EP0210002A1 - Pressure responsive electrically conductive materials - Google Patents

Pressure responsive electrically conductive materials Download PDF

Info

Publication number
EP0210002A1
EP0210002A1 EP86305106A EP86305106A EP0210002A1 EP 0210002 A1 EP0210002 A1 EP 0210002A1 EP 86305106 A EP86305106 A EP 86305106A EP 86305106 A EP86305106 A EP 86305106A EP 0210002 A1 EP0210002 A1 EP 0210002A1
Authority
EP
European Patent Office
Prior art keywords
material according
particles
electrically conductive
matrix
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86305106A
Other languages
German (de)
French (fr)
Inventor
Alan Charles Bickley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniroyal Ltd Great Britain
Original Assignee
Uniroyal Ltd Great Britain
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uniroyal Ltd Great Britain filed Critical Uniroyal Ltd Great Britain
Publication of EP0210002A1 publication Critical patent/EP0210002A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/106Adjustable resistors adjustable by mechanical pressure or force on resistive material dispersed in an elastic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors

Definitions

  • This invention relates to pressure sensitive electrically conductive materials.
  • Many composite materials have now been proposed based on the mixing of electrically conductive particles into an electrically insulating elastomer which is subsequently shaped and cured.
  • the resultant product is electrically non-conductive, but is rendered conductive when the material is deformed.
  • a pressure sensitive electrically conductive material comprises a non-conductive matrix of flexible elastomeric material, the matrix containing filler particles each of which comprises a substantially spherical core of electrically non-conductive material having a coating of electrically conductive material thereon.
  • the invention stems from the realisation that it is not generally possible economically to form homogeneous electrically conductive materials into small, substantially spherical particles.
  • materials are available which can be so formed and such materials are suitable for the deposition thereon of an electrically conductive coating.
  • the preferred core material is glass, and a number of types of small spherical glass particles are commercially available. These may be solid such as ballotini, or hollow.
  • Alternative core materials that may be used are certain thermosetting polymeric compositions and certain metal compounds.
  • the core material will desirably be such as to be capable of resisting deformation at the maximum applied load to which the material is to be subjected; thus, solid rather than hollow core particles are preferred although the latter may be suitable for some applications.
  • all particles should have a surface to volume ratio that is less than 3.7/r where r is the radius of a sphere of the same volume. Desirably at least 50% of the particles should be of the minimum surface to volume ratio of 3/r, i.e. be truly spherical.
  • Glass particles are capable of receiving and retaining a coating of any one of a number of electrically conductive materials.
  • electrically conductive materials examples thereof are metals such as silver, :opper, cobalt, nickel, brass, iron, chromium, titanium, platinum, gold, aluminium, zinc and their alloys; electrically conductive metal compounds; natural or artificial graphite; and electrically conductive polymeric naterials.
  • Coating thickness may be selected as required.
  • rhe size of the coated particles will generally be up to 300 microns, although it is more usually preferred that no particle has a size of less than 1 micron, and that no particle has a size in excess of 200 microns in order to avoid, respectively, problems of oxidation and release from the matrix.
  • the particles used in the material of the invention have a size distribution lying within the range of 5 to 105 microns. Larger particles are found to give better conductivity than smaller particles at equal particle loadings by weight of matrix material, and will thus provide a wider spread of resistance values between the material in its uncompressed and fully compressed states.
  • the coated filler particles make up between 20% and 70% of the volume of the material, and more desirably between 35% and 50% of the volume of the material.
  • the particles preferably are present in from 50 to 200 parts per hundred parts by weight of matrix material (phr), and more desirably in from 80 to 140 phr. Below the preferred lower limits, it is found that unacceptably high compression may need to be applied to the material to cause the required drop in resistance, while above the upper limit the material in its state of rest may be found to be too conductive due to contact betweeen the conductive particles.
  • the elastomeric matrix may be formed from any suitable polymeric material or blend thereof as long as it is electrically insulating and exhibits the required properties.
  • suitable elastomers are silicone rubbers, whether of the condensation reaction, addition reaction or vinyl group-containing type, rubbery condensation polymers such as polyurethane rubber obtained by reaction of polyisocyanates with polyalkylene glycols, ethylene propylene-non-conjugated diene rubbers, natural rubber, synthetic polyisoprene rubber, styrene butadiene rubber, nitrile-butadiene rubber,halogenated hydrocarbon rubbers such as elastomeric chloroprene rubber, fluoroolefin rubber, chlorosulfonated polyethylene, thermoplastic elastomers such as ethylene-vinyl acetate copolymers, and plasticizer containing thermoplastic resins.
  • the matrix composition may contain fillers such as silica, silicates, kaolin, mica, talc, carbonates or alumina.
  • the matrix material should be compounded so that it can resist a high-intensity electric field, has good electrically insulating properties and the mechanical properties appropriate to the end use. In some cases these properties include low permanent set and high elongation at break. In other fields it may be advantageous for the matrix to be of cellular material, and any suitable blowing agent or other expanding system may then be compounded with the elastomer.
  • the coated filler materials may be mixed with the elastomeric matrix material in any suitable manner. Mixing is facilitated if the matrix material is in liquid form, however, it is possible to effect mixing into a solid elastomer. The aim should be to obtain a reasonably uniform dispersion of the filler particles throughout the matrix. After mixing, a cross-linking system is added to the mixture which is then cured to any required shape. The cured material may be de-gassed if necessary.For many uses a room temperature vulcanising material is used, for ease in compounding and casting and for better control of particle distribution. When materials with better mechanical properties are required, however, high temperature vulcanising materials may be used. Alternatively, the properties of room temperature vulcanising materials may be improved by appropriate compounding ingredients.
  • a castable material such as silicone or a polyurethane rubber, which can readily be compounded to give the required properties, and can be vulcanised at room temperature.
  • a particularly preferred material comprises silver-coated ballotini loaded into a silicone rubber matrix. To give some indication of the economic advantages, such materials may be produced at a cost approximately one tenth of certain of the currently existing products.
  • the material will be cured in the form of a thin flat sheet, which may then be cut into individual elements of required size.
  • Preferred sheet thicknesses are from 0.25 to 3 mm, more preferably from 0.35 to lmm. It is important that any given element be of substantially uniform thickness within a close tolerance, eg. 1 % . Elements moulded from identical compositions and under identical conditions but to different thicknesses are found to have widely different electrical characteristics.
  • a batch of material was made up as follows:-
  • the curing agent was added and the mixture was poured into 2 mm deep moulds and allowed to cure at room temperature.
  • the cured material contained 37% by volume (120 phr) of the silver coated glass spheres.
  • Example 1 was repeated with loadings of 61% and 64% by weight respectively of the silver coated glass spheres, to give volume percentages of 40.6% and 43.5% respectively.
  • a batch of material was made up as follows:-
  • the batch was allowed to harden at room temperature. Performance of the material was similar to that already described, although higher forces were necessary to reduce the resistance due to the material hardness being greater.
  • a batch of material was made up as follows:
  • the cure system was added, and the mixture poured into an open mould and allowed to cure at room temperature.

Abstract

A pressure sensitive electrically conductive material comprises a cured non-conductive matrix of flexible elastomeric material. The matrix contains filler particles, each of which comprises a substantially spherical core of electrically non-conductive material, preferably glass, having a coating of electrically conductive material preferably silver, thereon.

Description

  • This invention relates to pressure sensitive electrically conductive materials. Many composite materials have now been proposed based on the mixing of electrically conductive particles into an electrically insulating elastomer which is subsequently shaped and cured. The resultant product is electrically non-conductive, but is rendered conductive when the material is deformed.
  • Pressure sensitive resistors of this form have failed to win wide acceptance, despite the numerous attempts that have been made to produce them in a form satisfactory to industry. The most common drawbacks have been the lack of uniform electrical characteristics and inadequate mechanical strength and durability. It is generally required that a switch element utilising such material should be capable of at least one million switching operations, but wear on the conductive particles limits known materials to significantly fewer operating cycles. Existing particles also exhibit resistance hysteresis which is generally too high to be acceptable. Known materials are also very expensive, for example selling prices of the order of $1000/m2 for sheet 1/2 mm thick are not uncommon.
  • The importance of shape of the conductive particle in reducing hysteresis and improving wear characteristics appears first to have been recognised in U.S. patent No.3806471, which indicates that the best particles are somewhat regular in shape, that is, of spherical, generally rounded or granular characteristic. G.B. patent No.1561189 also recognises the importance of shape, and teaches that the conductive particles should be generally rounded particles of artificial graphite having a Wadell roundness degree of at least 0.4. However, none of the prior art documents teach how an elastomeric material can be loaded with particles which are consistently substantially spherical at a cost which renders the resulting composition economically acceptable, and such is the objective of the present invention.
  • According to the invention a pressure sensitive electrically conductive material comprises a non-conductive matrix of flexible elastomeric material, the matrix containing filler particles each of which comprises a substantially spherical core of electrically non-conductive material having a coating of electrically conductive material thereon.
  • The invention stems from the realisation that it is not generally possible economically to form homogeneous electrically conductive materials into small, substantially spherical particles. However, materials are available which can be so formed and such materials are suitable for the deposition thereon of an electrically conductive coating. The preferred core material is glass, and a number of types of small spherical glass particles are commercially available. These may be solid such as ballotini, or hollow. Alternative core materials that may be used are certain thermosetting polymeric compositions and certain metal compounds. The core material will desirably be such as to be capable of resisting deformation at the maximum applied load to which the material is to be subjected; thus, solid rather than hollow core particles are preferred although the latter may be suitable for some applications. Preferably all particles should have a surface to volume ratio that is less than 3.7/r where r is the radius of a sphere of the same volume. Desirably at least 50% of the particles should be of the minimum surface to volume ratio of 3/r, i.e. be truly spherical.
  • Glass particles are capable of receiving and retaining a coating of any one of a number of electrically conductive materials. Examples thereof are metals such as silver, :opper, cobalt, nickel, brass, iron, chromium, titanium, platinum, gold, aluminium, zinc and their alloys; electrically conductive metal compounds; natural or artificial graphite; and electrically conductive polymeric naterials. Coating thickness may be selected as required. rhe size of the coated particles will generally be up to 300 microns, although it is more usually preferred that no particle has a size of less than 1 micron, and that no particle has a size in excess of 200 microns in order to avoid, respectively, problems of oxidation and release from the matrix. More preferably, the particles used in the material of the invention have a size distribution lying within the range of 5 to 105 microns. Larger particles are found to give better conductivity than smaller particles at equal particle loadings by weight of matrix material, and will thus provide a wider spread of resistance values between the material in its uncompressed and fully compressed states.
  • Preferably the coated filler particles make up between 20% and 70% of the volume of the material, and more desirably between 35% and 50% of the volume of the material. Alternatively or additionally the particles preferably are present in from 50 to 200 parts per hundred parts by weight of matrix material (phr), and more desirably in from 80 to 140 phr. Below the preferred lower limits, it is found that unacceptably high compression may need to be applied to the material to cause the required drop in resistance, while above the upper limit the material in its state of rest may be found to be too conductive due to contact betweeen the conductive particles.
  • The elastomeric matrix may be formed from any suitable polymeric material or blend thereof as long as it is electrically insulating and exhibits the required properties. Representative of suitable elastomers are silicone rubbers, whether of the condensation reaction, addition reaction or vinyl group-containing type, rubbery condensation polymers such as polyurethane rubber obtained by reaction of polyisocyanates with polyalkylene glycols, ethylene propylene-non-conjugated diene rubbers, natural rubber, synthetic polyisoprene rubber, styrene butadiene rubber, nitrile-butadiene rubber,halogenated hydrocarbon rubbers such as elastomeric chloroprene rubber, fluoroolefin rubber, chlorosulfonated polyethylene, thermoplastic elastomers such as ethylene-vinyl acetate copolymers, and plasticizer containing thermoplastic resins.
  • Other materials such as plasticising agents, stabilizers, pigments, colouring agents and extending oils may be incorporated into the matrix composition. Such composition may contain fillers such as silica, silicates, kaolin, mica, talc, carbonates or alumina. Generally speaking, the matrix material should be compounded so that it can resist a high-intensity electric field, has good electrically insulating properties and the mechanical properties appropriate to the end use. In some cases these properties include low permanent set and high elongation at break. In other fields it may be advantageous for the matrix to be of cellular material, and any suitable blowing agent or other expanding system may then be compounded with the elastomer.
  • The coated filler materials may be mixed with the elastomeric matrix material in any suitable manner. Mixing is facilitated if the matrix material is in liquid form, however, it is possible to effect mixing into a solid elastomer. The aim should be to obtain a reasonably uniform dispersion of the filler particles throughout the matrix. After mixing, a cross-linking system is added to the mixture which is then cured to any required shape. The cured material may be de-gassed if necessary.For many uses a room temperature vulcanising material is used, for ease in compounding and casting and for better control of particle distribution. When materials with better mechanical properties are required, however, high temperature vulcanising materials may be used. Alternatively, the properties of room temperature vulcanising materials may be improved by appropriate compounding ingredients.
  • It is particularly preferred to use a castable material such as silicone or a polyurethane rubber, which can readily be compounded to give the required properties, and can be vulcanised at room temperature.
  • A particularly preferred material comprises silver-coated ballotini loaded into a silicone rubber matrix. To give some indication of the economic advantages, such materials may be produced at a cost approximately one tenth of certain of the currently existing products.
  • Most usually the material will be cured in the form of a thin flat sheet, which may then be cut into individual elements of required size. Preferred sheet thicknesses are from 0.25 to 3 mm, more preferably from 0.35 to lmm. It is important that any given element be of substantially uniform thickness within a close tolerance, eg. 1%. Elements moulded from identical compositions and under identical conditions but to different thicknesses are found to have widely different electrical characteristics.
  • The invention will now be described in more detail with reference to the following examples thereof, given in conjunction with the accompanying drawings in which Figure 1 and 3 are graphs of resistance against compression; and Figures 2 and 4 are graphs of resistance against load.
  • Example 1.
  • A batch of material was made up as follows:-
    Figure imgb0001
    • 1. Ambersil Silcoset 105 RTV (room temperature vulcanising, with curing agent 'A' as supplied).
    • 2. Obtained from Potters Industries Inc., New Jersey, (U.S.A.) under designation 2429S. The spheres have a density of 2.5 gm/cc, a typical particle size range of 53 to 105 microns, a silver concentration by weight of 4% and a minimum percent of rounds of 85%, ie. at least 85% of the particles had a minimum surface to volume ratio of 3/r.
  • After mixing, the curing agent was added and the mixture was poured into 2 mm deep moulds and allowed to cure at room temperature.
  • The cured material contained 37% by volume (120 phr) of the silver coated glass spheres.
  • Examples 2 and 3
  • Example 1 was repeated with loadings of 61% and 64% by weight respectively of the silver coated glass spheres, to give volume percentages of 40.6% and 43.5% respectively.
  • One centimetre square pieces were cut from the cured sheets of all three examples, each piece was placed between metal foil electrodes and resistance was monitored as the rubber was compressed. The results are shown in Figure 1 and 2 for the three examples. It will be seen in each case that from an initial resistance in excess of 4 Megohms at zero load, the resistance is reduced with increasing compression or load to very low values. In each instance, when the applied pressure was removed the resistance of the material reverted to its former value. The results indicated in the Figures were found to be reproducible consistently and reliably over large numbers of operations.
  • Example 4
  • A batch of material was made up as follows:-
  • Figure imgb0002
  • The batch was allowed to harden at room temperature. Performance of the material was similar to that already described, although higher forces were necessary to reduce the resistance due to the material hardness being greater.
  • Example 5
  • Batches of material were made up from Ambersil Silcoset RTV and silver coated solid glass spheres 2429S as aforesaid, the material being formed into sheets of different thicknesses and cured. From batch to batch there were variations in concentration of the glass spheres and of the thickness of the silver coating on the spheres. In run M the spheres as used were designated 2429S GE RTV 910, supplied by Potters Industries Inc. These are the same silver-coated glass particles 2429S, but coated with a bonding system for room temperature vulcanising silicone rubbers. One centimetre square pieces were cut from the sheets and resistance was monitored to find the load (known as the trigger load) and the compression where resistance drops very sharply to a low valve. The results are given below.
    Figure imgb0003
    Typical resistance-compression graphs and resistance-load graphs are shown in Figures 3 and 4 for runs B and D respectively.
  • The results show that the trigger load increases as the concentration of conductive spheres in the matrix reduces, as the conductivity of the individual spheres reduces and as the thickness of the sheet increases. The compound and sheet thickness can thus readily be tailored for specific applications.
  • Example 6.
  • In order to check reproducibility of the switching effect of the material between the off (high resistance) and on (low resistance) modes a number of tests were run. In the first of these a sample of material from run C of Example 5 was subject to repeated compressive loading and unloading, with the resistance being monitored during each cycle. The on/off switching effect was noted during each of 160,000 cycles, at the end of which the material was checked for physical wear. This was minimal, and there was no reason to suppose that the switching effect would not be obtained for many thousands more cycles.
  • In a second test an 0.56 mm thick sheet was cast from a mixture of 100 parts by weight Ambersil Silcoset 105 RTV and 100 parts by weight of the aforesaid 2429S silver coated glass spheres. The cured sheet was placed between two copper foil electrodes and repeatedly cycled over 1 million times on a de Mattia flexometer used in a compression mode. The on/off switching effect was noted during each cycle . The test material showed minimal physical wear and exhibited no sign of failure.
  • The properties were then examined and compared to those measured before the cycling test started.
    Figure imgb0004
  • Example 7
  • 100 parts by weight of the aforesaid 2429S silver coated glass spheres were mill mixed together with 100 parts by weight of KE650 from Shin-etsu Chemical Company, Kagaku, Japan comprising silicone rubber with a peroxide curing agent. The mixture was sheeted to a thickness of 0.7 mm and the sheet was press cured for two hours at 180°C. When placed under test the sheet was found to have a trigger load of 255 kg/cm2 at 54% compression.
  • Example 8
  • 110 parts by weight of the aforesaid 2429S silver coated glass spheres were mill mixed together with 100 parts by weight of Keltan 778 from Wilfred Smith Ltd. of Edgware, Middlesex, England, an EPDM rubber and 5 parts by weight of Retilox 40 from Montedison SpA, a peroxide curing agent. The mixture was sheeted to a thickness of 0.7 mm and cured in hot air at 160°C for 75 minutes. When tested, the sheet was found to have a trigger load of 4.5 Kg/cm2 at 12% compression.
  • Example 9
  • A batch of material was made up as follows:
    Figure imgb0005
    • 1. Ambersil silcoset 105 RTV with curing agent A.
    • 2. Obtained from Microfine Minerals and Chemicals Ltd., Derby, England under designation C-USPHERES 200. The particles have a density of 0.9 gm/cc and a typical particle size range of 50 to 300 microns. Only the particles with a size of 200 microns or less were used. Typical shell thickness 10% of diameter.
  • After mixing, the cure system was added, and the mixture poured into an open mould and allowed to cure at room temperature.
  • After curing, sheets of different thickness were placed between a lower copper electrode and an upper electrode of a spherical steel ball 5 mm in diameter. The load was applied through the ball and then resistance monitored, with the following results:-
    Figure imgb0006

Claims (12)

1. A pressure sensitive electrically conductive material comprising a cured non-conductive matrix of flexible elastomeric material, the matrix containing filler particles each of which comprises a substantially spherical core of electrically non-conductive material having a coating of electrically conductive material thereon.
2. A material according to claim 1 in which the core material is glass.
3. A material according to claim 1 in which the core material is solid.
4. A material according to claim 1 in which all particles have a surface to volume ratio that is less than 3.7/r where r is the radius of a sphere of the same volume.
5. A material according to claim 4 in which at least 50% of the particles are truly spherical.
6. A material according to claim 1 in which the conductive material is selected from silver, copper, cobalt, nickel, brass, iron, chromium, titanium, platinum, gold, aluminium, zinc and their alloys; electrically conductive metal compounds; natural or artificial graphite; and electrically conductive polymeric materials.
7. A material according to claim 1 in which no particle has a size of less than 1 micron, and no particle has a size in excess of 200 microns.
8. A material according to claim 1 in which the particles have a size distribution lying within the range of 5 to 105 microns.
9. A material according to claim 1 in which the coated filler particles make up between 20% and 70% of the volume of the material.
10. A material according to claim 1 in which the particles are present in from 50 to 200 parts per hundred parts by weight of matrix material.
11. A material according to claim 1 in which the matrix elastomer is selected from silicone rubber, polyurethane rubber and ethylene-propylene-non-conjugated diene rubber.
12. A material according to claim 1, that is in the form of a thin flat sheet having a thickness of from 0.25 to 3 mm.
EP86305106A 1985-07-04 1986-07-01 Pressure responsive electrically conductive materials Withdrawn EP0210002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8516957 1985-07-04
GB858516957A GB8516957D0 (en) 1985-07-04 1985-07-04 Pressure responsive materials

Publications (1)

Publication Number Publication Date
EP0210002A1 true EP0210002A1 (en) 1987-01-28

Family

ID=10581790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86305106A Withdrawn EP0210002A1 (en) 1985-07-04 1986-07-01 Pressure responsive electrically conductive materials

Country Status (4)

Country Link
EP (1) EP0210002A1 (en)
JP (1) JPS6271109A (en)
KR (1) KR870001612A (en)
GB (1) GB8516957D0 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311813A2 (en) * 1987-10-13 1989-04-19 LEDA Logarithmic Electrical Devices for Automation S.r.l. Pressure-sensitive electric resistor, and manufacturing process
WO2008089787A1 (en) * 2007-01-24 2008-07-31 Smm Medical Ab An elastomeric particle having an electrically conducting surface, a pressure sensor comprising said particles, a method for producing said sensor and a sensor system comprising sais sensors
US8517963B2 (en) 2004-10-11 2013-08-27 Swelling Solutions, Inc. Electro active compression bandage
US8764689B2 (en) 2006-01-13 2014-07-01 Swelling Solutions, Inc. Device, system and method for compression treatment of a body part
US11320323B2 (en) 2017-09-06 2022-05-03 Regents Of The University Of Minnesota Additively manufactured flexible electronic sensors and conductive compositions used therein
US11561240B2 (en) 2019-05-27 2023-01-24 Tokyo Electron Limited Intermediate connecting member and inspection apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215745A (en) * 1987-03-04 1988-09-08 Toshiba Silicone Co Ltd Pressure-sensitive electroconductive elastomer composition
CA2594932C (en) * 2005-02-25 2011-05-17 Superior Graphite Co. Graphite coating of particulate materials
JP2006324637A (en) * 2005-04-21 2006-11-30 Tdk Corp Co-existent material particle and its method for manufacturing, method for manufacturing electrode paste, electronic parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830991A (en) * 1973-07-24 1974-08-20 Essex International Inc Pressure sensitive mat switch construction
US4068032A (en) * 1976-11-17 1978-01-10 International Telephone And Telegraph Corporation Method of treating conductive elastomers
US4152304A (en) * 1975-02-06 1979-05-01 Universal Oil Products Company Pressure-sensitive flexible resistors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830991A (en) * 1973-07-24 1974-08-20 Essex International Inc Pressure sensitive mat switch construction
US4152304A (en) * 1975-02-06 1979-05-01 Universal Oil Products Company Pressure-sensitive flexible resistors
US4068032A (en) * 1976-11-17 1978-01-10 International Telephone And Telegraph Corporation Method of treating conductive elastomers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311813A2 (en) * 1987-10-13 1989-04-19 LEDA Logarithmic Electrical Devices for Automation S.r.l. Pressure-sensitive electric resistor, and manufacturing process
EP0311813A3 (en) * 1987-10-13 1990-02-28 Leda Logarithmic Electrical Devices For Automation S.R.L. Pressure-sensitive electric resistor, and manufacturing process
US8517963B2 (en) 2004-10-11 2013-08-27 Swelling Solutions, Inc. Electro active compression bandage
US10071012B2 (en) 2004-10-11 2018-09-11 Swelling Solutions, Inc. Electro active compression bandage
US8764689B2 (en) 2006-01-13 2014-07-01 Swelling Solutions, Inc. Device, system and method for compression treatment of a body part
US9248074B2 (en) 2006-01-13 2016-02-02 Swelling Solutions, Inc. Device, system and method for compression treatment of a body part
US10828220B2 (en) 2006-01-13 2020-11-10 Tactile Systems Technology Inc. Device, system and method for compression treatment of a body part
WO2008089787A1 (en) * 2007-01-24 2008-07-31 Smm Medical Ab An elastomeric particle having an electrically conducting surface, a pressure sensor comprising said particles, a method for producing said sensor and a sensor system comprising sais sensors
US9027408B2 (en) 2007-01-24 2015-05-12 Swelling Solutions, Inc. Elastomeric particle having an electrically conducting surface, a pressure sensor comprising said particles, a method for producing said sensor and a sensor system comprising said sensors
US11320323B2 (en) 2017-09-06 2022-05-03 Regents Of The University Of Minnesota Additively manufactured flexible electronic sensors and conductive compositions used therein
US11561240B2 (en) 2019-05-27 2023-01-24 Tokyo Electron Limited Intermediate connecting member and inspection apparatus

Also Published As

Publication number Publication date
GB8516957D0 (en) 1985-08-07
KR870001612A (en) 1987-03-14
JPS6271109A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
US4145317A (en) Pressure-sensitive resistance elements
EP0207450B1 (en) Pressure-sensitive conductive rubber material
US4412938A (en) Semiconducting resin compositions
US4702860A (en) Current-conducting composition
EP0210002A1 (en) Pressure responsive electrically conductive materials
KR19990077035A (en) Pressure sensitive ink means, and methods of use
US4138369A (en) Pressure sensitive conductor and method of manufacturing the same
US5175214A (en) Pressure-sensitive conductive elastomer compound
NO326480B1 (en) Electrically conductive silicone rubber composition and low resistance contact
Kasım Electrical properties of graphene/natural rubber nanocomposites coated nylon 6.6 fabric under cyclic loading
EP0089843A1 (en) Electrically-conductive materials
WO2005029514A1 (en) Variable conductance materials
EP0223355B1 (en) Method of manufacturing a pressure-sensitive conductive elastomer compound
KR20000076085A (en) Tire with electrically oriented composite
GB2192186A (en) Pressure responsive electrically conductive materials
US2813809A (en) Wire covered with a hydrogenated rubbery butadiene polymer
Vinod et al. Effect of aluminum powder on filled natural rubber composites
JPH0654603B2 (en) Pressure-sensitive conductive elastomer
JPH04349301A (en) Deformable conductive elastomer
US5114790A (en) Keyboard with conductive resilient pad
EP0289193A1 (en) Pressure responsive electrically conductive materials
JPH04253109A (en) Deformable conductive elastomer
Hemkaew et al. BATCHING METHOD AND EFFECTS OF FORMULATION AND MECHANICAL LOADING ON ELECTRICAL CONDUCTIVITY OF NATURAL RUBBER COMPOSITES FILLED WITH MULTI-WALL CARBON NANOTUBE AND CARBON BLACK.
JPH0393109A (en) Pressure-sensitive conductive elastomer
JPS62283140A (en) Electrically-conductive rubber composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870929

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BICKLEY, ALAN CHARLES