DE4433845A1 - Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung - Google Patents

Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung

Info

Publication number
DE4433845A1
DE4433845A1 DE4433845A DE4433845A DE4433845A1 DE 4433845 A1 DE4433845 A1 DE 4433845A1 DE 4433845 A DE4433845 A DE 4433845A DE 4433845 A DE4433845 A DE 4433845A DE 4433845 A1 DE4433845 A1 DE 4433845A1
Authority
DE
Germany
Prior art keywords
substrate
component
circuits
components
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4433845A
Other languages
English (en)
Inventor
Peter Dr Ramm
Reinhold Dipl Phys Buchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE4433845A priority Critical patent/DE4433845A1/de
Priority to DE59509316T priority patent/DE59509316D1/de
Priority to EP95113423A priority patent/EP0703618B1/de
Priority to JP24473295A priority patent/JP3986575B2/ja
Priority to US08/532,858 priority patent/US5563084A/en
Publication of DE4433845A1 publication Critical patent/DE4433845A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06596Structural arrangements for testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/135Removal of substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/977Thinning or removal of substrate

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung. Unter dreidimensionaler Integration versteht man die vertikale Verbindung von Bauelementen, die mittels Planartechnik hergestellt wurden. Die Vorteile eines dreidimensional integrierten mikroelektronischen Systems sind u. a. die bei gleichen Designregeln erreichbaren höheren Packungsdichten und Schaltgeschwindigkeiten gegenüber zweidimensionalen Systemen. Letzteres ist zum einen bedingt durch kürzere Leitungswege zwischen den einzelnen Bauelementen oder Schaltungen, zum anderen durch die Möglichkeit der parallelen Informationsverarbeitung. Die Steigerung der Leistungsfähigkeit des Systems ist bei Realisierung einer Verbindungstechnik mit örtlich frei wählbaren höchstintegrierbaren vertikalen Kontakten optimal.
Zur Herstellung dreidimensionaler Schaltungsanordnungen mit frei wählbaren vertikalen Kontakten sind folgende Verfahren bekannt:
Y. Akasaka, Proc. IEEE 74 (1986) 1703, schlägt vor, auf eine fertig prozes­ sierte Bauelementeschicht polykristallines Silizium abzuscheiden und zu rekri­ stallisieren, so daß in der rekristallisierten Schicht weitere Bauelemente gefer­ tigt werden können. Nachteile dieser Methode sind die ausbeutereduzierende Degradation der Bauelemente in der unteren Ebene durch die hohe thermische Belastung beim Rekristallisierungsprozeß, sowie die notwendigerweise serielle Prozessierung des Gesamtsystems. Letzteres bedingt zum einen entsprechend lange Durchlaufzeiten bei der Fertigung und hat zum anderen eine Ausbeute­ minderung durch Aufsummierung der prozeßbedingten Ausfälle zur Folge. Beides erhöht die Fertigungskosten beträchtlich gegenüber einer Prozessie­ rung der einzelnen Ebenen getrennt voneinander in verschiedenen Substraten.
Aus Y. Hayashi et al., Proc. 8th Int. Workshop on Future Electron Devices, 1990, p. 85, ist es bekannt, zunächst die einzelnen Bauelementeebenen getrennt voneinander in verschiedenen Substraten herzustellen. Anschließend werden die Substrate auf wenige Mikrometer gedünnt, mit Vorder- und Rück­ seitenkontakten versehen und mittels eines Bondverfahrens vertikal verbunden. Für die Bereitstellung der Vorder- und Rückseitenkontakte sind jedoch Sonder­ prozesse notwendig sind, die in der Standard-Halbleiterfertigung (CMOS) nicht vorgesehen sind, nämlich MOS-inkompatible Materialien (z. B. Gold) und Rückseitenstrukturierung des Substrates.
Ein wesentlicher Nachteil der bisher genannten Verfahren ist dadurch bedingt, daß die in der Siliziumtechnologie zur Verfügung stehenden Geräte nur eine Bearbeitung (Prozessierung) von scheibenförmigen Substraten, den sog. Wafern, zulassen. Eine Prozessierung davon verschiedener Substrate, insbe­ sondere von einzelnen Chips, ist nur in experimentellen Versuchsanlagen mög­ lich, jedoch nicht im Rahmen einer industriellen Fertigung mit den geforderten hohen Ausbeuten.
Beim Zusammenfügen von Substraten, die eine Vielzahl von identischen Bau­ steinen, den sog. Chips, enthalten, ergibt sich die resultierende Ausbeute eines mehrlagigen Systems aus dem Produkt der Einzelausbeuten. Dies führt dazu, daß die Ausbeute eines mehrere Bauelementeebenen umfassenden Systems nach den bekannten Verfahren drastisch abnimmt. So erhält man bei einer Ausbeute einer Einzelebene von 80% bei einem Gesamtsystem aus 10 Ebe­ nen nur mehr eine resultierende Gesamtausbeute von etwa 10%, womit ein derartiges System unwirtschaftlich wird und der Einsatz dieser Technik auf wenige spezielle Einsatzfelder beschränkt wird. Die Ausbeute eines Bauele­ mentesubstrates hängt dabei auch von der Art der Schaltungen und des ver­ wendeten Herstellungsprozesses ab. So erzielt man z. B. in der Fertigung von Speicherbausteinen sehr hohe Ausbeuten, während bei Logikbausteinen, wie Mikroprozessoren, eine deutlich geringere Ausbeute erreicht wird. Insbeson­ dere wenn mehrere Arten solcher Schaltungen übereinandergestapelt werden, wird damit die Gesamtausbeute überproportional durch die Schaltungsart mit der geringsten Ausbeute bestimmt.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung anzugeben, mit dem eine deutliche Ausbeutesteigerung gegenüber bisher bekannten Verfahren erzielt wird.
Diese Aufgabe wird erfindungsgemäß mit dem Verfahren nach Anspruch 1 gelöst. Besondere Ausgestaltungen des Verfahrens sind Gegenstand der Unteransprüche.
In dem erfindungsgemäßen Verfahren werden zwei fertig prozessierte Substrate, die jeweils Schaltungsstrukturen und Metallisierungsebenen enthal­ ten, beispielsweise über eine Haftschicht miteinander verbunden. Die Haft­ schicht kann hierbei zusätzlich eine passivierende Funktion ausüben (Anspruch 7) und/oder eine Planarisierung der Oberfläche bewirken (Anspruch 8). Dabei wird das obere Substrat (zweites Substrat) vorher einem Funktionstest unter­ zogen, mit dem die intakten Chips des Substrates selektiert werden. Anschlie­ ßend wird dieses Substrat von der Rückseite her gedünnt und in einzelne Chips zerlegt. Danach werden nur selektierte, intakte Chips auf das, mit einer Haftschicht versehene, untere Substrat (erstes Substrat) justiert aufgebracht.
Das untere Substrat kann hierbei auch bereits mehrere Bauelementelagen in Form von Bauelementestapeln enthalten. Die Chips des oberen Substrates werden entweder im Rahmen des Verfahrens dem Funktionstest unterzogen (Anspruch 2) oder es wird ein bereits geprüftes Substrat mit getesteten und z. B. markierten defekten Chips bereitgestellt und eingesetzt. Auf das obere Substrat wird schließlich vor dem Dünnen und Zerteilen ein Hilfssubstrat auf­ gebracht. Statt des Dünnens des oberen Substrates bis nahe an die Bauele­ mentelagen heran kann auch im Falle eines SOI-Substrates der Substratbe­ reich unterhalb der Oxidschicht entfernt werden.
Da auf dem unteren Substrat nun einzelne Chips aufgebracht worden sind, ist keine zusammenhängende Oberfläche mehr vorhanden (Gräben zwischen den Chips), so daß bestimmte Prozeßschritte, insbesondere Photolithographiemo­ dule, nicht mehr mit hoher Ausbeute durchgeführt werden können. Deshalb wird nun vorzugsweise ein Planarisierungsschritt eingefügt (Anspruch 9).
Die Planarisierung kann mit verschiedenen Verfahren durchgeführt werden. Dabei wird zuerst eine Isolationsschicht, wie z. B. Spin-on-Glas oder ein CVD- Oxid, aufgebracht, um die Gräben aufzufüllen. Anschließend wird die Oberflä­ che eingeebnet, was durch Rückätzen, mechanischem oder chemomecha­ nischem Schleifen erfolgt.
Weitere Prozesse, die nicht auf Chipebene realisierbar sind, können nach dem Planarisierungsschritt problemlos an dem Substrat mit vorselektierten Chips durchgeführt werden.
Anschließend wird z. B. über Vialöcher (Anspruch 10), die bereits bei der Pro­ zessierung der Einzelsubstrate in die Chips eingebracht wurden und nun bis zu einer Metallisierungsebene des unteren Substrates durchgeätzt werden, die elektrische Verbindung zwischen je einer Metallisierungsebene der oberen und der unteren Schaltungsebene hergestellt. Dabei wird die Photomaske zur Strukturierung auf jeden einzelnen Chip über Justierstrukturen separat justiert, um etwaige Maßabweichungen durch das Aufbringen der einzelnen Chips aus­ zugleichen und eine hohe Justiergenauigkeit zu erreichen.
Danach kann das Substrat, das in der Bauelementeebene nur noch getestete und funktionsfähige Chips enthält, in gängigen Fertigungsanlagen weiter verar­ beitet werden.
In gleicher Weise kann nun auch eine weitere Bauelementeebene chipweise aufgebracht werden (Anspruch 3). Hierbei dient der bisher hergestellte Bau­ elementestapel mit zugehörigem Substrat als neues unteres Substrat. Dabei ist bei diesem Verfahren die Anzahl der Ebenen nicht beschränkt. Außerdem kann nicht nur eine Einzelebene, sondern auch ein bereits aus mehreren Ebenen bestehender Teilstapel chipweise aufgebracht werden.
Als Substrate sind monokristalline Siliziumsubstrate, SOI-Substrate oder Substrate verschiedener Technologiefamilien, wie z. B. III-V-Halbleiter geeig­ net.
Insgesamt werden bei diesem Verfahren nur bekannte und eingeführte Verfah­ rensschritte verwendet, so daß keine neuen Prozesse entwickelt werden müs­ sen.
Mit dem erfindungsgemäßen Verfahren werden nur intakte Chips jeweils auf die darunterliegenden Bauelementelagen aufgebracht. Damit wird in vorteilhaf­ ter Weise die Abhängigkeit der Ausbeute des Gesamtsystems von der Ausbeu­ te der einzelnen prozessierten Substrate stark verringert. Es können jeweils nur einzelne defekte Chips einer Bauelementelage ausgesondert werden, so daß nicht mehr ganze Bauelementestapel aufgrund einer einzigen defekten Lage unbrauchbar werden. Durch das erfindungsgemäße Verfahren werden somit die Ausbeute bei der Herstellung dreidimensionaler integrierter Schaltungen deutlich gesteigert und die Herstellungskosten gesenkt.
Im folgenden wird die Erfindung anhand der Zeichnungen und eines Ausfüh­ rungsbeispiels näher erläutert.
Dabei zeigen:
Fig. 1 ein erstes Bauelementesubstrat mit Schaltungsstrukturen und Metalli­ sierungsebenen (unteres Substrat),
Fig. 2 ein zweites Bauelementesubstrat mit Schaltungsstrukturen, Metallisie­ rungsebenen und Vialöchern (oberes Substrat),
Fig. 3 das zweite Bauelementesubstrat mit Haftschicht und Hilfssubstrat,
Fig. 4 das erste Bauelementesubstrat mit einer chipweise aufgebrachten zweiten Bauelementeebene nach Planarisierung der Oberfläche, und
Fig. 5 zwei vertikal verbundene Bauelementeebenen.
Ein erstes Bauelementesubstrat 1 aus z. B. monokristallinem Silizium umfaßt mehrere, nach einem definierten Schema angeordnete, üblicherweise identi­ sche Chips 2, die Schaltungsstrukturen 3, wie beispielsweise einen MOS- Transistor, und eine oder mehrere Metallisierungsebenen 4 enthalten, die typi­ scherweise aus Aluminum, einer Aluminiumlegierung oder anderen Materalien, wie Kupfer oder Wolfram, bestehen und zur elektrischen Isolation von einer Oxidschicht 5, die zu Planarisierungszwecken auch mit Bor und/oder Phos­ phor dotiert sein kann, umgeben sind. Die oberste Metallisierungsebene 4 kann dabei auch von einer Passivierungsschicht 6 aus beispielsweise Siliziumoxid und Siliziumnitrid bedeckt sein. Weiterhin sind Justagestrukturen zum genauen Zusammenfügen mehrerer Ebenen implementiert (in Fig. 1 nicht gezeigt). Un­ terhalb der Schaltungsstrukturen 3 weist das Substrat eine Dicke von z. B. 625 µm auf. Dieses Bauelementesubstrat stellt das untere Substrat des mehrlagi­ gen Systems dar (Fig. 1).
Ein zweites Bauelementesubstrat 7 umfaßt ebenfalls mehrere, nach einem definierten Schema angeordnete, üblicherweise identische Chips 8, die Schal­ tungsstrukturen 9, wie beispielsweise einen MOS-Transistor, und eine oder mehrere Metallisierungsebenen 10 enthalten. Dieses Substrat 7 ist im wesentli­ chen ähnlich aufgebaut wie das erste Bauelementesubstrat 1, die Schaltungs­ strukturen 9 sind aber in der Regel von ihrer Funktion her unterschiedlich. Desweiteren weist das zweite Bauelementesubstrat Vialöcher 11 an den Stel­ len auf, an denen später die elektrische Kontaktierung zu darunterliegenden Schaltungsstrukturen des ersten Substrates erfolgen soll. Die Vialöcher 11 sind so tief, daß sie bis unterhalb der Schicht mit Schaltungsstrukturen 9 reichen (Fig. 2).
Nach Fertigstellung des Bauelementesubstrates 7 wird die Passivierung auf der obersten Metallisierungsebene an bestimmten Meßstellen geöffnet. Danach werden die einzelnen Chips des Substrates einem Funktionstest unterzogen und die defekten Chips gekennzeichnet (z. B. mit einem Tintenstrahl). Anschlie­ ßend wird erneut eine Passivierungsschicht aufgebracht, um die offenliegenden Meßstellen wieder zu schützen.
Auf die Oberfläche des zweiten Substrates 7 wird ganzflächig eine Haftschicht 12 aus einem organischen Material, wie Polyimid oder Photolack, aufgebracht. Diese Haftschicht 12 mit einer Dicke von typischerweise 1-2 µm kann außer­ dem eine Planarisierung der Oberfläche bewirken. Auf die Haftschicht 12 wird schließlich ein Hilfssubstrat 13, wie beispielsweise ein Silizium- oder Quarz­ wafer, geklebt. Das Hilfssubstrat 13 wird als Handlingsubstrat für die weiteren Prozeßschritte verwendet und schützt die Oberfläche des Bauelementesubstra­ tes 7 bei der weiteren Bearbeitung. (Fig. 3).
Danach wird das zweite Bauelementesubstrat 7 durch Ätzen und/oder Schleifen von der Rückseite her bis an die Vialöcher 11 heran gedünnt, so daß die Dicke des Substrates 7 unterhalb der Schaltungsstrukturen 9 nur noch wenige Mikrometer, typischerweise 1-5 µm, beträgt. Dabei hängt die gewählte Restdicke auch von der Art der enthaltenen Schaltungen ab.
Nun wird das zweite Bauelementesubstrat 7 mit dem Handlingsubstrat 13 in einzelne Chips zerteilt. Dies kann dabei mit einem Ätzprozeß, durch Sägen oder mit einem Laser erfolgen. Daraufhin werden die gekennzeichneten, intak­ ten Chips auf das, mit einer Haftschicht 14 versehene, erste Bauelemente­ substrat 1 justiert aufgebracht. Die Haftschicht 14 mit einer Dicke von typi­ scherweise 1-2 µm kann dabei eine Planarisierung der Oberfläche bewirken. Anschließend werden die Handlingsubstrate 13 z. B. durch Abätzen oder Abschleifen entfernt und die freiliegende Haftschicht 12 typischerweise mit einem Sauerstoffplasma oder einem Lösungsmittel ganzflächig entfernt. Nach dem Aufkleben der Chips weist die Oberfläche des ersten Substrates nun Grä­ ben zwischen den einzelnen Chips auf, die ein sehr niedriges Aspektverhältnis besitzen. Durch einen Planarisierungsschritt, in dem die Schicht 15 abgeschie­ den wird, werden diese Gräben nun aufgefüllt und eine ebene Oberfläche erzeugt. Das erste Bauelementesubstrat 1 mit den beiden Bauelementeebenen läßt sich nun wie ein übliches Siliziumsubstrat mit Standard-Technologiegerä­ ten weiterverarbeiten (Fig. 4).
Danach wird schließlich die vertikale Verbindung 16 zwischen einer Metallisie­ rungsebene 10 der oberen Bauelementeebene (Substrat 7) und einer Metalli­ sierungsebene 4 der unteren Bauelementeebene (Substrat 1) hergestellt. Dazu werden mit einem Photolithographieschritt ein Kontaktloch zu einer Metallisie­ rungsebene 10 der oberen Bauelementeebene und die vorbereiteten Vialöcher 11 bis zu einer Metallisierungsebene 4 der unteren Bauelementeebene geöff­ net und durch Metallabscheidung und Strukturierung eine elektrische Verbin­ dung realisiert. Schließlich wird auf die Oberfläche noch eine Passivierungs­ schicht 17 abgeschieden (Fig. 5).
Die elektrische Kontaktierung kann selbstverständlich auch auf andere Weise realisiert werden, so z. B. bereits beim Aufbringen der Chips auf das untere Substrat mittels vorbereiteter Vorder- und Rückseitenkontakte (vgl. Beschrei­ bungseinleitung: Y. Hayashi et al.).

Claims (12)

1. Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung mit folgenden Verfahrensschritten:
  • - Bereitstellen eines ersten Substrates (1), das auf einer ersten Seite eine oder mehrere fertigprozessierte Bauelementeebenen (3) enthält, die nebeneinander eine Vielzahl von unabhängigen Bauelementen oder Schaltkreisen aufweisen, wobei Bauelemente oder Schaltkreise mehrerer Bauelementeebenen Bauelementstapel bilden;
  • - Bereitstellen eines zweiten Substrates (7), das auf einer zweiten Seite eine oder mehrere fertigprozessierte Bauelementeebenen (9) enthält, die nebeneinander eine Vielzahl von unabhängigen Bauelementen oder Schaltkreisen aufweisen, wobei Bauelemente oder Schaltkreise mehrerer Bauelementeebenen Bauelementstapel bilden, und die Bau­ elemente, Bauelementstapel oder Schaltkreise zur Unterscheidung funktionsfähiger von nicht funktionsfähigen Bauelementen, Bauele­ mentstapeln oder Schaltkreisen auf ihre Funktionsfähigkeit geprüft sind;
  • - Verbinden des zweiten Substrates (7) mit einem Hilfssubstrat (13) auf der zweiten Seite;
  • - Dünnen oder Entfernen des zweiten Substrates (7) auf der Seite, die der zweiten Seite gegenüberliegt;
  • - Zerteilen des Hilfssubstrates (13) mit den verbundenen Bauelemente­ ebenen zu einzelnen Chips, die jeweils funktionsfähige oder nicht funk­ tionsfähige Bauelemente, Bauelementstapel oder Schaltkreise enthal­ ten;
  • - Justiertes Aufbringen von Chips, die funktionsfähige Bauelemente Bauelementstapel oder Schaltkreise enthalten, auf das erste Substrat (1) auf der ersten Seite;
  • - Entfernen des Hilfssubstrates (13);
  • - Herstellen der elektrischen Kontakte zwischen den Bauelementen, Bauelementstapeln oder Schaltkreisen der aufgebrachten Chips und den Bauelementen, Bauelementstapeln oder Schaltkreisen des ersten Substrates, wobei dieser Verfahrensschritt bereits beim Aufbringen der Chips erfolgen kann.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Bereitstellen des zweiten Substrates folgende Verfahrensschritte umfaßt:
  • - Bereitstellen eines zweiten Substrates (7), das auf einer zweiten Seite eine oder mehrere fertigprozessierte Bauelementeebenen (9) enthält, die nebeneinander eine Vielzahl von unabhängigen Bauelementen oder Schaltkreisen aufweisen, wobei Bauelemente oder Schaltkreise mehrerer Bauelementeebenen Bauelementstapel bilden, und
  • - Funktionstest der einzelnen Bauelemente, Bauelementstapel oder Schaltkreise des zweiten Substrates zur Unterscheidung funktionsfähi­ ger von nicht funktionsfähigen Bauelementen, Bauelementstapeln oder Schaltkreisen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zum Aufbau einer dreidimensionalen integrierten Schaltung mit mehr als zwei Bauelementeebenen das Verfahren mehrmals nacheinander durchgeführt wird, wobei als erstes Substrat bei jeder wiederholten Durchführung des Verfahrens das bearbeitete erste Substrat des jeweils vorangehenden Verfahrens verwendet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß erstes und zweites Substrat jeweils genau eine Bauelementeebene enthalten.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Hilfssubstrat (13) über eine Haftschicht (12) mit dem zweiten Substrat (7) verbunden wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Chips mittels einer Haftschicht (14) auf die erste Seite des ersten Substrates (1) aufgebracht werden.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß eine Haftschicht mit passivierenden Eigenschaften verwendet wird.
8. Verfahren nach einem der Ansprüche 5 bis 7 dadurch gekennzeichnet, daß eine Haftschicht verwendet wird, die eine Planarisierung der Oberflä­ che bewirkt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Gräben, die nach dem justierten Aufbringen der einzelnen Chips zwi­ schen diesen entstehen, planarisiert werden.
10. Verfahren nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, daß das Herstellen der elektrischen Kontakte zwischen den Bauelemen­ ten, Bauelementstapeln oder Schaltkreisen der aufgebrachten Chips und den Bauelementen, Bauelementstapeln oder Schaltkreisen des ersten Substrates über Kontakt- und/oder Vialöcher (11) erfolgt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Dünnen des zweiten Substrates (7) mittels Ätzen und/oder Schleifen erfolgt.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß ein SOI-Substrat als zweites Substrat (7) verwendet wird.
DE4433845A 1994-09-22 1994-09-22 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung Withdrawn DE4433845A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE4433845A DE4433845A1 (de) 1994-09-22 1994-09-22 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung
DE59509316T DE59509316D1 (de) 1994-09-22 1995-08-26 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung
EP95113423A EP0703618B1 (de) 1994-09-22 1995-08-26 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung
JP24473295A JP3986575B2 (ja) 1994-09-22 1995-09-22 3次元集積回路の製造方法
US08/532,858 US5563084A (en) 1994-09-22 1995-09-22 Method of making a three-dimensional integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4433845A DE4433845A1 (de) 1994-09-22 1994-09-22 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung

Publications (1)

Publication Number Publication Date
DE4433845A1 true DE4433845A1 (de) 1996-03-28

Family

ID=6528903

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4433845A Withdrawn DE4433845A1 (de) 1994-09-22 1994-09-22 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung
DE59509316T Expired - Lifetime DE59509316D1 (de) 1994-09-22 1995-08-26 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59509316T Expired - Lifetime DE59509316D1 (de) 1994-09-22 1995-08-26 Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung

Country Status (4)

Country Link
US (1) US5563084A (de)
EP (1) EP0703618B1 (de)
JP (1) JP3986575B2 (de)
DE (2) DE4433845A1 (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734664A1 (fr) * 1995-05-05 1996-11-29 Fraunhofer Ges Forschung Procede pour realiser l'integration verticale de systemes de la microelectronique
WO1997019462A2 (de) * 1995-11-22 1997-05-29 Siemens Aktiengesellschaft Vertikal integriertes halbleiterbauelement und herstellungsverfahren dafür
DE19746641A1 (de) * 1997-09-19 1999-04-01 Fraunhofer Ges Forschung Verdrahtungsverfahren für Halbleiter-Bauelemente zur Verhinderung von Produktpiraterie und Produktmanipulation, durch das Verfahren hergestelltes Halbleiter-Bauelement und Verwendung des Halbleiter-Bauelements in einer Chipkarte
WO1999016131A1 (de) * 1997-09-19 1999-04-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verdrahtungsverfahren für halbleiter-bauelemente zur verhinderung von produktpiraterie und produktmanipulation, durch das verfahren hergestelltes halbleiter-bauelement und verwendung des halbleiter-bauelements in einer chipkarte
DE19750316A1 (de) * 1997-11-13 1999-05-27 Siemens Ag Siliziumfolie als Träger von Halbleiterschaltungen als Teil von Karten
DE19838439C1 (de) * 1998-08-24 2000-04-27 Fraunhofer Ges Forschung Dünnfilmphotodiode und Verfahren zur Herstellung
DE19853703A1 (de) * 1998-11-20 2000-05-25 Giesecke & Devrient Gmbh Verfahren zur Herstellung eines beidseitig prozessierten integrierten Schaltkreises
WO2000078668A1 (en) * 1999-06-22 2000-12-28 President And Fellows Of Harvard College Control of solid state dimensional features
DE19933472A1 (de) * 1999-07-20 2001-02-01 Daimler Chrysler Ag Netzwerk zur Signalverarbeitung, insbesondere zur Bilddatenverarbeitung, und Bildaufnahmesystem
EP1128433A2 (de) * 2000-02-23 2001-08-29 Giesecke & Devrient GmbH Verfahren zum Verbinden von Substraten einer vertikal integrierten Schaltungsstruktur
US6365440B1 (en) 1998-09-03 2002-04-02 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for contacting a circuit chip
DE19746642C2 (de) * 1997-10-22 2002-07-18 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Halbleiterbauelements sowie dessen Verwendung in einer Chipkarte
DE19748666C2 (de) * 1997-11-04 2002-08-29 Fraunhofer Ges Forschung Verdrahtungsverfahren für mikroelektronische Systeme zur Verhinderung von Produktpiraterie und Produktmanipulation, durch das Verfahren hergestelltes mikroelektronisches System und Verwendung des mikroelektronischen Systems in einer Chipkarte
US6444493B1 (en) 1998-12-08 2002-09-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for vertically integrating active circuit planes and vertically integrated circuit produced using said method
US6464842B1 (en) 1999-06-22 2002-10-15 President And Fellows Of Harvard College Control of solid state dimensional features
DE10153609A1 (de) * 2001-11-02 2003-05-15 Infineon Technologies Ag Verfahren zur Herstellung eines elektronischen Bauelements mit mehreren übereinander gestapelten und miteinander kontaktierten Chips
US6714418B2 (en) 2001-11-02 2004-03-30 Infineon Technologies Ag Method for producing an electronic component having a plurality of chips that are stacked one above the other and contact-connected to one another
US6783643B2 (en) 1999-06-22 2004-08-31 President And Fellows Of Harvard College Control of solid state dimensional features
DE10342980B3 (de) * 2003-09-17 2005-01-05 Disco Hi-Tec Europe Gmbh Verfahren zur Bildung von Chip-Stapeln
DE19918671B4 (de) * 1999-04-23 2006-03-02 Giesecke & Devrient Gmbh Vertikal integrierbare Schaltung und Verfahren zu ihrer Herstellung
US7118657B2 (en) 1999-06-22 2006-10-10 President And Fellows Of Harvard College Pulsed ion beam control of solid state features
US7258838B2 (en) 1999-06-22 2007-08-21 President And Fellows Of Harvard College Solid state molecular probe device
US7582490B2 (en) 1999-06-22 2009-09-01 President And Fellows Of Harvard College Controlled fabrication of gaps in electrically conducting structures
DE102012200258A1 (de) 2012-01-10 2013-07-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung eines chips

Families Citing this family (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354695A (en) 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US5665649A (en) * 1993-05-21 1997-09-09 Gardiner Communications Corporation Process for forming a semiconductor device base array and mounting semiconductor devices thereon
DE4433846C2 (de) * 1994-09-22 1999-06-02 Fraunhofer Ges Forschung Verfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur
US5851845A (en) * 1995-12-18 1998-12-22 Micron Technology, Inc. Process for packaging a semiconductor die using dicing and testing
US5817530A (en) * 1996-05-20 1998-10-06 Micron Technology, Inc. Use of conductive lines on the back side of wafers and dice for semiconductor interconnects
US8058142B2 (en) * 1996-11-04 2011-11-15 Besang Inc. Bonded semiconductor structure and method of making the same
KR100904771B1 (ko) 2003-06-24 2009-06-26 이상윤 3차원 집적회로 구조 및 제작 방법
US20050280155A1 (en) * 2004-06-21 2005-12-22 Sang-Yun Lee Semiconductor bonding and layer transfer method
US7888764B2 (en) * 2003-06-24 2011-02-15 Sang-Yun Lee Three-dimensional integrated circuit structure
US8018058B2 (en) * 2004-06-21 2011-09-13 Besang Inc. Semiconductor memory device
US5915167A (en) * 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US6551857B2 (en) 1997-04-04 2003-04-22 Elm Technology Corporation Three dimensional structure integrated circuits
US6275297B1 (en) 1998-08-19 2001-08-14 Sc Technology Method of measuring depths of structures on a semiconductor substrate
DE19849586C1 (de) * 1998-10-27 2000-05-11 Fraunhofer Ges Forschung Verfahren zum Herstellen dreidimensionaler Schaltungen
EP1171912B1 (de) 1999-05-27 2003-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur vertikalen integration von elektrischen bauelementen mittels rückseitenkontaktierung
DE19924935C1 (de) * 1999-05-31 2000-11-30 Fraunhofer Ges Forschung Verfahren zur Herstellung von dreidimensionalen Schaltungen
US6650426B1 (en) 1999-07-12 2003-11-18 Sc Technology, Inc. Endpoint determination for recess etching to a precise depth
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6500694B1 (en) 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US6563133B1 (en) 2000-08-09 2003-05-13 Ziptronix, Inc. Method of epitaxial-like wafer bonding at low temperature and bonded structure
US6674161B1 (en) * 2000-10-03 2004-01-06 Rambus Inc. Semiconductor stacked die devices
DE60035994T2 (de) 2000-10-04 2008-06-05 Qimonda Ag Verfahren zur Herstellung eines dünnen selbsttragenden Halbleitervorrichtungsfilms und einer dreidimensionalen Halbleitervorrichtung
EP1215721B1 (de) * 2000-12-13 2008-01-23 Infineon Technologies AG Verfahren zur mehrschrittigen Bearbeitung eines dünnen und unter den Bearbeitungsschritten bruchgefährdeten Halbleiter-Waferprodukts
US6748994B2 (en) 2001-04-11 2004-06-15 Avery Dennison Corporation Label applicator, method and label therefor
KR100394808B1 (ko) * 2001-07-19 2003-08-14 삼성전자주식회사 웨이퍼 레벨 적층 칩 패키지 및 그 제조 방법
DE10200399B4 (de) * 2002-01-08 2008-03-27 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Erzeugung einer dreidimensional integrierten Halbleitervorrichtung und dreidimensional integrierte Halbleitervorrichtung
TWI234253B (en) * 2002-05-31 2005-06-11 Fujitsu Ltd Semiconductor device and manufacturing method thereof
EP1367645A3 (de) * 2002-05-31 2006-12-27 Fujitsu Limited Halbleiteranordnung und ihre Herstellung
WO2004015764A2 (en) 2002-08-08 2004-02-19 Leedy Glenn J Vertical system integration
US7307003B2 (en) * 2002-12-31 2007-12-11 Massachusetts Institute Of Technology Method of forming a multi-layer semiconductor structure incorporating a processing handle member
US7064055B2 (en) * 2002-12-31 2006-06-20 Massachusetts Institute Of Technology Method of forming a multi-layer semiconductor structure having a seamless bonding interface
US20100133695A1 (en) * 2003-01-12 2010-06-03 Sang-Yun Lee Electronic circuit with embedded memory
US6770495B1 (en) * 2003-01-15 2004-08-03 Advanced Micro Devices, Inc. Method for revealing active regions in a SOI structure for DUT backside inspection
US6962835B2 (en) 2003-02-07 2005-11-08 Ziptronix, Inc. Method for room temperature metal direct bonding
US7109092B2 (en) * 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
DE10323394B4 (de) * 2003-05-20 2006-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Erzeugen einer elektrischen Kontaktierung zwischen zwei Halbleiterstücken und Verfahren zum Herstellen einer Anordnung von Halbleiterstücken
JP4819320B2 (ja) * 2003-05-28 2011-11-24 株式会社オクテック 半導体装置の製造方法
US20100190334A1 (en) * 2003-06-24 2010-07-29 Sang-Yun Lee Three-dimensional semiconductor structure and method of manufacturing the same
US8071438B2 (en) * 2003-06-24 2011-12-06 Besang Inc. Semiconductor circuit
JP2005123463A (ja) 2003-10-17 2005-05-12 Seiko Epson Corp 半導体装置及びその製造方法、半導体装置モジュール、回路基板並びに電子機器
JP4307284B2 (ja) 2004-02-17 2009-08-05 三洋電機株式会社 半導体装置の製造方法
CN101714512B (zh) * 2004-08-20 2012-10-10 佐伊科比株式会社 具有三维层叠结构的半导体器件的制造方法
DE102004056970B4 (de) * 2004-11-25 2008-07-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen einer elektrischen Kontaktierung zwischen zwei Halbleiterstücken durch ein mechanisches Element
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8367524B2 (en) * 2005-03-29 2013-02-05 Sang-Yun Lee Three-dimensional integrated circuit structure
US20110001172A1 (en) * 2005-03-29 2011-01-06 Sang-Yun Lee Three-dimensional integrated circuit structure
US20110143506A1 (en) * 2009-12-10 2011-06-16 Sang-Yun Lee Method for fabricating a semiconductor memory device
US7462552B2 (en) * 2005-05-23 2008-12-09 Ziptronix, Inc. Method of detachable direct bonding at low temperatures
US7687400B2 (en) 2005-06-14 2010-03-30 John Trezza Side stacking apparatus and method
US7838997B2 (en) 2005-06-14 2010-11-23 John Trezza Remote chip attachment
US7851348B2 (en) 2005-06-14 2010-12-14 Abhay Misra Routingless chip architecture
US20060278966A1 (en) 2005-06-14 2006-12-14 John Trezza Contact-based encapsulation
US7560813B2 (en) 2005-06-14 2009-07-14 John Trezza Chip-based thermo-stack
US7781886B2 (en) 2005-06-14 2010-08-24 John Trezza Electronic chip contact structure
US7521806B2 (en) * 2005-06-14 2009-04-21 John Trezza Chip spanning connection
US7534722B2 (en) 2005-06-14 2009-05-19 John Trezza Back-to-front via process
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US7215032B2 (en) 2005-06-14 2007-05-08 Cubic Wafer, Inc. Triaxial through-chip connection
US7786592B2 (en) 2005-06-14 2010-08-31 John Trezza Chip capacitive coupling
US7776715B2 (en) * 2005-07-26 2010-08-17 Micron Technology, Inc. Reverse construction memory cell
US7622313B2 (en) * 2005-07-29 2009-11-24 Freescale Semiconductor, Inc. Fabrication of three dimensional integrated circuit employing multiple die panels
US7485968B2 (en) 2005-08-11 2009-02-03 Ziptronix, Inc. 3D IC method and device
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7378339B2 (en) * 2006-03-30 2008-05-27 Freescale Semiconductor, Inc. Barrier for use in 3-D integration of circuits
US7687397B2 (en) 2006-06-06 2010-03-30 John Trezza Front-end processed wafer having through-chip connections
US8513789B2 (en) * 2006-10-10 2013-08-20 Tessera, Inc. Edge connect wafer level stacking with leads extending along edges
US7901989B2 (en) * 2006-10-10 2011-03-08 Tessera, Inc. Reconstituted wafer level stacking
US7829438B2 (en) * 2006-10-10 2010-11-09 Tessera, Inc. Edge connect wafer level stacking
CN101553903B (zh) * 2006-10-17 2012-08-29 丘费尔资产股份有限公司 晶片通孔形成方法
US7952195B2 (en) * 2006-12-28 2011-05-31 Tessera, Inc. Stacked packages with bridging traces
US7705613B2 (en) * 2007-01-03 2010-04-27 Abhay Misra Sensitivity capacitive sensor
US7670874B2 (en) 2007-02-16 2010-03-02 John Trezza Plated pillar package formation
US7850060B2 (en) * 2007-04-05 2010-12-14 John Trezza Heat cycle-able connection
US7748116B2 (en) * 2007-04-05 2010-07-06 John Trezza Mobile binding in an electronic connection
US7960210B2 (en) * 2007-04-23 2011-06-14 Cufer Asset Ltd. L.L.C. Ultra-thin chip packaging
US8367471B2 (en) 2007-06-15 2013-02-05 Micron Technology, Inc. Semiconductor assemblies, stacked semiconductor devices, and methods of manufacturing semiconductor assemblies and stacked semiconductor devices
EP2186134A2 (de) * 2007-07-27 2010-05-19 Tessera, Inc. Kapselung eines stapels rekonstituierter wafer mit danach aufgebrachten pad-erweiterungen
US8193092B2 (en) 2007-07-31 2012-06-05 Micron Technology, Inc. Semiconductor devices including a through-substrate conductive member with an exposed end and methods of manufacturing such semiconductor devices
WO2009020572A2 (en) 2007-08-03 2009-02-12 Tessera Technologies Hungary Kft. Stack packages using reconstituted wafers
US8043895B2 (en) * 2007-08-09 2011-10-25 Tessera, Inc. Method of fabricating stacked assembly including plurality of stacked microelectronic elements
WO2009154761A1 (en) * 2008-06-16 2009-12-23 Tessera Research Llc Stacking of wafer-level chip scale packages having edge contacts
CN102422412A (zh) * 2009-03-13 2012-04-18 德塞拉股份有限公司 具有穿过结合垫延伸的通路的堆叠式微电子组件
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8427200B2 (en) 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US8754533B2 (en) 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US9711407B2 (en) 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US8405420B2 (en) 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US8384426B2 (en) 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US8294159B2 (en) 2009-10-12 2012-10-23 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US8841777B2 (en) 2010-01-12 2014-09-23 International Business Machines Corporation Bonded structure employing metal semiconductor alloy bonding
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8513722B2 (en) 2010-03-02 2013-08-20 Micron Technology, Inc. Floating body cell structures, devices including same, and methods for forming same
US8288795B2 (en) * 2010-03-02 2012-10-16 Micron Technology, Inc. Thyristor based memory cells, devices and systems including the same and methods for forming the same
US8507966B2 (en) 2010-03-02 2013-08-13 Micron Technology, Inc. Semiconductor cells, arrays, devices and systems having a buried conductive line and methods for forming the same
US9646869B2 (en) * 2010-03-02 2017-05-09 Micron Technology, Inc. Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices
US9608119B2 (en) 2010-03-02 2017-03-28 Micron Technology, Inc. Semiconductor-metal-on-insulator structures, methods of forming such structures, and semiconductor devices including such structures
US8525342B2 (en) * 2010-04-12 2013-09-03 Qualcomm Incorporated Dual-side interconnected CMOS for stacked integrated circuits
KR101134819B1 (ko) 2010-07-02 2012-04-13 이상윤 반도체 메모리 장치의 제조 방법
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US9064881B2 (en) * 2010-11-11 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Protecting flip-chip package using pre-applied fillet
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US8598621B2 (en) 2011-02-11 2013-12-03 Micron Technology, Inc. Memory cells, memory arrays, methods of forming memory cells, and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor
US8952418B2 (en) 2011-03-01 2015-02-10 Micron Technology, Inc. Gated bipolar junction transistors
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8519431B2 (en) 2011-03-08 2013-08-27 Micron Technology, Inc. Thyristors
EP2717300B1 (de) 2011-05-24 2020-03-18 Sony Corporation Halbleiterbauelement
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US8772848B2 (en) 2011-07-26 2014-07-08 Micron Technology, Inc. Circuit structures, memory circuitry, and methods
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US9954080B2 (en) * 2012-04-09 2018-04-24 Monolithic 3D Inc. 3D integrated circuit device
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US10038073B1 (en) * 2012-04-09 2018-07-31 Monolithic 3D Inc. 3D integrated circuit device
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US9691869B2 (en) * 2012-04-09 2017-06-27 Monolithic 3D Inc. Semiconductor devices and structures
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US11935949B1 (en) 2013-03-11 2024-03-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
CN108401468A (zh) 2015-09-21 2018-08-14 莫诺利特斯3D有限公司 3d半导体器件和结构
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
US11937422B2 (en) 2015-11-07 2024-03-19 Monolithic 3D Inc. Semiconductor memory device and structure
US9852988B2 (en) 2015-12-18 2017-12-26 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
US9748106B2 (en) * 2016-01-21 2017-08-29 Micron Technology, Inc. Method for fabricating semiconductor package
RU2656030C2 (ru) * 2016-07-14 2018-05-30 Акционерное общество "Концерн радиостроения "Вега" Способ изготовления трехмерного электронного модуля
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US10331839B2 (en) * 2017-08-18 2019-06-25 Honeywell Federal Manufacturing & Technologies, Llc System and method for obfuscation of electronic circuits
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
US11056348B2 (en) 2018-04-05 2021-07-06 Invensas Bonding Technologies, Inc. Bonding surfaces for microelectronics
KR20210009426A (ko) 2018-06-13 2021-01-26 인벤사스 본딩 테크놀로지스 인코포레이티드 패드로서의 tsv
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11264357B1 (en) 2020-10-20 2022-03-01 Invensas Corporation Mixed exposure for large die

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939568A (en) * 1986-03-20 1990-07-03 Fujitsu Limited Three-dimensional integrated circuit and manufacturing method thereof
US4954875A (en) * 1986-07-17 1990-09-04 Laser Dynamics, Inc. Semiconductor wafer array with electrically conductive compliant material
US5087585A (en) * 1989-07-11 1992-02-11 Nec Corporation Method of stacking semiconductor substrates for fabrication of three-dimensional integrated circuit
US5104820A (en) * 1989-07-07 1992-04-14 Irvine Sensors Corporation Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924589A (en) * 1988-05-16 1990-05-15 Leedy Glenn J Method of making and testing an integrated circuit
JP2617798B2 (ja) * 1989-09-22 1997-06-04 三菱電機株式会社 積層型半導体装置およびその製造方法
US5208178A (en) * 1990-08-02 1993-05-04 Hitachi, Ltd. Manufacturing a semiconductor integrated circuit device having on chip logic correction
US5202754A (en) * 1991-09-13 1993-04-13 International Business Machines Corporation Three-dimensional multichip packages and methods of fabrication
US5270261A (en) * 1991-09-13 1993-12-14 International Business Machines Corporation Three dimensional multichip package methods of fabrication
US5244818A (en) * 1992-04-08 1993-09-14 Georgia Tech Research Corporation Processes for lift-off of thin film materials and for the fabrication of three dimensional integrated circuits
US5258318A (en) * 1992-05-15 1993-11-02 International Business Machines Corporation Method of forming a BiCMOS SOI wafer having thin and thick SOI regions of silicon
US5489554A (en) * 1992-07-21 1996-02-06 Hughes Aircraft Company Method of making a 3-dimensional circuit assembly having electrical contacts that extend through the IC layer
US5324687A (en) * 1992-10-16 1994-06-28 General Electric Company Method for thinning of integrated circuit chips for lightweight packaged electronic systems
DE4314913C1 (de) * 1993-05-05 1994-08-25 Siemens Ag Verfahren zur Herstellung eines Halbleiterbauelements mit einer Kontaktstrukturierung für vertikale Kontaktierung mit weiteren Halbleiterbauelementen
US5391257A (en) * 1993-12-10 1995-02-21 Rockwell International Corporation Method of transferring a thin film to an alternate substrate
GB9401770D0 (en) * 1994-01-31 1994-03-23 Philips Electronics Uk Ltd Manufacture of electronic devices comprising thin-film circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939568A (en) * 1986-03-20 1990-07-03 Fujitsu Limited Three-dimensional integrated circuit and manufacturing method thereof
US4954875A (en) * 1986-07-17 1990-09-04 Laser Dynamics, Inc. Semiconductor wafer array with electrically conductive compliant material
US5104820A (en) * 1989-07-07 1992-04-14 Irvine Sensors Corporation Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting
US5087585A (en) * 1989-07-11 1992-02-11 Nec Corporation Method of stacking semiconductor substrates for fabrication of three-dimensional integrated circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE Circuits and Devices Magazine (Sept. 1989) S. 22-30 *
Solid State Technology (Febr. 1988) S. 81-89 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734664A1 (fr) * 1995-05-05 1996-11-29 Fraunhofer Ges Forschung Procede pour realiser l'integration verticale de systemes de la microelectronique
US6313517B1 (en) 1995-11-22 2001-11-06 Siemens Aktiengesellshaft Vertically integrated semiconductor component
WO1997019462A3 (de) * 1995-11-22 1997-08-21 Siemens Ag Vertikal integriertes halbleiterbauelement und herstellungsverfahren dafür
WO1997019462A2 (de) * 1995-11-22 1997-05-29 Siemens Aktiengesellschaft Vertikal integriertes halbleiterbauelement und herstellungsverfahren dafür
DE19746641A1 (de) * 1997-09-19 1999-04-01 Fraunhofer Ges Forschung Verdrahtungsverfahren für Halbleiter-Bauelemente zur Verhinderung von Produktpiraterie und Produktmanipulation, durch das Verfahren hergestelltes Halbleiter-Bauelement und Verwendung des Halbleiter-Bauelements in einer Chipkarte
WO1999016131A1 (de) * 1997-09-19 1999-04-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verdrahtungsverfahren für halbleiter-bauelemente zur verhinderung von produktpiraterie und produktmanipulation, durch das verfahren hergestelltes halbleiter-bauelement und verwendung des halbleiter-bauelements in einer chipkarte
DE19746641B4 (de) * 1997-09-19 2006-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verdrahtungsverfahren für Halbleiter-Bauelemente zur Verhinderung von Produktpiraterie und Produktmanipulation und Verwendung des Halbleiter-Bauelements in einer Chipkarte
US6284627B1 (en) 1997-09-19 2001-09-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for wiring semi-conductor components in order to prevent product piracy and manipulation, semi-conductors component made according to this method and use of said semi-conductor component in a chip card
DE19746642C2 (de) * 1997-10-22 2002-07-18 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Halbleiterbauelements sowie dessen Verwendung in einer Chipkarte
DE19748666C2 (de) * 1997-11-04 2002-08-29 Fraunhofer Ges Forschung Verdrahtungsverfahren für mikroelektronische Systeme zur Verhinderung von Produktpiraterie und Produktmanipulation, durch das Verfahren hergestelltes mikroelektronisches System und Verwendung des mikroelektronischen Systems in einer Chipkarte
DE19750316A1 (de) * 1997-11-13 1999-05-27 Siemens Ag Siliziumfolie als Träger von Halbleiterschaltungen als Teil von Karten
DE19838439C1 (de) * 1998-08-24 2000-04-27 Fraunhofer Ges Forschung Dünnfilmphotodiode und Verfahren zur Herstellung
US6365440B1 (en) 1998-09-03 2002-04-02 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for contacting a circuit chip
DE19853703A1 (de) * 1998-11-20 2000-05-25 Giesecke & Devrient Gmbh Verfahren zur Herstellung eines beidseitig prozessierten integrierten Schaltkreises
US6583030B1 (en) 1998-11-20 2003-06-24 Giesecke & Devrient Gmbh Method for producing an integrated circuit processed on both sides
US6444493B1 (en) 1998-12-08 2002-09-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for vertically integrating active circuit planes and vertically integrated circuit produced using said method
DE19918671B4 (de) * 1999-04-23 2006-03-02 Giesecke & Devrient Gmbh Vertikal integrierbare Schaltung und Verfahren zu ihrer Herstellung
WO2000078668A1 (en) * 1999-06-22 2000-12-28 President And Fellows Of Harvard College Control of solid state dimensional features
US7258838B2 (en) 1999-06-22 2007-08-21 President And Fellows Of Harvard College Solid state molecular probe device
US6464842B1 (en) 1999-06-22 2002-10-15 President And Fellows Of Harvard College Control of solid state dimensional features
US6783643B2 (en) 1999-06-22 2004-08-31 President And Fellows Of Harvard College Control of solid state dimensional features
US7582490B2 (en) 1999-06-22 2009-09-01 President And Fellows Of Harvard College Controlled fabrication of gaps in electrically conducting structures
US7118657B2 (en) 1999-06-22 2006-10-10 President And Fellows Of Harvard College Pulsed ion beam control of solid state features
DE19933472A1 (de) * 1999-07-20 2001-02-01 Daimler Chrysler Ag Netzwerk zur Signalverarbeitung, insbesondere zur Bilddatenverarbeitung, und Bildaufnahmesystem
EP1128433A3 (de) * 2000-02-23 2004-01-21 Giesecke & Devrient GmbH Verfahren zum Verbinden von Substraten einer vertikal integrierten Schaltungsstruktur
EP1128433A2 (de) * 2000-02-23 2001-08-29 Giesecke & Devrient GmbH Verfahren zum Verbinden von Substraten einer vertikal integrierten Schaltungsstruktur
DE10153609C2 (de) * 2001-11-02 2003-10-16 Infineon Technologies Ag Verfahren zur Herstellung eines elektronischen Bauelements mit mehreren übereinander gestapelten und miteinander kontaktierten Chips
US6714418B2 (en) 2001-11-02 2004-03-30 Infineon Technologies Ag Method for producing an electronic component having a plurality of chips that are stacked one above the other and contact-connected to one another
DE10153609A1 (de) * 2001-11-02 2003-05-15 Infineon Technologies Ag Verfahren zur Herstellung eines elektronischen Bauelements mit mehreren übereinander gestapelten und miteinander kontaktierten Chips
DE10342980B3 (de) * 2003-09-17 2005-01-05 Disco Hi-Tec Europe Gmbh Verfahren zur Bildung von Chip-Stapeln
US7087502B2 (en) 2003-09-17 2006-08-08 Disco Hi-Tec Europe Gmbh Method for generating chip stacks
DE102012200258A1 (de) 2012-01-10 2013-07-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung eines chips

Also Published As

Publication number Publication date
JP3986575B2 (ja) 2007-10-03
US5563084A (en) 1996-10-08
JPH08213548A (ja) 1996-08-20
DE59509316D1 (de) 2001-07-12
EP0703618A1 (de) 1996-03-27
EP0703618B1 (de) 2001-06-06

Similar Documents

Publication Publication Date Title
DE4433845A1 (de) Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung
EP0703619B1 (de) Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung unter Erreichung hoher Systemausbeuten
EP0739540B1 (de) Verfahren zur herstellung einer dreidimensionalen schaltungsanordnung
DE19543540C1 (de) Vertikal integriertes Halbleiterbauelement mit zwei miteinander verbundenen Substraten und Herstellungsverfahren dafür
EP1171912B1 (de) Verfahren zur vertikalen integration von elektrischen bauelementen mittels rückseitenkontaktierung
DE102005033916B4 (de) Ausrichtung eines MTJ-Stapels an Leiterbahnen in Abwesenheit von Topographie
DE10253938B4 (de) Verfahren zur gleichzeitigen Herstellung einer Bonding-Pad-Struktur und eines Stapelkondensators in einer Halbleitervorrichtung
DE602004003476T2 (de) Kondensator, halbleiterbauelement mit einem kondensator und verfahren zur herstellung derselben
DE102016115000B4 (de) Dreidimensionale integrierte Schaltungs-(3DIC)-Vorrichtung und Verfahren zu deren Herstellung und ein Verfahren zum Bonden von Wafern mittels Hybrid-Bonden
DE102020111391A1 (de) Rückseitenkondensatortechniken
EP0703623A1 (de) Verfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur
DE112010000142T5 (de) Kostenoptimiertes Verfahren zum Bilden von hoch dichten passiven Kondensatoren zum Ersetzen diskreter Kondensatoren unter Verwendung eines kostenoptimierten modularen 3D-Wafer-Wafer-Integrationsschemas
DE102005034386A1 (de) Tiefe Justiermarken auf Rand-Chips zum anschließenden Ausrichten von opaken Schichten
DE19834917A1 (de) Verfahren zum Bilden von selbstausrichtenden Durchgängen in integrierten Schaltungen mit mehreren Metallebenen
DE102004039906A1 (de) Verfahren zur Herstellung eines elektronischen Bauelements sowie ein elektronisches Bauelement mit mindestens zwei integrierten Bausteinen
DE10324866A1 (de) Verfahren zum Herstellen einer resistiven Halbleiterspeichervorrichtung
DE102020117547A1 (de) Packages mit abwechselnd gestapelten dicken rdls und dünnen rdls
DE102015104507A1 (de) Integrierte Fan-Out-Struktur mit Öffnungen in einer Pufferschicht
EP1149417B1 (de) Verfahren zur herstellung von dreidimensionalen schaltungen
DE102013109590A1 (de) Verfahren zum Bearbeiten eines Wafers und Verfahren zum Zertrennen eines Wafers
DE102009043740B4 (de) Rückseitenmetallisierung mit besserer Haftung in Hochleistungshalbleiterbauelementen
EP0712154A2 (de) Verfahren zum Herstellen integrierter Schaltungen mit passiven Bauelementen hoher Güte
DE102017109670A1 (de) Chippackage mit Seitenwandmetallisierung
DE19958486A1 (de) Verfahren zur vertikalen Integration von elektrischen Bauelementen mittels Rückseitenkontakt
DE102017124691B4 (de) Halbleiterstruktur und Verfahren

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8139 Disposal/non-payment of the annual fee