extrem präziser Plazierung der Elektrodenflächen zum Nervengewebe,- Simultaneous location- and parameter-selective stimulation of the nerve with extremely precise placement the electrode surfaces to the nerve tissue,
  • - Möglichkeit zur Fertigung in hohen Stückzahlen (Batchprozessierung) verbunden mit Kostenreduzierung.- Possibility of manufacturing in large quantities (batch processing) combined with Cost reduction.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung erläutert. Die Figuren der Zeichnung zeigen:Exemplary embodiments of the invention are explained below with reference to a drawing. The Figures of the drawing show:

Fig. 1: schematische Anordnung der Applikation eines Systems mit 8 dualselektiven Scannerelektroden um Nervenwurzeln; Fig. 1 is a schematic arrangement of the application of a system with 8 dual-selective scanning electrodes to the nerve roots;

Fig. 2a: Ausführung einer dualselektiven Scannerelektrode; FIG. 2a: executing a dual-selective scanning electrode;

Fig. 2b: Schema einer 3-polar axial/6-polar radialen Elektrode. Zur Veranschaulichung sind Trägerfolie (2) sowie Elektronik (4) nicht mit dargestellt; Fig. 2b: Scheme of a 3-polar axial / 6-polar radial electrode. For illustration purposes, carrier film ( 2 ) and electronics ( 4 ) are not shown;

Fig. 3: schematischer Verfahrensablauf zur Herstellung einer neuartigen Cuff-Elektrode. FIG. 3 shows a schematic procedure for preparation of a novel cuff electrode.

Fig. 4: perspektivisch-schematische Darstellung einer neuartigen Cuff-Elektrode. Die Elektrodenöffnungen bzw Kontaktöffnungen in der inneren Passivierungsschicht sind nicht mit dargestellt. Zur Darstellung des Schichtaufbaus sind die Schichtdicken stark überhöht! Eine höhere Windungszahl als die dargestellte ist ebenfalls möglich. Fig. 4: perspective-schematic representation of a novel cuff electrode. The electrode openings or contact openings in the inner passivation layer are not shown. To show the layer structure, the layer thicknesses are greatly exaggerated! A higher number of turns than that shown is also possible.

BeispielbeschreibungExample description

Die Scannerelektrode soll zusammen mit Ansteuer- und Auswerteelektronik als System (Fig. 1) implantiert werden, um bei Patienten mit unterbrochener Reizleitung (z. B. Querschnittsverletzung) sensible wie motorische biotechnische Verbindungen (Blasensteuerung, Steh- und Gangapparat) herzustellen. Ein Gesamtsystem besteht aus mehreren dualselektiven Elektroden (Fig. 2a, 2b), die jeweils auf einem Verband flexibler Trägerfolien (2) angeordnet sind, welche um die Nerven (3) gewickelt werden. Dadurch kann, in Verbindung mit der dezentral auf den Trägern angeordnete Elektronik (4), eine lokale Erfassung von sensorischen Signalen und eine lokale Stimulation des Gewebes erreicht werden.The scanner electrode is to be implanted together with control and evaluation electronics as a system ( FIG. 1) in order to establish sensitive and motor-related biotechnical connections (bladder control, standing and walking apparatus) in patients with interrupted stimulation conduction (e.g. cross-sectional violation). An overall system consists of several dual-selective electrodes (FIGS . 2a, 2b), which are each arranged on a bandage of flexible carrier foils ( 2 ), which are wound around the nerves ( 3 ). In this way, in connection with the electronics ( 4 ) arranged decentrally on the carriers, local detection of sensory signals and local stimulation of the tissue can be achieved.

Hierzu muß auf jeweils einen Träger eine Anordnung mehrerer, unabhängig voneinander auslesenden bzw. stimulierenden Elektroden (Fig. 2b, Beispiel für 3-polare axiale/6-polare radiale Anordnung) angeordnet werden. Dabei bleibt die 3-polare axiale Anordnung für alle Anwendungen gleich, während für höhere Ortsauflösungen die radiale Anordnung der Elektroden vervielfacht werden kann.For this purpose, an arrangement of a plurality of electrodes which read out or stimulate independently of one another must be arranged on each carrier ( FIG. 2b, example for 3-polar axial / 6-polar radial arrangement). The 3-polar axial arrangement remains the same for all applications, while the radial arrangement of the electrodes can be multiplied for higher spatial resolutions.

Die Herstellung der Elektroden (schematischer Ablauf siehe Fig. 3) wird durch Anwendung und Weiterentwicklung von Dünnschichttechniken u. a. auf organische, biokompatible Materialen (Polyimide, Silikon) vorgenommen:The electrodes are manufactured (for a schematic procedure, see Fig. 3) by applying and further developing thin-film techniques, including organic, biocompatible materials (polyimides, silicone):

Als Ausgangsträgerfolie (2a) wird ein flexibler Kunststoff (z. B. Polyimid oder Silikon) verwendet, der als Folie zur besseren Handhabung auf einem festen, ebenen Träger aufgebracht wird. Auf dieser Folie wird über additive oder subtraktive Strukturübertragung eine Metalleiterzugstruktur (2b) erzeugt (siehe z. B. S. M. Sze, VLSI Technolgy McGraw-Hill, 1988). Über dieser Metalleiterzugstruktur wird ein dünner, biokompatibler isolierender Film (eine Passivierungsschicht, 2c) aufgebracht. Die Passivierung (2c) der Metallisierung wird beispielsweise durch Aufspinnen von Flüssigsilikon vorgenommen, das nach Ablauf der Vernetzungsreaktion beispielsweise mit Hilfe von Laserablation oder Fotolithographie und Trockenätztechniken strukturiert wird, um die Elektroden (5a) sowie die Kontaktstellen (5b) zur Elektronik (4) frei zu legen.As starting carrier sheet (2 a) is a flexible plastic (eg., Polyimide or silicone) is used which is applied as a film for ease of handling on a hard, flat support. A metal conductor pattern structure ( 2 b) is produced on this film via additive or subtractive structure transfer (see, for example, BSM Sze, VLSI Technology McGraw-Hill, 1988). A thin, biocompatible insulating film (a passivation layer, 2 c) is applied over this metal conductor structure. The passivation ( 2 c) of the metallization is carried out, for example, by spinning on liquid silicone, which is structured after the crosslinking reaction, for example with the aid of laser ablation or photolithography and dry etching techniques, around the electrodes ( 5 a) and the contact points ( 5 b) to the electronics ( 4 ) to expose.

Zur Passivierung der Folienrückseite wird diese vom Träger gelöst, gewendet, erneut auf einem ebenen Träger befestigt und ebenfalls beispielsweise durch Aufspinnen von Silikon (2d in der Darstellung vor der Vernetzungsreaktion) beschichtet. Zur Formung der Ausgangsträgerfolie wird eine zweite Polyimidefolie (2f) auf das noch unvernetzte Silikon der ersten Folie aufgebracht und dieses "Sandwich" aufgerollt und in seiner endgültigen Form fixiert. Die Rückseite der zweiten Folie wurde zuvor ebenfalls beispielsweise durch Aufspinnen von Silikon (2g) passiviert. Nach dem Vernetzen der Silikonzwischenlage (2e) bleibt die "Manschette" bzw. die neuartige Cuff-Elektrode in der Form erhalten, in der sie während der Vernetzungsreaktion fixiert war. Es lassen sich also auch nichtzylindrische Querschnitte erzeugen. Andererseits ermöglicht das "weiche" Elastomer zwischen den "harten" Polyimidefolien auch das federnde Abwickeln der Elektrode, um diese am Nerv zu applizieren. Sich selbst überlassen schnappt die Elektrode wieder in seine Ausgangsform zurück.To passivate the back of the film, it is detached from the carrier, turned, attached again to a flat carrier and also coated, for example, by spinning on silicone ( 2 d in the illustration before the crosslinking reaction). To form the starting carrier film, a second polyimide film ( 2 f) is applied to the still uncrosslinked silicone of the first film and this "sandwich" is rolled up and fixed in its final form. The back of the second film was also previously passivated, for example by spinning on silicone ( 2 g). After crosslinking of the silicone intermediate layer (2 e), the "cuff" or the novel cuff electrode in the shape is maintained, in which it was fixed during the crosslinking reaction. It is therefore also possible to produce non-cylindrical cross sections. On the other hand, the "soft" elastomer between the "hard" polyimide films also enables the electrode to be springily unwound in order to apply it to the nerve. Left alone, the electrode snaps back into its original shape.

Nach Verbinden von Elektronik (4) und Trägerfolienverbund (2), beispielsweise in flip-chip- Technik, wird das gesamte Subsystem mit Ausnahme der Elektroden (5a) mit Flüssigsilikon (10) gekapselt. Die einzelnen Subsysteme werden durch ummantelte Drähte (9) verbunden.After connecting the electronics ( 4 ) and the carrier film composite ( 2 ), for example using flip-chip technology, the entire subsystem, with the exception of the electrodes ( 5 a), is encapsulated with liquid silicone ( 10 ). The individual subsystems are connected by covered wires ( 9 ).

Nach Implantation des Gesamtsystems erfolgt über ein in die Elektronik (4, 11) integriertes neuronales Netz eine Anpassung der über die Scannerelektroden applizierten Stimulationsmuster an die individuelle Situation des Patienten. Zur Stimulation werden dabei neu entwickelte multitrapezoidale Stromimpulse mit den Einstellparametern Reizform, Reizabstand, Reizfrequenz, Reizstrom und Reizrhythmus (on-off Phasen) eingesetzt.After implantation of the entire system, the stimulation pattern applied via the scanner electrodes is adapted to the individual situation of the patient via a neural network integrated in the electronics ( 4 , 11 ). Newly developed multitrapezoidal current impulses with the setting parameters stimulus form, stimulus distance, stimulus frequency, stimulus current and stimulus rhythm (on-off phases) are used for stimulation.

Claims (10)

1. Vielfachanordnung von Elektroden auf flexiblem Träger zur Nutzung im biologisch- medizinischen Bereich, dadurch gekennzeichnet, daß zur Bildung des Trägers zwei dünne Polymerfolien mit hohem E-Modul über eine dünne Zwischenschicht aus einem Elastomer mit niedrigem E-Modul verbunden sind und dieser Folienverbund eine Manschette bildet, deren Form einem beliebigen (auch nicht kreisförmigen) Nervenquerschnitt anpaßbar ist.1. Multiple arrangement of electrodes on a flexible support for use in the biological-medical field, characterized in that two thin polymer films with a high modulus of elasticity are connected via a thin intermediate layer made of an elastomer with a low modulus of elasticity to form the support and this film composite Cuff forms, the shape of which can be adapted to any (even non-circular) nerve cross-section. 2. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Elektroden auf dem flexiblen Träger durch Dünn- oder Dickschichttechniken aufgebracht und strukturiert sind.2. Electrode arrangement according to claim 1, characterized in that the electrodes on the flexible support by thin or Thick film techniques are applied and structured. 3. Elektrodenanordnung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß mehrere radial und axial um den zu stimulierenden Nerv anliegenden Elektroden auf einer gemeinsamen Trägerfolie angeordnet sind (multipolare Anordnung).3. electrode arrangement according to claim 1 and 2, characterized in that several are applied radially and axially around the nerve to be stimulated Electrodes are arranged on a common carrier film (multipolar arrangement). 4. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Elektroden durch eine aufgesponnene und subtraktiv strukturierte Polyimid- oder Siliconschicht passiviert sind.4. electrode arrangement according to claim 1, characterized in that the electrodes are structured by a spun and subtractive structure Polyimide or silicone layer are passivated. 5. Elektrodenanordnung nach Anspruch 1 und 4, dadurch gekennzeichnet, daß die Siliconpassivierung mittels Fotolithographie und Trockenätzverfahren oder Laserablation strukturiert ist.5. electrode arrangement according to claim 1 and 4, characterized in that the silicon passivation by means of photolithography and Dry etching or laser ablation is structured. 6. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Kapselung des Elektrodenträgers durch aufgesponnenes Silicon vorgenommen ist. 6. electrode arrangement according to claim 1, characterized in that the encapsulation of the electrode carrier by spun silicone is made.   7. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Elektrode durch Hybridtechniken mechanisch und elektrisch mit der Steuer- und Auswerteelektronik verbunden sind.7. electrode arrangement according to claim 1, characterized in that the electrode mechanically and electrically using hybrid techniques the control and evaluation electronics are connected. 8. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß mehrere Elektroden elektronisch zu einem System verbunden und synchronisiert ansteuerbar sind.8. electrode arrangement according to claim 1, characterized in that several electrodes are electronically connected to form a system and can be controlled synchronized. 9. Elektrodenanordnung nach Anspruch 1, gekennzeichnet durch eine Stimulation der Elektroden mit multitrapezoiden Signalen.9. electrode arrangement according to claim 1, characterized by stimulation of the electrodes with multitrapezoid signals. 10. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Stimulationssignale über neuronale Netze postoperativ adaptierbar sind.10. Electrode arrangement according to claim 1, characterized in that the stimulation signals can be adapted postoperatively via neural networks are.
DE1997150043 1997-11-12 1997-11-12 Novel cuff electrode and method for producing it Withdrawn DE19750043A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE1997150043 DE19750043A1 (en) 1997-11-12 1997-11-12 Novel cuff electrode and method for producing it
PCT/DE1998/003328 WO1999024109A2 (en) 1997-11-12 1998-11-11 Cuff electrode and method for manufacturing the same
AU20454/99A AU2045499A (en) 1997-11-12 1998-11-11 Cuff electrode and method for manufacturing the same
DE19881702T DE19881702D2 (en) 1997-11-12 1998-11-11 Cuff electrode and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1997150043 DE19750043A1 (en) 1997-11-12 1997-11-12 Novel cuff electrode and method for producing it

Publications (1)

Publication Number Publication Date
DE19750043A1 true DE19750043A1 (en) 1999-05-20

Family

ID=7848440

Family Applications (2)

Application Number Title Priority Date Filing Date
DE1997150043 Withdrawn DE19750043A1 (en) 1997-11-12 1997-11-12 Novel cuff electrode and method for producing it
DE19881702T Expired - Lifetime DE19881702D2 (en) 1997-11-12 1998-11-11 Cuff electrode and process for its manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE19881702T Expired - Lifetime DE19881702D2 (en) 1997-11-12 1998-11-11 Cuff electrode and process for its manufacture

Country Status (3)

Country Link
AU (1) AU2045499A (en)
DE (2) DE19750043A1 (en)
WO (1) WO1999024109A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442431B1 (en) * 1998-07-27 2002-08-27 Axon Engineering, Inc., Device and method for production of visual sensations by optic nerve stimulation
WO2003082402A2 (en) * 2002-03-28 2003-10-09 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US6659936B1 (en) 1999-08-04 2003-12-09 University Of Melbourne Method and apparatus for treating incontinence
WO2004011083A1 (en) * 2002-07-25 2004-02-05 The Regents Of The University Of California Reinforcement elements in a silicone electrode array
WO2007101508A1 (en) * 2006-02-21 2007-09-13 Imi Intelligent Medical Implants Ag Device with flexible multilayer system for contacting or electrostimulation of living tissue cells or nerves
WO2008013730A1 (en) * 2006-07-26 2008-01-31 Cyberonics, Inc. Multi-electrode assembly for an implantable medical device
US7672730B2 (en) 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7684866B2 (en) 2003-08-01 2010-03-23 Advanced Neuromodulation Systems, Inc. Apparatus and methods for applying neural stimulation to a patient
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US7742820B2 (en) 2004-11-12 2010-06-22 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of parkinson's disease, other movement disorders, and/or drug side effects
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US7983762B2 (en) 2004-07-15 2011-07-19 Advanced Neuromodulation Systems, Inc. Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US8065012B2 (en) 2000-07-13 2011-11-22 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US8195300B2 (en) 2000-07-13 2012-06-05 Advanced Neuromodulation Systems, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US8433414B2 (en) 2000-07-13 2013-04-30 Advanced Neuromodulation Systems, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US8718777B2 (en) 2002-11-27 2014-05-06 Advanced Neuromodulation Systems, Inc. Methods and systems for intracranial neurostimulation and/or sensing
US8929991B2 (en) 2005-10-19 2015-01-06 Advanced Neuromodulation Systems, Inc. Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits
US9427585B2 (en) 2002-11-01 2016-08-30 Advanced Neuromodulation Systems, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinsons disease and or other movement disorders

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108136B4 (en) * 2011-07-20 2018-07-19 Otto Bock Healthcare Gmbh Device with a trained for tightly enclosing a body part wall
AT512534B1 (en) 2012-04-26 2013-09-15 Univ Wien Med Nerve cuff electrode assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662884A (en) * 1984-04-25 1987-05-05 University Of Utah Research Foundation Prostheses and methods for promoting nerve regeneration
EP0286284A1 (en) * 1987-03-30 1988-10-12 Brown University Research Foundation Semipermeable nerve guidance channels
WO1991008016A1 (en) * 1989-12-06 1991-06-13 Medtronic, Inc. Nerve electrode with biological substrate
WO1991012850A1 (en) * 1990-02-22 1991-09-05 Medtronic, Inc. Steroid eluting cuff electrode for peripheral nerve stimulation
US5344438A (en) * 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5388577A (en) * 1990-06-08 1995-02-14 Boston University Electrode array microchip
DE19525570A1 (en) * 1994-07-13 1996-01-18 Fraunhofer Ges Forschung Flexible, non-conducting, artificial, implantable nerve plate
US5505201A (en) * 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341221A (en) * 1980-10-07 1982-07-27 Medtronic, Inc. Shielded recording electrode system
US5324322A (en) 1992-04-20 1994-06-28 Case Western Reserve University Thin film implantable electrode and method of manufacture
EP0585933B1 (en) * 1992-09-04 2005-12-21 Matsushita Electric Industrial Co., Ltd. Planar electrode
US5400784A (en) * 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
DE4433111A1 (en) 1994-09-16 1996-03-21 Fraunhofer Ges Forschung Cuff electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662884A (en) * 1984-04-25 1987-05-05 University Of Utah Research Foundation Prostheses and methods for promoting nerve regeneration
EP0286284A1 (en) * 1987-03-30 1988-10-12 Brown University Research Foundation Semipermeable nerve guidance channels
WO1991008016A1 (en) * 1989-12-06 1991-06-13 Medtronic, Inc. Nerve electrode with biological substrate
WO1991012850A1 (en) * 1990-02-22 1991-09-05 Medtronic, Inc. Steroid eluting cuff electrode for peripheral nerve stimulation
US5388577A (en) * 1990-06-08 1995-02-14 Boston University Electrode array microchip
US5344438A (en) * 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5505201A (en) * 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode
DE19525570A1 (en) * 1994-07-13 1996-01-18 Fraunhofer Ges Forschung Flexible, non-conducting, artificial, implantable nerve plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAPLES,Gregory G., et. al.: A Spiral Nerve Cuff Electrode for Peripheral Nerve Stimulation. In: IEEE Transactions On Biomedical Engineering, Vol.35, No.11, Nov. 1988, S.905-916 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442431B1 (en) * 1998-07-27 2002-08-27 Axon Engineering, Inc., Device and method for production of visual sensations by optic nerve stimulation
US6659936B1 (en) 1999-08-04 2003-12-09 University Of Melbourne Method and apparatus for treating incontinence
US7384390B2 (en) 1999-08-04 2008-06-10 The University Of Melbourne Method and apparatus for treating incontinence
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US8433414B2 (en) 2000-07-13 2013-04-30 Advanced Neuromodulation Systems, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US8412335B2 (en) 2000-07-13 2013-04-02 Advanced Neuromodulation Systems, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US8195300B2 (en) 2000-07-13 2012-06-05 Advanced Neuromodulation Systems, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US8073546B2 (en) 2000-07-13 2011-12-06 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US8065012B2 (en) 2000-07-13 2011-11-22 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7672730B2 (en) 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
WO2003082402A3 (en) * 2002-03-28 2005-12-08 Northstar Neuroscience Inc Electrode geometries for efficient neural stimulation
WO2003082402A2 (en) * 2002-03-28 2003-10-09 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US8126568B2 (en) 2002-03-28 2012-02-28 Advanced Neuromodulation Systems, Inc. Electrode geometries for efficient neural stimulation
WO2004011083A1 (en) * 2002-07-25 2004-02-05 The Regents Of The University Of California Reinforcement elements in a silicone electrode array
US9427585B2 (en) 2002-11-01 2016-08-30 Advanced Neuromodulation Systems, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinsons disease and or other movement disorders
US8718777B2 (en) 2002-11-27 2014-05-06 Advanced Neuromodulation Systems, Inc. Methods and systems for intracranial neurostimulation and/or sensing
US7684866B2 (en) 2003-08-01 2010-03-23 Advanced Neuromodulation Systems, Inc. Apparatus and methods for applying neural stimulation to a patient
US7983762B2 (en) 2004-07-15 2011-07-19 Advanced Neuromodulation Systems, Inc. Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US8606361B2 (en) 2004-07-15 2013-12-10 Advanced Neuromodulation Systems, Inc. Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US11786729B2 (en) 2004-07-15 2023-10-17 Advanced Neuromodulation Systems, Inc. Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US7908009B2 (en) 2004-11-12 2011-03-15 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US7917225B2 (en) 2004-11-12 2011-03-29 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of parkinson's disease, other movement disorders, and/or drug side effects
US7742820B2 (en) 2004-11-12 2010-06-22 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of parkinson's disease, other movement disorders, and/or drug side effects
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US8929991B2 (en) 2005-10-19 2015-01-06 Advanced Neuromodulation Systems, Inc. Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits
US8706241B2 (en) 2005-10-19 2014-04-22 Advanced Neuromodulation Systems, Inc. System for patent interactive neural stimulation with robotic facilitation of limb movement
WO2007101508A1 (en) * 2006-02-21 2007-09-13 Imi Intelligent Medical Implants Ag Device with flexible multilayer system for contacting or electrostimulation of living tissue cells or nerves
US8918186B2 (en) 2006-02-21 2014-12-23 Pixium Vision Sa Device with flexible multilayer system for contacting or electrostimulation of living tissue cells or nerves
AU2007222773B2 (en) * 2006-02-21 2010-07-08 Pixium Vision Sa Device with flexible multilayer system for contacting or electrostimulation of living tissue cells or nerves
US8483846B2 (en) 2006-07-26 2013-07-09 Cyberonics, Inc. Multi-electrode assembly for an implantable medical device
WO2008013730A1 (en) * 2006-07-26 2008-01-31 Cyberonics, Inc. Multi-electrode assembly for an implantable medical device

Also Published As

Publication number Publication date
WO1999024109A3 (en) 1999-08-19
WO1999024109A2 (en) 1999-05-20
DE19881702D2 (en) 2002-08-01
AU2045499A (en) 1999-05-31

Similar Documents

Publication Publication Date Title
DE19750043A1 (en) Novel cuff electrode and method for producing it
EP0928212B1 (en) Flexible artificial nerve plate
EP0843574B1 (en) Cuff electrode
DE69928234T2 (en) IMPLANTABLE MEDICAL ELECTRODE CONTACTS
EP1127552B1 (en) Ablation catheter for producing linear lesions in the heart muscle
DE60207216T2 (en) CABLE WITH ANGLE AND SPACE POSITION ADJUSTABLE BETWEEN ELECTRODES
DE69627228T2 (en) Biocompatible medical electrode lead
DE602004005066T2 (en) IMPLANTABLE MEDICAL AND MANUFACTURING PROCESS
DE69931801T2 (en) HEART ELECTRODE WITH HIGH IMPEDANCE AND LOW POLARIZATION
EP2658444B1 (en) Method for providing an efficient biosensor, as well as corresponding biosensor, substrate and insertion kit
DE102011078982B4 (en) Implantable nerve electrode and method of making an implantable nerve electrode
DE102005019968A1 (en) Biostable neuroelectrode for deriving electrical signals/electrically stimulating neuronal tissue, comprises flexible and/or rigid substrate from electric conductive/non-conductive material, and electrodes arranged in the substrate surface
EP3989800B1 (en) Electrode arrangement for measuring electric voltages
WO2002055151A1 (en) Sieve electrode which can be connected to a nerve stump
EP3541469B1 (en) Implantable electric multi-pole connection structure
DE102008048984A1 (en) Sensor for detecting electrical biopotential, particularly for use in medical apparatus, prosthesis liner, sleeve or belt, has substrate with multiple needles, where shell extends partially over main surface of substrate
EP3423148A1 (en) Implantable cuff electrode
DE10028522A1 (en) Biodegradable neuroelectrode for nerve control has electrode/carrier assembly mounted on cuff of biodegradable material
Schuettler et al. 18polar hybrid cuff electrodes for stimulation of peripheral nerves
DE112011102764T5 (en) Method of making an MRI-compatible conductive electrode body
Yu et al. A cable-tie-type parylene cuff electrode for peripheral nerve interfaces
EP2918308A1 (en) Insulation tube for an electrical lead for medical use, and method for producing such a tube
EP4186532B1 (en) Electret-based wound dressing
DE102007020377B4 (en) Tissue-sparing instrument for stimulation and / or dissipation of bioelectric signals
EP3884546B1 (en) Implantable electrical connecting device

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee