EP0028025A1 - Method and device for the production of microdroplets of liquid - Google Patents

Method and device for the production of microdroplets of liquid Download PDF

Info

Publication number
EP0028025A1
EP0028025A1 EP80106544A EP80106544A EP0028025A1 EP 0028025 A1 EP0028025 A1 EP 0028025A1 EP 80106544 A EP80106544 A EP 80106544A EP 80106544 A EP80106544 A EP 80106544A EP 0028025 A1 EP0028025 A1 EP 0028025A1
Authority
EP
European Patent Office
Prior art keywords
space
gas
transport
liquid
atomizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80106544A
Other languages
German (de)
French (fr)
Other versions
EP0028025B1 (en
Inventor
Karl Folke Peterson
Kurt L. Skoog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dala Invest AB
Original Assignee
Dala Invest AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE7908865A external-priority patent/SE7908865L/en
Priority claimed from SE7908864A external-priority patent/SE7908864L/en
Priority claimed from SE7908863A external-priority patent/SE7908863L/en
Application filed by Dala Invest AB filed Critical Dala Invest AB
Priority to AT80106544T priority Critical patent/ATE3906T1/en
Publication of EP0028025A1 publication Critical patent/EP0028025A1/en
Application granted granted Critical
Publication of EP0028025B1 publication Critical patent/EP0028025B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0466Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the central liquid flow towards the peripheral gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/105Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet at least one of the fluids being submitted to a swirling motion

Definitions

  • the invention relates to a method and a device for producing micro liquid droplets.
  • a liquid is normally pressed through a specially designed atomizing nozzle, which causes the liquid to be sprayed apart or atomized. Atomization can also be carried out with the help of steam or compressed air, these methods not being used for smaller liquid flows.
  • the present invention is based on the object of creating a method and a device for producing microfluidic droplets which allow extremely fine atomization of the liquid even at very low liquid pressure.
  • the liquid and the gas flow collide violently This makes it possible to achieve fine atomization at very low pressure of the liquid emerging from the opening.
  • the method according to the invention gives maximum fine atomization even with very small liquid flows.
  • the radius of the helical flow path of the gas flow in the direction away from the opening through which the liquid is injected into the atomizing chamber is increasingly, preferably steadily, reduced.
  • the gas flow experiences an additional acceleration, with the result that the entrained liquid droplets are broken up to an increased extent.
  • Extremely fine liquid droplets or micro liquid droplets in the order of magnitude of about 20 ⁇ m are obtained.
  • Such a small average droplet size cannot be achieved with the known atomizing nozzles or methods.
  • a reduction in the average tube size below 50 / um mostly failed due to the manufacturing possibilities.
  • the latter solution thus provides an extremely long transport route for the liquid droplets entrained by the gas flow through a relatively short space. So that it is z. B. also possible, liquid droplets within a very small "reaction space” or transport space z. B. to bring to full evaporation.
  • the inventive method proper It is particularly useful for drying and burning a liquid, because it is generally known that the smaller the droplets, the faster and more complete the drying or combustion.
  • the process time t is the necessary length of stay in the transport or reaction space, whereby this time can be maintained even with a very small transport space due to the movement path of the droplets in the transport space according to the invention.
  • the liquid droplets in the atomizing space and / or transport space or reaction space come into contact with the inner surface of the room wall.
  • Corresponding deposits on the inner surface of the room walls should be avoided.
  • the gas is introduced into the atomizing space and / or the transport space advantageously at a distance from the inner surface of the room wall.
  • a self-twisting or rotating movement can be impressed on the gas along the flow path.
  • the gas flow is then characterized by two superimposed rotational movements.
  • FIGS. 1a to 1d A good atomization of a liquid can be achieved by the atomizer units shown in FIGS. 1a to 1d, each consisting of a centrally arranged liquid tube 10, a concentrically surrounding cylindrical jacket 11 with a conically tapering atomizer chamber 12 and the outer circumference of the liquid tube 10 gas guide means or gas inlet openings 16 arranged obliquely to the longitudinal axis of the tube exist which pressure or pressure flow around the liquid tube 10 in the longitudinal direction. Impress atomizing gas a swirl movement 13.
  • the tube opening or liquid inlet opening 14 is designed such that the liquid jet 15 fans out conically (hollow spray cone 17) as it exits the opening 14.
  • baffles 47 are arranged in the gas inlet openings for deflecting the gas flow.
  • swirl grooves 48 are provided on the outer circumference of the liquid tube, which likewise impart a swirl movement to the atomizing gas.
  • the end 49 of the liquid tube 10 protruding into the atomizing chamber 12 extends in the embodiment according to FIG. 1b to close to the outlet opening 18, so that an extremely violent collision of atomizing gas and emerging liquid takes place immediately before this opening. The liquid is virtually "blown up" immediately before it emerges from the atomizing chamber 12.
  • the outer surface of the part of the tube 10 projecting into the atomizing chamber 12 is conical, corresponding to the atomizing chamber.
  • the liquid tube 10 is lengthened by a tube 50 inserted into the opening 14 thereof, which can preferably be arranged in a longitudinally displaceable manner therein.
  • gas inlet openings for the entry of secondary gas can also be provided in order to reliably avoid contact between the liquid droplets and the inner surface of the atomizer chamber wall and thus deposits on the latter.
  • the secondary gas can also be compressed gas and is preferably introduced in such a way that the swirl movement 13 of the atomizing gas is additionally supported.
  • FIGS. 1a to 1d To chemical or physical reactions with the z. B. in the atomizer chamber 12 of the liquid droplets obtained in FIGS. 1a to 1d, these are moved through a transport space or reaction space along a predetermined path. 2 and 3 each show cylindrical transport spaces 20 which are each open at the right end. A droplet 19 is moved from a point A to a point B. On this route the droplet z. B. evaporate.
  • FIG. 3 shows that when the droplet moves along an arc line, the distance between points A and B is less than when moving along a straight line (according to FIG. 2). The effective movement distance is of course the same. 3, however, the movement in the second dimension is used, which leads to a shortening of the distance between the two end points of the movement path.
  • the droplets are guided or carried along the three-dimensional path through the transport or reaction space 20.
  • the droplets 19 enter the transport space 20, which is delimited by a cup-shaped container with a side wall 28, through a droplet inlet opening 22, which is located in the center of the end face of the cup-shaped container.
  • a droplet inlet opening 22 At a radial distance from the opening 22 there are a plurality of openings 24, which are evenly distributed over the circumference, for the gas entry into the transport space 20, wherein in the openings 24 there are respectively inclined guide plates or blades 26, which form a helical gas flow around the longitudinal axis 9 of the transport - or effect reaction chamber 20.
  • gas inlet openings 24 are located in the side wall 28 of the pot-shaped container.
  • more than one gas inlet opening 24 can be provided.
  • the gas inlet openings 24 are inclined to the radial (as section A-A clearly shows) in order to impart a predetermined screw movement through the transport space 20 to the gas flow (see arrows).
  • the inner diameter of the pot-shaped housing can be dimensioned such that the gas flow practically no longer acts on the inner surface of the side wall 28. This eliminates the danger or their reaction products of a deposit of liquid droplets on the inner surface of the side wall 28. Such deposits would lead to a change in the flow conditions and would require cleaning of the transport or reaction space 20 after a certain period of operation.
  • the inner surface of the side wall can be inserted into the openings 24 28 protruding tubes 30 are used (cf. FIG. 6 with a corresponding section BB).
  • the tubes 30 are slidably inserted within the openings 24, so that the length of the part projecting beyond the inner surface of the side wall 28 can be changed.
  • the easiest way to solve this problem is to screw the tubes 30 into the openings 24.
  • the jet direction of the openings 24 or the tubes 30 can preferably also be changed for the purpose of adaptation to different droplet sizes, etc.
  • FIG. 7 shows a combination of the atomizer unit shown schematically in FIG. 1 and the transport or reaction unit shown schematically in FIG. 6.
  • the liquid droplets generated in the atomizer chamber 12 pass through the atomizer chamber outlet openings 18 or droplet inlet opening 22 into the transport space 20, where they experience an approximately conical fanning out, which is surprisingly conveyed by the gas introduced through the tubes 30.
  • a negative pressure is created in the annular space between the closed end face of the transport space 20 and the gas tubes 30, which pulls the liquid droplets emerging from the opening 22 radially outwards. This will take the liquid droplets 19 by the shortest route in the area of the gas flow shown in Fig - 7 characterized by the reference numeral 21..
  • a distributor body 32 is arranged, the side of which is oriented toward the opening 22 is flat.
  • the plane of the distributor body 32 facing the opening 22 can also be convex or conical.
  • the distributor body 32 thus favors rapid mixing of the droplets with the gas flow 21, the degree of mixing being able to be set by the shape of the distributor body 32.
  • the distance between the distributor body 32 and the opening 22 also has an influence on the degree of mixing or fanning out of the liquid droplets introduced into the transport space.
  • the distributor body 32 is therefore preferably mounted such that it can be moved back and forth in the direction of the longitudinal axis 9 of the transport or reaction space 20. Good results can be achieved if the distributor body 32 lies in a plane between the droplet inlet opening 22 and the plane defined by the gas tubes 30 close to the same.
  • the distributor body 32 promotes in particular the uniform distribution of the introduced droplets 19 over the cross-section of the transport or reaction space 20.
  • the distributor body 32 thus prevents local droplet accumulations, as a result of which uniform mixing into the gas stream 21 is achieved.
  • the distributor body 32 is fastened to a stiff wire.
  • other fastening options are also conceivable, although care must be taken to ensure that the fastening means do not adversely affect the flow, in particular the swirl movement of the gas-droplet flow in the transport space 20.
  • transport space or reaction chamber 20 to serve as a combustion chamber in this still preferably a Zündeinrichtun g / provided in the area of the droplet inlet port 22 to the combustion of the liquid droplets, z. B. oil droplets to start.
  • the unit according to FIG. 7 is used as an oil burner and is identified by the reference number 41.
  • the burner 41 is attached to the upper end of an upright heat exchanger 42, the transport or reaction space 20 projecting slightly into an exhaust gas space 43.
  • the reaction chamber 20 serves as the combustion chamber, the flame 44 slightly knocking out of the combustion chamber 20.
  • the hot combustion gases are passed through the exhaust gas space 43 in accordance with the arrows 45, a tubular radiation body 34 being arranged concentrically inside the exhaust gas space 43 at the end remote from the burner.
  • the outside diameter of the tubular radiation body 34 is somewhat smaller than the inside diameter of the exhaust gas chamber 43, which is also tubular in the embodiment shown.
  • Both the radiation body 34 and the wall of the exhaust gas space 43 are preferably made of heat-resistant metal (steel) and have a dark, preferably black color, so that they serve as ideal radiation bodies.
  • the additional radiation body 34 and the exhaust pipe delimiting the exhaust gas space 43 promote the heat exchange between the hot combustion gases and the environment, in the present case a heat exchange medium 38, which is passed at a distance from the exhaust pipe.
  • the exhaust pipe as well as between the hot combustion gases and / in particular the black radiation body 34 is heated exchange by convection.
  • the heat absorbed by the exhaust pipe and / or radiation body 34 is emitted again by radiation to the environment or to the heat exchange medium 38 and transported through this to another location.
  • black radiation bodies which are “flushed” by the hot combustion gases, can also be arranged behind the outlet of the exhaust pipe or in the gas guide channels 46 extending through the heat exchanger 42.
  • the shape of the radiation body can e.g. B. be egg-shaped.
  • tubular radiation bodies can also be used again. Of course, care must be taken to ensure that the arrangement of the radiation bodies in the gas guide channels does not cause excessive pressure drops.
  • the black radiation bodies are made of metal, preferably of heat-resistant, stainless steel. But they can just as well be made of ceramic or stone. The material depends on the gas flowing around the radiation body or the chemical and / or physical reactions taking place in the reaction space 20.
  • the radiation bodies are arranged relatively far from the combustion flame, the flame temperature and thus the combustion are not influenced by the radiation bodies.
  • the radiation bodies are arranged in the immediate vicinity of the flame or the reaction site, a cooling effect is achieved by the radiation bodies, which dissipate heat to the outside, ie to the environment. B. causes the reaction rate is reduced or a reaction does not take place at all (e.g. cracking processes).
  • the radiation bodies are also particularly suitable for the controlled afterburning of exhaust gases in an exhaust duct.
  • the radiation bodies are arranged in the exhaust duct at a suitable distance from the combustion flame and are heated from the outside by heat radiation. The heat then emitted from the radiation body to the exhaust gases by means of convection causes the exhaust gases to re-ignite, so that complete combustion is achieved before the exhaust gases exit into the open.
  • the described invention is particularly suitable for an oil burner. Therefore, the conditions in an oil burner and the advantages achieved by the solution according to the invention are discussed in detail again below.
  • equation (2) is limited to the case in which there is no influence of a relative movement between the droplet and the environment.
  • the value ⁇ - and consequently the value m - can be increased by increasing the temperature of the environment around the oil droplet, usually the air atmosphere, since the value of D is temperature-dependent and -dD / dT> 0 is.
  • the droplet size is therefore of great importance, since smaller droplets lead to a higher value of B.
  • the first condition is optimally met by a nozzle according to FIGS. 1a to 1d.
  • the second condition can very easily be met by introducing preheated air into the atomizing chamber 12 and optionally the reaction chamber 20.
  • the third condition can also be very simple by preheating the oil to be burned.
  • the screw movement of the liquid droplets through the reaction space according to the invention achieves a sufficient residence time for the droplets in the reaction space 20 for complete combustion although the reaction space 20 is of very short construction.
  • the short construction of the reaction space 20 has the additional advantage that heat radiation losses in the area of the reaction space are correspondingly low.
  • Nitrogen oxides are especially dangerous for animals /. For this reason, laws in many countries require that the nitrogen oxide concentration in exhaust gases must not exceed a certain value. In Germany, the nitrogen oxide concentration in oil burners (operated with heavy oil) must not exceed 500 ppm in the exhaust gas.
  • the small design results in a correspondingly short residence time for the combustion gases. Furthermore, the burning time is reduced to a minimum even due to the extremely small liquid or oil droplets.
  • the residence time of the droplets and exhaust gases in the unit according to FIG. 7 is approximately 0.07 seconds. According to FIG. 9, approximately 20 ppm NO are formed when the unit according to FIG. 7 is used as an oil burner. With this short dwell time, it hardly matters if the combustion air is preheated. As has been explained above, preheating the combustion air improves the combustion itself or the combustion intensity.
  • FIG. 10 the NO values of an oil burner designed according to the invention are again shown schematically in comparison to conventional oil burners, specifically as a function of the oil flow rate (l / h) and the oxygen content during combustion.

Abstract

Zur Erzeugung von Mikroflüssigkeitströpfchen wird ein Flüssigkeitsstrahl zentral in einen Zerstäuberraum (12) unter Bildung eines Sprühkegels (17) eingespritzt und dort von einer äusseren schraubenförmigen Gasströmung (13) beaufschlagt. Zur weiteren Reduzierung der Tröpfchengrösse werden die Tröpfchen (19) in einen Transport- bzw. Reaktionsraum (20) kleiner Baulänge eingeleitet und durch diesen von einer ebenfalls schraubenförmigen Gasströmung (21) getragen. Vorzugsweise wird der Transport- bzw. Reaktionsraum (20) durch einen topfförmigen Behälter begrenzt, wobei die Flüssigkeitströpfchen (19) an der dem offenen Ende gegenüberliegenden Stirnseite in den Transport- bzw. Reaktionsraum (20) eintreten. Das Verfahren bzw. die Anordnung zur Durchführung des Verfarens eignet sich insbesondere zur praktisch russfreien Verbrennung von brennbaren Flüssigkeiten, insbesondere Öl.To generate micro liquid droplets, a liquid jet is injected centrally into an atomizing chamber (12) to form a spray cone (17) and an external helical gas flow (13) is applied there. To further reduce the size of the droplets, the droplets (19) are introduced into a transport or reaction space (20) of a small overall length and are carried through this by a likewise helical gas flow (21). The transport or reaction space (20) is preferably delimited by a pot-shaped container, the liquid droplets (19) entering the transport or reaction space (20) on the end face opposite the open end. The method and the arrangement for carrying out the processing is particularly suitable for the practically soot-free combustion of flammable liquids, in particular oil.

Description

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Erzeugung von Mikroflüssigkeitströpfchen.The invention relates to a method and a device for producing micro liquid droplets.

Bei einer Vielzahl von chemischen oder physikalischen Prozessen, insbesondere bei Trocknungs- und Verbrennungsprozessen, ist es von grosser Wichtigkeit, reaktive Mikroflüssigkeitströpfchen zu erhalten. Normalerweise wird hierzu eine Flüssigkeit durch eine speziell gestaltete Zerstäuberdüse gepresst, die ein Auseinanderspritzen bzw. eine Zerstäubung der Flüssigkeit bewirkt. Die Zerstäubung kann auch mit Hilfe von Dampf oder Pressluft erfolgen, wobei diese Verfahren bei kleineren Flüssigkeitsströmen nicht angewendet werden.In a variety of chemical or physical processes, particularly drying and combustion processes, it is of great importance to obtain reactive microfluidic droplets. For this purpose, a liquid is normally pressed through a specially designed atomizing nozzle, which causes the liquid to be sprayed apart or atomized. Atomization can also be carried out with the help of steam or compressed air, these methods not being used for smaller liquid flows.

Es ist auch allgemein bekannt, den Austritt eines Flüssigkeitsstrahles aus einer Düse durch eine den austretenden Strahl konzentrisch umgebende Gasströmung zu verbessern bzw. zu beschleunigen. Die Gasströmung soll jedoch keine Zerstäubung der aus der Düse austretenden Flüssigkeit bewirken, sondern eher im Gegenteil den Flüssigkeitsstrahl zusammenhalten. Es ist schliesslich auch bekannt, dem dünnen, den Flüssigkeitsstrahl oder auch einen Tröpfchenschwamm zusammenhaltenden Gasmantel eine Rotationsbewegung aufzuprägen, um dadurch eine Rotation des Flüssigkeitsstrahles selbst zu erhalten Es soll jedoch auch bei dieser bekannten Lösung eine Zerstäubung des Flüssigkeitsstrahls oder weitere Feinzerstäubung vermieden werden.It is also generally known to improve or accelerate the exit of a liquid jet from a nozzle by a gas flow concentrically surrounding the emerging jet. However, the gas flow is not intended to atomize the liquid emerging from the nozzle, but rather, on the contrary, to hold the liquid jet together. Finally, it is also known to impart a rotational movement to the thin gas jacket holding the liquid jet or a sponge of droplets in order to thereby maintain a rotation of the liquid jet itself. However, atomization of the liquid jet or further fine atomization should also be avoided in this known solution.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Erzeugung von Mikroflüssigkeitströpfchen zu schaffen, das bzw. die eine äusserst feine Zerstäubung der Flüssigkeit auch bei sehr geringem Flüssigkeitsdruck erlaubt.The present invention is based on the object of creating a method and a device for producing microfluidic droplets which allow extremely fine atomization of the liquid even at very low liquid pressure.

Diese Aufgabe wird hinsichtlich des Verfahrens erfindungsgemäss dadurch gelöst, dass

  • - aus einer Öffnung in einen Zerstäuberraum eine Flüssigkeit eingespritzt wird, derart, dass ein im wesentlichen hohler Sprühkegel entsteht, und dass
  • - dieser Sprühkegel von einer äusseren Gasströmung beaufschlagt wird, deren Strömungsbahn etwa konzentrisch und schraubenförmig zur gedachten Achse des Sprühkegels verläuft, so dass der Sprühkegel durch die Gasströmung aufgebrochen wird.
This task is fiction, regarding the method resolved according to that
  • - A liquid is injected from an opening into an atomizing chamber such that an essentially hollow spray cone is formed, and that
  • - This spray cone is acted upon by an external gas flow, the flow path of which is approximately concentric and helical to the imaginary axis of the spray cone, so that the spray cone is broken up by the gas flow.

Es wird also erfindungsgemäss bewusst und kontrolliert ein heftiges Aufeinanderprallen der Flüssigkeit und der Gasströmung herbeigeführt. Dadurch ist es möglich, dass auch eine feine Zerstäubung bei sehr geringem Druck der aus der Öffnung austretenden Flüssigkeit erzielt wird. Man erhält durch das erfindungsgemässe Verfahren eine maximale Feinzerstäubung auch bei sehr kleinen Flüssigkeitsströmen.According to the invention, it is consciously and controlled that the liquid and the gas flow collide violently. This makes it possible to achieve fine atomization at very low pressure of the liquid emerging from the opening. The method according to the invention gives maximum fine atomization even with very small liquid flows.

Vorzugsweise wird der Radius der schraubenförmigen Strömungsbahn der Gasströmung in Richtung weg von der Öffnung, durch die die Flüssigkeit in den Zerstäuberraum eingespritzt wird, zunehmend, vorzugsweise stetig, verringert. Dadurch erfährt die Gasströmung eine zusätzliche Beschleunigung, mit der Folge, dass die mitgeführten Flüssigkeitströpfchen in erhöhtem Masse aufgebrochen werden. Man erhält äusserst feine Flüssigkeitströpfchen bzw. Mikroflüssigkeitströpfchen in einer Grössenordnung von etwa 20 µm. Eine derartig geringe mittlere Tropfchengrösse lässt sich mit den bekannten Zerstäuberdüsen bzw. Verfahren nicht erzielen. Eine Reduzierung der mittleren röpicrhengrösse unter 50/um scheiterte meist an den herstellungstechnischen Möglichkeiten. Es für eine derart grobe Zerstäubung gibt Sprühdüsen/mit gleichmässig über den Umfang verteilten Sprühschlitzen mit jeweils einer Breite von etwa 100/um. Da sich Herstellungstoleranzen zwischen 98/um und 102/um nicht vermeiden lassen, führen derartige Sprühdüsen zu einer Ungleichverteilung der Zerstäubung bzw. zu einer ungleichförmigen Tröpfchenverteilung. Ferner hat sich gezeigt, dass etwa 100/um breite Sprühschlitze bei Verwendung von Flüssigkeit mit festen Bestandteilen (Verunreinigungen), wie z.B. öl, als zu zerstäubende Flüssigkeit nach kurzer Zeit leicht verstopfen können. Danach kommt es nach längerer Gebrauchsdauer zu einer ungleichförmigen Tröpfchenverteilung. Die Verunreinigungen können zu Verschleiß führen, der ebenfalls zu einer Ungleichverteilung führt.Preferably, the radius of the helical flow path of the gas flow in the direction away from the opening through which the liquid is injected into the atomizing chamber is increasingly, preferably steadily, reduced. As a result, the gas flow experiences an additional acceleration, with the result that the entrained liquid droplets are broken up to an increased extent. Extremely fine liquid droplets or micro liquid droplets in the order of magnitude of about 20 μm are obtained. Such a small average droplet size cannot be achieved with the known atomizing nozzles or methods. A reduction in the average tube size below 50 / um mostly failed due to the manufacturing possibilities. There are spray nozzles for such coarse atomization / with uniformly distributed over the circumference Sprühschlitzen each having a width of about 100 / um. Since manufacturing tolerances between 98 / um and 102 / um can not be avoided, such spray nozzles lead to an unequal distribution of the atomization or to a non-uniform droplet distribution. Further, it has been found that approximately 100 / um wide Sprühschlitze with the use of liquid with solid particles (impurities), such as oil, can easily clog than liquid to be atomized in a short time. After this, after a long period of use, the droplets are distributed unevenly. The contamination can lead to wear, which also leads to an uneven distribution.

Zur weiteren Reduzierung der Tröpfchengrösse hat sich gezeigt, dass es vorteilhaft ist, die Flüssigkeitströpfchen durch eine Öffnung in einen vorzugsweise zylindrischen Transportraum einzuleiten und durch diesen durch eine schraubenförmige Gasströmung zu dem der Einlassöffnung entgegengesetzten Ende zu tragen, das vorzugsweise offen ist.To further reduce the droplet size, it has been shown that it is advantageous to introduce the liquid droplets through an opening into a preferably cylindrical transport space and to carry them through a helical gas flow to the end opposite the inlet opening, which is preferably open.

Es in bekannt, mit Hilfe einer Gasströmung Fluidtröpfchen ton einem Punkt zu einem anderen Punkt längs einer geradlinigen Bahn zu transportieren, wobei die Transportstrecke so bemessen ist, dass die Tröpfchen bei ihrer Bewegung längs dieser Strecke chemisch reagieren oder eine physikalische Veränderung erfahren, z. B. Verdampfen. Die erfindungsgemässe Lösung hat nun den Vorteil, dass die erwähnten Reaktionen auf einer relativ kurzen Baulänge des Transportraumes stattfinden können. Dies ist gerade bei Verbrennungseinrichtungen von besonderer Bedeutung, um eine insgesamt kompakte Anlage zu erhalten.It is known in the art to use a gas flow to transport fluid droplets ton from one point to another point along a straight path, the transport path being dimensioned such that the droplets chemically react or undergo a physical change as they move along this path, e.g. B. Evaporation. The solution according to the invention now has the advantage that the reactions mentioned can take place over a relatively short overall length of the transport space. This is of particular importance in the case of combustion devices in order to obtain an overall compact system.

Durch die letztgenannte Lösung wird also eine extrem lange Transportstrecke für die von der Gasströmung mitgenommenen Flüssigkeitströpfchen durch einen relativ kurz gebauten Raum erhalten. Damit ist es z. B. auch möglich, Flüssigkeitströpfchen innerhalb eines sehr kleinen "Reaktionsraumes" bzw. Transportraumes z. B. zur vollständigen Verdampfung zu bringen. Das erfindungsgemässe Verfahren eignet sich besonders für die Trocknung sowie Verbrennung einer Flüssigkeit, denn es ist allgemein bekannt, dass eine Trocknung oder Verbrennung desto schneller und vollständiger erfolgen, je kleiner die Tröpfchen sind. Die Abhängigkeit zwischen der Prozesszeit t (= Trocknungs-oder Verbrennungszeit) und dem Tröpfchendurchmesser d ist wie folgt:

Figure imgb0001
wobei c eine Konstante ist.Die Prozesszeit t ist die notwendige Aufenthaltsdauer im Transport- bzw. Reaktionsraum, wobei durch die erfindungsgemässe Bewegungsbahn der Tröpfchen im Transportraum diese Zeit auch bei einem sehr kleinen Transportraum eingehalten werden kann.The latter solution thus provides an extremely long transport route for the liquid droplets entrained by the gas flow through a relatively short space. So that it is z. B. also possible, liquid droplets within a very small "reaction space" or transport space z. B. to bring to full evaporation. The inventive method proper It is particularly useful for drying and burning a liquid, because it is generally known that the smaller the droplets, the faster and more complete the drying or combustion. The relationship between the process time t (= drying or combustion time) and the droplet diameter d is as follows:
Figure imgb0001
where c is a constant. The process time t is the necessary length of stay in the transport or reaction space, whereby this time can be maintained even with a very small transport space due to the movement path of the droplets in the transport space according to the invention.

In den meisten Fällen muss vermieden werden, dass die Flüssigkeitströpfchen im Zerstäuberraum und/oder Transportraum bzw. Reaktionsraum mit der Innenfläche der Raumwandung in Kontakt kommen.Es sollen entsprechende Ablagerungen an der Innenfläche der Raumwandungen vermieden werden. Um dies zu erreichen, erfolgt die Gaseinleitung in den Zerstäuberraum und/oder Transportraum vorteilhafterweise im Abstand von der Innenfläche der Raumwandung.In most cases, it must be avoided that the liquid droplets in the atomizing space and / or transport space or reaction space come into contact with the inner surface of the room wall. Corresponding deposits on the inner surface of the room walls should be avoided. In order to achieve this, the gas is introduced into the atomizing space and / or the transport space advantageously at a distance from the inner surface of the room wall.

Um eine noch stärkere Verfeinerung der Flüssigkeitströpfchen zu erhalten, kann dem Gas längs der Strömungsbahn eine Eigendrall- bzw. Rotationsbewegung aufgeprägt werden. Die Gasströmung ist dann durch zwei überlagerte Rotationsbewegungen gekennzeichnet.In order to obtain an even greater refinement of the liquid droplets, a self-twisting or rotating movement can be impressed on the gas along the flow path. The gas flow is then characterized by two superimposed rotational movements.

Vorrichtungsmässig wird die gestellte Aufgabe durch die Massnahmen gemäss den Ansprüchen 10 bis 23 gelöst, wobei auf die technischen Vorteile der beanspruchten Merkmale im einzelnen weiter unten näher eingegangen wird. Nachstehend wird das erfindungsgemässe Verfahren anhand der in den anliegenden Zeichnungen schematisch dargestellten bevorzugten Ausführungsbeispiele der erfindungsgemässen Vorrichtung näher erläutert.In terms of the device, the object is achieved by the measures according to claims 10 to 23, the technical advantages of the claimed features being discussed in more detail below. The method according to the invention is explained in more detail below with reference to the preferred exemplary embodiments of the device according to the invention which are schematically illustrated in the accompanying drawings.

Es zeigen:

  • Fig. 1a - 1d verschiedene Ausführungsformen von Flüssigkeits-Zerstäuberräumen im Schnitt,
  • Fig. 2 eine schematische Darstellung einer Bewegung eines Flüssigkeitstropfens längs einer geraden Strecke innerhalb eines Transport- bzw. Reaktionszylinders,
  • Fig. 3 die Bewegung eines Flüssigkeitströpfchens längs einer Bogenlinie,
  • Fig. 4 - 6 drei verschiedene Ausführungsformen von Transport- bzw. Reaktionsräumen,
  • Fig. 7 eine Kombination der Zerstäubereinheit gemäss Fig. 1a und Reaktionseinheit gemäss Fig. 6 zur Erzeugung feinster Flüssigkeitströpfchen,
  • Fig. 8 eine Anordnung der Einheit gemäss Fig. 7 in einem Wärmetauscher, und
  • Fig. 9 u. 10 graphische Darstellungen zur Demonstration der vorteilhaften Wirkung der Einheit gemäss Fig. 7.
Show it:
  • 1a-1d different embodiments of liquid atomizing chambers in section,
  • 2 shows a schematic representation of a movement of a drop of liquid along a straight line within a transport or reaction cylinder,
  • 3 shows the movement of a liquid droplet along an arc line,
  • 4 - 6 three different embodiments of transport or reaction rooms,
  • 7 shows a combination of the atomizer unit according to FIG. 1a and the reaction unit according to FIG. 6 for producing the finest liquid droplets,
  • 8 shows an arrangement of the unit according to FIG. 7 in a heat exchanger, and
  • Fig. 9 u. 10 graphical representations to demonstrate the advantageous effect of the unit according to FIG. 7.

Eine gute Zerstäubung einer Flüssigkeit lässt sich durch die in den Fig. 1a bis 1d dargestellten Zerstäubereinheiten erzielen, die jeweils aus einem zentral angeordneten Flüssigkeitsröhrchen 10, einem dieses konzentrisch umgebenden zylindrischen Mantel 11 mit einem sich konisch verjüngenden Zerstäuberraum 12 und am-äusseren Umfang des Flüssigkeitsröhrchens 10 schräg zur Rohrlängsachse angeordnete Gasführungsmittel bzw. Gaseintrittsöffnungen 16 bestehen, die den das Flüssigkeitsröhrchen 10 in Längsrichtung umströmenden Druck- bzw. Zerstäubergas eine Drallbewegung 13 aufprägen.A good atomization of a liquid can be achieved by the atomizer units shown in FIGS. 1a to 1d, each consisting of a centrally arranged liquid tube 10, a concentrically surrounding cylindrical jacket 11 with a conically tapering atomizer chamber 12 and the outer circumference of the liquid tube 10 gas guide means or gas inlet openings 16 arranged obliquely to the longitudinal axis of the tube exist which pressure or pressure flow around the liquid tube 10 in the longitudinal direction. Impress atomizing gas a swirl movement 13.

Die Röhrchenöffnung bzw. Flüssigkeitseintrittsöffnung 14 ist so ausgebildet, daß der Flüssigkeitsstrahl 15 sich beim Austritt aus der Öffnung 14 kegelförmig (hohler Sprühkegel 17) auffächert.The tube opening or liquid inlet opening 14 is designed such that the liquid jet 15 fans out conically (hollow spray cone 17) as it exits the opening 14.

Dadurch wird ein heftiges Aufeinanderprallen der Flüssigkeit mit der Gasströmung 13 herbeigeführt, wobei die Gasströmung 13 in Richtung zur Zerstäuberraum-Austrittsöffnung 18 aufgrund der stetigen Verringerung des Durchmessers der schraubenförmigen Gasströmung beschleunigt wird. Die Gasströmung.bricht also den Sprühkegel 17 in einzelne Flüssigkeitströpfchen auf.This brings about a violent collision of the liquid with the gas flow 13, the gas flow 13 being accelerated in the direction of the atomizer chamber outlet opening 18 due to the constant reduction in the diameter of the helical gas flow. The gas flow thus breaks up the spray cone 17 into individual liquid droplets.

In Fig. 1c sind in den Gaseintrittsöffnungen Leitbleche 47 zur Umlenkung der Gasströmung angeordnet.In Fig. 1c baffles 47 are arranged in the gas inlet openings for deflecting the gas flow.

In Fig. 1b sind statt der Leitbleche 47 in Fig. lc am äußeren Umfang des Flüssigkeitsröhrchens Drallnuten 48 vorgesehen, die dem Zerstäubergas ebenfalls eine Drallbewegung aufprägen. Das in den Zerstäuberraum 12 hineinragende Ende 49 des Flüssigkeitsröhrchens 10 erstreckt sich bei der Ausführungsform gemäß Fig. 1b bis nahe zur Austrittsöffnung 18 hin, so daß unmittelbar vor dieser Öffnung ein äußerst heftiges Aufeinanderprallen von Zerstäubergas und austretender Flüssigkeit stattfindet. Die Flüssigkeit wird unmittelbar vor ihrem Austritt aus dem Zerstäuberraum 12 geradezu "gesprengt". Dabei ist bei der Ausführungsform gemäß Fig. 1b die Außenfläche des in den Zerstäuberraum 12 ragenden Teils des Röhrchens 10 entsprechend dem Zerstäuberraum konisch,ausgebildet.In FIG. 1b, instead of the guide plates 47 in FIG. 1c, swirl grooves 48 are provided on the outer circumference of the liquid tube, which likewise impart a swirl movement to the atomizing gas. The end 49 of the liquid tube 10 protruding into the atomizing chamber 12 extends in the embodiment according to FIG. 1b to close to the outlet opening 18, so that an extremely violent collision of atomizing gas and emerging liquid takes place immediately before this opening. The liquid is virtually "blown up" immediately before it emerges from the atomizing chamber 12. In the embodiment according to FIG. 1b, the outer surface of the part of the tube 10 projecting into the atomizing chamber 12 is conical, corresponding to the atomizing chamber.

Bei der Ausführungsform gemäß Fig. 1d erfolgt die Verlängerung des Flüssigkeitsröhrchens 10 durch ein in die Öffnung 14 desselben eingesetztes Röhrchen 50, das vorzugsweise in dieser längsverschiebbar angeordnet sein kann.In the embodiment according to FIG. 1d, the liquid tube 10 is lengthened by a tube 50 inserted into the opening 14 thereof, which can preferably be arranged in a longitudinally displaceable manner therein.

Im konischen, den Zerstäuberraum seitlich begrenzenden Mantelteil können noch Gaseintrittsöffnungen für den Eintritt von Sekundärgas vorgesehen sein, um einen Kontakt zwischen den Flüssigkeitströpfchen und der Innenfläche der Zerstäuberraumwand und damit Ablagerungen an dieser sicher zu vermeiden. Das Sekundärgas kann ebenfalls Druckgassein und wird vorzugsweise so eingeleitet, dass die Drallbewegung 13 des Zerstäubergases zusätzlich unterstützt wird.In the conical jacket part which laterally delimits the atomizer chamber, gas inlet openings for the entry of secondary gas can also be provided in order to reliably avoid contact between the liquid droplets and the inner surface of the atomizer chamber wall and thus deposits on the latter. The secondary gas can also be compressed gas and is preferably introduced in such a way that the swirl movement 13 of the atomizing gas is additionally supported.

Um chemische oder physikalische Reaktionen mit den z. B. im Zerstäuberraum 12 der in den Fig. 1a bis 1d dargestellten Zerstäubereinheiten erhaltenen Flüssigkeitströpfchen zu fördern, werden diese durch einen Transportraum bzw. Reaktionsraum längs einer vorbestimmten Bahn bewegt. In den Fig. 2 und 3 sind jeweils zylindrische Transporträume 20 dargestellt, die an dem rechten Ende jeweils offen sind. Ein Tröpfchen 19 wird von einem Punkt A zu einem Punkt B bewegt. Auf dieser Strecke soll das Tröpfchen z. B. verdampfen. Fig. 3 zeigt, dass bei einer Bewegung des Tröpfchens längs einer Bogenlinie der Abstand zwischen den Punkten A und B geringer ist als bei einer Bewegung längs einer geradlinigen Bahn (gemäss Fig. 2). Die effektive Bewegungsstrecke ist natürlich dieselbe. Bei einer Bewegung längs einer Bogenlinie entsprechend Fig. 3 wird jedoch die Bewegung in der zweiten Dimension ausgenutzt, was zur Verkürzung des Abstandes zwischen den beiden Endpunkten der Bewegungsbahn führt.To chemical or physical reactions with the z. B. in the atomizer chamber 12 of the liquid droplets obtained in FIGS. 1a to 1d, these are moved through a transport space or reaction space along a predetermined path. 2 and 3 each show cylindrical transport spaces 20 which are each open at the right end. A droplet 19 is moved from a point A to a point B. On this route the droplet z. B. evaporate. FIG. 3 shows that when the droplet moves along an arc line, the distance between points A and B is less than when moving along a straight line (according to FIG. 2). The effective movement distance is of course the same. 3, however, the movement in the second dimension is used, which leads to a shortening of the distance between the two end points of the movement path.

Dieser Erkenntnis folgend werden bei der erfindungsgemässen Lösung die Tröpfchen längs einer dreidimensionalen Bahn durch den Transport- bzw. Reaktionsraum 20 geführt bzw. getragen.Following this finding, in the solution according to the invention the droplets are guided or carried along the three-dimensional path through the transport or reaction space 20.

Bei der Ausführungsform gemäss Fig. 4 treten die Tröpfchen 19 in den Transportraum 20, der durch einen topfförmigen Behälter mit einer Seitenwandung 28 begrenzt ist, durch eine Tröpfchen-Einlassöffnung 22 ein, die sich im Zentrum der Stirnseite des topfförmigen Behälters befindet. Im radialen Abstand von der Öffnung 22 befinden sich mehrere gleichmässig über den Umfang verteilte Öffnungen 24 für den Gaseintritt in den Transportraum 20, wobei in den Öffnungen 24 jeweils schräggestellte Leitbleche bzw. -schaufeln 26 angeordnet sind, die eine schraubenförmige Gasströmung um die Längsachse9 des Transport- bzw. Reaktionsraumes 20 bewirken.In the embodiment according to FIG. 4, the droplets 19 enter the transport space 20, which is delimited by a cup-shaped container with a side wall 28, through a droplet inlet opening 22, which is located in the center of the end face of the cup-shaped container. At a radial distance from the opening 22 there are a plurality of openings 24, which are evenly distributed over the circumference, for the gas entry into the transport space 20, wherein in the openings 24 there are respectively inclined guide plates or blades 26, which form a helical gas flow around the longitudinal axis 9 of the transport - or effect reaction chamber 20.

Das Ausführungsbeispiel gemäss Fig. 5 ist sehr ähnlich wie das Ausführungsbeispiel gemäss Fig. 4 aufgebaut, nur mit dem Unterschied, dass die Gaseintrittsöffnungen 24 sich in der Seitenwandung 28 des topfförmigen Behälters befinden. Dabei können mehr als eine Gaseintrittsöffnung 24 vorgesehen sein. Die Gaseintrittsöffnungen 24 sind zur Radialen schräggestellt (wie der Schnitt A-A deutlich zeigt), um der Gasströmung (siehe Pfeile) eine vorbestimmte Schraubenbewegung durch den Transportraum 20 aufzuprägen. Der Innendurchmesser des topfförmigen Gehäuses kann so bemessen sein, dass die Gasströmung auf die Innenfläche der Seitenwandung 28 praktisch nicht mehr einwirkt. Damit ist die Gefahr oder deren Reaktionsprodukte einer Ablagerung von Flüssigkeitströpfchen/an der Innenfläche der Seitenwandung 28 gebannt. Derartige Ablagerungen würden zu einer Veränderung der Strömungsverhältnisse führen und nach gewisser Betriebsdauer eine Reinigung des Transport- bzw.Reaktionsraumes 20 erforderlich machen.5 is very similar to the embodiment of FIG. 4, with the only difference that the gas inlet openings 24 are located in the side wall 28 of the pot-shaped container. In this case, more than one gas inlet opening 24 can be provided. The gas inlet openings 24 are inclined to the radial (as section A-A clearly shows) in order to impart a predetermined screw movement through the transport space 20 to the gas flow (see arrows). The inner diameter of the pot-shaped housing can be dimensioned such that the gas flow practically no longer acts on the inner surface of the side wall 28. This eliminates the danger or their reaction products of a deposit of liquid droplets on the inner surface of the side wall 28. Such deposits would lead to a change in the flow conditions and would require cleaning of the transport or reaction space 20 after a certain period of operation.

Um ganz sicher zu gehen, dass die Tröpfchen sich nicht an die Innenfläche der Seitenwandung 28 ablagern, können in die Öffnungen 24 die Innenfläche der Seitenwandung 28 überragende Röhrchen 30 eingesetzt werden (vgl. Fig. 6 mit entsprechendem Schnitt B-B).To ensure that the droplets do not deposit on the inner surface of the side wall 28, the inner surface of the side wall can be inserted into the openings 24 28 protruding tubes 30 are used (cf. FIG. 6 with a corresponding section BB).

Zur Anpassung an verschiedene Tröpfchengrössen, Reaktionszeiten des Tröpfchenmaterials, etc. kann es vorteilhaft sein, wenn die Röhrchen 30 innerhalb der Öffnungen 24 verschiebbar eingesetzt sind, so dass die Länge des die Innenfläche der Seitenwandung 28 überragenden Teiles veränderbar ist. Am einfachsten lässt sich dieses Problem dadurch lösen, dass die Röhrchen 30 in die Öffnungen 24 eingeschraubt sind.To adapt to different droplet sizes, reaction times of the droplet material, etc., it can be advantageous if the tubes 30 are slidably inserted within the openings 24, so that the length of the part projecting beyond the inner surface of the side wall 28 can be changed. The easiest way to solve this problem is to screw the tubes 30 into the openings 24.

Wie bereits weiter oben dargelegt, ist vorzugsweise auch die Strahlrichtung der Öffnungen 24 bzw. der Röhrchen 30 zu Zwecken der Anpassung an verschiedene Tröpfchengrössen, etc., veränderbar.As already explained further above, the jet direction of the openings 24 or the tubes 30 can preferably also be changed for the purpose of adaptation to different droplet sizes, etc.

In Fig. 7 ist eine Kombination der in Fig. 1 schematisch dargestellten Zerstäubereinheit und der in Fig.6 schematisch dargestellten Transport- bzw. Reaktionseinheit dargestellt. Die im Zerstäuberraum 12 erzeugten Flüssigkeitströpfchen gelangen durch die Zerstäuberraum-Austrittsöffnungen 18 bzw. Tröpfchen-Einlassöffnung 22 in den Transportraum 20, wobei sie dort eine etwa kegelförmige Auffächerung erfahren, die überraschenderweise durch das durch die Röhrchen 30 eingeleitete Gas gefördert wird. Es entsteht offenbar in dem Ringraum zwischen der geschlossenen Stirnseite des Transportraumes 20 und den Gasröhrchen 30 ein Unterdruck, der die aus der Öffnung 22 austretenden Flüssigkeitströpfchen radial nach aussen zieht. Dadurch gelangen die Flüssigkeitströpfchen 19 auf kürzestem Wege in den Bereich der Gasströmung, die in Fig.-7 mit der Bezugsziffer 21 gekennzeichnet ist.FIG. 7 shows a combination of the atomizer unit shown schematically in FIG. 1 and the transport or reaction unit shown schematically in FIG. 6. The liquid droplets generated in the atomizer chamber 12 pass through the atomizer chamber outlet openings 18 or droplet inlet opening 22 into the transport space 20, where they experience an approximately conical fanning out, which is surprisingly conveyed by the gas introduced through the tubes 30. Evidently, a negative pressure is created in the annular space between the closed end face of the transport space 20 and the gas tubes 30, which pulls the liquid droplets emerging from the opening 22 radially outwards. This will take the liquid droplets 19 by the shortest route in the area of the gas flow shown in Fig - 7 characterized by the reference numeral 21..

Um die Auffächerung der in den Transportraum eingeleiteten Flüssigkeitströpfchen zusätzlich zu erhöhen, ist im Abstand vor der Flüssigkeitströpfchen-Einlassöffnung 22 ein Verteilerkörper 32 angeordnet, dessen der Öffnung 22 zugekehrte Seite eben ausgebildet ist. In Abhängigkeit von den äusseren Parametern, wie Gaseintrittsgeschwindigkeit, Tröpfchengrösse etc. kann die der Öffnung 22 zugekehrte Ebene des Verteilerkörpers 32 auch konvex oder kegelförmig ausgebildet sein.In order to additionally increase the fanning out of the liquid droplets introduced into the transport space at a distance from the liquid droplet inlet opening 22, a distributor body 32 is arranged, the side of which is oriented toward the opening 22 is flat. Depending on the external parameters, such as gas entry speed, droplet size, etc., the plane of the distributor body 32 facing the opening 22 can also be convex or conical.

Der Verteilerkörper 32 begünstigt also eine rasche Vermischung der Tröpfchen mit der Gasströmung 21, wobei der Grad der Vermischung durch die Form des Verteilerkörpers 32 eingestellt werden kann. Auch hat der Abstand der Verteilerkörpers 32 von der Öffnung 22 einen Einfluss auf den Grad der Vermischung bzw. der Auffächerung der in den Transportraum eingeleiteten Flüssigkeitströpfchen. Zur Variierung des Vermischungsgrades bzw. der Auffächerung ist daher der Verteilerkörper 32 in Richtung der Längsachse9 des Transport- bzw. Reaktionsraumes 20 vorzugsweise hin- und herbewegbar gelagert. Gute Ergebnisse lassen sich erzielen, wenn der Verteilerkörper 32 in einer Ebene zwischen der Tröpfchen-Einlassöffnung 22 und der durch die Gasröhrchen 30 definierten Ebene nahe derselben liegt. Der Verteilerkörper 32 fördert insbesondere die gleichförmige Verteilung der eingeleiteten Tröpfchen 19 über den Querschnitt des Transport- bzw. Reaktionsraumes 20. Der Verteilerkörper 32 verhindert also lokale Tröpfchen-Ansammlungen, wodurch eben eine gleichförmige Einmischung in den Gasstrom 21 erzielt wird. Bei dem Ausführungsbeispiel gemäss Fig. 7 ist der Verteilerkörper 32 an einem steifen Draht befestigt. Es sind jedoch auch andere Befestigungsmöglichkeiten denkbar, wobei jedoch darauf geachtet werden muss, dass die Befestigungsmittel die Strömung, insbesondere die Drallbewegung der Gas-Tröpfchen-Strömung im Transportraum 20 nicht ungünstig beeinflussen.The distributor body 32 thus favors rapid mixing of the droplets with the gas flow 21, the degree of mixing being able to be set by the shape of the distributor body 32. The distance between the distributor body 32 and the opening 22 also has an influence on the degree of mixing or fanning out of the liquid droplets introduced into the transport space. In order to vary the degree of mixing or fanning out, the distributor body 32 is therefore preferably mounted such that it can be moved back and forth in the direction of the longitudinal axis 9 of the transport or reaction space 20. Good results can be achieved if the distributor body 32 lies in a plane between the droplet inlet opening 22 and the plane defined by the gas tubes 30 close to the same. The distributor body 32 promotes in particular the uniform distribution of the introduced droplets 19 over the cross-section of the transport or reaction space 20. The distributor body 32 thus prevents local droplet accumulations, as a result of which uniform mixing into the gas stream 21 is achieved. In the exemplary embodiment according to FIG. 7, the distributor body 32 is fastened to a stiff wire. However, other fastening options are also conceivable, although care must be taken to ensure that the fastening means do not adversely affect the flow, in particular the swirl movement of the gas-droplet flow in the transport space 20.

Falls der Transportraum bzw. Reaktionsraum 20 als Verbrennungsraum dienen soll, ist in diesem vorzugsweise noch eine Zündeinrichtung/im Bereich der Tröpfchen- Einlassöffnung 22 vorgesehen, um die Verbrennung der Flüssigkeitströpfchen, z. B. Öltröpfchen, zu starten.If the transport space or reaction chamber 20 to serve as a combustion chamber, in this still preferably a Zündeinrichtun g / provided in the area of the droplet inlet port 22 to the combustion of the liquid droplets, z. B. oil droplets to start.

In Fig. 8 ist die Einheit gemäss Fig. 7 als Ölbrenner eingesetzt und mit der Bezugsziffer 41 gekennzeichnet. Der Brenner 41 ist am oberen Ende eines aufrechten Wärmetauschers 42 angebracht, wobei der Transport- bzw. Reaktionsraum 20 geringfügig in einen Abgasraum 43 hineinragt. Der Reaktionsraum 20 dient bei dem in Fig. 8 schematisch dargestellten Anwendungsbeispiel als Brennraum, wobei die Flamme 44 etwas aus dem Brennraum 20 herausschlägt. Durch den Abgasraum 43 werden die heissen Verbrennungsgase entsprechend den Pfeilen 45 hindurchgeleitet, wobei am brenner-abseitigen Ende des Abgasraumes 43 im Innern desselben konzentrisch ein rohrförmiger Strahlungskörper 34 angeordnet ist. Der Aussendurchmesser des rohrförmigen Strahlungskörpers 34 ist etwas geringer als der Innendurchmesser des Abgasraumes 43, der bei dem dargestellten Ausführungsbeispiel ebenfalls rohrförmig ausgebildet ist. Sowohl der Strahlungskörper 34 als auch die Wandung des Abgasraumes 43 sind vorzugsweise aus hitzebeständigem Metall (Stahl) hergestellt und weisen eine dunkle, vorzugsweise schwarze Färbung auf, so dass sie als ideale Strahlungskörper dienen. Der zusätzliche Strahlungskörper 34 sowie das den Abgasraum 43 begrenzende Abgasrohr fördern den Wärmeaustausch zwischen den heissen Verbrennungsgasen und der Umgebung, im vorliegenden Fall einem Wärmetauschermedium 38, das im Abstand vom Abgasrohr vorbeigeführt wird. dem Abgasrohr sowie Zwischen den heissen Verbrennungsgasen und/insbesondere dem schwarzen Strahlungskörper 34 erfolgt ein Wärmeaustausch durch Konvektion. Die von dem Abgasrohr und/oder Strahlungskörper 34 aufgenommene Wärme wird durch Strahlung wieder an die Umgebung bzw. an das Wärmetauschermedium 38 abgegeben und durch dieses an einen anderen Ort transportiert.In FIG. 8 the unit according to FIG. 7 is used as an oil burner and is identified by the reference number 41. The burner 41 is attached to the upper end of an upright heat exchanger 42, the transport or reaction space 20 projecting slightly into an exhaust gas space 43. In the application example shown schematically in FIG. 8, the reaction chamber 20 serves as the combustion chamber, the flame 44 slightly knocking out of the combustion chamber 20. The hot combustion gases are passed through the exhaust gas space 43 in accordance with the arrows 45, a tubular radiation body 34 being arranged concentrically inside the exhaust gas space 43 at the end remote from the burner. The outside diameter of the tubular radiation body 34 is somewhat smaller than the inside diameter of the exhaust gas chamber 43, which is also tubular in the embodiment shown. Both the radiation body 34 and the wall of the exhaust gas space 43 are preferably made of heat-resistant metal (steel) and have a dark, preferably black color, so that they serve as ideal radiation bodies. The additional radiation body 34 and the exhaust pipe delimiting the exhaust gas space 43 promote the heat exchange between the hot combustion gases and the environment, in the present case a heat exchange medium 38, which is passed at a distance from the exhaust pipe. the exhaust pipe as well as between the hot combustion gases and / in particular the black radiation body 34 is heated exchange by convection. The heat absorbed by the exhaust pipe and / or radiation body 34 is emitted again by radiation to the environment or to the heat exchange medium 38 and transported through this to another location.

Zusätzlich zu dem rohrförmigen Strahlungskörper 34 oder stattdessen können auch hinter dem Ausgang des Abgasrohres bzw. in den sich durch den Wärmetauscher 42 hindurcherstreckenden Gasführungskanälen 46 schwarze Strahlungskörper angeordnet sein, die von den heissen Verbrennungsgasen"umspült" werden. Die Form der Strahlungskörper kann z. B. eiförmig sein. Es können jedoch auch wieder rohrförmige Strahlungskörper verwendet werden. Es muss natürlich darauf geachtet werden, dass durch die Anordnung der Strahlungskörper in den Gasführungskanälen keine zu grossen Druckabfälle hervorgerufen werden.In addition to the tubular radiation body 34 or instead, black radiation bodies, which are “flushed” by the hot combustion gases, can also be arranged behind the outlet of the exhaust pipe or in the gas guide channels 46 extending through the heat exchanger 42. The shape of the radiation body can e.g. B. be egg-shaped. However, tubular radiation bodies can also be used again. Of course, care must be taken to ensure that the arrangement of the radiation bodies in the gas guide channels does not cause excessive pressure drops.

Die schwarzen Strahlungskörper bestehen aus Metall, vorzugsweise aus hitzebeständigem, rostfreiem Stahl. Sie können aber genau so gut aus Keramik oder Stein bestehen. Das Material hängt von dem die Strahlungskörper umströmenden Gas bzw. den im Reaktionsraum 20 stattfindenden chemischen und/oder physikalischen Reaktionen ab.The black radiation bodies are made of metal, preferably of heat-resistant, stainless steel. But they can just as well be made of ceramic or stone. The material depends on the gas flowing around the radiation body or the chemical and / or physical reactions taking place in the reaction space 20.

Bei einer Anordnung der Strahlungskörper relativ weit von der Verbrennungsflamme entfernt wird die Flammentemperatur und damit die Verbrennung durch die Strahlungskörper nicht beeinflusst.If the radiation bodies are arranged relatively far from the combustion flame, the flame temperature and thus the combustion are not influenced by the radiation bodies.

Bei einer Anordnung der Strahlungskörper in unmittelbarer Nähe der Flamme bzw. des Reaktionsortes wird durch die Strahlungskörper, die ja Wärme nach aussen, d. h. an die Umgebung, abführen, ein Kühleffekt erzielt, der z. B. dazu führt, dass die Reaktionsgeschwindigkeit herabgesetzt wird oder eine Reaktion überhaupt nicht stattfindet (z. B. Crackprozesse).If the radiation bodies are arranged in the immediate vicinity of the flame or the reaction site, a cooling effect is achieved by the radiation bodies, which dissipate heat to the outside, ie to the environment. B. causes the reaction rate is reduced or a reaction does not take place at all (e.g. cracking processes).

Bei manchen chemischen oder physikalischen Prozessen kann es auch erforderlich sein, zum Ablauf der Reaktionen von aussen Wärme zuzuführen. Dies wurde bisher gewöhnlich nur durch Erwärmung des Reaktionsraumes mittels einer Heizung oder dgl. bewerkstelligt. Es hat sich nun gezeigt, dass durch Einsatz derchorbeschrie- benen Strahlungskörper im Reaktionsraum/die Wärmeübertragung von aussen in den Reaktionsraum erheblich intensivieren lässt. Die im Reaktionsraum angeordneten Strahlungskörper ermöglichen eine zusätzliche Wärmezufuhr mittels Wärmestrahlung.In some chemical or physical processes, it may also be necessary to apply heat from the outside to allow the reactions to take place. Up to now, this has usually only been accomplished by heating the reaction space by means of a heater or the like. It has now been shown to be significantly intensify the heat transfer from the outside into the reaction chamber by using the ch orbeschrie- surrounded radiant body in the reaction chamber /. The radiation bodies arranged in the reaction space enable additional heat to be supplied by means of heat radiation.

Die Strahlungskörper eignen sich auch besonders zur gesteuerten Nachverbrennung von Abgasen in einem Abgaskanal. Zu diesem Zweck werden die Strahlungskörper im Abgaskanal in geeignetem Abstand von der Verbrennungsflamme angeordnet und von aussen durch Wärmestrahlung erhitzt. Die dann vom Strahlungskörper mittels Konvektion an die Abgase abgegebene Wärme bewirkt eine Nachzündung der Abgase, so dass eine vollständige Verbrennung vor dem Austritt der Abgase ins Freie erzielt wird. Wie die obigen Ausführungen deutlich erkennen lassen, eignet sich die beschriebene Erfindung ganz besondersfür einen Ölbrenner. Es wird daher im folgenden nochmals eingehend auf die Verhältnisse in einem Ölbrenner und die Vorteile eingegangen, die durch die erfindungsgemässe Lösung erzielt werden.The radiation bodies are also particularly suitable for the controlled afterburning of exhaust gases in an exhaust duct. For this purpose, the radiation bodies are arranged in the exhaust duct at a suitable distance from the combustion flame and are heated from the outside by heat radiation. The heat then emitted from the radiation body to the exhaust gases by means of convection causes the exhaust gases to re-ignite, so that complete combustion is achieved before the exhaust gases exit into the open. As can be clearly seen from the above, the described invention is particularly suitable for an oil burner. Therefore, the conditions in an oil burner and the advantages achieved by the solution according to the invention are discussed in detail again below.

Es gibt viele Verfahren, um die Russbildung bei einem Ölbrenner herabzusetzen. Einige dieser Verfahren sind z. B. in einer Veröffentlichung von Peterson und Skoog "Stoftbildning vid oljeeldning", Stockholm, 1972, näher beschrieben. Dabei beziehen sich die bekannten Verfahren vornehmlich auf den Einsatz von Schwerölen. Unter diesen bekannten Verfahren erwies sich der Einsatz einer Emulsion von Öl und Wasser als am geeignetsten. Doch lässt sich bei diesem Verfahren die Entstehung von kleinen Russteilchen,die zu aggressiven SO3-Konzentrationen führen, nicht vermeiden, wenn als Brennstoff Leichtöle verwendet werden. Die Entsteheung dieser für die menschliche Lunge gefährlichen kleinen Russteilchen können durch Verbesserung der Verbrennung reduziert werden. Die Verbrennungsintensität oder Massendurchflussrate, die pro Masseneinheit öl verbrannt wird, kann wie folgt definiert werden:

Figure imgb0002
wobei

  • ṁ = die Massendurchflussrate pro Masseneinheit eines Tröpfchens,
  • d = der Tröpfchendurchmesser,
  • cy= die Konzentration des "Öldampfes" an der Tröpfchenoberfläche,
  • cf= die Dampfkonzentration in der Flamme,
  • δ = die Dichte des Öls bei Tropfentemperatur, und
  • B = der Transferkoeffizient für den Dampf

bedeuten.There are many methods to reduce soot formation in an oil burner. Some of these methods are e.g. B. in a publication by Peterson and Skoog "Stoftbildning vid oljeeldning", Stockholm, 1972, described in more detail. The known methods relate primarily to the use of heavy oils. Among these known methods, the use of an emulsion of oil and water has been found to be the most suitable. However, this process cannot avoid the formation of small soot particles that lead to aggressive SO 3 concentrations if light oils are used as fuel. The formation of these small soot particles, which are dangerous for human lungs, can be reduced by improving combustion. The combustion intensity or mass flow rate that is burned per unit mass of oil can be defined as follows:
Figure imgb0002
in which
  • ṁ = the mass flow rate per unit mass of a droplet,
  • d = the droplet diameter,
  • c y = the concentration of the "oil vapor" at the droplet surface,
  • c f = the vapor concentration in the flame,
  • δ = the density of the oil at drop temperature, and
  • B = the transfer coefficient for the steam

mean.

Aus der obigen Gleichung (1) geht hervor, dass sich die Verbrennungsintensität erhöht bei:

  • a) einerReduzierung des Tröpfchendurchmessers,
  • b) einer Zunahme des Wertes von cy, der durch Erhöhung der Öltemperatur, z. B. durch Vorwärmung, erhöht werden kann, und
  • c) einerErhöhung des Wertes von B, der durch folgende Gleichung bestimmt wird:
    Figure imgb0003
    wobei
  • D = der Diffusionskoeffizient,
  • Pf = der Partialdruck entsprechend dem Wert von cy, und
  • Ptot = der Gesamtdruck in der Brennzone

bedeuten.From the above equation (1) it can be seen that the combustion intensity increases with:
  • a) a reduction in the droplet diameter,
  • b) an increase in the value of c y caused by an increase in the oil temperature, e.g. B. can be increased by preheating, and
  • c) an increase in the value of B, which is determined by the following equation:
    Figure imgb0003
    in which
  • D = the diffusion coefficient,
  • Pf = the partial pressure corresponding to the value of c y , and
  • P tot = the total pressure in the firing zone

mean.

Die Anwendung der Gleichung (2) ist begrenzt auf den Fall, in dem kein Einfluss einer Relativbewegung zwischen dem Tröpfchen und der Umgebung vorhanden ist.The application of equation (2) is limited to the case in which there is no influence of a relative movement between the droplet and the environment.

Wie aus der Gleichung (2) ersichtlich ist, kann der Wertβ - und folglich der Wert m - erhöht werden durch Erhöhung der Temperatur der Umgebung des Öltröpfchens, in der Regel der Luftatmosphäre, da der Wert von D temperaturabhängig und-dD/dT > 0 ist. Die Tröpfchengrösse ist also von grosser Bedeutung, da kleinere Tröpfchen zu einem höheren Wert von B führen.As can be seen from equation (2), the value β - and consequently the value m - can be increased by increasing the temperature of the environment around the oil droplet, usually the air atmosphere, since the value of D is temperature-dependent and -dD / dT> 0 is. The droplet size is therefore of great importance, since smaller droplets lead to a higher value of B.

Zusammenfassend ergibt sich also, dass die Verbrennung verbessert werden kann durch

  • - kleine Öltröpfchen,
  • - höhere Temperaturen des die Tröpfchen umgebenden Mediums, meist Luft.
In summary, it follows that the combustion can be improved by
  • - small droplets of oil,
  • - higher temperatures of the medium surrounding the droplets, mostly air.

Die erste Bedingung wird in optimaler Weise durch eine Düse gemäss den Fig. 1a bis 1d erfüllt. Die zweite Bedingung kann sehr leicht dadurch erfüllt werden, dass in den Zerstäuberraum 12 und gegebenenfalls Reaktionsraum 20 jeweils vorgewärmte Luft eingeleitet wird.The first condition is optimally met by a nozzle according to FIGS. 1a to 1d. The second condition can very easily be met by introducing preheated air into the atomizing chamber 12 and optionally the reaction chamber 20.

Die dritte Bedingung kann ebenfalls sehr einfach durch Vorwärmung des zu verbrennenden Öls erfüllt werden.The third condition can also be very simple by preheating the oil to be burned.

Wie oben bereits im Zusammenhang mit dem Reaktionsraum 20 ausführlich dargelegt worden ist, wird durch die erfindungsgemässe Schraubenbewegung der Flüssigkeitströpfchen durch den Reaktionsraum hindurch eine für eine vollständige Verbrennung ausreichende Verweilzeit der Tröpfchen im Reaktions- raum 20 erzielte obwohl der Reaktionsraum 20 sehr kurz gebaut ist. Die kurze Bauweise des Reaktionsraumes 20 hat im übrigen den Vorteil, dass Wärmestrahlungsverluste im Bereich des Reaktionsraumes entsprechend gering sind.As has already been explained in detail above in connection with the reaction space 20, the screw movement of the liquid droplets through the reaction space according to the invention achieves a sufficient residence time for the droplets in the reaction space 20 for complete combustion although the reaction space 20 is of very short construction. The short construction of the reaction space 20 has the additional advantage that heat radiation losses in the area of the reaction space are correspondingly low.

Trotz der kurzen Bauweise des Reaktionsraumes 20 wird also bei der erfindungsgemässen Lösung eine vollständige Verbrennung in diesem Raum gewährleistet.Despite the short construction of the reaction space 20, complete combustion in this space is thus ensured in the solution according to the invention.

Versuche haben gezeigt, dass die Russbildung bei Anwendung des erfindungsgemässen Verfahrens bzw. Einsatz der erfindungsgemässen Vorrichtung gemäss Fig.7 nahezu Null ist. Dabei hat sich als vorteilhaft herausgestellt, wenn bei Hintereinanderanordnung von Zerstäuberraum und Transport- bzw. Reaktionsraum von dem zur Verfügung stehenden Druckgas etwa 15 % in den Zerstäuberraum und 85 % in den Transportraum eingeleitet werden. Die Geschwindigkeit des in den Transportraum eingeleiteten Druckgases, z. B. Luft, beträgt vorzugsweise zwischen etwa 50 bis etwa 150 m/Sekunde. Diese Werte haben sich als besonders vorteilhaft herausgestellt, insbesondere werden Luftüberschüsse vermieden, die zu unerwünschter S03-Bildung führen. Eine geringe S03-Bildung hat auch eine Abnahme der Russbildung zur Folge, wie bereits durch Gaydon et al in der Veröffentlichung "Proc. of Royal Society", London, 1947, nachgewiesen worden ist.Tests have shown that the soot formation when using the method according to the invention or using the device according to the invention according to FIG. 7 is almost zero. It has proven to be advantageous if, when the atomizer chamber and transport or reaction chamber are arranged one behind the other, about 15% of the compressed gas available is introduced into the atomizer chamber and 85% into the transport chamber. The speed of the compressed gas introduced into the transport space, e.g. B. air, is preferably between about 50 to about 150 m / second. These values have proven to be particularly advantageous, in particular excess air is avoided, which leads to undesired S0 3 formation. A low S0 3 formation also results in a decrease in soot formation, as has already been the case by Gaydon et al in Proc. of Royal Society, London, 1947.

Im folgenden sollen noch einige Worte über die Entstehung von Stickoxiden erwähnt werden. Stick- oxide (NOX) sind insbesondere für Tiere/sehr gefährlich. Aus diesem Grunde wird in vielen Ländern durch Gesetze verlangt, dass die Stickoxid-Konzentration in Abgasen einen bestimmten Wert nicht übersteigen darf. In Deutschland darf die Stickoxid-Konzentration bei Ölbrennern (mit Schweröl betrieben) 500 ppm im Abgas nicht übersteigen.A few words about the formation of nitrogen oxides should be mentioned below. Nitrogen oxides (NOX) are especially dangerous for animals /. For this reason, laws in many countries require that the nitrogen oxide concentration in exhaust gases must not exceed a certain value. In Germany, the nitrogen oxide concentration in oil burners (operated with heavy oil) must not exceed 500 ppm in the exhaust gas.

Die Bildung von Stickoxiden ist eine Folge von

  • - dem Anteil von Stickstoffatomen in den Öl bildenden Substanzen.Etwa 50 % der Stickoxide, die bei der Verbrennung entstehen, stammen unmittelbar von den Öl bildenden Komponenten,
  • - der Bildung von Stickoxiden bei der Verbrennung.
The formation of nitrogen oxides is a consequence of
  • - The proportion of nitrogen atoms in the oil-forming substances. About 50% of the nitrogen oxides that are produced during combustion come directly from the oil-forming components,
  • - The formation of nitrogen oxides during combustion.

Bei letzterer entstehen NO sowie N02. Die Entstehung von NO wurde intensiv untersucht. Dabei wurden folgende Ergebnisse gewonnen:

  • - eine Erhöhung der Flammentemperatur vermindert die Entstehung von N0,
  • - geringer Luftüberschuss fördert die Bildung von NO,
  • - die Bildung von NO ist sehr stark abhängig von der Zeit, die für die Bildung zur Verfügung steht. Es wird in diesem Zusammenhang auf die Fig. 9 hingewiesen, in der die Entstehung von NO-in Abhängigkeit von der Verweilzeit der Verbrennungsgase im Brennraum graphisch dargestellt ist. Aus Fig. 9 geht auch hervor, dass die Entstehung von NO von der Brennlufttemperatur abhängt.
The latter produces NO and N0 2 . The formation of NO has been intensively investigated. The following results were obtained:
  • an increase in the flame temperature reduces the formation of N0,
  • - low excess air promotes the formation of NO,
  • - The formation of NO is very dependent on the time available for the formation. In this connection, reference is made to FIG. 9, in which the formation of NO as a function of the residence time of the combustion gases in the combustion chamber is shown graphically. 9 also shows that the formation of NO depends on the combustion air temperature.

Bei Verwendung der Einheit gemäss Fig. 7 als Ölbrenner erhält man auf Grund der kleinen Bauweise (extrem kurzer Reaktionsraum 20) eine entsprechend geringe Verweilzeit der Verbrennungsgase. Ferner wird die Brennzeit selbst auf Grund der extrem kleinen Flüssigkeits- bzw. Öltröpfchen auf ein Minimum reduziert. Die Verweilzeit der Tröpfchen und Abgase in der Einheit gemäss Fig. 7 beträgt etwa 0,07 Sekunden. Gemäss Fig. 9 bilden sich daher bei Verwendung der Einheit gemäss Fig. 7 als Ölbrenner etwa 20 ppm NO. Dabei spielt es bei dieser kurzen Verweilzeit auch kaum eine Rolle, wenn die Verbrennungsluft vorgewärmt wird. Wie oben dargelegt worden ist, wird durch Vorwärmung der Verbrennungsluft die Verbrennung selbst bzw. die Verbrennungsintensität verbessert.When the unit according to FIG. 7 is used as an oil burner, the small design (extremely short reaction space 20) results in a correspondingly short residence time for the combustion gases. Furthermore, the burning time is reduced to a minimum even due to the extremely small liquid or oil droplets. The residence time of the droplets and exhaust gases in the unit according to FIG. 7 is approximately 0.07 seconds. According to FIG. 9, approximately 20 ppm NO are formed when the unit according to FIG. 7 is used as an oil burner. With this short dwell time, it hardly matters if the combustion air is preheated. As has been explained above, preheating the combustion air improves the combustion itself or the combustion intensity.

In Fig. 10 sind die NO-Werte eines erfindungsgemäss ausgebildeten Ölbrenners im Vergleich zu herkömmlichen Ölbrennern nochmals schematisch dargestellt, und zwar in Abhängigkeit von der Öl-Durchflussrate (l/h) und dem Sauerstoffanteil bei der Verbrennung.In FIG. 10, the NO values of an oil burner designed according to the invention are again shown schematically in comparison to conventional oil burners, specifically as a function of the oil flow rate (l / h) and the oxygen content during combustion.

Der Einsatz der Vorrichtung gemäss Fig. 7 mit Zerstäubereinheit und Reaktionseinheit als Ölbrenner führt also zu einer optimalen, russfreien Verbrennung bei extrem niedrigem Luftüberschuß mit einem Wirkungsgrad von mindestens 92 %.The use of the device according to FIG. 7 with an atomizer unit and reaction unit as an oil burner thus leads to an optimal, soot-free combustion with extremely low excess air with an efficiency of at least 92%.

Sämtliche in den Unterlagen offenbarten Merkmale werden als erfindungswesentlich beansprucht, soweit sie nicht einzeln oder in Kombination durch den Stand der Technik vorweggenommen sind.All features disclosed in the documents are claimed as essential to the invention, provided that they are not anticipated individually or in combination by the prior art.

Claims (23)

1. Verfahren zur Erzeugung von Mikroflüssigkeitströpfchen, dadurch gekennzeichnet , dass - aus einer Öffnung in einen Zerstäuberraum eine Flüssigkeit eingespritzt.wird, derart, dass ein im wesentlichen hohler Sprühkegel entsteht, und dass - dieser Sprühkegel von einer äusseren Gasströmung beaufschlagt wird, deren Strömungsbahn etwa konzentrisch und schraubenförmig zur gedachten Achse des Sprühkegels verläuft, so dass der Sprühkegel durch die Gasströmung aufgebrochen wird. 1. A method for producing micro liquid droplets, characterized in that - A liquid is injected from an opening into an atomizing chamber, in such a way that a substantially hollow spray cone is formed, and that - This spray cone is acted upon by an external gas flow, the flow path of which is approximately concentric and helical to the imaginary axis of the spray cone, so that the spray cone is broken up by the gas flow. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Radius der schraubenförmigen Strömungsbahn der Gasströmung in Richtung weg von der Öffnung, durch die die Flüssigkeit in den Zerstäuberraum eingespritzt wird, zunehmend, vorzugsweise stetig, verringert wird.2. The method according to claim 1, characterized in that the radius of the helical flow path of the gas flow in the direction away from the opening, through which the liquid is injected into the atomizing chamber, is increasingly, preferably steadily, reduced. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Zerstäubergas unter Druck in den Zerstäuberraum eingeleitet wird.3. The method according to claim 1 or 2, characterized in that the atomizing gas is introduced under pressure into the atomizing space. 4. Verfahren zur Erzeugung von Mikroflüssigkeitströpfchen, dadurch gekennzeichnet, dass - nach einer Zerstäubung der Flüssigkeit in Tröpfchen, insbesondere gemäss dem Verfahren nach einem der Ansprüche 1 bis 3, diese durch eine Öffnung in einen vorzugsweise zylindrischen Transportraum eingeleitet und - durch diesen von einer schraubenförmigen Gasströmung zu dem der Einlassöffnung entgegengesetzten Ende getragen werden. 4. A process for producing micro liquid droplets, characterized in that - After atomization of the liquid in droplets, in particular according to the method according to one of claims 1 to 3, these are introduced through an opening into a preferably cylindrical transport space and - Carried by this from a helical gas flow to the end opposite the inlet opening. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Tröpfchen im Bereich der gedachten Achse der schraubenförmigen Gasströmung in den Transportraum eintreten.5. The method according to claim 4, characterized in that the droplets in the region of the imaginary axis of the helical gas flow enter the transport space. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gas-Strömungsrichtung im Transportraum gleich der im vorgeschalteten Zerstäuberraum gewählt wird.6. The method according to any one of claims 1 to 5, characterized in that the gas flow direction in the transport space is chosen to be the same as that in the upstream atomizing space. 7. Verfahren nach einem der.Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gas-Strömungsrichtung im Transportraum entgegengesetzt der im vorgeschalteten Zerstäuberraum gewählt wird.7. The method according to any one of claims 1 to 5, characterized in that the gas flow direction in the transport space is chosen opposite to that in the upstream atomizing space. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Gaseinleitung in den Zerstäuberraum und/oder Transportraum im Abstand von der Innenfläche der Raumwandung erfolgt, derart, dass ein Kontakt der Flüssigkeitströpfchen mit der Innenfläche der Raumwandungen vermieden wird.8. The method according to any one of claims 1 to 7, characterized in that the gas introduction into the atomizing space and / or transport space at a distance from the inside Surface of the room wall takes place in such a way that contact of the liquid droplets with the inner surface of the room walls is avoided. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Gas längs seiner Strömungsbahn eine Eigendrall- bzw. -rotationsbewegung ausführt.9. The method according to any one of claims 1 to 8, characterized in that the gas performs a self-twisting or rotating movement along its flow path. 10. Vorrichtung zur Erzeugung von Mikroflüssigkeitströpfchen, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9,
gekennzeichnet durch - ein Flüssigkeitsröhrchen (10), das etwa zentral in einen Zerstäuberraum (12) mündet, und - durch im radialen Abstand von der Röhrchenöffnung (14) angeordnete Gaseintrittsöffnungen (16), die so ausgebildet sind, dass sie dem in den Zerstäuberraum (12) eingeblasenen Gas eine schraubenförmige Bewegung durch diesen aufprägen.
10. Device for producing micro liquid droplets, in particular for carrying out the method according to one of claims 1 to 9,
marked by - A liquid tube (10) which opens approximately centrally in an atomizing chamber (12), and - By gas inlet openings (16) arranged at a radial distance from the tube opening (14), which are designed such that they impart a helical movement through the gas blown into the atomizing space (12).
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Querschnitt des Zerstäuberraums (12) in Strömungsrichtung vorzugsweise stetig bis zur Austrittsöffnung (18) abnimmt.11. The device according to claim 10, characterized in that the cross section of the atomizing chamber (12) in the flow direction preferably decreases continuously up to the outlet opening (18). 12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass das Flüssigkeitsröhrchen (10) bis kurz vor die Austrittsöffnung (18) des Zerstäuberraums (12) verlängert ist.12. The device according to claim 10 or 11, characterized in that the liquid tube (10) is extended to just before the outlet opening (18) of the atomizing chamber (12). 13. Vorrichtung zur Erzeugung von Mikroflüssigkeitströpfchen, gekennzeichnet durch - einen einem Zerstäuberraum, vorzugsweise gemäss einem der Ansprüche 10 bis 12, folgenden, vorzugsweise zylindrischen Flüssigkeitströpfchen-Transportraum (20), an dessen einem Ende eine Tröpfcheneinlassöffnung (22) vorgesehen ist und dessen gegenüberliegendes Ende vorzugsweise offen ist, und durch - im radialen Abstand von der Tröpfchen-Einlassöffnung (22) angeordnete Gaseintrittsöffnungen (24), die so ausgebildet sind, dass sie dem in den Transportraum (20) eingeleiteten Gas eine schraubenförmige Bewegung durch diesen aufprägen. 13. Device for producing micro liquid droplets, characterized by - a, preferably cylindrical liquid droplet transport space (20) following an atomizing space, preferably according to one of claims 10 to 12, at one end of which a droplet inlet opening (22) is provided and the opposite end of which is preferably open, and by - Gas inlet openings (24) which are arranged at a radial distance from the droplet inlet opening (22) and are designed such that they impart a helical movement through the gas introduced into the transport space (20). 14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass mindestens eine Öffnung (24) für den Gaseintritt an der dem offenen Ende gegenüberliegenden Stirnseite des Transportraumes (20) vorgesehen ist, und dass in der Öffnung Leitbleche (26) oder dgl. für die Umlenkung des in den Raum (20) eingeleiteten Gases angeordnet sind.14. The apparatus according to claim 13, characterized in that at least one opening (24) is provided for the gas inlet on the end of the transport space (20) opposite the open end, and that in the opening baffles (26) or the like. For the deflection of the gas introduced into the space (20) are arranged. 15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass an der den Transportraum seitlich begrenzenden Seitenwandung (28) mindestens eine sich schräg zur Radialen erstreckende 'Bohrung (24) oder dgl. für den Gaseintritt vorgesehen ist.15. The apparatus according to claim 13, characterized in that at least one bore (24) or the like which extends obliquely to the radial is provided on the side wall (28) which laterally delimits the transport space for the gas inlet. 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass in die Bohrung (24) ein die Innenfläche der Seitenwandung (28) überragendes Röhrchen (30) eingesetzt ist, so dass ein Kontakt der von der schraubenförmigen Gasströmung durch den Transportraum getragenen Flüssigkeitströpfchen während ihres Transports mit der Innenfläche der Seitenwandung vermieden ist.16. The apparatus according to claim 15, characterized in that a tube (30) projecting beyond the inner surface of the side wall (28) is inserted into the bore (24), so that contact of the liquid droplets carried by the helical gas flow through the transport space during their transport is avoided with the inner surface of the side wall. 17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die in den Transportraum (20) hineinragende Länge der Röhrchen (30) einstellbar ist.17. The apparatus according to claim 16, characterized in that the length of the tubes (30) projecting into the transport space (20) is adjustable. 18. Vorrichtung nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Bohrung (24) auch in Strömungsrichtung etwas geneigt ist.18. Device according to one of claims 15 to 17, characterized in that the bore (24) is also slightly inclined in the direction of flow. 19. Vorrichtung nach einem der Ansprüche 10 bis 18, dadurch gekennzeichnet, dass in dem Transportraum (20) in Abstand vor der Tröpfcheneinlassöffnung (22) ein Verteilerkörper (32) vorgesehen ist, der zur radialen Auffächerung und Gleichverteilung über den Raumquerschnitt der in den Transportraum eingeleiteten Tröpfchen dient.19. Device according to one of claims 10 to 18, characterized in that in the transport space (20) at a distance from the droplet inlet opening (22) a distributor body (32) is provided, which for radial fanning out and uniform distribution over the cross-section of space in the transport space introduced droplet is used. 20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass der Verteilerkörper (32) eine Platte mit ebener oder konvex gewölbter Oberfläche ist.20. The apparatus according to claim 19, characterized in that the distributor body (32) is a plate with a flat or convex surface. 21. Vorrichtung nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, dass hinter dem Transportraum (20) dunkle, vorzugsweise schwarze Strahlungskörper (34) vorgesehen sind, die die durch Konvektion vom Tröpfchen-Gas-Gemisch bzw. Reaktionsgas aufgenommene Wärme durch Strahlung an die Umgebung abgeben.21. Device according to one of claims 13 to 20, characterized in that behind the transport space (20) dark, preferably black radiation bodies (34) are provided which absorb the heat absorbed by convection from the droplet-gas mixture or reaction gas by radiation give the environment. 22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass als Strahlungskörper (34) ein in einem dem Reaktionsraum (20) folgenden Kanal (42) konzentrisch angeordneter Rohrabschnitt dient.22. The apparatus according to claim 21, characterized in that a tube section which is arranged concentrically in a channel (42) following the reaction space (20) serves as the radiation body (34). 23. Vorrichtung nach einem der Ansprüche 13 bis 22, dadurch gekennzeichnet, dass das Verhältnis der Länge des Transport- bzw. Reaktionsraums (20) zu seinem mittleren Durchmesser etwa 1 : 1, vorzugsweise 5 : 3, beträgt.23. Device according to one of claims 13 to 22, characterized in that the ratio of the length of the transport or reaction space (20) to its average diameter is approximately 1: 1, preferably 5: 3.
EP80106544A 1979-10-25 1980-10-24 Method and device for the production of microdroplets of liquid Expired EP0028025B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80106544T ATE3906T1 (en) 1979-10-25 1980-10-24 METHOD AND DEVICE FOR GENERATION OF MICROLIQUID DROPLETS.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
SE7908864 1979-10-25
SE7908865 1979-10-25
SE7908865A SE7908865L (en) 1979-10-25 1979-10-25 SET FOR TRANSPORT OF DROPS
SE7908864A SE7908864L (en) 1979-10-25 1979-10-25 SET FOR DISTRIBUTION OF LIQUID TO DROPS
SE7908863 1979-10-25
SE7908863A SE7908863L (en) 1979-10-25 1979-10-25 STRALNINGSKROPP

Publications (2)

Publication Number Publication Date
EP0028025A1 true EP0028025A1 (en) 1981-05-06
EP0028025B1 EP0028025B1 (en) 1983-06-22

Family

ID=27355203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106544A Expired EP0028025B1 (en) 1979-10-25 1980-10-24 Method and device for the production of microdroplets of liquid

Country Status (9)

Country Link
US (1) US4473185A (en)
EP (1) EP0028025B1 (en)
JP (1) JPS56501380A (en)
CA (1) CA1159356A (en)
DE (1) DE3063914D1 (en)
DK (1) DK150395C (en)
FI (1) FI69696C (en)
NO (1) NO812067L (en)
WO (1) WO1981001186A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016794A1 (en) * 1991-03-20 1992-10-01 Witteveen Gustaaf J Mixing device and method for gaseous, liquid or pulverised solid substances
EP0565814A2 (en) * 1992-04-13 1993-10-20 LLB Lurgi Lentjes Babcock Energietechnik GmbH Burner torch for pulverising a coal-water suspension
US6045531A (en) * 1997-07-22 2000-04-04 Chase Medical Inc. Catheter having a lumen occluding balloon and method of use thereof
US6068608A (en) * 1997-05-01 2000-05-30 Chase Medical, Inc. Method of using integral aortic arch infusion clamp
US6132397A (en) * 1997-05-01 2000-10-17 Chase Medical Inc. Integral aortic arch infusion clamp catheter
US6241699B1 (en) 1998-07-22 2001-06-05 Chase Medical, Inc. Catheter system and method for posterior epicardial revascularization and intracardiac surgery on a beating heart
CN111346869A (en) * 2020-05-06 2020-06-30 浙江大农实业股份有限公司 Hot water high pressure cleaner

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685882A (en) * 1985-09-09 1987-08-11 Coen Company, Inc. Pulverized fuel slurry burner and method of operating same
US4726761A (en) * 1985-09-09 1988-02-23 Coen Company, Inc. Method and apparatus for introducing combustion air into a combustion chamber
JPH068170B2 (en) * 1985-10-29 1994-02-02 宇部興産株式会社 Method for producing high-purity magnesium oxide fine powder
FR2605053A1 (en) * 1986-10-14 1988-04-15 Gen Electric MULTIPLE COMBUSTIBLE AIRCRAFT AND ITS PROPULSION SYSTEM
US4835959A (en) * 1986-10-14 1989-06-06 General Electric Company Multiple-propellant air vehicle and propulsion system
BE1000767A7 (en) * 1987-07-16 1989-03-28 Recticel METHOD AND APPARATUS FOR FORMING A layer of polyurethane on a surface by spraying.
DE3843543C2 (en) * 1988-12-23 2000-11-23 Thyssen Gas Process for the reduction of nitrogen oxides contained in flue gases from combustion plants
DE3939178A1 (en) * 1989-11-27 1991-05-29 Branson Ultraschall DEVICE FOR SPRAYING LIQUID AND SOLID MATERIALS, PREFERABLY MELTED METALS
US5588379A (en) * 1991-03-20 1996-12-31 Witteveen; Gustaaf J. Mixing device and method for gaseous liquid of pulverised substances
GB9115340D0 (en) * 1991-07-16 1991-08-28 Univ Leeds Nebuliser
US5183186A (en) * 1991-08-15 1993-02-02 Emson Research Inc. Spray dispensing device having a tapered mixing chamber
US6123145A (en) * 1995-06-12 2000-09-26 Georgia Tech Research Corporation Synthetic jet actuators for cooling heated bodies and environments
US5758823A (en) * 1995-06-12 1998-06-02 Georgia Tech Research Corporation Synthetic jet actuator and applications thereof
US6457654B1 (en) 1995-06-12 2002-10-01 Georgia Tech Research Corporation Micromachined synthetic jet actuators and applications thereof
DE19856169A1 (en) * 1998-12-05 2000-06-29 Deutsch Zentr Luft & Raumfahrt Fluid atomization method for e.g. heating burners generates spray consisting of fine and coarse spray components, with coarse spray formed by drops above a certain size
US6554607B1 (en) 1999-09-01 2003-04-29 Georgia Tech Research Corporation Combustion-driven jet actuator
WO2005016548A1 (en) * 2003-08-13 2005-02-24 Unilever Plc Nozzle for a spray device
AU2004265080B9 (en) * 2003-08-13 2009-04-23 Unilever Global Ip Limited Domestic spray device
US6827296B1 (en) * 2003-08-18 2004-12-07 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for atomizing fluids with a multi-fluid nozzle
FI116774B (en) * 2004-01-08 2006-02-28 Dekati Oy Method and apparatus for increasing the size of small particles
US7500849B2 (en) * 2004-01-16 2009-03-10 Air Products And Chemicals, Inc. Emulsion atomizer nozzle, and burner, and method for oxy-fuel burner applications
FR2872887B1 (en) * 2004-07-07 2006-09-08 Inst Francais Du Petrole HOMOGENEOUS COMBUSTION METHOD AND THERMAL GENERATOR USING SUCH A METHOD
FI116798B (en) * 2004-07-30 2006-02-28 Metso Automation Oy Moisture nozzle for a paper web
US20090202953A1 (en) * 2008-02-07 2009-08-13 Radek Masin Glycerin burning system
US20100233640A1 (en) * 2008-02-07 2010-09-16 Radek Masin Glycerin burning system
US8287938B1 (en) * 2008-05-20 2012-10-16 Ingo Scheer Method to produce a coating and to fine-tune the coating morphology
ES2350208B1 (en) * 2008-08-08 2011-11-07 Universidad De Sevilla METHOD FOR THE PRODUCTION OF MICRO AND NANO-MONODISPERSE BUBBLES THROUGH ROTATING CO-FLOW.
JP5456653B2 (en) * 2010-12-13 2014-04-02 日本光電工業株式会社 Blood measuring device
JP6166103B2 (en) * 2013-06-04 2017-07-19 ヤンマー株式会社 Urea water injection nozzle
JP6395363B2 (en) * 2013-10-11 2018-09-26 川崎重工業株式会社 Gas turbine fuel injection device
US11028727B2 (en) * 2017-10-06 2021-06-08 General Electric Company Foaming nozzle of a cleaning system for turbine engines
US10287970B1 (en) 2017-12-07 2019-05-14 Caterpillar Inc. Fuel injection system
WO2019145159A1 (en) * 2018-01-23 2019-08-01 Shl Medical Ag Aerosol generator
CN109365156A (en) * 2018-12-05 2019-02-22 郑州沃众实业有限公司 A kind of type high-efficiency spray device rotated automatically
CN113461346A (en) * 2021-07-09 2021-10-01 鞍钢金属结构有限公司 Lime slaking tank capable of removing tank bottom sediment without stopping and working method thereof
CN113680545B (en) * 2021-08-30 2022-12-16 浙江工业大学 Noise reduction nozzle adjusted by adopting rotating structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB484602A (en) * 1936-11-09 1938-05-09 Reginald Percy Fraser Improvements relating to liquid atomising devices, particularly for oil burning furnaces
DE1551728A1 (en) * 1967-12-19 1970-04-16 Shell Int Research Burner head
DE2005972A1 (en) * 1970-02-10 1971-09-02 Badische Anilin & Soda Fabrik AG, 6700 Ludwigshafen Atomisation of liquids, suspensions or pastes
DE2210159A1 (en) * 1971-03-03 1972-10-12 Hitachi Ltd Method of fuel atomization and fuel atomization nozzle
US3758259A (en) * 1971-11-26 1973-09-11 J Voorheis Methods for preparing fuels and also for thereafter feeding them into furnaces and burning them therein
US3844484A (en) * 1971-03-03 1974-10-29 Hitachi Ltd Method of fuel atomization and a fuel atomizer nozzle therefor
DE2356229A1 (en) * 1973-11-10 1975-05-22 Shigetake Tamai Atomizer nozzle for multi-purpose uses - has frustroconical part with half-helically grooved oblique face and close cover forming gas channels
GB1497832A (en) * 1975-04-11 1978-01-12 Howe Baker Eng Fuel atomizing device
US4120640A (en) * 1977-02-18 1978-10-17 Infern-O-Therm Corporation Burner for liquid fuel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047570A (en) * 1933-02-10 1936-07-14 Wiltschire William Frederick Fuel burner
US2254123A (en) * 1939-03-06 1941-08-26 Swindell Brothers Inc Oil burner
GB570066A (en) * 1944-06-24 1945-06-20 John Graves Mckean Improvements in and relating to liquid fuel burners of the low-pressure-air type
BE652651A (en) * 1963-09-03
SE410218B (en) * 1970-03-24 1979-10-01 Collin Ab Rolf BURNER
US3734677A (en) * 1970-08-12 1973-05-22 Matsushita Electric Ind Co Ltd Liquid fuel burner
SU525837A1 (en) * 1974-10-14 1976-08-25 Предприятие П/Я В-2453 Gas oil burner
US4105163A (en) * 1976-10-27 1978-08-08 General Electric Company Fuel nozzle for gas turbines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB484602A (en) * 1936-11-09 1938-05-09 Reginald Percy Fraser Improvements relating to liquid atomising devices, particularly for oil burning furnaces
DE1551728A1 (en) * 1967-12-19 1970-04-16 Shell Int Research Burner head
DE2005972A1 (en) * 1970-02-10 1971-09-02 Badische Anilin & Soda Fabrik AG, 6700 Ludwigshafen Atomisation of liquids, suspensions or pastes
DE2210159A1 (en) * 1971-03-03 1972-10-12 Hitachi Ltd Method of fuel atomization and fuel atomization nozzle
US3844484A (en) * 1971-03-03 1974-10-29 Hitachi Ltd Method of fuel atomization and a fuel atomizer nozzle therefor
US3758259A (en) * 1971-11-26 1973-09-11 J Voorheis Methods for preparing fuels and also for thereafter feeding them into furnaces and burning them therein
DE2356229A1 (en) * 1973-11-10 1975-05-22 Shigetake Tamai Atomizer nozzle for multi-purpose uses - has frustroconical part with half-helically grooved oblique face and close cover forming gas channels
GB1497832A (en) * 1975-04-11 1978-01-12 Howe Baker Eng Fuel atomizing device
US4120640A (en) * 1977-02-18 1978-10-17 Infern-O-Therm Corporation Burner for liquid fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016794A1 (en) * 1991-03-20 1992-10-01 Witteveen Gustaaf J Mixing device and method for gaseous, liquid or pulverised solid substances
EP0565814A2 (en) * 1992-04-13 1993-10-20 LLB Lurgi Lentjes Babcock Energietechnik GmbH Burner torch for pulverising a coal-water suspension
EP0565814A3 (en) * 1992-04-13 1993-11-24 Babcock Energie Umwelt Burner torch for pulverising a coal-water suspension
US6068608A (en) * 1997-05-01 2000-05-30 Chase Medical, Inc. Method of using integral aortic arch infusion clamp
US6132397A (en) * 1997-05-01 2000-10-17 Chase Medical Inc. Integral aortic arch infusion clamp catheter
US6045531A (en) * 1997-07-22 2000-04-04 Chase Medical Inc. Catheter having a lumen occluding balloon and method of use thereof
US6241699B1 (en) 1998-07-22 2001-06-05 Chase Medical, Inc. Catheter system and method for posterior epicardial revascularization and intracardiac surgery on a beating heart
CN111346869A (en) * 2020-05-06 2020-06-30 浙江大农实业股份有限公司 Hot water high pressure cleaner

Also Published As

Publication number Publication date
DK150395B (en) 1987-02-16
FI69696C (en) 1986-03-10
JPS56501380A (en) 1981-09-24
EP0028025B1 (en) 1983-06-22
FI811693L (en) 1981-06-01
DE3063914D1 (en) 1983-07-28
DK199781A (en) 1981-05-05
NO812067L (en) 1981-06-18
US4473185A (en) 1984-09-25
WO1981001186A1 (en) 1981-04-30
FI69696B (en) 1985-11-29
DK150395C (en) 1987-09-28
CA1159356A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
EP0028025A1 (en) Method and device for the production of microdroplets of liquid
DE2252218C2 (en) Device for atomizing a fluid
DE2429291C2 (en) Method and device for the chemical and / or physical treatment of fluids
EP1425048B1 (en) Sterilizer comprising a h2o2 evaporator
WO2011124686A1 (en) Spray system and method for spraying a secondary fluid into a primary fluid
EP0710799B1 (en) Thermal oxidation method for liquid waste material
DE917025C (en) Furnace and process for making carbon black
DE2363332C3 (en) Method and device for concentrating dilute solutions of corrosive substances
DE2210773C3 (en) Device for burning sulfur
EP0405481A1 (en) Apparatus for spraying a fluid
DE1592853C3 (en) Process and device for the production of carbon black
EP0446436A2 (en) Process and device for burning impurities in a media flow
DE2318082C3 (en) Method and device for producing an emulsion from water and liquid fuel
DE2943590C2 (en)
EP2679897B1 (en) Oil pre-mix burner with swirler
DD153585A5 (en) METHOD AND DEVICE FOR PRODUCING VOB MICRO FLUID FLAVOR
DE3201366A1 (en) Heat treatment oven
DE3234764A1 (en) SONAR SPRAYER
EP0536559B1 (en) Process and device for the heat treatment of a pumpable candy mass
DE1551771C3 (en) Combustion device with a combustion chamber for internal combustion of a fuel gas-air mixture
DE908513C (en) Liquid fuel combustion device
DE1181359B (en) Jet pipe
EP0272437A2 (en) Process and apparatus for the heat treatment of confectionery substances by means of a heat exchanger
DE767487C (en) Stone burner for heating industrial ovens
WO2002089995A1 (en) Two-component nozzle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19811003

ITF It: translation for a ep patent filed

Owner name: ST. ASSOC. MARIETTI & PIPPARELLI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19830622

REF Corresponds to:

Ref document number: 3906

Country of ref document: AT

Date of ref document: 19830715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3063914

Country of ref document: DE

Date of ref document: 19830728

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911030

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931022

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931027

Year of fee payment: 14

Ref country code: AT

Payment date: 19931027

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931129

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

EUG Se: european patent has lapsed

Ref document number: 80106544.2

Effective date: 19930510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST