EP0254964A2 - Magnetische oder elektromagnetische Abschirmung und damit ausgerüstetes elektrisches Kabel - Google Patents

Magnetische oder elektromagnetische Abschirmung und damit ausgerüstetes elektrisches Kabel Download PDF

Info

Publication number
EP0254964A2
EP0254964A2 EP87110235A EP87110235A EP0254964A2 EP 0254964 A2 EP0254964 A2 EP 0254964A2 EP 87110235 A EP87110235 A EP 87110235A EP 87110235 A EP87110235 A EP 87110235A EP 0254964 A2 EP0254964 A2 EP 0254964A2
Authority
EP
European Patent Office
Prior art keywords
shielding
layer
magnetic
doped
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87110235A
Other languages
English (en)
French (fr)
Other versions
EP0254964A3 (de
Inventor
Eric Dipl.-Phys. Guiol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates GmbH
Original Assignee
WL Gore and Associates GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates GmbH filed Critical WL Gore and Associates GmbH
Publication of EP0254964A2 publication Critical patent/EP0254964A2/de
Publication of EP0254964A3 publication Critical patent/EP0254964A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources

Definitions

  • the invention relates to electromagnetic or magnetic shielding and electrical cables constructed therewith.
  • cables For high frequency applications are cables, whose shielding consists of a simply braided shield, often not sufficient. A better shielding effect can be achieved with two braided shields. In the case of very high demands on the shielding effect, as is required, for example, in the field of space travel, aviation, telecommunications and data processing, such a shielding is also not sufficient.
  • cables with three-layer shielding have been created, the inner layer and the outer layer each being formed by a metal braid shield and the intermediate layer by a polycrystalline material such as, for example, ⁇ -metal, metallic glass and the like.
  • Such a shield structure leads to cables with only little flexibility and with difficult processing when connecting to the contact elements of plug connect.
  • essentially only a shielding of electrical springs is achieved, but not magnetic fields.
  • the electrically conductive intermediate layer electrically connects the inner shield and the outer shield, and therefore the three-layer shield basically acts only as a thick-layer shield.
  • a coaxial cable which has a magnetic layer between two metal shields, which is a non-conductive or only slightly conductive magnetic mixture which by mixing in ferrite dust or other magnetic metallic dust a flexible plastic carrier material can be produced.
  • doped insulating layers leads to improved cable flexibility compared to cables with rigid shielding layers.
  • the shielding attenuation should be greater than 100 dB for the largest possible frequency range in order to prevent radiation and radiation of interfering signals in the largest possible frequency range.
  • Electromagnetic radiation on the signal to be transmitted has a negative effect, particularly in the case of digital signals, in that the pulse edges are flattened, which leads to signal falsifications and a reduction in the possible pulse repetition frequency.
  • An object of the invention is to make available electromagnetic shielding which, with a highly flexible cable structure, leads to a high shielding attenuation of both electrical and magnetic fields in the widest possible frequency range.
  • the one layer of the shield consists of metal-doped plastic and highly flexible plastics are available, a cable provided with the shield according to the invention does not have to suffer any loss of flexibility.
  • the extraordinarily good electromagnetic shielding damping properties are achieved in that the magnetic field emitting or emitting is bundled in the shielding layer from plastic doped with non-magnetic metal particles.
  • Shields against electrical fields which consist of electrical conductors, act in that these electrical conductors form an equipotential surface which is connected to the potential 0 by external connection, for example.
  • Charge carriers which are caused by local electrical fields, flow away immediately, which creates the electrical shielding effect. The higher the electrical conductivity, the better the electrical shielding effect.
  • Such electrical conductors have no or only a very weak shielding against magnetic fields, if one disregards very high frequencies in the GHz range. In particular in relatively low frequency ranges, for example in the lower MHz or even KHz range, there is practically no magnetic shielding.
  • non-magnetic metal particles such as copper powder
  • induced eddy currents are produced in these metal particles by the high-frequency magnetic field, which in turn cause a magnetic field that is opposite to the external magnetic field.
  • the eddy current strength and thus the magnetic shielding effect increases with increasing magnetic field strength and increasing frequency, which not only leads to higher shielding attenuation than with ferrite doping per se, but also extends the range of good shielding attenuation into much higher frequency regions.
  • the measure according to the invention therefore leads to surprisingly good magnetic shielding results.
  • a three-layer shield the inner and outer shield layers of which are each formed by an electrical conductor such as, in particular, a metal braid or a metal foil and whose middle layer is formed by the metal-doped plastic layer.
  • the latter leads to electrical insulation between the inner ones and outer electrically conductive shield layer. This causes the electrical field to be shielded to be reflected on two electrically different shielding layers.
  • the shielding according to the invention with an intermediate plastic layer, in which non-magnetic metal particles are embedded therefore leads to a considerably better magnetic shielding via a very wide frequency range, while maintaining good cable flexibility.
  • a cable provided with the electromagnetic shielding according to the invention can therefore have both high flexibility and an outstanding electromagnetic shielding.
  • the flexible, electrically non-conductive plastic layer doped with non-magnetic metal particles also has independent significance for the invention. Where shielding only magnetic fields are important, it can be used advantageously without electrically shielding shield layers, e.g. B. for magnetically shielded cables that are supposed to retain a high degree of flexibility.
  • Fig. 1 shows an example of a coaxial cable with a single signal conductor A, which is surrounded by a dielectric B.
  • the dielectric B is spanned by a first screen C made of a metal mesh.
  • the first screen C is surrounded by a metal-doped, electrically non-conductive plastic intermediate layer D, which in turn is surrounded by a second screen E made of a metal mesh.
  • the outermost layer of the cable is formed by a plastic jacket.
  • metal-doped plastic intermediate layer D Particularly suitable materials for the metal-doped plastic intermediate layer D are PTFE (polytetrafluoroethylene), in which copper powder is preferably embedded.
  • cables whose middle shielding or intermediate layer D is doped with copper particles have on the one hand a considerably higher shielding attenuation and on the other hand a high shielding attenuation up to substantially higher frequency ranges than with ferrite doping.

Abstract

Elektromagnetische Abschirmung mit einer mindestens zweilagigen elektromagnetischen Abschirmung, deren eine Lage durch einen elektrischen Leiter wie einen Metallgeflechtschirm (C;D) gebildet ist und deren zweite Lage durch eine flexible, elektrisch nicht-leitende, mit nicht-magnetischen Metallteilchen dotierte Kunststoffschicht (D) gebildet ist.

Description

  • Die Erfindung betrifft eine elektromagnetische oder magnetische Abschirmung und damit aufgebaute elektrische Kabel.
  • Insbesondere bei Anwendungen im Hochfrequenzbereich ist es häufig erforderlich, einen oder mehrere Signalleiter eines elektrischen Kabels mit einer elektromagnetischen Abschirmung zu umgeben. Damit soll einerseits eine störende elektro­magnetische Einstrahlung von außen auf das zu übertragende Signal und andererseits ein Abstrahlen des Signals nach außen verhindert werden.
  • Für Hochfrequenzanwendungen
    sind Kabel,
    deren Abschirmung aus einem einfach geflochtenen Schirm besteht, häufig nicht ausreichend. Eine bessere Abschirm­wirkung erreicht man mit zwei aufeinander geflochtenen Schirmen. Bei sehr hohen Anforderungen an die Abschirm­wirkung, wie sie beispielsweise im Bereich der Raumfahrt, Luftfahrt, Telekommunikation und Datenverarbeitung gefordert wird, reicht auch eine derartige Abschirmung nicht aus. Für solche Anwendungsgebiete hat man Kabel mit dreilagiger Abschirmung geschaffen, wobei die Innenlage und die Außen­lage je durch einen Metallgeflechtschirm und die Zwischen­lage durch einen polykristallinen Werkstoff wie beispiels­weise µ-Metall, metallisches Glas und dergleichen gebildet sind.
  • Ein derartiger Abschirmungsaufbau führt jedoch zu Kabeln mit nur geringer Flexibilität und mit schwieriger Verar­beitung beim Anschließen an die Kontaktelemente von Steck­ verbindern. Außerdem erreicht man hiermit im wesentlichen nur eine Abschirmung elektrischer Feder, nicht aber mag­netischer Felder. Desweiteren wirkt sich nachteilig aus, daß die elektrisch leitende Zwischenlage den Innenschirm und den Außenschirm elektrisch verbindet und daher die dreilagige Abschirmung im Grunde nur wie eine dickschich­tige Abschirmung wirkt.
  • Aus der DE-OS 30 25 504 ist ein Koaxialkabel bekannt, das zwischen zwei Metallschirmen eine magnetische Schicht auf­weist, bei der es sich um einen nicht-leitenden oder nur wenig leitenden magnetischen Mischstoff handelt, der durch Einmischen von Ferritstaub oder anderem magnetischen me­tallischen Staub in ein flexibles Kunststoffträgermaterial hergestellt werden kann.
  • Aus der US-PS 4 376920 ist es bekannt, bei einem Koaxial­kabel zwischen zwei Flechtschirmen eine Zwischenschicht mit hohem Verlustfaktor unterzubringen, um eine hohe Ausbei­tungsfunktion für den Weg zwischen den beiden Schirmschichten und damit eine möglichst längenunabhängige Abschirmwirkung zu erreichen. Als Zwischenschicht kann ein elektrisch gut isolierender Kunststoff verwendet werden, in den verlust­bewirkende Pigmente oder andere Verbindungen nicht näher angegebener Art eingelagert sind.
  • Aus den US-Patentschriften 3191132 und 3309633 sind elektri­sche Kabel bekannt, deren elektrische Leiter umgebendes flexi­bles, isolierendes Kunststoffmaterial eine Zumischung von Ferritteilchen aufweist, um eine Absorption elektromagneti­scher Wellen hoher Frequenz zu erreichen, ohne eine Absorption solcher Wellen im niederfrequenten Bereich zu haben.
  • Die Verwendung von dotierten Isolierschichten führt gegen­über Kabeln mit starren Abschirmschichten zu einer ver­besserten Kabelflexibilität.
  • Für Anwendungsgebiete der zuvor beispielsweise genannten Art sollte die Abschirmdämpfung für einen möglichst großen Frequenzbereich größer als 100 dB sein, um Abstrahlung und Einstrahlung von störenden Signalen in einem möglichst großen Frequenzbereich zu verhindern.
  • Elektromagnetische Strahlungen auf das zu übertragende Signal wirken sich vor allem bei Digitalsignalen dadurch negativ aus, daß die Impulsflanken abgeflacht werden, was zu Signalverfälschungen und zu einer Verringerung der möglichen Impulsfolgefrequenz führt.
  • In vielen Bereichen der Technik ist auch ein Abstrahlen der zu übertragenden Impulse von dem Kabel auf andere elektronische Komponenten oder Signalleiter anderer Kabel unerwünscht. Auf den Gebieten der Telekommunikation und der Datenverarbeitung kann es zu unerwünschtem Nebensprechen kommen und wird durch die Abstrahlung unbefugte Datenan­zapfung möglich.
  • Eine Aufgabe der Erfindung besteht darin, eine elektro­magnetische Abschirmung verfügbar zu machen, die bei hochflexib­lem Kabelaufbau zu einer hohen Abschirmdämpfung sowohl elektri­scher als auch magnetischer Felder in einem möglichst weiten Frequenzbereich führt.
  • Eine Lösung dieser Aufgabe ist im Anspruch 1 angegeben und kann den weiteren Ansprüchen gemäß vorteilhaft weiterge­bildet werden.
  • Da die eine Lage der Abschirmung aus metalldotiertem Kunststoff besteht und hochflexible Kunststoffe zur Ver­fügung stehen, braucht ein mit der erfindungsgemäßen Ab­schirmung versehenes Kabel keinerlei Einbuße an Flexibilität zu erleiden. Die außerordentlich guten elektromagnetischen Schirmdämpfungseigenschaften werden dadurch erreicht, daß das ein- bzw. abstrahlende magnetische Feld in der Abschirm­lage aus mit nicht-magnetischen Metallteilchen dotiertem Kunststoff gebündelt wird.
  • Abschirmungen gegen elektrische Felder, die aus elektrischen Leitern bestehen, wirken dadurch, daß diese elektrischen Leiter eine Äquipotentialfläche bilden, die durch Außen­anschluß beispielsweise auf das Potential 0 gelegt wird. Ladungsträger, die durch lokale elektrische Felder ver­ursacht werden, fließen sofort ab, was die elektrische Abschirmwirkung hervorbringt. Je höher die elektrische Leitfähigkeit umso besser die elektrische Abschirmwirkung.
  • Derartige elektrische Leiter bewirken jedoch keine oder nur eine sehr schwache Abschirmung gegenüber Magnetfeldern, wenn man einmal von sehr hohen Frequenzen im GHz-Bereich absieht. Insbesondere in relativ niedrigen Frequenzbe­reichen, beispielsweise im unteren MHz- oder gar KHz-­Bereich, tritt jedoch praktisch keine magnetische Ab­schirmung auf.
  • Dadurch, daß man für die magnetisch abschirmende Abschirmlage Kunststoff verwendet, in den metallische Teilchen so eingebettet sind, daß der Kunst­ stoff nicht zum elektrischen Leiter wird, nach Art be­kannter "elektrisch leitender Kunststoffe", sondern ein elektrischer Isolator bleibt, erreicht man eine ver­besserte Abschirmungwirkung gebenüber magnetischen Feldern. Bettet man aber wie bei den bekannten Kabeln Ferritpulver in den Kunststoff ein, erreicht man eine Abschirmdämpfung, die nur relativ wenig über den als Mindestwert gewünschten 100 dB liegt, nur in einem relativ kleinen unteren Frequenz­bereich.
  • Verwendet man nicht-magnetische Metallteilchen, wie bei­spielsweise Kupferpulver, entstehen in diesen Metall­teilchen vom hochfrequenten Magnetfeld hervorgerufene, in­duzierte Wirbelströme, die wiederum ein Magnetfeld verur­sachen, das dem äußeren Magnetfeld entgegengesetzt ist. Auch hier kommt es zu einer gebündelten Bindung des ab­zuschirmenden Magnetfeldes wie bei Ferrit-Dotierung. Aller­dings nimmt die Wirbelstromstärke und damit die magnetische Abschirmwirkung mit zunehmender Magnetfeldstärke und steigender Frequenz zu, was nicht nur zu höherer Abschirm­dämpfung als bei Ferrit-Dotierung an sich führt sonder zu einer Ausdehnung des Bereichs guter Abschirmdämpfung in viel höhere Frequenzregionen. Die erfindungsgemäße Maßnahme führt daher zu überraschend guten magnetischen Abschirmer­gebnissen.
  • Besonders gute elektromagnetische Abschirmwirkungen er­zielt man mit einer dreilagigen Abschirmung, deren innere und deren äußere Schirmlage je durch einen elektrischen Leiter wie insbesondere ein Metallgeflecht oder eine Metall­folie gebildet sind und deren Mittellage durch die metalldotierte Kunststoffschicht gebildet ist. Letztere führt zu einer elektrischen Isolierung zwischen innerer und äußerer elektrisch leitender Schirmlage. Dies bewirkt eine Reflexion des abzuschirmenden elektrischen Feldes an zwei elektrisch gesehen unterschiedlichen Schirmschichten. Dies führt zu einer besseren elektrischen Abschirmung als drei elektrisch leitende Schirmlagen, die miteinander in elektrischer Verbindung stehen und für die abzuschirmenden elektrischen Felder daher im wesentlichen nur wie eine einzige Schirmschicht wirken.
  • Gegenüber der bekannten dreilagigen Abschirmung mit einem inneren Metallgeflechtschirm, einem äußeren Metallgeflecht­schirm und einer dazwischen befindlichen mittleren Ab­schirmlage aus Ferrit-dotiertem Kunststoff führt die er­findungsgemäße Abschirmung mit einer Kunststoffzwischen­schicht, in die nicht-magnetische Metallteilchen eingelagert sind, daher zu einer erheblich besseren magnetischen Ab­schirmung über einen sehr weiten Frequenzbereich, wobei eine gute Kabelflexibilität erhalten bleibt.
  • Ein mit der erfindungsgemäßen elektromagnetischen Ab­schirmung versehenes Kabel kann daher sowohl hohe Flexi­bilität aufweisen als auch eine überragende elektromagneti­sche Abschirmung.
  • Die flexible, mit nicht-magnetischen Metallteilchen do­tierte, elektrisch nicht-leitende Kunststoffschicht hat auch selbständig Erfindungsbedeutung. Sie kann dort, wo es auf eine Abschirmung nur magnetischer Felder ankommt, ohne elektrisch abschirmende Schirmlagen vorteilhaft eingesetzt werden, z. B. für magnetisch abzuschirmende Kabel, die hohe Flexibilität behalten sollen.
  • Die Erfindung wird nun anhand einer Ausführungsform näher erläutert. In den Zeichnungen zeigen:
    • Fig. 1 eine Ausführungsform der Erfindung; und
    • Fig. 2 Abschirmdämpfungsverläufe in Abhängigkeit von der Frequenz für ein Kabel gemäß Fig. 1 mit einer be­kannten und mit einer erfindungsgemäßen Abschirm­schicht.
  • Fig. 1 zeigt als Beispiel ein Koaxialkabel mit einem einzigen Signalleiter A, der von einem Dielektrikum B umgeben ist. Das Dielektrikum B wird von einem ersten Schirm C aus einem Me­tallgeflecht umspannt. Den ersten Schirm C umgibt eine metalldotierte, elektrisch nicht-leitende Kunststoffzwischen­schicht D, die ihrerseits von einem zweiten Schirm E aus einem Metallgeflecht umgeben wird. Die äußerste Schicht des Kabels wird durch einen Kunststoffmantel gebildet.
  • Als Materialien für die metalldotierte Kunststoffzwischen­schicht D eignen sich insbesondere PTFE (polytetra­fluoräthylen), in das vorzugsweise Kupferpulver eingebettet ist.
  • Messungen an verschiedenen Abschirmungen haben im Frequenzbereich zwischen 0,25 MHz und 110 MHz folgende Schirmdämpfungen ergeben:
    - einfach geflochtener Schirm: ca. 60 dB
    - zwei aufeinander geflochtene Schirme: ca. 85 dB
    - zwei aufeinander geflochtene Schirme mit einer Zwischenschicht aus mit metallischem Pulver dotiertem Kunststoff: > 100 dB
    • a) bei Verwendung von Ferrit-dotiertem Kunststoff bis 8 MHz und einem Maximum von ca. 107 dB bei etwa 2 MHz (Kurve F in Fig. 2);
    • b) bei Verwendung von mit nicht-magnetischen Metall­teilchen dotiertem Kunststoff bis etwa 90 MHz und einem Maximum von etwa 118 dB bei ca. 8 MHz (Kurve Cu in Fig. 2).
  • Fig. 2 zeigt also, daß Kabel, deren mittlere Abschirm- oder Zwischenschicht D mit Kupferteilchen dotiert ist, einerseits eine erheblich höhere Schirmdämpfung und andererseits hohe Schirmdämpfung bis in wesentlich höhere Frequenzbereiche als bei Ferrit-Dotierung auf­weisen.

Claims (9)

1. Elektromagnetische Abschirmung mit mindestens zwei Ab­schirmlagen, von denen eine durch einen elektkrischen Leiter in Form eines Metallgeflechts oder einer Metallfolie ge­bildet ist,
dadurch gekennzeichnet,
daß die zweite Abschirmlage durch eine flexible, mit nicht-­magnetischen Metallteilchen dotierte, elektrisch nicht-­leitende Kunststoffschicht (D) gebildet ist.
2. Abschirmung nach Anspruch 1,
dadurch gekennzeichnet,
daß in die Kunststoffschicht (D) metallisches Pulver einge­bettet ist.
3. Abschirmung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß als Kunststoff Polytetrafluoräthylen (PTFE) verwendet wird.
4. Abschirmung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß der Kunststoff mit Kupfer dotiert ist.
5. Abschirmung nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß der Kunststoff mit Pulver eines metallischen Glases dotiert ist.
6. Abschirmung nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet,
daß die Abschirmung dreilagig ist und als Innenlage (C) und als Außenlage (E) je ein Metallgeflecht vorgesehen ist und die metalldotierte Kunststoffschicht die Zwischenlage (D) bildet.
7. Elektrisches Kabel mit mindestens einem Signalleiter,
gekennzeichnet durch
eine elektromagnetische Abschirmung nach einem der An­sprüche 1 bis 6.
8. Magnetische Abschirmung
gekennzeichnet durch
eine flexible, mit nicht-magnetischen Metallteilchen dotierte, elektrisch nicht-leitende Kunststoffschicht.
9. Elektrisches Kabel mit mindestens einem Signalleiter,
gekennzeichnet durch
eine magnetische Abschirmung nach Anspruch 8.
EP87110235A 1986-07-29 1987-07-15 Magnetische oder elektromagnetische Abschirmung und damit ausgerüstetes elektrisches Kabel Withdrawn EP0254964A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3625631 1986-07-29
DE19863625631 DE3625631A1 (de) 1986-07-29 1986-07-29 Elektromagnetische abschirmung

Publications (2)

Publication Number Publication Date
EP0254964A2 true EP0254964A2 (de) 1988-02-03
EP0254964A3 EP0254964A3 (de) 1989-05-24

Family

ID=6306213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110235A Withdrawn EP0254964A3 (de) 1986-07-29 1987-07-15 Magnetische oder elektromagnetische Abschirmung und damit ausgerüstetes elektrisches Kabel

Country Status (5)

Country Link
US (1) US4871883A (de)
EP (1) EP0254964A3 (de)
JP (1) JPS63170811A (de)
DE (1) DE3625631A1 (de)
IL (1) IL83300A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223134A1 (de) 2014-11-13 2016-05-19 Robert Bosch Gmbh Elektrisches Antriebssystem und Kraftfahrzeug mit einem elektrischen Antriebssystem

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260128A (en) * 1989-12-11 1993-11-09 Kabushiki Kaisha Riken Electromagnetic shielding sheet
US5037999A (en) * 1990-03-08 1991-08-06 W. L. Gore & Associates Conductively-jacketed coaxial cable
US5171938A (en) * 1990-04-20 1992-12-15 Yazaki Corporation Electromagnetic wave fault prevention cable
US5159929A (en) * 1990-06-14 1992-11-03 Morris G Ronald Insulated rf shield
US5132490A (en) * 1991-05-03 1992-07-21 Champlain Cable Corporation Conductive polymer shielded wire and cable
US5170010A (en) * 1991-06-24 1992-12-08 Champlain Cable Corporation Shielded wire and cable with insulation having high temperature and high conductivity
US5194838A (en) * 1991-11-26 1993-03-16 W. L. Gore & Associates, Inc. Low-torque microwave coaxial cable with graphite disposed between shielding layers
US5293001A (en) * 1992-04-14 1994-03-08 Belden Wire & Cable Company Flexible shielded cable
US5414213A (en) * 1992-10-21 1995-05-09 Hillburn; Ralph D. Shielded electric cable
US5321202A (en) * 1992-10-21 1994-06-14 Hillburn Ralph D Shielded electric cable
EP0682852B1 (de) * 1993-02-02 1998-10-28 AST RESEARCH, Inc. Leiterplattenanordnung mit abschirmungsgittern und herstellungsverfahren
DE19545559A1 (de) * 1995-01-12 1996-07-18 Vdo Schindling Elektromagnetisch entstörtes Kabel
US5763822A (en) * 1995-08-30 1998-06-09 Advanced Mobile Telecommunication Technology Inc. Coaxial cable
US5675299A (en) * 1996-03-25 1997-10-07 Ast Research, Inc. Bidirectional non-solid impedance controlled reference plane requiring no conductor to grid alignment
US5777535A (en) * 1996-05-21 1998-07-07 Triology Communications Inc. Coaxial cable with integrated ground discharge wire
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6310286B1 (en) * 1996-09-16 2001-10-30 Sony Corporation Quad cable construction for IEEE 1394 data transmission
JP3452456B2 (ja) 1997-01-30 2003-09-29 松下電器産業株式会社 電子機器間の接続方法と接続ケーブル
DE19807527A1 (de) * 1998-02-21 1999-08-26 Cit Alcatel Elektrische Leitung oder elektrisches Kabel
US6479753B2 (en) 1998-04-29 2002-11-12 Compaq Information Technologies Group, L.P. Coaxial cable bundle interconnecting base and displaying electronics in a notebook computer
US6246006B1 (en) 1998-05-01 2001-06-12 Commscope Properties, Llc Shielded cable and method of making same
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US6445202B1 (en) 1999-06-30 2002-09-03 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
DE19963301C2 (de) * 1999-12-16 2001-12-13 Mannesmann Ag Verwendung eines Motorkabels zur Verbindung eines Motors mit einem Umrichter
US7002928B1 (en) 2000-06-21 2006-02-21 Sony Corporation IEEE 1394-based protocol repeater
US6384337B1 (en) 2000-06-23 2002-05-07 Commscope Properties, Llc Shielded coaxial cable and method of making same
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
DE10143173A1 (de) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafersonde
US7542474B2 (en) * 2001-02-26 2009-06-02 Sony Corporation Method of and apparatus for providing isochronous services over switched ethernet including a home network wall plate having a combined IEEE 1394 and ethernet modified hub
US20030120197A1 (en) * 2001-05-28 2003-06-26 Takashi Kaneko Composite material for medical applications, tube for medical applications and medical instrument
WO2003052435A1 (en) 2001-08-21 2003-06-26 Cascade Microtech, Inc. Membrane probing system
JP3786594B2 (ja) * 2001-10-01 2006-06-14 矢崎総業株式会社 電磁波シールド編組
US6847219B1 (en) * 2002-11-08 2005-01-25 Cascade Microtech, Inc. Probe station with low noise characteristics
US20040199069A1 (en) * 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
US20040194996A1 (en) * 2003-04-07 2004-10-07 Floyd Ysbrand Shielded electrical wire construction and method of manufacture
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
FR2859790B1 (fr) * 2003-09-11 2005-11-18 Eurocopter France Procede et dispositif pour detecter des defauts de protection electromagnetique de harnais electriques
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
US20050109522A1 (en) * 2003-11-25 2005-05-26 Midcon Cables Co., L.L.C., Joplin, Mo Conductive TEFLON film tape for EMI/RFI shielding and method of manufacture
JP2007517231A (ja) 2003-12-24 2007-06-28 カスケード マイクロテック インコーポレイテッド アクティブ・ウェハプローブ
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
WO2006031646A2 (en) 2004-09-13 2006-03-23 Cascade Microtech, Inc. Double sided probing structures
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
JP4831653B2 (ja) * 2005-02-02 2011-12-07 北川工業株式会社 電磁波シールドテープ及びケーブル
US7555350B2 (en) * 2005-05-27 2009-06-30 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7314997B1 (en) * 2005-07-18 2008-01-01 Yazaki North America, Inc. High speed data communication link using triaxial cable
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
JP4758947B2 (ja) * 2007-05-30 2011-08-31 株式会社アドバンスト・ケーブル・システムズ 光ファイバ担持用スペーサ、それを備えた光ファイバケーブルおよび光ファイバケーブルにおけるテープ状光ファイバ心線の外部への取り出し方法
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
DE102007050402B3 (de) * 2007-10-19 2009-06-04 Geo. Gleistein & Sohn Gmbh Seil mit darin aufgenommenem elektrischen Leiter
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
WO2010059247A2 (en) 2008-11-21 2010-05-27 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
EP2618339A3 (de) * 2010-03-12 2013-10-30 General Cable Technologies Corporation Kabel mit Isolierung mit Mikrooxidpartikeln
US9087630B2 (en) 2010-10-05 2015-07-21 General Cable Technologies Corporation Cable barrier layer with shielding segments
US9136043B2 (en) 2010-10-05 2015-09-15 General Cable Technologies Corporation Cable with barrier layer
US20120168197A1 (en) * 2011-01-04 2012-07-05 Primecon Technology Ltd. Coaxial cable structure with extruded shielding layer
DE102012011066A1 (de) * 2012-06-01 2013-12-05 Hagenuk KMT Kabelmeßtechnik GmbH Verfahren zur zielgeführten Lokalisierung einer Fehlerstelle und einer Vorrichtung
US9082526B2 (en) * 2012-06-25 2015-07-14 International Business Machines Corporation Shielded electrical signal cable
JP2016076398A (ja) * 2014-10-07 2016-05-12 日立金属株式会社 同軸ケーブル
US10709492B2 (en) * 2014-10-14 2020-07-14 Biosense Webster (Israel) Ltd. Effective parasitic capacitance minimization for micro ablation electrode
CN109065257A (zh) * 2018-08-27 2018-12-21 广东电网有限责任公司 一种双层电磁屏蔽高温超导电缆
USD939508S1 (en) 2018-11-19 2021-12-28 Awb Company Device performance enhancer
USD943542S1 (en) 2018-11-19 2022-02-15 Amb Company Combined mobile phone and device performance enhancer
WO2022144925A1 (en) * 2020-12-30 2022-07-07 Sterlite Technologies Limited Intermittent tape
JP2022155716A (ja) * 2021-03-31 2022-10-14 株式会社オートネットワーク技術研究所 シールド箔および通信用電線

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB633190A (en) * 1947-12-31 1949-12-12 Osbert Linn Ratsey Improvements in screened electric cables
DE2547152A1 (de) * 1975-10-21 1977-04-28 Tenge Hans Werner Elektrische abschirmung von kabeln und leitungen und verfahren zu ihrer herstellung
US4376920A (en) * 1981-04-01 1983-03-15 Smith Kenneth L Shielded radio frequency transmission cable

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2954552A (en) * 1946-02-01 1960-09-27 Halpern Otto Reflecting surface and microwave absorptive layer
US2875435A (en) * 1953-08-18 1959-02-24 Edward B Mcmillan Electromagnetic wave absorbing dielectric walls
US3007160A (en) * 1957-11-29 1961-10-31 Halpern Otto Method of reducing reflection of incident electromagnetic waves
FR1295473A (fr) * 1961-04-25 1962-06-08 Isodio Dispositif d'antiparasitage pour moteurs à explosions
US3191132A (en) * 1961-12-04 1965-06-22 Mayer Ferdy Electric cable utilizing lossy material to absorb high frequency waves
US3309633A (en) * 1963-01-10 1967-03-14 Mayer Ferdy Anti-parasite electric cable
US4024318A (en) * 1966-02-17 1977-05-17 Exxon Research And Engineering Company Metal-filled plastic material
US4037009A (en) * 1976-08-11 1977-07-19 Metex Corporation Conductive elastomeric elements
FR2437686A1 (fr) * 1978-09-29 1980-04-25 Mayer Ferdy Element electrique a pertes, tel que fil, cable et ecran, resistant et absorbant
FR2461342A1 (fr) * 1979-07-06 1981-01-30 Mayer Ferdy Cables a haute immunite, contre pulse electromagnetique (emp)
US4347487A (en) * 1980-11-25 1982-08-31 Raychem Corporation High frequency attenuation cable
US4629756A (en) * 1985-11-04 1986-12-16 E. I. Du Pont De Nemours And Company Heat reflective polymer blends
JPS6291311U (de) * 1985-11-27 1987-06-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB633190A (en) * 1947-12-31 1949-12-12 Osbert Linn Ratsey Improvements in screened electric cables
DE2547152A1 (de) * 1975-10-21 1977-04-28 Tenge Hans Werner Elektrische abschirmung von kabeln und leitungen und verfahren zu ihrer herstellung
US4376920A (en) * 1981-04-01 1983-03-15 Smith Kenneth L Shielded radio frequency transmission cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223134A1 (de) 2014-11-13 2016-05-19 Robert Bosch Gmbh Elektrisches Antriebssystem und Kraftfahrzeug mit einem elektrischen Antriebssystem

Also Published As

Publication number Publication date
DE3625631A1 (de) 1988-02-04
JPS63170811A (ja) 1988-07-14
IL83300A (en) 1991-01-31
DE3625631C2 (de) 1990-02-08
US4871883A (en) 1989-10-03
IL83300A0 (en) 1987-12-31
EP0254964A3 (de) 1989-05-24

Similar Documents

Publication Publication Date Title
DE3625631C2 (de)
EP0098801B1 (de) Leitung mit verteiltem Tiefpassfilter
EP0142050B1 (de) Signalkabel
EP0594809B1 (de) Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben
DE3638748C2 (de)
DE3341468C2 (de)
DE2557598C2 (de) Geschirmte Koaxialsteckvorrichtung zur Kopplung von zwei Koaxialkabeln
EP0087371A2 (de) E.M.I.-geschütztes Kabel mit auf symetrische/asymetrische Weise gesteuerte Dämpfung
DE3025504A1 (de) Kabel mit grosser immunitaet gegen elektro-magnetische impulse (emp)
EP0033441A1 (de) Impulsübertrager und dessen Verwendung als Trennübertrager
DE2048401A1 (de) Flachband-Koaxialkabel
DE60215593T2 (de) Transformator Abschirmung
DE1116752B (de) Daempfungseinrichtung fuer symmetrische Hochfrequenzbandleitungen
DE112017002142T5 (de) Millimeterwellenband-kommunikationsgerät
EP2489095B1 (de) Antennenkoppler
DE19907675A1 (de) Kabelschirm aus Faserverbundwerkstoffen mit hohem Anteil an elektrisch leitfähigen Fasern zur elektromagnetischen Abschirmung
EP0712541B1 (de) Filter-stecker
DE3326629A1 (de) Stoerschutz-filter fuer elektronische steuergeraete in kraftfahrzeugen
DE1514250A1 (de) Verbesserungen an oder fuer Kondensatoren
DE2622297A1 (de) Flexibles hochfrequenzkabel
DE4315847A1 (de) Verbindung zwischen einem Sender und/oder Empfänger sowie einer Antenne
DE2855134A1 (de) Flexible uebertragungsleitung
DE3702780A1 (de) Integrierte Varistor-Schutzvorrichtung zum Schutz eines Elektronikbauteils gegen die Wirkungen von elektromagnetischen Feldern oder statischen Ladungen
DE6928695U (de) Baugruppentraeger fuer steuer- bzw. regelanlagen
DE2529994A1 (de) Funkentstoerte empfangsantenne in der naehe der heizleiter auf der fensterscheibe eines kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: MARCHI E MITTLER

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.L. GORE & ASSOCIATES GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.L. GORE & ASSOCIATES GMBH

17P Request for examination filed

Effective date: 19891005

17Q First examination report despatched

Effective date: 19911118

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920515

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUIOL, ERIC, DIPL.-PHYS.