DE19819192C1 - Gas mixture analyzer determining oxygen and a further component, simultaneously, accurately, independently and compactly - Google Patents

Gas mixture analyzer determining oxygen and a further component, simultaneously, accurately, independently and compactly

Info

Publication number
DE19819192C1
DE19819192C1 DE19819192A DE19819192A DE19819192C1 DE 19819192 C1 DE19819192 C1 DE 19819192C1 DE 19819192 A DE19819192 A DE 19819192A DE 19819192 A DE19819192 A DE 19819192A DE 19819192 C1 DE19819192 C1 DE 19819192C1
Authority
DE
Germany
Prior art keywords
gas
infrared radiation
measuring cell
gas analyzer
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19819192A
Other languages
German (de)
Inventor
Ludwig Kimmig
Michael Ludwig
Peter Lindmueller
Karlheinz Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19819192A priority Critical patent/DE19819192C1/en
Application granted granted Critical
Publication of DE19819192C1 publication Critical patent/DE19819192C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3133Determining multicomponents by multiwavelength light with selection of wavelengths before the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3144Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths for oxymetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Abstract

A broad band IR source (3) passes a beam (4) through the gas cuvette (8). Radiation leaving, enters a narrow band detector (10) for the gas component of interest. An additional source, a laser diode (18) transmits narrow band infra red radiation (19) through the cuvette. This radiation is detected photoelectrically (20), to determine the oxygen content.

Description

Die Erfindung betrifft einen Gasanalysator.The invention relates to a gas analyzer.

Aus der US-A-3 898 462 ist ein nichtdispersiver Infrarot-Gas­ analysator zur Bestimmung der Konzentration mehrerer Gas­ komponenten, wie Kohlenmonoxid, Kohlendioxid, Kohlenwasser­ stoffe, Stickoxide und Wasserdampf, in einem Meßgas bekannt. Der nach dem Zweistrahl-Prinzip arbeitende bekannte Gasanaly­ sator weist eine von dem Meßgas durchströmte Meßküvette auf. Ein Infrarotstrahler erzeugt eine breitbandige Infrarot­ strahlung, die von einem Blendenrad periodisch unterbrochen wird und in die Meßküvette eingeleitet wird. Die aus der Meßküvette austretende Infrarotstrahlung fällt in mehrere hintereinanderliegende, optopneumatische Detektoren, die je­ weils mit einer der zu bestimmenden Gaskomponenten gefüllt sind.US-A-3 898 462 is a non-dispersive infrared gas analyzer for determining the concentration of several gases components such as carbon monoxide, carbon dioxide, hydrocarbon substances, nitrogen oxides and water vapor, known in a measuring gas. The well-known gas analyzer working according to the two-jet principle Sator has a measuring cell through which the measuring gas flows. An infrared emitter generates a broadband infrared radiation that is periodically interrupted by an aperture wheel and is introduced into the measuring cell. The one from the Infrared radiation emerging from the measuring cell falls into several successive, optopneumatic detectors, each because filled with one of the gas components to be determined are.

Aus der US-A-5 491 341 ist ein Laserabsorptionsspektroskop bekannt, bei dem die schmalbandige Strahlung einer Laserdiode durch eine das Meßgas enthaltende Meßküvette geleitet wird und anschließend mittels eines fotoelektrischen Detektors detektiert wird. Die Frequenz der schmalbandigen Strahlung liegt im Bereich der Absorptionslinie der in dem Meßgas zu detektierenden Gaskomponente, hier Fluorwasserstoff, wobei die Frequenz moduliert wird, um mindestens zwei Messungen an unterschiedlichen Stellen der Absorptionslinie zu erhalten.From US-A-5 491 341 is a laser absorption spectroscope known in which the narrowband radiation from a laser diode is passed through a measuring cell containing the sample gas and then using a photoelectric detector is detected. The frequency of the narrowband radiation lies in the area of the absorption line in the sample gas detecting gas component, here hydrogen fluoride, where the frequency is modulated to at least two measurements to get different positions of the absorption line.

Aus der US-A-5 572 031 ist ein im Infrarotbereich arbeitendes Laserabsorptionsspektroskop zur Messung der Sauerstoffkonzen­ tration in einem Meßgas bekannt. From US-A-5 572 031 is a working in the infrared range Laser absorption spectroscope for measuring oxygen concentrations tration in a sample gas known.  

Aus der DE-A-33 04 244 ist eine Einrichtung zur Gasanalyse bekannt, die neben einem nichtdispersiven Infrarot-Gas­ analysator einen separaten Sauerstoffsensor, dort auf ZrO2- Basis, umfaßt.From DE-A-33 04 244 a device for gas analysis is known which, in addition to a non-dispersive infrared gas analyzer, comprises a separate oxygen sensor, there based on ZrO 2 .

Der Erfindung liegt die Aufgabe zugrunde, einen Gasanalysator anzugeben, der bei möglichst geringem apparativen Aufwand eine gleichzeitige Messung von Sauerstoff und anderen Gas­ komponenten in einem Meßgas ermöglicht.The invention has for its object a gas analyzer specify the with the least possible equipment  a simultaneous measurement of oxygen and other gas Components in a sample gas allows.

Gemäß der Erfindung wird die Aufgabe durch den in Anspruch 1 angegebenen Gasanalysator gelöst. Vorteilhafte Ausbildungen des erfindungsgemäßen Gasanalysators sind in den Unter­ ansprüchen angegeben.According to the invention, the object is achieved by the in claim 1 specified gas analyzer solved. Advantageous training of the gas analyzer according to the invention are in the sub claims specified.

Bei dem erfindungsgemäßen Gasanalysator sind also ein Laser­ absorptionsspektroskop zur Bestimmung der Sauerstoffkonzen­ tration und ein nichtdispersiver Infrarot-Gasanalysator zur Bestimmung der mindestens einen weiteren Gaskomponente in einem einzigen Gerät mit einer beiden Meßsystemen gemeinsamen Meßküvette vereinigt, wodurch sich ein kompakter Aufbau des erfindungsgemäßen Gasanalysators ergibt. Dadurch, daß mit dem Laserabsorptionsspektroskop nur die Sauerstoffkonzentration gemessen wird, während die anderen Gaskomponenten mit dem nichtdispersiven Infrarot-Gasanalysator gemessen werden, braucht die Frequenz der Laserdiode nicht über einen weiten Frequenzbereich verändert werden, so daß der entsprechende apparative Aufwand gering ist.In the gas analyzer according to the invention there is therefore a laser absorption spectroscope to determine the oxygen concentration tration and a non-dispersive infrared gas analyzer Determination of the at least one further gas component in a single device with a common measuring system Measuring cell combines, resulting in a compact structure of the gas analyzer according to the invention results. The fact that with the Laser absorption spectroscope only the oxygen concentration is measured while the other gas components with the non-dispersive infrared gas analyzer can be measured, the frequency of the laser diode does not need a wide one Frequency range can be changed so that the corresponding apparatus expenditure is low.

Die Strahlungsgänge des Laserabsorptionsspektroskops und des nichtdispersiven Infrarot-Gasanalysators können weitgehend voneinander entkoppelt werden, so z. B. orthogonal zueinander ausgerichtet sein, so daß die Detektoreinrichtung des nicht­ dispersiven Infrarot-Gasanalysators nur die breitbandige Infrarotstrahlung des Infrarotstrahlers und die fotoelektri­ sche Detektoreinrichtung des Laserabsorptionsspektroskops nur die schmalbandige Infrarotstrahlung der Laserdiode empfängt. Alternativ oder ergänzend hierzu ist der fotoelektrischen Detektoreinrichtung vorzugsweise eine Signalauswerteeinrich­ tung nachgeordnet, die zur Unterdrückung von durch die breit­ bandige Infrarotstrahlung des nichtdispersiven Infrarot- Gasanalysators verursachten Signalanteilen in dem Ausgangs­ signal der fotoelektrischen Detektoreinrichtung ausgebildet ist. Ergänzend kann der fotoelektrischen Detektoreinrichtung ein schmalbandiges Infrarotfilter vorgeordnet sein.The radiation paths of the laser absorption spectroscope and the Non-dispersive infrared gas analyzers can largely are decoupled from each other, so z. B. orthogonal to each other be aligned so that the detector device of the dispersive infrared gas analyzer only the broadband Infrared radiation from the infrared heater and the photoelectric cal detector device of the laser absorption spectroscope only receives the narrowband infrared radiation from the laser diode. Alternatively or in addition to this is the photoelectric Detector device preferably a signal evaluation device subordinate to the suppression of by the broad banded infrared radiation of the non-dispersive infrared Gas analyzer caused signal components in the output signal of the photoelectric detector device is formed  is. In addition, the photoelectric detector device a narrowband infrared filter can be arranged upstream.

Die Unterdrückung der störenden Signalanteile erfolgt vor­ zugsweise dadurch, daß bei einer Modulation der breitbandigen Infrarotstrahlung des nichtdispersiven Infrarot-Gasanalysa­ tors diejenigen Signalanteile unterdrückt werden, deren Fre­ quenz der Modulationsfrequenz entspricht. Die dazu erforder­ lichen Informationen werden vorzugsweise aus dem Ausgangs­ signal der schmalbandigen Detektoreinrichtung des nicht­ dispersiven Infrarot-Gasanalysators gewonnen.The interfering signal components are suppressed before preferably in that when modulating the broadband Infrared radiation from the non-dispersive infrared gas analyzer tors those signal components are suppressed, the fre frequency corresponds to the modulation frequency. The necessary for this Lichen information is preferably from the output signal of the narrowband detector device of the dispersive infrared gas analyzer obtained.

Es ist denkbar, der schmalbandigen Detektoreinrichtung des nichtdispersiven Infrarot-Gasanalysators in entsprechender Weise eine Signalauswerteeinrichtung zur Unterdrückung von durch die Infrarotstrahlung der Laserdiode verursachten Signalanteilen nachzuordnen, jedoch ist dies im allgemeinen nicht erforderlich, da die Frequenzbereiche der schmalbandi­ gen Infrarotstrahlung der Laserdiode und der schmalbandigen Detektoreinrichtung des nichtdispersiven Infrarot-Gasanaly­ sators voneinander unterschiedlich sind.It is conceivable to use the narrow-band detector device corresponding non-dispersive infrared gas analyzer Way a signal evaluation device to suppress caused by the infrared radiation of the laser diode Subordinate signal components, however, this is in general not necessary because the frequency ranges of the narrowband against infrared radiation from the laser diode and the narrow-band Detector device of the non-dispersive infrared gas analysis sators are different from each other.

Zur weiteren Erläuterung der Erfindung wird im folgenden auf die Figuren der Zeichnung Bezug genommen, von denenTo further explain the invention, the following is based on the figures of the drawing referenced, of which

Fig. 1 ein erstes Ausführungsbeispiel und Fig. 1 shows a first embodiment and

Fig. 2 ein zweites Ausführungsbeispiel des erfindungs­ gemäßen Gasanalysators zeigen. Fig. 2 show a second embodiment of the gas analyzer according to the Invention.

Der in Fig. 1 gezeigte Gasanalysator besteht aus einem Laserabsorptionsspektroskop 1 und einem nichtdispersiven Infrarot-Gasanalysator 2.The gas analyzer shown in FIG. 1 consists of a laser absorption spectroscope 1 and a non-dispersive infrared gas analyzer 2 .

Der nichtdispersive Infrarot-Gasanalysator 2 weist einen Infrarotstrahler 3 auf, der eine breitbandige Infrarot­ strahlung 4 erzeugt, die mittels einer Einrichtung 5, hier ein von einem Motor 6 angetriebenes Blendenrad 7, moduliert wird. Die modulierte Infrarotstrahlung 4 gelangt in eine Meßküvette 8, in die ein Meßgas 9, z. B. ein Abgas oder Atem­ luft, eingeleitet wird, das Sauerstoff sowie eine weitere Gaskomponente, z. B. Kohlendioxid, Kohlenmonoxid oder Stick­ oxide, in zu bestimmenden Konzentrationen enthält. Die aus der Meßküvette 8 austretende breitbandige Infrarotstrahlung 4 fällt in eine schmalbandige Detektoreinrichtung 10 für die weitere Gaskomponente. Die Detektoreinrichtung 10 ist hier als optopneumatischer Detektor mit zwei hintereinanderliegen­ den Detektorkammern 11 und 12 ausgebildet, die jeweils mit der zu bestimmenden Gaskomponente oder einem vergleichbaren Ersatzgas gefüllt sind und miteinander über eine Leitung 13 mit einem darin angeordneten strömungs- oder druckempfind­ lichen Sensor 14 verbunden sind.The non-dispersive infrared gas analyzer 2 has an infrared radiator 3 , which generates a broadband infrared radiation 4 , which is modulated by means of a device 5 , here a diaphragm wheel 7 driven by a motor 6 . The modulated infrared radiation 4 passes into a measuring cell 8 into which a measuring gas 9 , for. B. an exhaust gas or breathing air is introduced, the oxygen and another gas component, for. B. contains carbon dioxide, carbon monoxide or nitrogen oxides in concentrations to be determined. The broadband infrared radiation 4 emerging from the measuring cell 8 falls into a narrowband detector device 10 for the further gas component. The detector device 10 is designed here as an optopneumatic detector with two successive detector chambers 11 and 12 , which are each filled with the gas component to be determined or a comparable substitute gas and are connected to one another via a line 13 with a flow or pressure-sensitive sensor 14 arranged therein .

In der Meßküvette 8, die innen strahlungsreflektierend aus­ gebildet sein kann, findet je nach Art und Konzentration der in dem Meßgas 9 enthaltenen und zu analysierenden Gaskompo­ nente eine wellenlängenabhängige Vorabsorption der breit­ bandigen Infrarotstrahlung 4 statt. Die in die Detektor­ kammern 11 und 12 fallende modulierte Infrarotstrahlung 4 bewirkt dort Druckschwankungen, deren Höhe von der Vor­ absorption der Infrarotstrahlung 4 in der Meßküvette 8 ab­ hängig ist. Während in der ersten Detektorkammer 11 die Strahlung der Mitte und der Flanken der Absorptionslinie der zu bestimmenden Gaskomponente absorbiert wird, wird in der dahinterliegenden Detektorkammer 12 im wesentlichen die Strahlung der Linienflanken absorbiert, so daß zwischen den beiden Detektorkammern 11 und 12 Druckdifferenzen entstehen, die von dem Sensor 14 erfaßt werden und in ein Ausgangssignal 15 umgesetzt werden. Das Ausgangssignal 15 wird mittels einer Aufbereitungseinrichtung 16 erfaßt und für die weitere Aus­ wertung aufbereitet.In the measuring cell 8 , which can be formed inside reflecting radiation, depending on the type and concentration of the gas component 9 to be analyzed and gas component to be analyzed, a wavelength-dependent pre-absorption of the broadband infrared radiation 4 takes place. The falling into the detector chambers 11 and 12 modulated infrared radiation 4 there causes pressure fluctuations, the level of which is dependent on the pre-absorption of the infrared radiation 4 in the measuring cell 8 . While the radiation of the center and the flanks of the absorption line of the gas component to be determined is absorbed in the first detector chamber 11, the radiation of the line flanks is essentially absorbed in the detector chamber 12 behind it, so that pressure differences arise between the two detector chambers 11 and 12 , which the sensor 14 are detected and converted into an output signal 15 . The output signal 15 is detected by a conditioning device 16 and processed for further evaluation.

Das Laserabsorptionsspektroskop 1 weist eine von einer Steuereinrichtung 17 gesteuerte Laserdiode 18 auf, deren schmalbandige Infrarotstrahlung 19 in die Meßküvette 8 ein­ geleitet wird. Die aus der Meßküvette 8 austretende schmal­ bandige Infrarotstrahlung 19 wird mittels einer fotoelektri­ schen Detektoreinrichtung 20 erfaßt, die aus einem foto­ elektrischen Detektor 21 und einer nachgeordneten Signal­ aufbereitungseinrichtung 22 besteht. Um die Strahlungsgänge der breitbandigen Infrarotstrahlung 4 und der schmalbandigen Infrarotstrahlung 9 weitgehend voneinander zu entkoppeln, sind beide Strahlungsgänge orthogonal zueinander ausgerich­ tet. Zwischen der Meßküvette 8 und dem fotoelektrischen Detektor 21 kann ein schmalbandiges Infrarotfilter 23 an­ geordnet sein.The laser absorption spectroscope 1 has a laser diode 18 controlled by a control device 17 , the narrow-band infrared radiation 19 of which is passed into the measuring cell 8 . The narrow-band infrared radiation 19 emerging from the measuring cell 8 is detected by means of a photoelectric detector device 20 , which consists of a photoelectric detector 21 and a downstream signal processing device 22 . In order to largely decouple the radiation paths of the broadband infrared radiation 4 and the narrowband infrared radiation 9 , the two radiation paths are aligned orthogonally to one another. Between the measuring cell 8 and the photoelectric detector 21 , a narrow-band infrared filter 23 can be arranged.

Die Frequenz der schmalbandigen Infrarotstrahlung 19 liegt im Bereich der Absorptionslinie des in dem Meßgas 9 zu detektie­ renden Sauerstoffs, wobei die Frequenz durch die Steuer­ einrichtung 17 moduliert wird, um mindestens zwei Messungen an unterschiedlichen Stellen der Absorptionslinie des Sauer­ stoffs zu erhalten. Daraus wird in der Signalaufbereitungs­ einrichtung 22 ein der Sauerstoffkonzentration in dem Meßgas 9 entsprechendes Ausgangssignal 24 gebildet. Da der foto­ elektrische Detektor 21 breitbandig ist, kann das Ausgangs­ signal 24 Signalanteile enthalten, die von der breitbandigen Infrarotstrahlung 4 herrühren und nicht von dem Infrarot­ filter 23 gesperrt werden. Diese Signalanteile werden in einer der fotoelektrischen Detektoreinrichtung 20 nach­ geordneten Signalauswerteeinrichtung 25 unterdrückt. Hierzu ist die Signalauswerteeinrichtung 25 als Signalfilter aus­ gebildet, das diejenigen Frequenzen sperrt, die der Modula­ tionsfrequenz der breitbandigen Infrarotstrahlung 4 entspre­ chen. Diese Frequenz kann bei bekannter Drehzahl des Blenden­ rades 7 fest vorgegeben sein oder, wie bei dem gezeigten Aus­ führungsbeispiel, aus dem, hier aufbereiteten, Ausgangssignal 15 des optopneumatischen Detektors 10 abgeleitet werden, wo­ bei die Filterung nicht nur frequenz-, sondern auch phasen­ richtig erfolgt. Das Ausgangssignal 26 der Signalauswerte­ einrichtung 25 enthält somit keine störenden und von dem nichtdispersiven Infrarot-Gasanalysator 2 verursachten Signalanteile. Da der Frequenzbereich der von der Laserdiode 18 erzeugten schmalbandigen Infrarotstrahlung 19 außerhalb des Frequenzbereichs der schmalbandigen Detektoreinrichtung 10 liegt, enthält deren Ausgangssignal 15 keine von dem Laserabsorptionsspektroskop 1 verursachten störenden Signalanteile.The frequency of the narrow-band infrared radiation 19 is in the range of the absorption line of the oxygen to be detected in the measurement gas 9 , the frequency being modulated by the control device 17 in order to obtain at least two measurements at different points on the absorption line of the oxygen. From this, an output signal 24 corresponding to the oxygen concentration in the measurement gas 9 is formed in the signal processing device 22 . Since the photoelectric detector 21 is broadband, the output signal 24 can contain signal components which originate from the broadband infrared radiation 4 and are not blocked by the infrared filter 23 . These signal components are suppressed in one of the photoelectric detector devices 20 according to ordered signal evaluation device 25 . For this purpose, the signal evaluation device 25 is formed as a signal filter that blocks those frequencies that correspond to the modulation frequency of the broadband infrared radiation 4 . This frequency can be fixed at a known speed of the aperture wheel 7 or, as in the exemplary embodiment shown, derived from the, here prepared, output signal 15 of the optopneumatic detector 10 , where not only frequency, but also phases are correct in the filtering he follows. The output signal 26 of the signal evaluation device 25 thus contains no interfering signal components caused by the non-dispersive infrared gas analyzer 2 . Since the frequency range of the narrowband infrared radiation 19 generated by the laser diode 18 lies outside the frequency range of the narrowband detector device 10 , its output signal 15 contains no interfering signal components caused by the laser absorption spectroscope 1 .

Das in Fig. 2 gezeigte Ausführungsbeispiel des erfindungs­ gemäßen Gasanalysators unterscheidet sich von dem Beispiel nach Fig. 1 dadurch, daß die Meßküvette aus zwei im Strah­ lengang der breitbandigen Infrarotstrahlung 4 hintereinander­ liegenden Teilküvetten 30 und 31 besteht, zwischen denen ein erster optopneumatischer Detektor 32 zur Detektion einer ersten, weiteren Gaskomponente, z. B. Kohlenmonoxid oder Kohlendioxid, angeordnet ist. Hinter der Teilküvette 31 ist ein zweiter optopneumatischer Detektor 33 zur Detektion einer zweiten, weiteren Gaskomponente, z. B. Stickoxide, angeord­ net.The embodiment of the gas analyzer according to the invention shown in FIG. 2 differs from the example according to FIG. 1 in that the measuring cell consists of two partial cells 30 and 31 lying one behind the other in the beam path of the broadband infrared radiation 4 , between which a first optopneumatic detector 32 is used Detection of a first, further gas component, e.g. B. carbon monoxide or carbon dioxide is arranged. Behind the partial cell 31 is a second optopneumatic detector 33 for detecting a second, further gas component, for. B. nitrogen oxides, angeord net.

Bei dem hier gezeigten Ausführungsbeispiel verläuft der Strahlengang der von der Laserdiode 18 erzeugten schmalbandi­ gen Infrarotstrahlung 19 parallel zu dem Strahlengang der breitbandigen Infrarotstrahlung 4, wobei die Laserdiode 18 in Strahlungsrichtung vor der ersten Teilküvette 30 und die fotoelektrische Detektoreinrichtung 20 hinter dem zweiten optopneumatischen Detektor 33 angeordnet ist. Der foto­ elektrische Detektor 21 kann dabei außerhalb des optopneuma­ tischen Detektors 33 angeordnet sein, wobei dieser ein rück­ wärtiges Fenster 34 enthält, oder er kann innerhalb einer der beiden Detektorkammern des optopneumatischen Detektors 33 angeordnet sein.In the exemplary embodiment shown here, the beam path of the narrowband infrared radiation 19 generated by the laser diode 18 runs parallel to the beam path of the broadband infrared radiation 4 , the laser diode 18 being arranged in the radiation direction in front of the first partial cell 30 and the photoelectric detector device 20 behind the second optopneumatic detector 33 is. The photoelectric detector 21 can be arranged outside the optopneumatic detector 33 , which contains a rear window 34 , or it can be arranged within one of the two detector chambers of the optopneumatic detector 33 .

Alternativ kann auch hier entsprechend dem Beispiel nach Fig. 1 der Strahlengang der schmalbandigen Infrarotstrahlung 19 orthogonal zu dem Strahlengang der breitbandigen Infrarot­ strahlung 4 ausgerichtet sein. Alternatively, the beam path of the narrow-band infrared radiation 19 can also be oriented orthogonally to the beam path of the broad-band infrared radiation 4 in accordance with the example according to FIG .

Ferner können im Strahlengang der schmalbandigen Infrarot­ strahlung 19 hier nicht gezeigte Reflexionsmittel angeordnet sein, so daß die Laserdiode 18 und der fotoelektrische Detek­ tor 21 nicht notwendigerweise auf einer Geraden einander gegenüberliegen müssen.Furthermore, reflection means, not shown here, can be arranged in the beam path of the narrow-band infrared radiation 19 , so that the laser diode 18 and the photoelectric detector 21 do not necessarily have to lie opposite one another on a straight line.

Claims (5)

1. Gasanalysator zur Bestimmung von Sauerstoff und mindestens einer weiteren Gaskomponente in einem Meßgas (9)
  • 1. mit einer mit dem Meßgas (9) füllbaren Meßküvette (8),
  • 2. mit einem Infrarotstrahler (3), der eine breitbandige Infrarotstrahlung (4) erzeugt und diese in die Meßküvette (8) einleitet,
  • 3. mit einer die aus der Meßküvette (8) austretende breit­ bandige Infrarotstrahlung (4) erfassenden schmalbandigen Detektoreinrichtung (10) für die weitere Gaskomponente,
  • 4. mit einer Laserdiode (18), die eine schmalbandige Infra­ rotstrahlung (19) erzeugt und diese in die Meßküvette (8) einleitet, und
  • 5. mit einer die aus der Meßküvette (8) austretende schmal­ bandige Infrarotstrahlung (19) erfassenden fotoelektri­ schen Detektoreinrichtung (20) für den Sauerstoff.
1. Gas analyzer for determining oxygen and at least one further gas component in a measuring gas ( 9 )
  • 1. with a measuring cell ( 8 ) which can be filled with the measuring gas ( 9 ),
  • 2. with an infrared radiator ( 3 ) which generates broadband infrared radiation ( 4 ) and introduces it into the measuring cell ( 8 ),
  • 3. with a narrow-band detector device ( 10 ) for the further gas component that detects the broad-band infrared radiation ( 4 ) emerging from the measuring cell ( 8 ),
  • 4. with a laser diode ( 18 ), which produces a narrow-band infrared radiation ( 19 ) and introduces this into the measuring cell ( 8 ), and
  • 5. with a from the measuring cell ( 8 ) emerging narrow-band infrared radiation ( 19 ) detecting photoelectric rule's detector device ( 20 ) for the oxygen.
2. Gasanalysator nach Anspruch 1, dadurch gekennzeich­ net, daß der fotoelektrischen Detektoreinrichtung (20) eine Signalauswerteeinrichtung (25) nachgeordnet ist, die zur Unterdrückung von durch die breitbandige Infrarotstrahlung (4) verursachten Signalanteilen in dem Ausgangssignal (24) der fotoelektrischen Detektoreinrichtung (20) ausgebildet ist.2. Gas analyzer according to claim 1, characterized in that the photoelectric detector device ( 20 ) is followed by a signal evaluation device ( 25 ) which suppresses signal components caused by the broadband infrared radiation ( 4 ) in the output signal ( 24 ) of the photoelectric detector device ( 20th ) is trained. 3. Gasanalysator nach Anspruch 2, dadurch gekennzeich­ net, daß eine Einrichtung (5) zur Modulation der in die Meßküvette (8) eingeleiteten breitbandigen Infrarotstrahlung (4) vorhanden ist und daß die Signalauswerteeinrichtung (25) dazu ausgebildet ist, Signalanteile mit einer der Modula­ tionsfrequenz entsprechenden Frequenz zu unterdrücken.3. Gas analyzer according to claim 2, characterized in that a device ( 5 ) for modulating the in the measuring cell ( 8 ) introduced broadband infrared radiation ( 4 ) is present and that the signal evaluation device ( 25 ) is designed to signal components with one of the modules tion frequency to suppress corresponding frequency. 4. Gasanalysator nach Anspruch 3, dadurch gekennzeich­ net, daß der Signalauswerteeinrichtung (25) das Ausgangs­ signal (15) der schmalbandigen Detektoreinrichtung (10) zu­ geführt ist und daß die Signalauswerteeinrichtung (25) die Signalanteile in Abhängigkeit von diesem Ausgangssignal (15) unterdrückt.4. Gas analyzer according to claim 3, characterized in that the signal evaluation device ( 25 ) the output signal ( 15 ) of the narrow-band detector device ( 10 ) is performed and that the signal evaluation device ( 25 ) suppresses the signal components in dependence on this output signal ( 15 ) . 5. Gasanalysator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der fotoelektrischen Detektoreinrichtung (20) ein schmalbandiges Infrarotfilter (23) vorgeordnet ist.5. Gas analyzer according to one of the preceding claims, characterized in that a narrow-band infrared filter ( 23 ) is arranged upstream of the photoelectric detector device ( 20 ).
DE19819192A 1998-04-30 1998-04-30 Gas mixture analyzer determining oxygen and a further component, simultaneously, accurately, independently and compactly Expired - Fee Related DE19819192C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19819192A DE19819192C1 (en) 1998-04-30 1998-04-30 Gas mixture analyzer determining oxygen and a further component, simultaneously, accurately, independently and compactly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19819192A DE19819192C1 (en) 1998-04-30 1998-04-30 Gas mixture analyzer determining oxygen and a further component, simultaneously, accurately, independently and compactly

Publications (1)

Publication Number Publication Date
DE19819192C1 true DE19819192C1 (en) 1999-07-29

Family

ID=7866198

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19819192A Expired - Fee Related DE19819192C1 (en) 1998-04-30 1998-04-30 Gas mixture analyzer determining oxygen and a further component, simultaneously, accurately, independently and compactly

Country Status (1)

Country Link
DE (1) DE19819192C1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814546A1 (en) * 2000-09-27 2002-03-29 Drager Medizintechnik Gmbh INFRARED OPTICAL GAS ANALYZER
DE102004044142B3 (en) * 2004-09-13 2006-06-01 Robert Bosch Gmbh Spectroscopic gas sensor
DE102007015611A1 (en) * 2007-03-30 2008-10-09 Siemens Ag Method for non-dispersive infrared gas analysis
DE102009010797A1 (en) * 2009-02-27 2010-09-09 Siemens Aktiengesellschaft Gas-conducting system e.g. gas washer, monitoring arrangement, for use in process industry, has measuring and comparison cuvettes introduced into gas-conducting system via conducting path, where gas flows through cuvettes
DE102009051131A1 (en) * 2009-10-28 2011-05-05 Siemens Aktiengesellschaft Non-dispersive infrared gas analyzer for determining concentration carbon dioxide in measuring gas, has correction device correcting measuring signal supplied by detector of analyzing part, with sensor signal of carbon dioxide sensor
CN103063591A (en) * 2012-12-26 2013-04-24 重庆川仪自动化股份有限公司 Laser analyzer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898462A (en) * 1972-12-20 1975-08-05 Kozo Ishida Infrared gas analyzer
DE3304244A1 (en) * 1983-02-08 1984-08-09 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR DETERMINING THE CARBON CONTENT IN PROCESS GAS MIXTURE METALLURGICAL PROCESSES, ESPECIALLY IN OVEN ATMOSPHERES OF HEAT TREATMENT OVENS
US5491341A (en) * 1993-04-16 1996-02-13 Bruce W. McCaul Gas spectroscopy
US5572031A (en) * 1994-11-23 1996-11-05 Sri International Pressure- and temperature-compensating oxygen sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898462A (en) * 1972-12-20 1975-08-05 Kozo Ishida Infrared gas analyzer
DE3304244A1 (en) * 1983-02-08 1984-08-09 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR DETERMINING THE CARBON CONTENT IN PROCESS GAS MIXTURE METALLURGICAL PROCESSES, ESPECIALLY IN OVEN ATMOSPHERES OF HEAT TREATMENT OVENS
US5491341A (en) * 1993-04-16 1996-02-13 Bruce W. McCaul Gas spectroscopy
US5572031A (en) * 1994-11-23 1996-11-05 Sri International Pressure- and temperature-compensating oxygen sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814546A1 (en) * 2000-09-27 2002-03-29 Drager Medizintechnik Gmbh INFRARED OPTICAL GAS ANALYZER
GB2368392A (en) * 2000-09-27 2002-05-01 Draeger Medizintech Gmbh Optical infrared gas analyser
GB2368392B (en) * 2000-09-27 2002-09-25 Draeger Medizintech Gmbh Optical infrared gas analyser
DE102004044142B3 (en) * 2004-09-13 2006-06-01 Robert Bosch Gmbh Spectroscopic gas sensor
DE102007015611A1 (en) * 2007-03-30 2008-10-09 Siemens Ag Method for non-dispersive infrared gas analysis
DE102009010797A1 (en) * 2009-02-27 2010-09-09 Siemens Aktiengesellschaft Gas-conducting system e.g. gas washer, monitoring arrangement, for use in process industry, has measuring and comparison cuvettes introduced into gas-conducting system via conducting path, where gas flows through cuvettes
DE102009010797B4 (en) * 2009-02-27 2016-04-28 Siemens Aktiengesellschaft Arrangement for monitoring a gas-carrying system for leakage
DE102009051131A1 (en) * 2009-10-28 2011-05-05 Siemens Aktiengesellschaft Non-dispersive infrared gas analyzer for determining concentration carbon dioxide in measuring gas, has correction device correcting measuring signal supplied by detector of analyzing part, with sensor signal of carbon dioxide sensor
CN103063591A (en) * 2012-12-26 2013-04-24 重庆川仪自动化股份有限公司 Laser analyzer
CN103063591B (en) * 2012-12-26 2015-07-01 重庆川仪自动化股份有限公司 Laser analyzer

Similar Documents

Publication Publication Date Title
EP0094374B1 (en) Method for the continuous measurement of the mass of aerosol particles in gaseous samples, and device for carrying out the method
DE2364775B2 (en) GAS ANALYZER
DE3137658C2 (en) Device for measuring the concentration of an IR, NIR, VIS or UV radiation absorbing gas in a gas matrix
DE69632385T2 (en) Method and device for determining the alcohol concentration in a gas mixture
DE2416997A1 (en) GAS ANALYZER
DE2508900A1 (en) DEVICE FOR DETECTING THE CHEMOLUMINESCENT REACTION
WO2006002740A1 (en) Non-dispersive infrared gas analyzer
EP1183523A1 (en) Analysis apparatus
DE2723939C2 (en) Device for respiratory gas analysis
DE19819192C1 (en) Gas mixture analyzer determining oxygen and a further component, simultaneously, accurately, independently and compactly
DE2130331C3 (en) Method and device for determining the concentrations of the components of a mixture consisting of two gases and smoke
DE19732470C2 (en) Non-dispersive infrared gas analyzer
DE19607062C2 (en) Method for determining the concentration of ethanol in a breath gas sample
DE2927156A1 (en) DEVICE FOR MEASURING THE OXYGEN CONCENTRATION
DE3116344C2 (en)
DE60122332T2 (en) NON-DISPERSIVE INFRARED MEASUREMENT OF GASES WITH AN OPTICAL FILTER
EP0087077A2 (en) Measuring device for optical gas analysis
DE3208737A1 (en) OPTICAL MULTI-BEAM GAS DETECTOR
DE102011108941B4 (en) An optical gas analyzer having means for improving selectivity in gas mixture analyzes
DE19716061C1 (en) Infra-red optical gas measuring system e.g. for measurement of alcohol in breath
DE3801187C1 (en) Method for gas analysis and gas analyser
DE4437188C2 (en) Analyzer for determining the concentration
DE10308409A1 (en) Measurement of concentration or concentration ratios of gas components, for potential use in breath analysis of a patient's digestion/metabolism, uses a structured laser beam where sound waves are detected and evaluated
EP0421291B1 (en) Arrangement for spectroscopically measuring the concentrations of more components of a gaseous mixture
DE3307133A1 (en) INFRARED RADIATION GAS ANALYSIS METHOD AND GAS ANALYZER

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20131101