EP0193426B1 - Antenne miniature à gain - Google Patents

Antenne miniature à gain Download PDF

Info

Publication number
EP0193426B1
EP0193426B1 EP86400149A EP86400149A EP0193426B1 EP 0193426 B1 EP0193426 B1 EP 0193426B1 EP 86400149 A EP86400149 A EP 86400149A EP 86400149 A EP86400149 A EP 86400149A EP 0193426 B1 EP0193426 B1 EP 0193426B1
Authority
EP
European Patent Office
Prior art keywords
loop
loops
point
apex
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86400149A
Other languages
German (de)
English (en)
Other versions
EP0193426A1 (fr
Inventor
Jean-Claude Malcombe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Malcombe Jean-Claude
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86400149T priority Critical patent/ATE51470T1/de
Publication of EP0193426A1 publication Critical patent/EP0193426A1/fr
Application granted granted Critical
Publication of EP0193426B1 publication Critical patent/EP0193426B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the invention relates to an antenna for the emission or reception of radio waves, in the field of telecommunications, telemetry, radiocommunications or television.
  • gain antennas In the current state of the art, gain antennas generally have a non-negligible and often annoying bulk. To provide an appreciable electrical gain, they consist of an assembly of several elements whose length is at least 7J4. A typical example is found in document US-A-2,671,852 in which an antenna is described which is composed at least of a rectangular frame whose sides have lengths of a / 4 and 1/2 respectively.
  • the main object of the invention is to provide an antenna for transmitting and / or receiving radio waves, having a gain at least comparable to that of antennas of conventional design, but with a much smaller footprint.
  • An antenna according to the invention intended to be connected to a coaxial cable with two conductors, comprises two loops arranged in substantially parallel planes, spaced a distance substantially equal to ⁇ / 8 with a tolerance of ⁇ 20%, each loop being closed with a perimeter of a length of approximately 3 ⁇ / 8, or one of the two loops being open with a length of at least ⁇ / 4, these two loops being connected to each other by at least a connecting element having a length substantially equal to the distance which separates them, and each of the two loops being joined respectively to one of the conductors of the coaxial cable.
  • one of the two loops when one of the two loops is open, its two free ends are each joined by a connecting element at the same point of the other loop or at an internal point connected to this loop.
  • the coaxial cable can arrive in the plane of one of the loops; preferably, it is located in a median plane between the two loops and its two conductors are joined respectively to the loops by two connecting elements extending in opposite directions each having a length substantially equal to X / 16, that is to say - say about half the distance between the two loops.
  • the loops are triangles arranged in two substantially parallel planes spaced by a distance substantially equal to ⁇ / 8, the distance between the vertices being in each triangle substantially equal to ⁇ / 8, each triangle having a connection vertex connected respectively to a conductor of the coaxial cable either directly or via an interior point at each triangle spaced from the connection vertex by a distance substantially equal to 7J16, the base opposite the vertex of connection in a first triangle being existing or nonexistent and a connection being established by an element between the midpoint of said opposite base, when it exists, at said interior point or to the coaxial cable conductor connected directly to the top of the second triangle, or being established by two elements between the two vertices opposite the connecting vertex in the first triangle, when said opposite base does not exist, at one of the points of the second triangle or at an interior point connected to this second triangle.
  • connection vertices of the two triangles are each directly connected respectively to a conductor of the coaxial cable, there is substantially in the median plane between the planes of the two triangles a whip of a length of a / 8 extending from the conductor of the coaxial cable connected to any one of the two triangles, the connection between the triangles then being removed.
  • the length of the longest elements is little more than a / 8; the entire antenna is therefore contained in a restricted volume, significantly lower than that of conventional antennas.
  • Such an antenna of reduced general volume nevertheless has a gain equal to, if not greater than, that of an antenna of conventional design, the largest dimension of which is approximately twenty times larger than that of an antenna according to the invention.
  • two triangles 1,1 ′ are each composed of three elements of length equal to ⁇ / 8 each. These triangles 1, l 'are placed in parallel planes spaced apart by a distance little different from ⁇ / 8 and their sides are parallel; they have a vertex placed at the bottom, which will be called connecting vertex 2, 2 'and there is therefore in each triangle 1.1' a base 3, 3 'which is opposite to the connecting vertex 2, 2'.
  • This antenna is connected to the conductors of a coaxial cable which ends in the median plane also spaced from the two triangles 1, 1 '.
  • the triangle 1 ' is connected to the central conductor 5 via a connection element 6' which extends from this central conductor 5 to reach a point 7 'inside this triangle 1'.
  • This connecting element 6 ' has a length equal to ⁇ / 16, or very little different from this length; the internal point 7 ′ is distant from the connection vertex 2 ′ by a distance equal to ⁇ / 16 and it is connected to this vertex 2 ′ by an internal element 8 ′ whose length is ⁇ / 16.
  • connection element 6 of length ⁇ / 16 which leaves opposite the connection element 6 ', to terminate in the plane of this other triangle 1 at an interior point 7; the latter is connected to the connection vertex 2 of this same triangle 1 by an internal element 8 of length equal to ⁇ / 16.
  • the two triangles 1,1 'each have a base 3, 3' opposite the connection top 2, 2 '; the base 3 of the first triangle 1 has a midpoint 10 and this point is joined by a connecting element 11 to the interior point 7 'of the second triangle l' whose connection vertex 2 'is connected as described to the conductor central 5 of the coaxial cable 4.
  • This element 11 has a length little different from ⁇ 8.
  • the midpoint 10 separates the element 3 which is the base of the triangle 1 into two opposite half-elements 3A, 3B which each have a length of ⁇ / 16.
  • the two elements 6, 6 ′, of length ⁇ / 16 depart in opposition from the coaxial cable and are closed by the elements 11 ( ⁇ / 8) , 3B ( ⁇ / 16) + one side ( ⁇ / 8) composing a first part of the triangle 1 and by the second part of this triangle made up of the elements 3A (a / 16) + a side ⁇ / 8 of the same length in opposition , and by the inner element 8 ( ⁇ / 16), thus allowing the distribution of the HF current on two opposite lines from the midpoint 10 to the connection top 2, as indicated by arrows.
  • Opposite triangle 1 is a feedback loop consisting of triangle 1 'with three sides R / 8 supplied by connection line 8'; this reaction loop reacts in an open line with the closed line formed by the triangle 1, along the line indicated in broken lines in FIG. 1.
  • the HF currents, indicated by arrows, circulating in the lines in opposition, allow a concentration of the energy by their double action on the lines 3B + one side of the triangle and 3A + the other side of the triangle, as well as by the loop reaction.
  • FIG. 2 shows a variant in which the coaxial cable 4 ends at the connection apex 2 of the triangle 1.
  • This apex 2 is connected directly to the conductive sheath 9 and the central conductor is joined to the interior element 8 of the triangle 1 by l end of this element which is close to the vertex 2 and which is isolated from the latter.
  • the opposite end situated at the interior point 7 is connected to an element 12 of a single length ( ⁇ / 8) which terminates at the interior point 7 'of the triangle 1'.
  • the interior element 8 ' exists between the interior point 7' and the connection vertex 2 'of this triangle 1'.
  • FIG. 3 The variant illustrated in Figure 3 is identical to the embodiment of Figure 1 except that the connecting elements 8, 8 'inside the triangles 1 and l do not exist.
  • the conductors 5 and 9 of the coaxial cable 4 are therefore directly connected to the connection vertices 2 and 2 'of the triangles 1 and 1'.
  • the midpoint 10 of the base 3 of the triangle 1 is connected to the connection top 2 of the latter by an additional element 13.
  • This element 13 leads, with the two sides of the triangle which lead to the connection top 2, the HF current which returns to this vertex, as indicated by arrows.
  • tuning for a minimum standing wave ratio is done by modifying the length of the elements 6 and 11 which start from the coaxial cable 4 and which end at the second triangle 1.
  • FIG. 4 shows a variant of an antenna identical to that of FIG. 1, except that the second triangle 1 is devoid of its base opposite the connection vertex 2.
  • the two vertices 14, 15 opposite the vertex 2 are each connected respectively by a connecting element 16, 17 to the interior point 7 'of the first triangle 1', replacing element 11 which no longer exists.
  • the HF current indicated by arrows, borrows these two elements 16, 17 in the direction of triangle 1.
  • the first triangle 1 constitutes an open loop composed only of two sides between the vertices 2 and 14 on the one hand, 2 and 15 on the other hand; the length of each of these sides is ⁇ / 8 so that their total length is ⁇ / 4.
  • the element 16 has, like the element 17, a length little different from ⁇ / 8.
  • This variant amounts to detaching the side 3 from a vertex and to pivoting it relative to the other vertex of the triangle 1 to fix it to the interior point 7 'of the triangle 1'.
  • the connecting element (11 in FIG. 1), no longer having the midpoint 10 to hang on, is joined at the top 15.
  • connection vertices 2 and 2 ' of the two triangles 1, l ' are each directly connected to the conductors of the coaxial cable 4, as in the example in FIG. 3.
  • the elements 11 or 16, 17 for connection between the triangles do not exist and it is provided, substantially in the median plane between the two triangles 1, 1 ′ a reactive whip 18 of length ⁇ / 8.
  • This whip 18 is located between the triangles 1 and 1 '.
  • This mode of construction by lines in opposition in a volume of 7J8 side allows to realize miniature antennas intended to be used in emission or reception in all telecommunications systems, telemetry, radiocommunications, or television, fixed or mobile, in a spectrum of very wide frequency which has no limit other than the possibility of manufacturing in a minimum or maximum size.
  • a conventional YAGI antenna has nine elements giving it a length of 2 meters, while an antenna according to the invention has a length of 0.25 m, which leads to a reduction in overall dimensions of 1.75 meters.
  • An antenna according to the invention, produced according to FIGS. 1 to 5 for the television band with a central frequency of 503.25 megahertz has an overall length of 75 millimeters.
  • the standing wave ratio (R.O.S.) is minimum (1.1 / 1).
  • An antenna according to the invention can be made of magnetic or non-magnetic material, wire or tube, the cross section of which is related to the pass band, for example steel, copper, aluminum or various alloys.
  • FIG. 6 shows the distribution of the bellies and the nodes of the voltage (in broken lines) and of the intensity (in solid lines) in an antenna according to the invention, from a point 0 which is for example the point connecting the connecting element 6 'to the central conductor 5 of the coaxial cable 4.
  • the upper graph relates to the antenna of FIG. 5 with an open structure; the lower graph relates to the antennas of FIGS. 1 to 4 with a closed structure.
  • the current thus formed in a loop continues its path towards the other loop, in open line, to finish at the supply point in parallel.
  • the gain of the antenna being a function of the concentration of the HF current, it will be at least equal to that of a conventional antenna with a footprint twenty times smaller.

Description

  • L'invention a pour objet une antenne pour l'émission ou la réception des ondes hertziennes, dans le domaine des télécommunications, télémesures, radiocommunications ou télévision.
  • Dans l'état actuel de la technique, les antennes à gain ont généralement un encombrement non négligeable et souvent gênant. Pour procurer un gain électrique appréciable, elles sont constituées par un assemblage de plusieurs éléments dont la longueur est au minimum 7J4. On en trouve un exemple typique dans le document US-A-2.671.852 dans lequel est décrite une antenne composée au moins d'un cadre rectangulaire dont les côtés ont respectivement des longueurs de a/4 et de 1/2.
  • Si on se réfère maintenant à une antenne de télévision fonctionnant dans la bande UHF (Genre antenne YAGI), pour procurer un gain électrique de l'ordre de 15 à 20 dB, elle doit être composée, classiquement, de multiples éléments dont l'encombrement total atteint environ 2 mètres de longueur.
  • Le but principal de l'invention est d'apporter une antenne d'émission et/ou de réception d'ondes hertziennes, ayant un gain au moins comparable à celui des antennes de conception classique, mais avec un encombrement nettement plus faible.
  • Une antenne conforme à l'invention, destinée à être raccordée à un câble coaxial à deux conducteurs, comprend deux boucles disposées dans des plans substantiellement parallèles, espacées d'une distance sensiblement égale à λ/8 avec une tolérance de ± 20 %, chaque boucle étant fermée avec un périmètre d'une longueur de 3λ/8 environ, ou l'une des deux boucles étant ouverte avec une longueur de λ/4 au moins, ces deux boucles étant reliées l'une à l'autre par au moins un élément de liaison ayant une longueur sensiblement égale à la distance qui les sépare, et chacune des deux boucles étant réunie respectivement à l'un des conducteurs du câble coaxial.
  • De préférence, quand l'une des deux boucles est ouverte, ses deux extrémités libres sont réunies chacune par un élément de liaison à un même point de l'autre boucle ou à un point intérieur relié à cette boucle.
  • Le câble coaxial peut arriver dans le plan de l'une des boucles; de préférence, il est situé dans un plan médian entre les deux boucles et ses deux conducteurs sont réunis respectivement aux boucles par deux éléments de raccordement s'étendant en sens opposés ayant chacun une longueur sensiblement égale à X/16, c'est-à-dire à la moitié environ de la distance qui sépare les deux boucles.
  • Selon un modèle particulier de réalisation de l'invention, les boucles sont des triangles disposés dans deux plans substantiellement parallèles espacés d'une distance sensiblement égale à λ/8, la distance entre les sommets étant dans chaque triangle sensiblement égale à λ/8, chaque triangle ayant un sommet de raccordement relié respectivement à un conducteur du câble coaxial soit directement soit par l'intermédiaire d'un point intérieur à chaque triangle espacé du sommet de raccordement d'une distance sensiblement égale à 7J16, la base opposée au sommet de raccordement dans un premier triangle étant existante ou inexistante et une liaison étant établie par un élément entre le point médian de ladite base opposée, quand elle existe, audit point intérieur ou au conducteur de câble coaxial relié directement au sommet du second triangle, ou étant établie par deux éléments entre les deux sommets opposés au sommet de raccordement dans le premier triangle, quand ladite base opposée n'existe pas, à l'un des points du second triangle ou à un point intérieur relié à ce second triangle.
  • Selon une variante de réalisation de l'invention, quand le point médian de la base opposée au sommet de raccordement dans un premier triangle est relié à un conducteur du câble coaxial qui est relié aussi au sommet de raccordement du second triangle, il existe dans le premier triangle un élément de liaison entre ledit point médian de sa base et son sommet de raccordement.
  • Selon une autre variante de réalisation de l'invention, quand les sommets de raccordement des deux triangles sont reliés directement chacun respectivement à un conducteur du câble coaxial, il existe sensiblement dans le plan médian entre les plans des deux triangles un fouet d'une longueur de a/8 s'étendant à partir du conducteur du câble coaxial relié à l'un quelconque des deux triangles, la liaison entre les triangles étant alors supprimée.
  • Dans une antenne conforme à l'invention, la longueur des éléments les plus longs est peu supérieure à a/8; l'ensemble de l'antenne est donc contenu dans un volume restreint, nettement plus faible que celui des antennes classiques. Une telle antenne de volume général réduit a néanmoins un gain égal, sinon supérieur, à celui d'une antenne de conception classique dont la dimension la plus importante est environ vingt fois plus grande que celle d'une antenne selon l'invention. D'autres caractéristiques de l'antenne de l'invention sont mentionnées dans les sous-revendications annexées.
  • On donnera maintenant, sans intention limitative et sans exclure aucune variante, une description de plusieurs modes de réalisation de l'invention. On se reportera aux dessins annexés dans lesquels :
    • - la figure 1 est une représentation schématique d'une antenne conforme à l'invention ayant des lignes en opposition en circuit fermé plus une boucle de réaction;
    • - la figure 2 montre une variante d'une antenne dans laquelle un sommet de raccordement est réuni directement à un conducteur d'un câble coaxial;
    • - la figure 3 montre une autre variante dérivant de l'antenne de la figure 1 ;
    • - la figure 4 montre une variante dans laquelle l'un des triangles est dépourvu de sa base opposée au sommet de raccordement;
    • - la figure 5 montre une autre variante dans laquelle des boucles de réaction sont en opposition sur des lignes ouvertes;
    • - la figure 6 comprend deux graphiques qui servent à expliquer la circulation du courant HF en ligne ouverte ou fermée dans les antennes conformes à l'invention.
  • Dans l'antenne illustrée par la figure 1, deux triangles 1,1' sont composés chacun de trois éléments de longueur égale à λ/8 chacun. Ces triangles 1, l' sont placés dans des plans parallèles écartés d'une distance peu différente de λ/8 et leurs côtés sont parallèles; ils ont un sommet placé en bas, que l'on appellera sommet de raccordement 2, 2' et il existe donc dans chaque triangle 1,1' une base 3, 3' qui est opposée au sommet de raccordement 2, 2'.
  • Cette antenne est raccordée aux conducteurs d'un câble coaxial qui se termine dans le plan médian également espacé des deux triangles 1, 1'. Par exemple, le triangle 1' est raccordé au conducteur central 5 par l'intermédiaire d'un élément de raccordement 6' qui s'étend à partir de ce conducteur central 5 pour aboutir à un point 7' intérieur à ce triangle 1'. Cet élément de raccordement 6' a une longueur égale à λ/16, ou très peu différente de cette longueur; le point intérieur 7' est éloigné du sommet de raccordement 2' d'une distance égale à λ/16 et il est relié à ce sommet 2' par un élément intérieur 8' dont la longueur est de λ/16.
  • L'autre triangle 1 est raccordé de manière analogue à la gaine conductrice 9 du câble coaxial 4 par un élément de raccordement 6, de longueur λ/16, qui part à l'opposé de l'élément de raccordement 6', pour aboutir dans le plan de cet autre triangle 1 à un point intérieur 7; ce dernier est relié au sommet de raccordement 2 de ce même triangle 1 par un élément intérieur 8 de longueur égale à λ/16.
  • Dans cet exemple, les deux triangles 1,1' ont chacun une base 3, 3' opposée au sommet de raccordement 2, 2'; la base 3 du premier triangle 1 a un point médian 10 et ce point est réuni par un élément de liaison 11 au point intérieur 7' du second triangle l' dont le sommet de raccordement 2' est relié comme on l'a décrit au conducteur central 5 du câble coaxial 4. Cet élément 11 a une longueur peu différente de λ8.
  • Le point médian 10 sépare l'élément 3 qui est la base du triangle 1 en deux demi-éléments opposés 3A, 3B qui ont chacun une longueur de λ/16.
  • D'un point de vue plus fonctionnel, dans cette antenne de la figure 1, les deux éléments 6, 6', de longueur λ/16 partent en opposition à partir du câble coaxial et se referment par les éléments 11 (λ/8), 3B (λ/16) + un côté (λ/8) composant une première partie du triangle 1 et par la deuxième partie de ce triangle composée des éléments 3A (a/16) + un côté λ/8 de même longueur en opposition, et par l'élément intérieur 8 (λ/16), permettant ainsi la distribution du courant HF sur deux lignes opposées à partir du point médian 10 jusqu'au sommet de raccordement 2, comme indiqué par des flèches. En opposition au triangle 1 se trouve une boucle de réaction constituée par le triangle 1' à trois côtés R/8 alimenté par la ligne de raccordement 8'; cette boucle de réaction réagit en ligne ouverte avec la ligne fermée constituée par le triangle 1, suivant le tracé indiqué en trait interrompu sur la figure 1. La ligne fermée: éléments 6',11, 3B, un côté du triangle, 8 et 6 ou la ligne 6', 11, 3A, un autre côté du triangle, 8 et 6, correspondent à 4/8 de longueur d'onde et l'ensemble à 8/8 de longueur d'onde. Les courants HF, indiqués par des flèches, circulant dans les lignes en opposition, permettent une concentration de l'énergie par leur double action sur les lignes 3B + un côté du triangle et 3A + l'autre côté du triangle, ainsi que par la réaction de la boucle.
  • L'accord pour un rapport d'ondes stationnaires minimum se fait par la modification de la distance qui sépare les deux triangles, c'est-à-dire de la longueur des éléments 6, 6' et 11, dans un rapport maximum de 20 %
  • La figure 2 montre une variante dans laquelle le câble coaxial 4 aboutit au sommet de raccordement 2 du triangle 1. Ce sommet 2 est raccordé directement à la gaine conductrice 9 et le conducteur central est réuni à l'élément intérieur 8 du triangle 1 par l'extrémité de cet élément qui est proche du sommet 2 et qui est isolée de ce dernier. L'extrémité opposée située au point intérieur 7 est reliée à un élément 12 d'une seule longueur (λ/8) qui aboutit au point intérieur 7' du triangle 1'. L'élément intérieur 8' existe entre le point intérieur 7' et le sommet de raccordement 2' de ce triangle 1'.
  • La circulation du courant HF et la réaction des boucles opposées sont indiquées aussi par des flèches et par un trait interrompu sur cette figure 2.
  • La variante illustrée par la figure 3 est identique à la réalisation de la figure 1 sauf que les éléments de raccordement 8, 8' intérieurs aux triangles 1 et l' n'existent pas. Les conducteurs 5 et 9 du câble coaxial 4 sont donc reliés directement aux sommets de raccordement 2 et 2' des triangles 1 et 1'. En outre, le point médian 10 de la base 3 du triangle 1 est reliée au sommet de raccordement 2 de ce dernier par un élément supplémentaire 13. Cet élément 13 conduit, avec les deux côtés du triangle qui aboutissent au sommet de raccordement 2, le courant HF qui revient à ce sommet, comme indiqué par des flèches. Dans ce cas, l'accord pour un rapport d'ondes stationnaires minimum se fait par modification de la longueur des éléments 6 et 11 qui partent du câble coaxial 4 et qui aboutissent au second triangle 1.
  • La figure 4 montre une variante d'une antenne identique à celle de la figure 1, sauf que le second triangle 1 est dépourvu de sa base opposée au sommet de raccordement 2. Dans ce cas les deux sommets 14, 15 opposés au sommet 2 sont reliés chacun respectivement par un élément de liaison 16, 17 au point intérieur 7' du premier triangle 1', en remplacement de l'élément 11 qui n'existe plus. Le courant HF, indiqué par des flèches, emprunte ces deux éléments 16, 17 en direction du triangle 1.
  • Dans cette variante de réalisation, le premier triangle 1 constitue une boucle ouverte composée seulement de deux côtés entre les sommets 2 et 14 d'une part, 2 et 15 d'autre part; la longueur de chacun de ces côtés est de λ/8 de sorte que leur longueur totale est de λ/4. On remarquera que l'élément 16 a, comme l'élément 17, une longueur peu différente de λ/8. Cette variante revient à détacher le côté 3 d'un sommet et à le faire pivoter par rapport à l'autre sommet du triangle 1 pour le fixer au point intérieur 7' du triangle 1'. En même temps, l'élément de liaison (11 sur la figure 1), n'ayant plus le point médian 10 pour s'accrocher, est réuni au sommet 15.
  • Dans les exemples décrits ci-dessus, il existe une liaison matérielle entre les deux triangles 1 et 1', assurée par les éléments 11 ou 16 et 17. A la place de cette structure "fermée", on peut adopter, en variante, une structure ouverte comme le montre la figure 5. Sur celle-ci, les sommets de raccordement 2 et 2' des deux triangles 1, l' sont reliés directement chacun aux conducteurs du câble coaxial 4, comme dans l'exemple de la figure 3. Les éléments 11 ou 16, 17 de liaison entre les triangles n'existent pas et il est prévu, sensiblement dans le plan médian entre les deux triangles 1, 1' un fouet réactif 18 de longueur λ/8. Ce fouet 18 est situé entre les triangles 1 et 1'. Dans cette antenne, deux éléments 6, 6', de longueur λ/16 chacun, disposés en opposition, alimentent chacun une boucle triangulaire composée de trois éléments de longueur 2J8 chacun, la circulation de courant est indiquée aussi par des flèches sur cette figure 5.
  • On remarquera que, dans tous les cas, la construction de l'antenne en deux boucles raccordées en opposition par des éléments de longueur λ/16 chacun donne un encombrement en longueur de l'antenne de a/8.
  • Ce mode de construction par lignes en opposition dans un volume de 7J8 de côté permet de réaliser des antennes miniatures destinées à être utilisées en émission ou en réception dans tous systèmes de télécommunications, télémesures, radiocommunications, ou télévision, fixe ou mobile, dans un spectre de fréquence très large qui n'a de limite que la possibilité de fabrication dans un encombrement minimum ou maximum.
  • Par exemple, pour une fréquence de 145 Mega- hertz, soit 2 mètres de longueur d'onde, une antenne classique YAGI comporte neuf éléments lui donnant une longueur de 2 mètres, alors qu'une antenne conforme à l'invention a une longueur de 0,25 m, ce qui conduit à une réduction de l'encombrement de 1,75 mètre. Une antenne conforme à l'invention, réalisée selon les figures 1 à 5 pour la bande de télévision avec une fréquence centrale de 503,25 Mega- hertz a une longueur hors tout de 75 millimètres. Le rapport d'ondes stationnaires (R.O.S.) est minimum (1,1/1).
  • Une antenne conforme à l'invention est réalisable en matière magnétique ou amagnétique, en fil ou en tube dont la section est en rapport avec la bande passante, par exemple en acier, en cuivre, en aluminium ou alliages divers.
  • Dans les exemples qui précèdent, on s'est référé, par commodité, à des réalisations dans lesquelles les boucles qui sont montées aux extrémités de deux lignes disposées en opposition, sont des triangles. Cette forme géométrique n'est pas imposée par l'invention; des modifications s'écartant de la configuration triangulaire décrite sont possibles sans que l'on sorte pour autant du cadre de l'invention.
  • La figure 6 montre la répartition des ventres et des noeuds de la tension (en trait interrompu) et de l'intensité (en trait plein) dans une antenne selon l'invention, à partir d'un point 0 qui est par exemple le point de raccordement de l'élément de liaison 6' au conducteur central 5 du câble coaxial 4. Le graphique supérieur se rapporte à l'antenne de la figure 5 à structure ouverte; le graphique inférieur se rapporte aux antennes des figures 1 à 4 à structure fermée.
  • Avec deux boucles montées en opposition, par exemple de forme triangulaire (toute autre forme pouvant convenir, comme expliqué plus haut), dont chaque côté mesure environ 1/8 de longueur d'onde et espacées de 1/8 de longueur d'onde avec la tolérance indiquée plus haut, alimentées par un sommet (cas des triangles), le courant HF circule dans les deux branches pour rejoindre un même point du fait que les éléments sont dimensionnés et répartis de telle sorte que les courants ne se contrarient pas.
  • Le courant ainsi formé dans une boucle continue son cheminement vers l'autre boucle, en ligne ouverte, pour terminer au point d'alimentation en parallèle.
  • Il est possible aussi de disposer d'autres éléments, dans lesquels le courant prendra naissance, permettant ainsi de concentrer un maximum de courant HF au point d'alimentation.
  • Le gain de l'antenne étant fonction de la concentration du courant HF, il sera au moins égal à celui d'une antenne conventionnelle avec un encombrement vingt fois plus faible.
  • Ainsi qu'on l'a déjà dit, il découle de l'invention un très grand nombre d'antennes, de géométrie diverse, dans un volume de l'ordre de λ8 de côté qu'il est encore possible de compléter par des éléments directeur ou réflecteur pour en augmenter le gain ou la directivité. Il est également possible de coupler entre elles plusieurs de ces antennes, avec un encombrement qui reste bien inférieur à celui des antennes classiques.

Claims (11)

1. Antenne à gain élevé pour transmission et réception, conçue pour fonctionner à une longueur d'onde λ, et pour être raccordée à un câble coaxial à deux conducteurs, antenne comprenant deux boudes (1, 1') disposées en regard l'une de l'autre dans deux plans substantiellement parallèles espacés, caractérisée en ce que ces deux boucles (1, 1') sont espacées d'une distance égale à λ/8 ± 20%, chaque boucle ayant un point (2, 2') prévu pour son raccordement à un conducteur correspondant dudit câble et en ce que l'antenne comprend en outre au moins un élément de liaison (11, 16, 17) de longueur sensiblement égale à la distance qui sépare lesdites boucles (1, 1') et reliant ces dernières, chaque boucle (1, 1') étant soit fermée avec une longueur de 3 λ/8 environ soit ouverte avec une longueur de λ4.
2. Antenne selon la revendication 1, adaptée pour être utilisée avec un câble aboutissant sensiblement dans le plan d'une première boucle (1) prévue pour être reliée à un premier conducteur du câble caractérisée en ce que l'antenne comprend en plus un élément de raccordement (12) de longueur substantiellement égale à λ/8 s'étendant à partir d'un point de la seconde desdites boucles (1') jusqu'au plan contenant ladite première boucle (1), l'extrémité libre de cet élément (12) contenue dans le plan de ladite première boucle constituant le point par lequel ladite seconde boucle (1') est destinée à être reliée au second conducteur du câble.
3. Antenne selon la revendication 1, adaptée pour être utilisée avec un câble qui se termine sensiblement dans le plan médian entre les plans des deux boucles caractérisée en ce que l'antenne comprend en plus deux conducteurs (6, 6') s'étendant en sens opposés respectivement à partir d'un point du plan de l'une et de l'autre boucle (1, 1') en direction de ce plan médian, chacun de ces conducteurs (6, 6') ayant une longueur substantiellement égale à λ/16 et se terminant par une extrémité libre destinée à être raccordée respectivement à un conducteur du câble.
4. Antenne selon la revendication 1 caractérisée en ce que l'une des boucles (1) est une boucle ouverte ayant deux extrémités libres (14, 15) et il existe deux éléments de liaison (16, 17) qui relie chacun respectivement l'une de ces extrémités libres (14, 15) à un même point de l'autre boucle (1') ou à un point (7') situé à l'intérieur de celle-ci et relié lui-même à cette autre boucle.
5. Antenne selon la revendication 3 caractérisée en ce que les deux boucles (1, 1') sont des boucles fermées et cette antenne comprend à la place de l'élément de liaison (11) un fouet réactif (18) d'une longueur de λ/8 disposé substantiellement dans ledit plan médian et raccordé dans ce plan à l'extrémité de l'un desdits conducteurs (6, 6').
6. Antenne selon la revendication 1, caractérisée en ce que chaque boucle (1, 1') a une configuration triangulaire et comprend soit trois côtés constituant une boucle fermée, soit deux côtés constituant une boucle ouverte, le point commun (2, 2') à deux des côtés étant un sommet et le troisième côté étant une base, et ce sommet étant le point de la boucle prévu pour son raccordement à un conducteur correspondant dudit câble.
7. Antenne selon les revendications 2 et 6 réunies caractérisée en ce que les deux boucles sont des boucles fermées triangulaires dont chaque côté a une longueur égale à λ/8 environ, il existe dans le plan de chaque boucle un point intérieur (7, 7') éloigné d'une distance de λ/16 environ dudit sommet (2, 2') et l'élément de raccordement (12) s'étend entre ces deux points intérieurs (7, 7') en même temps que dans la seconde boucle (1') éloignée du plan prévu pour l'aboutissement dudit câble un élément intérieur (8') part du point intérieur (7') et arrive au sommet (2') de cette seconde boucle (1') tandis que dans la première boucle (1) un élément intérieur (8) part du point intérieur (7) et se termine par une extrémité libre destinée à être reliée au second conducteur du câble et située à proximité du sommet (2) de cette première boucle (1), sommet destiné à être relié au premier conducteur du câble.
8. Antenne selon les revendications 3 et 6 réunies caractérisée en ce que les deux boucles sont des boucles fermées triangulaires dont chaque côté a une longueur égale à λ/8 environ, il existe dans le plan de chaque boucle un point intérieur (7, 7') éloigné d'une distance de λ/16 environ dudit sommet (2, 2') et relié à ce sommet par un élément intérieur (8, 8'), chaque conducteur (6, 6') s'étendant respectivement à partir dudit point intérieur (7, 7').
9. Antenne selon l'une quelconque des revendications 7, 8 caractérisée en ce que l'élément de liaison (11) s'étend entre le point intérieur (7, 7') d'une boucle (1') et le point médian de la base du triangle qui constitue la boucle opposée (1).
10. Antenne selon les revendications 3 et 6 réunies caractérisée en ce que les deux boucles sont des boucles fermées triangulaires dont chaque côté a une longueur égale à λ/8 environ et les deux conducteurs (6, 6') partent chacun respectivement du sommet (2, 2') de chaque boucle triangulaire cependant que l'élément de liaison (11) part de l'extrémité libre de l'un desdits conducteurs d'une boucle triangulaire (1') pour aboutir au point médian (10) de la base de la boucle opposée (1) et qu'un élément supplémentaire (13) relie ce point médian (10) au sommet de la même dite boucle opposée (1).
11. Antenne selon les revendications 3, 4 et 6 réunies caractérisée en ce que l'une des boucle (1) est une boucle triangulaire ouverte, l'autre boucle (1') est une boucle triangulaire fermée, il existe dans le plan de chaque boucle un point intérieur (7, 7') éloigné d'une distance de λ/16 environ dudit sommet et relié à ce sommet par un élément intérieur, les deux éléments de liaison (16, 17) aboutissant au point intérieur (7') de ladite autre boucle.
EP86400149A 1985-01-28 1986-01-24 Antenne miniature à gain Expired - Lifetime EP0193426B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86400149T ATE51470T1 (de) 1985-01-28 1986-01-24 Miniaturantenne mit verstaerkung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8501262A FR2576715B1 (fr) 1985-01-28 1985-01-28 Procede de realisation d'une antenne miniature a gain
FR8501262 1985-01-28

Publications (2)

Publication Number Publication Date
EP0193426A1 EP0193426A1 (fr) 1986-09-03
EP0193426B1 true EP0193426B1 (fr) 1990-03-28

Family

ID=9315755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400149A Expired - Lifetime EP0193426B1 (fr) 1985-01-28 1986-01-24 Antenne miniature à gain

Country Status (9)

Country Link
US (1) US4701764A (fr)
EP (1) EP0193426B1 (fr)
JP (1) JPS61222305A (fr)
AT (1) ATE51470T1 (fr)
AU (1) AU585576B2 (fr)
CA (1) CA1253960A (fr)
DE (2) DE193426T1 (fr)
ES (1) ES8705996A1 (fr)
FR (1) FR2576715B1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342861B1 (en) 1989-04-26 2002-01-29 Daniel A. Packard Loop antenna assembly
US5198826A (en) * 1989-09-22 1993-03-30 Nippon Sheet Glass Co., Ltd. Wide-band loop antenna with outer and inner loop conductors
FR2699739B1 (fr) * 1992-12-22 1995-02-24 France Telecom Antenne omnidirective et multipolarisation.
DE69636999T2 (de) * 1995-05-30 2007-12-13 Sensormatic Electronics Corp., Boca Raton Antennenanordnung für warenüberwachungssystem mit verbesserter abfragefeldverteilung
US5914692A (en) * 1997-01-14 1999-06-22 Checkpoint Systems, Inc. Multiple loop antenna with crossover element having a pair of spaced, parallel conductors for electrically connecting the multiple loops
US6151480A (en) * 1997-06-27 2000-11-21 Adc Telecommunications, Inc. System and method for distributing RF signals over power lines within a substantially closed environment
US6326922B1 (en) 2000-06-29 2001-12-04 Worldspace Corporation Yagi antenna coupled with a low noise amplifier on the same printed circuit board
CA2347596C (fr) * 2001-05-17 2004-01-27 James Stanley Podger Element d'antenne a double lemniscate
US7339120B2 (en) 2003-06-26 2008-03-04 Matsushita Electric Industrial Co., Ltd. Electromagnetic wave shield
JP2005102101A (ja) * 2003-09-01 2005-04-14 Matsushita Electric Ind Co Ltd ゲートアンテナ装置
US20050140564A1 (en) * 2003-10-29 2005-06-30 Matsushita Electric Industrial Co., Ltd. Loop antenna
JP4075920B2 (ja) * 2005-04-04 2008-04-16 松下電器産業株式会社 受信装置
JP4226572B2 (ja) * 2005-05-11 2009-02-18 株式会社日立国際電気 リーダライタ装置
US20110221647A1 (en) * 2010-03-12 2011-09-15 Freiert Wayne A Multi-Element Folded-Dipole Antenna
USD863268S1 (en) 2018-05-04 2019-10-15 Scott R. Archer Yagi-uda antenna with triangle loop

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2197051A (en) * 1938-10-08 1940-04-16 Rca Corp Short wave broadcast antenna
FR853808A (fr) * 1938-11-14 1940-03-29 Materiel Telephonique Dispositifs d'aériens émetteurs ou récepteurs et leurs applications
US2671852A (en) * 1951-12-05 1954-03-09 John J Bubbers Resonant antenna
FR1157568A (fr) * 1956-09-19 1958-05-30 Antenne pour ondes métriques
US4584586A (en) * 1983-11-16 1986-04-22 Louis Kocsi Multi-turn loop reception antenna

Also Published As

Publication number Publication date
JPS61222305A (ja) 1986-10-02
ES8705996A1 (es) 1987-05-16
AU5283286A (en) 1986-07-31
FR2576715A1 (fr) 1986-08-01
CA1253960A (fr) 1989-05-09
ES551269A0 (es) 1987-05-16
DE193426T1 (de) 1987-01-15
DE3669957D1 (de) 1990-05-03
US4701764A (en) 1987-10-20
FR2576715B1 (fr) 1987-03-27
ATE51470T1 (de) 1990-04-15
EP0193426A1 (fr) 1986-09-03
AU585576B2 (en) 1989-06-22

Similar Documents

Publication Publication Date Title
EP0193426B1 (fr) Antenne miniature à gain
FR2614472A1 (fr) Reseau d'antennes a cornets hexagonaux
EP0108463B1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés
FR2619658A1 (fr) Antenne a fentes
EP0825673A1 (fr) Antenne imprimée plane à éléments superposés court-circuités
CA2118082A1 (fr) Antenne du type pour dispositif radio portable, procede de fabrication d'une telle antenne et dispositif radio portable comportant une telle antenne
FR2640431A1 (fr) Dispositif rayonnant multifrequence
EP3726642B1 (fr) Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande
FR2482789A1 (fr) Perfectionnements apportes aux antennes constituees d'elements coaxiaux
EP3671953A1 (fr) Antenne fil-plaque monopolaire
FR2518827A1 (fr) Dispositif d'alimentation d'un dipole rayonnant
EP3136499A1 (fr) Système diviseur/combineur pour onde hyperféquence
EP1432073B1 (fr) Antenne colinéaire du type coaxial alterné
WO2003103086A2 (fr) Element rayonnant large bande a double polarisation, de forme generale carree
EP2543111B1 (fr) Structure antennaire à dipôles
EP1516393B1 (fr) Dispositif rayonnant bi-bande a double polarisation
EP1173905B1 (fr) Connecteur du type a entrees/sorties avec des cables blindes mis a la masse et procede de realisation et de montage d'un tel connecteur
FR2677176A1 (fr) Convertisseur mode coaxial-mode guide d'ondes.
FR2613140A1 (fr) Antenne cornet parallelepipedique a repartition du champ d'ouverture linearisee en deux polarisations
EP1393411B1 (fr) Antenne resonante omnidirectionnelle
EP1523062A1 (fr) Antenne omnidirectionnelle pour la transmission et/ou la réception de signaux audio et/ou vidéo
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d'une pluralite de telles antennes
FR2638288A1 (fr) Antenne a fentes
EP0041877B1 (fr) Coupleur hyperfréquence à guide d'onde
FR2460539A1 (fr) Ligne a retard a pas variable pour tube a onde progressive, et tube a onde progressive muni d'une telle ligne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO MILANO S.P.A.

TCAT At: translation of patent claims filed
TCNL Nl: translation of patent claims filed
DET De: translation of patent claims
17Q First examination report despatched

Effective date: 19880504

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MALCOMBE, JEAN-CLAUDE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MALCOMBE, JEAN-CLAUDE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900328

Ref country code: AT

Effective date: 19900328

REF Corresponds to:

Ref document number: 51470

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3669957

Country of ref document: DE

Date of ref document: 19900503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910117

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910122

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910207

Year of fee payment: 6

26N No opposition filed
EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920124

Ref country code: GB

Effective date: 19920124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930128

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930225

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940131

BERE Be: lapsed

Owner name: MALCOMBE JEAN-CLAUDE

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000620

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050124