EP0342330A2 - Device for separating non magnetic metals from a solid mixture - Google Patents

Device for separating non magnetic metals from a solid mixture Download PDF

Info

Publication number
EP0342330A2
EP0342330A2 EP89104611A EP89104611A EP0342330A2 EP 0342330 A2 EP0342330 A2 EP 0342330A2 EP 89104611 A EP89104611 A EP 89104611A EP 89104611 A EP89104611 A EP 89104611A EP 0342330 A2 EP0342330 A2 EP 0342330A2
Authority
EP
European Patent Office
Prior art keywords
drum
rotor
magnet
magnetic
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89104611A
Other languages
German (de)
French (fr)
Other versions
EP0342330B1 (en
EP0342330A3 (en
Inventor
Jörg Julius
Eberhard Stodt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metso Lindemann GmbH
Original Assignee
Lindemann Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883817003 external-priority patent/DE3817003C1/en
Priority claimed from DE3906422A external-priority patent/DE3906422C1/de
Application filed by Lindemann Maschinenfabrik GmbH filed Critical Lindemann Maschinenfabrik GmbH
Priority to AT89104611T priority Critical patent/ATE95084T1/en
Priority to JP1115219A priority patent/JPH02218452A/en
Priority to BR898902354A priority patent/BR8902354A/en
Publication of EP0342330A2 publication Critical patent/EP0342330A2/en
Publication of EP0342330A3 publication Critical patent/EP0342330A3/en
Application granted granted Critical
Publication of EP0342330B1 publication Critical patent/EP0342330B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form

Definitions

  • the invention relates to a device for separating non-magnetizable metals, in particular non-ferrous metals, from a solid mixture by means of a rotating drum in which a rotating magnet rotor equipped with permanent magnets is arranged.
  • the so-called eddy current separation can be carried out.
  • the feed material is guided over the poles of an alternating magnetic field generator, for example on a belt or in free fall.
  • eddy currents are induced in the electrically conductive constituents of the mixture to be separated, which build up their own magnetic fields which are opposed to the generating field and thereby accelerate these constituents relative to the other constituents of the mixture by means of electromagnetic forces.
  • Eddy current separation allows non-ferromagnetic, highly electrically conductive substances, such as aluminum and copper, to be separated from non-ferrous solid mixtures and non-ferrous metal / non-metallic solid mixtures, such as automobile shredder rubble, electronic scrap and the like.
  • the eddy current separation can be preceded by a magnetic separation in order to remove ferromagnetic parts beforehand. Eddy current separation is also useful other sorting and classification stages upstream, because the greatest possible pre-enrichment and fractionation of the feed material has a positive effect on the separation success.
  • a solid mixture for separating the ferromagnetic portion is first passed under a magnetic separator by means of a conveyor belt and then fed from the conveyor belt to a slowly rotating outer drum for separating the non-ferrous metals.
  • a fast rotating rotor equipped with permanent magnets is arranged concentrically inside the outer drum.
  • the permanent magnets extend uniformly along the axis of rotation of the magnetic rotor and are arranged there at a large distance from one another in order to ensure that a magnetic field which forms between the poles of the permanent magnets acts as far as possible outside the drum.
  • the solid mixture reaches the area of the alternating magnetic field very early, namely before the upper vertex of the outer drum.
  • the non-ferrous metal parts are thus additionally accelerated very early, essentially tangentially in the conveying direction. These parts therefore pass into a throwing parabola much earlier than the non-conductive material parts, ie they lose contact with the drum at an early stage.
  • the acceleration of the non-ferrous metal parts is not sufficient to deflect the throwing parabola, which begins at the apex of the drum, far enough beyond the drum radius. It is therefore not possible to rule out disabilities with the electrically non-conductive parts which are either still lying on the drum surface or are being detached due to gravity.
  • the non-ferrous metal parts already detached at the apex of the drum due to the force of the magnetic field rather hit the electrically non-conductive parts conveyed by the outer drum, so that mutual hindrances occur.
  • conductive parts to be deflected are braked by the non-conductive parts and, on the other hand, non-conductive parts are undesirably accelerated by contact with the conductive non-ferrous metal parts. As a result, incorrect discharges cannot be avoided in both grades, i.e. electrically non-conductive parts also get into the collection area of the non-ferrous metal parts and vice versa.
  • US Pat. No. 3,448 also describes a device for separating substances which are less electrically conductive from electrically good conductors by means of a magnetic rotor arranged concentrically in a rotating outer drum, the magnets of which are arranged alternately with a north and a south pole on the periphery of the rotor body 857 became known.
  • the solid mixture intended for separating the constituents is fed to the outer drum of the magnetic rotor either from a belt conveyor running a short distance above the outer drum or by means of a conveyor belt which wraps around the outer drum.
  • the magnetic forces accelerate the electrically well-conductive substances to a more distant one Trajectory than the less electrically conductive substances, so that due to the different trajectories a separation of these components can be achieved.
  • the invention has for its object to provide a device of the type mentioned, which allows an improved mode of operation when separating in particular non-ferrous metals from a solid mixture.
  • This object is achieved in that the position of the axis of rotation of the magnetic rotor in the quadrant of the material discharge zone is adjusted by pivoting in the circumferential direction and / or radial displacement to adjust the effective range of the alternating magnetic field generated by the magnetic rotor.
  • the greatest possible effect of the eddy current separation can be exploited so that the full force of the magnetic field floods the non-ferrous metals in the area referred to below as the "material discharge zone"; the material discharge zone is reached when the material to be separated on the curved line formed either directly by the drum or by the conveyor belt wrapping around the drum starts to slide or fall due to gravity, so that the mechanical discharge forces combine with the latest to act repulsive forces of the magnetic field for the non-ferrous metals the greatest deflection of the throwing parabola and thus a targeted separation from the other mixture components results.
  • the position of the rotor shaft can be adjusted concentrically on a radius around the axis of rotation of the drum.
  • the effective range of the alternating magnetic field on the mixture in the entire quadrant of the discharge zone can be aimed specifically at a specific and more narrowly defined area on the drum.
  • the invention is based on the knowledge that a disruptive, mutual hindrance of the parts of the solid mixture to be separated is almost ruled out if the mixture to be separated has already been conveyed as far as possible beyond the apex of the drum, for example by means of a conveyor belt up to this Point is moved forward, and on the other hand, the repulsive forces act on the non-ferrous metals most strongly when the mixture is just in the material discharge zone.
  • a magnetic rotor to be adjusted concentrically on a radius around the drum axis of rotation detects an adjustment range which meets all operating requirements.
  • the setting or shifting of the effective range of the alternating magnetic field can advantageously be favored by adjusting the peripheral speed of the drum, because of changing the peripheral speed of the drum, for example between 1 m and 3 m, due to the set position of the axis of rotation of the magnetic rotor in the quadrant of the material discharge zone / sec, can be determined by the composition of the Shift the solid material mixture dependent, variable material discharge zone to the area of the drum in which the force of the permanent magnets is greatest under the given circumstances. The higher the peripheral speed, the closer the material drop zone approaches the top vertex of the drum.
  • Such an adjustment of the eccentric position of the magnet rotor in the quadrant of the discharge zone of the drum is proposed, in which the air gap between the magnet rotor and the drum is the smallest in the area of the material discharge zone.
  • the particular position of the material discharge zone for a given curvature of the drum depends on the peripheral speed of the drum, the type and grain size composition of the solid mixture and the friction between the conveyor belt or the outer surface of the drum and the mixture to be separated. Since these criteria can be very different, changing conditions are taken into account by adjusting the magnetic rotor accordingly; this can preferably be in an angular range of 75 ° measured from the vertical center plane set by the drum axis.
  • the material discharge zone is expediently in a range from approximately 15 to 50 ° to the vertical running through the axis of rotation of the drum. If, for example, the angle between the vertical through the axis of rotation of the drum and the connecting line of this axis of rotation with the axis of rotation of the rotor shaft were chosen too small, the force of the eddy current would have a full effect on the non-ferrous metals even before the material discharge zone.
  • the non-ferrous metals would thus accelerate very early, deviate from the desired large deflection of the throwing parabola and then in fall a collecting container which is intended for the inferior mixture components which are not influenced by the alternating magnetic field and are therefore not intended for a deflecting parabola deflected in the conveying direction. Due to the repulsion of the non-ferrous metals in the conveying direction, that is to say radially to the curved line of the drum, the conveying width of the eddy current separating device according to the invention is not subject to any restriction.
  • the magnet rotor have at least two magnet pairs each formed from two adjacent rows of permanent magnets and that the angular dimension between the rows of permanent magnets, each forming a magnet pair, is smaller than the angular dimension between the magnet pairs.
  • the arrangement of diametrically opposed magnet pairs reduces the basic magnetic field strength in the ring field around the rotor and increases the peak values of the field lines, because the magnetic field lines run primarily in the area between the closely adjacent permanent magnet rows.
  • the base body of the magnet rotor preferably have concave recesses in the area between the magnet pairs.
  • the magnetic field lines of the magnetic rotor can be restricted even more to the area of the permanent magnet rows of each magnet pair which are close to one another and thus more sharply defined pulses can be achieved because the basic field strength in the ring field around the rotor is reduced even further.
  • one half of the magnetic rotor have more rows of permanent magnets than the other half.
  • the two halves of the magnetic rotor having a different magnetic number can be used for solid mixtures with different fractions.
  • Such a magnetic rotor which has a reduced number of permanent magnets, is advantageous if not so large amounts of material are obtained in different fractions, so that the performance of a wide machine could not be exhausted.
  • this magnetic rotor can, if necessary, be converted in such a way that the second half also has permanent magnets in every row is loaded.
  • each second row of magnets can preferably extend axially from one end face to the center of the magnet rotor, whereby according to an advantageous embodiment half of the magnet rotor with fewer rows of permanent magnets can have at least two magnet pairs each formed from two adjacent rows of permanent magnets.
  • a straightening body is arranged in the area above the material discharge zone at a distance above the drum in the magnetic field of the magnetic rotor.
  • This is preferably made of magnetically good and electrically poorly conductive material.
  • a straightening body which can be, for example, a flat or curved plate, is understood to mean a body that generates the field lines generated by the magnetic rotor in the direction of its surface and attracts the field lines. The field lines can thus be concentrated in such a way that an intensive force effect of the magnetic field on the non-ferrous metals in the area of the material discharge zone is also promoted in this way.
  • the straightening body should advantageously be adjustable. If the straightening body is both adjustable radially and ver on a radius around the axis of rotation of the magnet rotor can be pivoted, its distance to the drum or to the magnet rotor can be adapted to the fractions contained in the solid mixture, this distance should correspond to one and a half to three times the size of the largest grain diameter of the processed material; it can also be swiveled exactly into the area of the material drop zone.
  • the width of the straightening body is preferably equal to the width of the magnetic rotor.
  • the force effect of the magnetic field can thus be optimized over the entire area of the material discharge zone.
  • the straightening body is cooled, for which purpose it can have cooling fins and / or cooling pipes through which oil flows, for example. Excessive heating of the straightening body due to the eddy current flow can thus be avoided.
  • the drive of the magnetic rotor can preferably be provided with a speed control;
  • the speed of an electric motor that drives the magnetic rotor via belts can be controlled by means of a frequency converter.
  • the speed can be in the range of approx. 1000 to 3600 rpm, for example. regulated and thus a further adjustment of the frequency of the alternating magnetic field to the solid mixture to be separated can be achieved, whereby very different and in particular fine-grained non-ferrous metal components in the mixture require a correspondingly higher speed and thus higher frequency. It is advantageous to drive the magnet rotor within arrange the drum.
  • a driven conveyor belt wrapping around the drum is provided with at least one transversely arranged driver.
  • the supplied solid mixture can be evened out from the feed point to the material discharge zone on the drum by reducing the layer height of the solid mixture due to a higher belt speed than the feed conveyor, for example a vibrating trough.
  • the conveyor belt can be driven via a drum motor arranged in the feed area.
  • the carrier has the following purpose.
  • the ratio of the outer diameter of the magnetic rotor to the inner diameter of the drum can be chosen to be so large that the outer diameter of the magnetic rotor is considerably smaller than the inner diameter of the drum, so that any magnetic parts that may adhere to the conveyor belt automatically fall down at the lowest point of the drum because the magnetic field of the magnetic rotor is ineffective there due to the large distance.
  • Such parts and adhering dirt components can also be removed from the lower run of the conveyor belt with the help of a scraper.
  • a shaft end of a drive drum of the conveyor belt can preferably be provided with a clutch disk which is coupled with a mains-independent auxiliary drive in the event of a power failure.
  • the problem of damage caused by warming particles also occurs in the event of a power failure in the system or when the system is switched off.
  • the metal parts then remaining in the effective range of the magnetic rotor heat up within a few seconds due to the magnetic rotor that continues to run due to its large flywheel mass and induce eddy currents in the metal parts, so that damage to both the conveyor belt, which is usually made of plastic, and the drum can be expected . Braking the magnetic rotor to an uncritical speed takes too much time because of the large moment of inertia.
  • the conveyor belt can be moved further without delay, by means of the auxiliary drive which switches on without delay, ie the conveyor belt does not have to be accelerated out of rest. After a power failure, the conveyor belt is moved on until there is no more material in the area of the magnetic rotor.
  • the auxiliary drive does not have to maintain the full conveying speed.
  • mechanical auxiliary motors are particularly suitable as auxiliary drives, such as, for example, a spring motor put into operation by means of a previously wound spring or a motor with weight drive known from clockworks.
  • the mechanical auxiliary motors also require almost no maintenance and are also available in winter great cold reliable.
  • a compressed air drive with a stored amount of compressed air, an emergency power unit with a continuously rotating flywheel for immediate switching on, or a direct current motor with a battery drive can be used as the auxiliary motor.
  • the magnetic rotor can drive the drive drum of the conveyor belt directly or indirectly as an auxiliary drive in the event of a power failure.
  • the magnet rotor can preferably be provided with a generator that drives the drive drum. In this way, the rotational energy of the magnetic rotor, which continues to run for a certain time in the event of a power failure, is used to drive the drive drum and thus to move the conveyor belt further.
  • a preferably shaftless mounting of the drum by means of drum inserts advantageously makes it possible for the rotor shaft to be guided through the drum and for a drum insert to engage in the drum from each side.
  • the drum inserts which lie flush with the inner casing of the drum and which are screwed to the drum need only engage in the drum to a slight extent, so that inside the drum there is a free space which is many times larger than the engagement length and which is sufficient in any case. to record the eccentrically arranged rotor shaft with the magnet rotor.
  • Shaft journals of the rotor shaft can preferably be mounted in bearing brackets which have an outer flange provided with a bolt circle, rotatable adjusting flanges preferably arranged in the bearing brackets on a hole corresponding to the bolt circle of the outer flange are provided with threaded holes for the screws connecting the outer flange to the adjusting flange.
  • the magnet rotor can be shifted in the perforation corresponding steps in a defined area, that is, pivoted concentrically around the axis of rotation of the drum, and the effective range of the magnets can be adjusted, for example, from the vertical of the axis of rotation of the drum to approximately 75 ° in the direction of rotation of the conveyor belt .
  • the threaded bores can namely be arranged with a certain pitch, for example with a pitch of 6 o , on the bolt circle, so that after loosening the screws firmly connecting the outer flanges of the bearing brackets with the adjusting flanges, the adjusting flanges rotatably mounted in the bearing brackets twist and set to a new pitch that determines the eccentric rotor position.
  • the rotor shaft end On the bearing side of the magnetic rotor facing away from the drive side, the rotor shaft end is mounted directly in a bearing which is installed in the adjusting flange arranged eccentrically in the drum.
  • the rotor shaft is advantageously supported on its drive-side bearing side in a bearing bracket which is arranged eccentrically in the drum and which is non-rotatably connected to the adjusting flange and serves as a supporting body for the bearing of the drum insert.
  • the adjusting flanges By turning the adjusting flanges in relation to the outer flanges, the adjusting flange with the bearing cover on the bearing side facing away from the drive side and the screws connecting the adjusting flange on the drive side bearing side with the bearing bracket adjust the rotor shaft bearings accordingly, thus changing the eccentric position of the magnet rotor in the drum.
  • covers with axial collars and bearings arranged thereon can be inserted into the drum from each end face and rotated relative to the drum.
  • the rotor shaft is preferably mounted in the covers, whereby the drive-side shaft end can advantageously penetrate the cover, the eccentric position of the magnet rotor and thus the effective range of the alternating magnetic field generated by the magnet rotor can be achieved by turning the cover.
  • threaded bores with a certain pitch can be arranged on a bolt circle of the cover, to which a corresponding bolt circle with threaded bores, e.g. in retaining rings for the drum. After loosening and removing screws screwed into the holes, the lids can then be turned to the desired pitch, taking the magnetic rotor with them.
  • At least one axle end of a support axle guided through the cover and fastened to it can be stored in a bearing bracket which has a stationary outer flange provided with a bolt circle, opposite which is an adjusting flange rigidly connected to the carrier axle and provided with threaded holes on a corresponding bolt circle is.
  • the covers are adjusted by turning the supporting axis.
  • the end of the axle facing away from the bearing bracket can advantageously be arranged in a support, ie it does not need to be mounted in a bearing bracket with adjusting flanges with bolt circles.
  • Bearing brackets on both sides are only necessary if only - to create space inside the drum - stub axles penetrate the covers from both sides; in this case, a bolt circle bearing bracket could be arranged for each outer end of the axle.
  • the rotation of the magnet rotor can be achieved via the supporting axis and, on the other hand, at least on one side of the magnet rotor create enough space inside the drum that a hydraulic motor flanged to one of the supports and driving the rotor shaft can advantageously be arranged there.
  • a motor for the rotor shaft located inside the drum means that no power transmission elements are required.
  • the hydraulic motor can preferably be connected via lines to supply bores on the supporting axle and can thus be supplied with hydraulic fluid by a hydraulic unit (not shown).
  • a solid mixture containing nonferrous metals is placed on a vibrating trough 1 designed as a feed conveyor according to FIG.
  • the feed material is evened out in height and width on the vibrating trough 1, which supports the later separation of the mixture components.
  • the vibrating trough 1 inclined in the conveying direction 2 discharges the mixture from a low height onto a conveyor belt 3.
  • the conveyor belt 3 works in particular with a horizontal upper run (conveyor level) and loops around a drive drum 4 arranged below the discharge end of the vibrating trough 1 and a drum 5 arranged further forward in the conveying direction 2.
  • the speed of the conveyor belt 3 is greater than the conveying speed of the vibrating trough 1, so that the layer height of the mixture is further reduced as a result of the single-layer position achieved when the material is transferred to the conveyor belt 3.
  • a magnet rotor 6 is arranged eccentrically in the drum 5 and has rows of permanent magnets 9 extending in the longitudinal direction of the rotor shaft 7 and fastened in the base body 8 with alternating north-south polarity.
  • the axis of rotation 14 of the magnet rotor 6 and thus the rotor shaft 7 or the magnet rotor 6 can be adjusted concentrically on a radius around the drum axis of rotation 15.
  • the effective range of the permanent magnets 9 of the magnetic rotor 6 can be defined in a quadrant 18 of the discharge zone which is delimited by the vertical 16 and horizontal 17 passing through the axis of rotation 15 of the drum 5 and which defines the area in which the mixture lying on the conveyor belt 3 slips due to gravity or falling comes to be adjusted.
  • the air gap 19 between the magnetic rotor 6 and the inner jacket of the drum 5 is also the material discharge zone 20 in this area - this is shown in FIG. 3 as the angle between the dashed and double-dotted reference lines - having the smallest area.
  • the base bodies 308 and 408 are provided with two diametrically opposed magnet pairs 78, 79.
  • the angular dimension 80 between adjacent rows of permanent magnets 9 forming a magnet pair 78 or 79 is substantially smaller than the angular dimension 81 between the two magnet pairs 78 and 79.
  • the magnet pairs 78 and 79 Due to the closely spaced rows of permanent magnets 9 of the magnet pairs 78 and 79, on the one hand and, on the other hand, the magnet pairs 78 and 79, which are far apart from one another, has the effect that the magnetic field lines generated by the magnet rotor 306 and 408 are largely limited to the region of the closely spaced poles of the adjacent rows of permanent magnets 9, so that more pronounced magnetic pulses are formed.
  • the limitation of the magnetic field lines to the region of the closely spaced poles of the two rows of permanent magnets of the magnet pairs 78 and 79 is also supported by the concave, axially continuous recesses 82 in the base body 408 according to FIG. 5.
  • one half 506a has more rows of permanent magnets 9a, 9b than the other half 506b; 6, only every second row of the rows of permanent magnets arranged peripherally in the base body 508 with an alternating pole sequence has permanent magnets 9a extending over the entire width of the magnet rotor 506, while the other rows from an end face only axially up to that through the line 83 marked center of the magnetic rotor 506 are provided with permanent magnets 9b.
  • the right half 506b of the magnet rotor 506 according to FIG.
  • the existing feed conveyor 1 or the conveyor belt 3 can be assigned a partition wall (partition plate) which extends in the middle in the conveying direction; alternatively, there may be two separate feeders.
  • the mixture transported by means of the conveyor belt 3 far beyond the center of the apex (see vertical 16) of the drum 5 is already in a throwing parabola 21, for which there is a most deflected force due to the force of the eddy current which is fully effective at the material discharge zone 20 Curve with a correspondingly strong repulsion of the non-ferrous metals results.
  • the non-ferrous metals deflected according to the throwing parabola 21 fall in a defined manner into a collecting container, not shown, which is removed from the collecting point for the other mixture components.
  • the separation into valuable non-ferrous metal components and other components is supported by means of a separating saddle 22 which can be adjusted with its apex in a substantially horizontal direction.
  • the magnet rotor 6 occupies a position in which the angle between the vertical 16 passing through the drum axis of rotation 15 and a connecting line 25 '(shown in broken lines) of the drum axis of rotation 15 with the axis of rotation 14 of the rotor shaft 7 is approximately 45 o is.
  • the adjustment angle of the effective range of the magnetic field of the magnetic rotor 6 can - starting from the vertical 16 - be 75 o in the direction of rotation, as defined by the angle 26 between the solid connecting line 25 and the vertical 16 in FIGS. 1 and 3; the desired position of the magnetic rotor can be varied accordingly.
  • the quality of the separation effect is further improved by a straightening body 84 shown in FIG. 3, which is located in the area above the material discharge zone 20 at a distance above the drum 5 in the magnetic field of the magnetic rotor 6 is located and extends over the entire width of the magnetic rotor 6.
  • the straightening body 84 namely causes the field lines of the alternating magnetic field generated by the magnetic rotor 6 to extend to the straightening body 84, which attracts the field lines and concentrates them in the desired manner. It is thus possible to form elongated field lines with deeply incised valleys which are only a short distance from the surface of the drum 5 and which provide defined impulses on the material components.
  • drum inserts 27 engage the drum 5 flush with the inner lateral surface from both sides; the drum 5 is thus shaftless.
  • the drum inserts 27 are rotatably connected to the drum 5 by means of screws 28 and retaining rings 29 and rotate about bearings 30, of which the drive side 31 bearing is mounted on a bearing bracket 32 and on the opposite side on an adjusting flange 33.
  • the bearing bracket 32 and the adjustment flange 33 accommodate rotor shaft bearings 34, in which the rotor shaft 7 rotates with shaft journals 35, 36.
  • the bearing bracket 32 and the adjusting flange 33 on the opposite side receive the rotor shaft bearings 34 eccentrically.
  • the bearing bracket 32 on the drive side 31 is connected by means of screws 39 to an adjusting flange 40 on the drive side 31.
  • Both the adjusting flange 33 and the adjusting flange 40 have threaded bores 42 arranged radially from one another on their outer circumference with a certain pitch 41 (cf. FIG. 8); these lie on a bolt circle 43, which corresponds to a bolt circle 44 for bores 45 in an outer flange 47 welded to a bearing bracket 49 both on the drive side 31 and on the opposite bearing side.
  • screws 48 screwed into the corresponding bores 42 and 45 connect the outer and adjusting flanges 47 and 33 or 40 to one another, the eccentric position of the rotor shaft 7 in the drum 5 remains unchanged.
  • the bearing bracket 49 of the drive side 31 is shown as a detail with the underlying and therefore not visible adjusting flange 40 screwed to the outer flange 47.
  • the bearing brackets 49 can, for example, be screwed to the bearing arms 46 of the conveyor belt 3 anchored to the foundation by means of supports 62 (FIG. 7).
  • the bearing bracket 49 is provided with a vertical support 50 and a curved rib 51 welded on the one hand to the bracket 50 and on the other hand to the bearing bracket 49.
  • the screws 48 which are necessarily to be loosened to adjust the axis of rotation 14 of the magnet rotor 6 concentrically to the axis of rotation 15 of the drum are all freely accessible.
  • a clutch disc 53 is arranged on a shaft end 52 of the drive drum 4, which at Power failure is coupled with an auxiliary drive 61 (see. Fig. 1).
  • the auxiliary drive 61 shown is designed as a mechanically working spring motor and has a corresponding coupling part 54 on a shaft 55 opposite the clutch disc 53 and disengaged when the mains voltage is applied.
  • the coupling part 54 engages with a locking finger 56 in a spring which is also mounted on the shaft 55 receiving spring housing 57 a.
  • the spring housing 57 By rotating the spring housing 57 by means of a Motor 58, the spring is wound, ie preloaded, the number of revolutions being monitored by a revolution counter 59.
  • a current meter 60 is connected to the motor 58, which allows a motor current measurement to be carried out to check for spring breakage or other damage when the spring is being wound or wound. If the mains voltage falls together, the clutch part 54 engages in the clutch disc 52, the locking finger 56 disengaging from the spring housing 57, so that the stored energy of the spring is released.
  • the spring housing 57 which then rotates together with the shaft 55, transmits the rotational movement to the drive drum 4 via the electromagnetic clutch consisting of the clutch disc 53 and the clutch part 54; the conveyor belt 3 moves accordingly forward.
  • the run-on energy of the magnet rotor 6 can be used and, for example, the drive drum 4 can be driven by a magnet rotor 6 which continues to run for a certain time, ie also without current, via a clutch.
  • the wake energy of the magnetic rotor 6 feeds a generator 85 arranged on the rotor shaft, which generator is electrically connected to the drive drum 4 according to the broken line 86 and is also connected to a current source 88 via an intermediate switch 87. If the mains voltage drops to zero in the event of a power failure, a relay of the intermediate switch 87 drops out accordingly and switches the generator 85 to the power supply to the drive drum 4. Since the intermediate switch 87 is connected to the power source 88, the intermediate switch relay switches on the normal drive immediately and the generator 85 as soon as the mains voltage is present again.
  • a cover 63 with an axial collar 64 and a bearing 65 arranged thereon engages in the drum from each end face.
  • the drum 105 rotates on the bearings 65, while the covers 63 are welded to a support shaft 66 which is guided through the drum in the longitudinal direction and remain in their position.
  • the support axis 66 which at the same time defines the axis of rotation 115 of the drum, projects with axles 67, 68 from the covers 63 and is mounted outside the drum 105 in a bearing bracket 146 on the one hand and in a support 69 on the other a bolt circle 144 is provided with an outer flange 147 which is opposite an adjustment flange 133 rigidly connected to the support shaft 66; the adjustment flange is provided on a corresponding bolt circle 143 with threaded holes 142.
  • the magnet rotor 106 with its axis of rotation 114 lies eccentrically in the drum 105.
  • the shaft end of the rotor shaft 107 facing away from the drive side 131 is supported by a bearing 70 which, like the bearing 71, is arranged on the drive-side shaft end 136 in an inner bearing shoulder 72 of the cover 63 is.
  • the rotor shaft 107 penetrates the cover 63 with the shaft end 136;
  • a pulley 112 is arranged on the shaft end 136.
  • the embodiment of an eddy current separating device according to the invention shown in FIG. 11 does not differ from the embodiment according to FIG. 10 with regard to the structure of the supporting axis and the adjustability of the magnetic rotor 206 with its axis of rotation 214.
  • the bearing bracket 246 receiving the axis end 67 consists of a stationary, with a bolt circle 244 provided outer flange 247, which is opposite an adjusting flange 233 rigidly connected to the support shaft 66; the adjusting flange is provided on a corresponding hole circle 243 with threaded bores 242.
  • the support 74 is displaced inward to such an extent that there is sufficient free space for a drive flanged directly to the support 74, which is designed as a hydraulic motor 75 driving the rotor shaft 207.
  • the hydraulic motor 75 is connected via lines 76 to supply bores 77 for the inlet and outlet of the hydraulic fluid, which lead through the support shaft 66 or the shaft end 68 thereof to a pressure medium source, not shown.
  • the supports 73, 74 are connected to the supporting axis due to the fixed connection 66 corresponds to the rotor shaft 207 mounted in the supports 73, 74.
  • the covers 63 do not need to be connected to the supporting axis 66, that is to say they do not have to be rotated in order to enable a new setting position of the magnetic rotor 206 in the drum 205.

Abstract

In order to improve the mode of operation of a device for separating non-magnetic metals, in particular non-ion metals, from a solid mixture by means of a rotating drum (5), in which a rotating magnetic rotor (6) equipped with permanent magnets (9) is arranged, it is proposed, for the purpose of setting the effective region of the alternating magnetic field generated by the magnet rotor (6), to adjust the position of the rotational axis (14) of the magnet rotor (6) in the quadrant (18) of the material ejection zone (20) by swivelling in the circumferential direction and/or radial displacement. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zum Abtrennen von nichtmagnetisierbaren Metallen, insbesondere Nichteisen-Me­tallen, aus einer Feststoffmischung mittels einer rotieren­den Trommel, in der ein rotierender, mit Permanentmagneten bestückter Magnetrotor angeordnet ist.The invention relates to a device for separating non-magnetizable metals, in particular non-ferrous metals, from a solid mixture by means of a rotating drum in which a rotating magnet rotor equipped with permanent magnets is arranged.

Mit Hilfe einer solchen Vorrichtung läßt sich die sogenann­te Wirbelstromscheidung ausführen. Das Aufgabegut wird da­bei über die Pole eines Wechselmagnetfelderzeugers, bei­spielsweise auf einem Band oder im freien Fall, geführt. Hierbei werden in den elektrisch leitfähigen Bestandteilen der zu trennenden Mischung Wirbelströme induziert, die eige­ne, dem Erzeugerfeld entgegengerichtete Magnetfelder auf­bauen und dadurch diese Bestandteile durch elektromagneti­sche Kräfte relativ zu den übrigen Bestandteilen der Mi­schung beschleunigen. Durch Wirbelstromscheidung lassen sich nicht ferromagnetische, elektrisch gut leitende Stof­fe, wie Aluminium und Kupfer, aus NE-Feststoffgemischen und NE-Metall-/Nichtmetall-Feststoffgemischen, wie Autoshredder­schutt, Elektronikschrott und dergleichen aussondern. Falls in diesem Material ferromagnetische Teile enthalten sind, kann der Wirbelstromscheidung eine Magnetscheidung vorge­schaltet werden, um ferromagnetische Teile vorab zu ent­fernen. Zweckmäßig werden außerdem der Wirbelstromscheidung andere Sortier- und Klassierstufen vorgeschaltet, weil sich eine möglichst weitgehende Voranreicherung und Fraktionie­rung des Aufgabematerials positiv auf den Trennerfolg aus­wirkt.With the aid of such a device, the so-called eddy current separation can be carried out. The feed material is guided over the poles of an alternating magnetic field generator, for example on a belt or in free fall. In this case, eddy currents are induced in the electrically conductive constituents of the mixture to be separated, which build up their own magnetic fields which are opposed to the generating field and thereby accelerate these constituents relative to the other constituents of the mixture by means of electromagnetic forces. Eddy current separation allows non-ferromagnetic, highly electrically conductive substances, such as aluminum and copper, to be separated from non-ferrous solid mixtures and non-ferrous metal / non-metallic solid mixtures, such as automobile shredder rubble, electronic scrap and the like. If ferromagnetic parts are contained in this material, the eddy current separation can be preceded by a magnetic separation in order to remove ferromagnetic parts beforehand. Eddy current separation is also useful other sorting and classification stages upstream, because the greatest possible pre-enrichment and fractionation of the feed material has a positive effect on the separation success.

Bei einer aus der DE-OS 34 16 504 bekannten Trennvorrich­tung wird eine Feststoffmischung zum Abtrennen des ferro­magnetischen Anteils zunächst mittels eines Förderbandes unterhalb eines Magnetscheiders hindurchgeführt und danach von dem Förderband zum Abtrennen der Nichteisen-Metalle einer langsam rotierenden Außentrommel zugeführt. Im Inne­ren der Außentrommel ist ein schnell rotierender, mit Perma­nentmagneten bestückter Rotor konzentrisch angeordnet. Die Permanentmagnete erstrecken sich gleichförmig längs der Ro­tationsachse des Magnetrotors und sind dort mit großem Abstand voneinander angeordnet, um zu erreichen, daß ein sich zwischen den Polen der Permanentmagnete ausbildendes Magnetfeld bis möglichst weit außerhalb der Trommel wirkt. Mit dieser bekannten Vorrichtung sollen gegenüber anderen Wirbelstromscheideverfahren höhere Durchsätze mit größeren Schichthöhen der zugeführten Feststoffmischung dadurch mög­lich sein, daß die Trennkräfte des Wechselmagnetfeldes schon zu dem Zeitpunkt auf die Feststoffmischung einwirken, zu dem die Schwerkräfte noch keine oder nur eine geringe Auswirkung haben.In a separating device known from DE-OS 34 16 504, a solid mixture for separating the ferromagnetic portion is first passed under a magnetic separator by means of a conveyor belt and then fed from the conveyor belt to a slowly rotating outer drum for separating the non-ferrous metals. A fast rotating rotor equipped with permanent magnets is arranged concentrically inside the outer drum. The permanent magnets extend uniformly along the axis of rotation of the magnetic rotor and are arranged there at a large distance from one another in order to ensure that a magnetic field which forms between the poles of the permanent magnets acts as far as possible outside the drum. With this known device, higher throughputs with greater layer heights of the supplied solid mixture should be possible compared to other eddy current separation processes in that the separating forces of the alternating magnetic field act on the solid mixture at the point in time at which the gravitational forces have no or only a slight effect.

Das Feststoffgemisch gelangt dabei schon sehr früh in den Bereich des Wechselmagnetfeldes, nämlich noch vor dem obe­ren Scheitelpunkt der Außentrommel. Die Nichteisen-Metall­teile werden somit schon sehr früh zusätzlich beschleunigt, und zwar im wesentlichen tangential in Förderrichtung. Die­se Teile gehen somit bereits sehr viel früher als die nicht leitfähigen Materialteile in eine Wurfparabel über, d.h. sie verlieren schon frühzeitig den Kontakt mit der Trommel.The solid mixture reaches the area of the alternating magnetic field very early, namely before the upper vertex of the outer drum. The non-ferrous metal parts are thus additionally accelerated very early, essentially tangentially in the conveying direction. These parts therefore pass into a throwing parabola much earlier than the non-conductive material parts, ie they lose contact with the drum at an early stage.

Die Beschleunigung der Nichteisen-Metallteile reicht aller­dings nicht aus, um die schon am Scheitelpunkt der Trommel beginnende Wurfparabel ausreichend weit über den Trommelra­dius hinaus auszulenken. Es lassen sich daher Behinderungen mit den entweder noch auf der Trommeloberfläche aufliegen­den oder sich schwerkraftbedingt gerade ablösenden, elekt­risch nicht leitfähigen Teilen nicht ausschließen. Die auf­grund der Krafteinwirkung des Magnetfeldes bereits im Schei­telpunkt der Trommel abgelösten Nichteisen-Metallteile tref­fen vielmehr auf die von der Außentrommel geförderten, elek­trisch nicht leitfähigen Teile, so daß es zu gegenseitigen Behinderungen kommt. Es werden nämlich einerseits auszulen­kende, leitfähige Teile durch die nicht leitfähigen Teile abgebremst und andererseits nicht leitfähige Teile durch den Kontakt mit den leitfähigen Nichteisen-Metallteilen un­erwünscht beschleunigt. Als Folge lassen sich Fehlausträge in beiden Sortierungen nicht vermeiden, d.h. in den Sammel­bereich der Nichteisen-Metallteile geraten auch elektrisch nicht leitfähige Teile und umgekehrt.However, the acceleration of the non-ferrous metal parts is not sufficient to deflect the throwing parabola, which begins at the apex of the drum, far enough beyond the drum radius. It is therefore not possible to rule out disabilities with the electrically non-conductive parts which are either still lying on the drum surface or are being detached due to gravity. The non-ferrous metal parts already detached at the apex of the drum due to the force of the magnetic field rather hit the electrically non-conductive parts conveyed by the outer drum, so that mutual hindrances occur. On the one hand, conductive parts to be deflected are braked by the non-conductive parts and, on the other hand, non-conductive parts are undesirably accelerated by contact with the conductive non-ferrous metal parts. As a result, incorrect discharges cannot be avoided in both grades, i.e. electrically non-conductive parts also get into the collection area of the non-ferrous metal parts and vice versa.

Eine Vorrichtung zum Trennen elektrisch weniger gut lei­tender von elektrisch gut leitenden Stoffen mittels eines in einer rotierenden Außentrommel konzentrisch angeordneten Magnetrotors, dessen Magnete abwechselnd mit einem Nord- und einem Südpol an der Peripherie des Rotorkörpers angeord­net sind, ist auch durch die US-PS 3 448 857 bekanntgewor­den. Die zum Abtrennen der Bestandteile bestimmte Feststoff­mischung wird der Außentrommel des Magnetrotors entweder von einem mit geringen Abstand oberhalb der Außentrommel verlaufenden Bandförderer oder mittels eines die Außentrom­mel umschlingenden Fördergurtes zugeführt. Sobald die Fest­stoffmischung in den Wirkbereich des Wechselmagnetfeldes des Magnetrotors gelangt, beschleunigen die Magnetkräfte die elektrisch gut leitenden Stoffe auf eine entferntere Flugbahn, als die elektrisch weniger gut leitenden Stoffe, so daß sich aufgrund der unterschiedlichen Flugbahnen eine Trennung dieser Bestandteile erreichen läßt.US Pat. No. 3,448 also describes a device for separating substances which are less electrically conductive from electrically good conductors by means of a magnetic rotor arranged concentrically in a rotating outer drum, the magnets of which are arranged alternately with a north and a south pole on the periphery of the rotor body 857 became known. The solid mixture intended for separating the constituents is fed to the outer drum of the magnetic rotor either from a belt conveyor running a short distance above the outer drum or by means of a conveyor belt which wraps around the outer drum. As soon as the solid mixture reaches the effective range of the alternating magnetic field of the magnetic rotor, the magnetic forces accelerate the electrically well-conductive substances to a more distant one Trajectory than the less electrically conductive substances, so that due to the different trajectories a separation of these components can be achieved.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art zu schaffen, die eine verbesser­te Betriebsweise beim Abtrennen von insbesondere Nichtei­sen-Metallen aus einer Feststoffmischung erlaubt.The invention has for its object to provide a device of the type mentioned, which allows an improved mode of operation when separating in particular non-ferrous metals from a solid mixture.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zum Einstellen des Wirkbereichs des vom Magnetrotor erzeugten Wechselmagnetfeldes die Lage der Drehachse des Magnetrotors im Quadranten der Material-Abwurfzone durch Verschwenken in Umfangsrichtung und/oder radiales Verlagern zu verstellen ist.This object is achieved in that the position of the axis of rotation of the magnetic rotor in the quadrant of the material discharge zone is adjusted by pivoting in the circumferential direction and / or radial displacement to adjust the effective range of the alternating magnetic field generated by the magnetic rotor.

Aufgrund der bestimmten Anordnung und Lage des Magnetrotors in der Trommel und der damit kombinierten Einstellbarkeit des Wirkbereichs des Wechselmagnetfeldes durch das erwähnte radiale Verlagern und/oder Verschwenken des Magnetrotors in Umfangsrichtung und das damit mögliche Verstellen des Mag­netrotors auf beliebigen Kurvenbahnen, was für bestimmte Materialkörnungen von Bedeutung sein kann, läßt sich die größtmögliche Wirkung der Wirbelstromscheidung ausschöpfen, so daß die volle Kraft des Magnetfeldes die Nichteisen-Me­talle in dem nachfolgend "Material-Abwurfzone" genannten Bereich durchflutet; die Material-Abwurfzone ist dann er­reicht, wenn das zu trennende Gut auf der entweder unmittel­bar von der Trommel oder dem die Trommel umschlingenden Fördergurt gebildeten gekrümmten Linie schwerkraftbedingt gerade ins Rutschen oder Fallen kommt, so daß sich in der Vereinigung der mechanischen Abwurfkräfte mit den spätest­möglich einwirkenden abstoßenden Kräften des Magnetfeldes für die Nichteisen-Metalle die größte Auslenkung der Wurf­parabel und damit eine gezielte Abtrennung von den übrigen Gemisch-Bestandteilen ergibt.Due to the specific arrangement and position of the magnetic rotor in the drum and the combined adjustability of the effective range of the alternating magnetic field by the aforementioned radial displacement and / or pivoting of the magnetic rotor in the circumferential direction and the possible adjustment of the magnetic rotor on any curved paths, which is important for certain material grain sizes can be, the greatest possible effect of the eddy current separation can be exploited so that the full force of the magnetic field floods the non-ferrous metals in the area referred to below as the "material discharge zone"; the material discharge zone is reached when the material to be separated on the curved line formed either directly by the drum or by the conveyor belt wrapping around the drum starts to slide or fall due to gravity, so that the mechanical discharge forces combine with the latest to act repulsive forces of the magnetic field for the non-ferrous metals the greatest deflection of the throwing parabola and thus a targeted separation from the other mixture components results.

Nach einer bevorzugten Ausgestaltung läßt sich die Lage der Rotorwelle konzentrisch auf einem Radius um die Trommeldreh­achse verstellen. Mit der entweder stufenlosen oder stufen­weisen Verstellbarkeit der Rotorwelle bzw. der Drehachse des Magnetrotors läßt sich der Wirkbereich des Wechsel­magnetfeldes auf das Gemisch in dem gesamten Quadranten der Abwurfzone gezielt auf einen bestimmten und enger gefaßten Bereich an der Trommel richten. Der Erfindung liegt nämlich die Erkenntnis zugrunde, daß eine störende, gegenseitige Behinderung der voneinander zu trennenden Teile der Fest­stoffmischung dann fast ausgeschlossen wird, wenn das zu trennende Gemisch einerseits schon möglichst weit über den Scheitelpunkt der Trommel hinaus befördert, beispielsweise mittels eines Fördergurtes bis über diesen Punkt vorwärts­bewegt wird, und andererseits die abstoßenden Kräfte auf die Nichteisen-Metalle dann am stärksten einwirken, wenn sich das Gemisch gerade noch in der Material-Abwurfzone befindet. Hierbei erfaßt ein konzentrisch auf einem Radius um die Trommeldrehachse zu verstellender Magnetrotor einen allen Betriebsansprüchen genügenden Einstellbereich.According to a preferred embodiment, the position of the rotor shaft can be adjusted concentrically on a radius around the axis of rotation of the drum. With the stepless or step-wise adjustability of the rotor shaft or the axis of rotation of the magnetic rotor, the effective range of the alternating magnetic field on the mixture in the entire quadrant of the discharge zone can be aimed specifically at a specific and more narrowly defined area on the drum. The invention is based on the knowledge that a disruptive, mutual hindrance of the parts of the solid mixture to be separated is almost ruled out if the mixture to be separated has already been conveyed as far as possible beyond the apex of the drum, for example by means of a conveyor belt up to this Point is moved forward, and on the other hand, the repulsive forces act on the non-ferrous metals most strongly when the mixture is just in the material discharge zone. Here, a magnetic rotor to be adjusted concentrically on a radius around the drum axis of rotation detects an adjustment range which meets all operating requirements.

Das Einstellen bzw. Verlagern des Wirkbereichs des Wechsel­magnetfeldes läßt sich aufgrund der eingestellten Lage der Drehachse des Magnetrotors im Quadranten der Material-Ab­wurfzone vorteilhaft auch durch Einstellen der Umfangsge­schwindigkeit der Trommel begünstigen, denn durch Verändern der Trommel-Umfangsgeschwindigkeit, beispielsweise zwischen 1 m und 3 m/sec, läßt sich die von der Zusammensetzung der Feststoffmischung abhängige, veränderliche Material-Abwurf­zone jeweils auf den Bereich der Trommel verlagern, in dem die Kraftwirkung der Permanentmagnete unter den jeweils gegebenen Umständen am größten ist. Je höher die Umfangs­geschwindigkeit ist, desto mehr nähert sich die Material-Ab­wurfzone dem oberen Scheitelpunkt der Trommel.The setting or shifting of the effective range of the alternating magnetic field can advantageously be favored by adjusting the peripheral speed of the drum, because of changing the peripheral speed of the drum, for example between 1 m and 3 m, due to the set position of the axis of rotation of the magnetic rotor in the quadrant of the material discharge zone / sec, can be determined by the composition of the Shift the solid material mixture dependent, variable material discharge zone to the area of the drum in which the force of the permanent magnets is greatest under the given circumstances. The higher the peripheral speed, the closer the material drop zone approaches the top vertex of the drum.

Es wird eine solche Einstellung der exzentrischen Lage des Magnetrotors in dem Quadranten der Abwurfzone der Trommel vorgeschlagen, bei der der Luftspalt zwischen dem Magnet­rotor und dem Trommel im Bereich der Material-Abwurfzone am geringsten ist. Die jeweilige Lage der Material-Abwurfzone ist bei gegebener Krümmung der Trommel abhängig von der Umfangsgeschwindigkeit der Trommel, der Art und der Korngrö­ßenzusammensetzung der Feststoffmischung und der Reibung zwischen dem Fördergurt oder der Mantelfläche der Trommel und dem zu trennenden Gemisch. Da diese Kriterien sehr unterschiedlich sein können, wird sich ändernden Bedingun­gen durch eine entsprechende Verstellung des Magnetrotors Rechnung getragen; dieser läßt sich vorzugsweise in einem Winkelbereich von 75o gerechnet von der vertikalen Mittel­ebene durch die Trommelachse einstellen. Die Material-Ab­wurfzone liegt je nach Reibwert des Gemischs und der Krüm­mung der Trommel zweckmäßigerweise in einem Bereich von ca. 15 bis 50o zu der durch die Drehachse der Trommel verlaufen­den Vertikalen. Würde beispielsweise der Winkel zwischen der durch die Drehachse der Trommel gehenden Vertikalen und der Verbindungslinie dieser Drehachse mit der Drehachse der Rotorwelle zu klein gewählt, so würde die Kraft des Wirbel­stromes schon vor der Material-Abwurfzone voll auf die Nichteisen-Metalle einwirken. Die NE-Metalle würden somit schon sehr frühzeitig beschleunigt, von der gewünschten großen Auslenkung der Wurfparabel abweichen und dann in einen Sammelbehälter fallen, der für die minderwertigen, nicht durch das Wechselmagnetfeld beeinflußten und daher nicht auf eine in Förderrichtung weitere Wurfparabel ausge­lenkten Gemisch-Bestandteile bestimmt ist. Aufgrund der Ab­stoßung der Nichteisen-Metalle in Förderrichtung, also ra­dial zur gekrümmten Linie der Trommel, unterliegt die För­derbreite der erfindungsgemäßen Wirbelstromscheidevorrich­tung keiner Beschränkung.Such an adjustment of the eccentric position of the magnet rotor in the quadrant of the discharge zone of the drum is proposed, in which the air gap between the magnet rotor and the drum is the smallest in the area of the material discharge zone. The particular position of the material discharge zone for a given curvature of the drum depends on the peripheral speed of the drum, the type and grain size composition of the solid mixture and the friction between the conveyor belt or the outer surface of the drum and the mixture to be separated. Since these criteria can be very different, changing conditions are taken into account by adjusting the magnetic rotor accordingly; this can preferably be in an angular range of 75 ° measured from the vertical center plane set by the drum axis. Depending on the coefficient of friction of the mixture and the curvature of the drum, the material discharge zone is expediently in a range from approximately 15 to 50 ° to the vertical running through the axis of rotation of the drum. If, for example, the angle between the vertical through the axis of rotation of the drum and the connecting line of this axis of rotation with the axis of rotation of the rotor shaft were chosen too small, the force of the eddy current would have a full effect on the non-ferrous metals even before the material discharge zone. The non-ferrous metals would thus accelerate very early, deviate from the desired large deflection of the throwing parabola and then in fall a collecting container which is intended for the inferior mixture components which are not influenced by the alternating magnetic field and are therefore not intended for a deflecting parabola deflected in the conveying direction. Due to the repulsion of the non-ferrous metals in the conveying direction, that is to say radially to the curved line of the drum, the conveying width of the eddy current separating device according to the invention is not subject to any restriction.

Es wurde herausgefunden, daß sich sehr gute Ergebnisse mit einem Magnetrotor mit mindestens zwei in Längsrichtung der Rotorwelle angeordneten Permanentmagnet-Reihen erzielen las­sen. Von den in Anbetracht der erheblichen Fliehkräfte sorgfältig am Rotorkörper - beispielsweise durch Kleben oder Anschrauben - anzubringenden Permanentmagneten bildet bei der Mindestpolzahl des Magnetrotors von Zwei jeweils eine Magnetreihe einen Nord- und die andere Magnetreihe einen Südpol an der Peripherie des Magnetrotors. Bei einem vierpoligen Magnetrotor liegen entsprechend abwechselnd Nord- und Südpol an der Peripherie des Magnetrotors; es ist immer eine solche Polanzahl zu wählen, die eine abwechseln­de Polart ermöglicht.It has been found that very good results can be achieved with a magnet rotor with at least two rows of permanent magnets arranged in the longitudinal direction of the rotor shaft. In view of the considerable centrifugal forces, the permanent magnets to be carefully attached to the rotor body - for example by gluing or screwing on - with the minimum number of poles of the magnet rotor of two, one magnet row each forms a north and the other magnet row a south pole on the periphery of the magnet rotor. In the case of a four-pole magnet rotor, the north and south poles are alternately located on the periphery of the magnet rotor; Always choose a number of poles that allows an alternating type of pole.

In Ausgestaltung der Erfindung wird vorgeschlagen, daß der Magnetrotor mindestens zwei jeweils aus zwei benachbarten Reihen Permanentmagnete gebildete Magnetpaare aufweist und das Winkelmaß zwischen den jeweils ein Magnetpaar bildenden Reihen Permanentmagnete kleiner ist als das Winkelmaß zwi­schen den Magnetpaaren. Hiermit wird der Erkenntnis Rech­nung getragen, daß sich rund um den Magnetrotor ein mehr oder weniger starkes, entsprechend der Polung der Permanent­magnete wechselndes, magnetisches Ringfeld mit einer be­stimmten Grundfeldstärke ausbildet, aus dem sich dann zwi­schen den Magnetpolen die für das Trennen ausschlagge­ benden, möglichst mit einem starken magnetischen Impuls anzustrebenden, Feldlinienspitzen radial nach außen erhe­ben. Die Anordnung diametral gegenüberliegender Magnetpaare verringert die magnetische Grundfeldstärke in dem Ringfeld um den Rotor und erhöht die Spitzenwerte der Feldlinien, weil die magnetischen Feldlinien in erster Linie in dem Bereich zwischen den dicht nebeneinander liegenden Perma­nentmagnetreihen verlaufen. Der damit erreichte größere Feldstärkenunterschied zwischen dem Ringfeld um den Rotor und den Feldlinienspitzen wird umso günstiger, je weiter die beiden Magnetpaare voneinander entfernt sind.In an embodiment of the invention, it is proposed that the magnet rotor have at least two magnet pairs each formed from two adjacent rows of permanent magnets and that the angular dimension between the rows of permanent magnets, each forming a magnet pair, is smaller than the angular dimension between the magnet pairs. This takes into account the knowledge that a more or less strong, corresponding to the polarity of the permanent magnets, changing magnetic ring field with a certain basic field strength is formed around the magnetic rotor, from which then between the magnetic poles that are decisive for the separation bend the field line peaks radially outwards, if possible aiming for a strong magnetic pulse. The arrangement of diametrically opposed magnet pairs reduces the basic magnetic field strength in the ring field around the rotor and increases the peak values of the field lines, because the magnetic field lines run primarily in the area between the closely adjacent permanent magnet rows. The greater the difference in field strength between the ring field around the rotor and the field line peaks, the more favorable the farther the two magnet pairs are from one another.

Es empfiehlt sich, daß der Grundkörper des Magnetrotors in dem Bereich zwischen den Magnetpaaren vorzugsweise konkave Ausnehmungen aufweist. Mittels dieser Ausnehmungen lassen sich die magnetischen Feldlinien des Magnetrotors noch mehr auf den Bereich der nahe beieinander liegenden Permanentmag­netreihen eines jeden Magnetpaares beschränken und damit schärfer ausgeprägte Impulse erreichen, weil die Grundfeld­stärke in dem Ringfeld um den Rotor noch weiter verringert wird.It is recommended that the base body of the magnet rotor preferably have concave recesses in the area between the magnet pairs. By means of these recesses, the magnetic field lines of the magnetic rotor can be restricted even more to the area of the permanent magnet rows of each magnet pair which are close to one another and thus more sharply defined pulses can be achieved because the basic field strength in the ring field around the rotor is reduced even further.

Es wird vorgeschlagen, daß eine Hälfte des Magnetrotors mehr Reihen Permanentmagnete aufweist als die andere Hälf­te. Bei einem solchen Magnetrotor lassen sich die beiden eine unterschiedliche Magnetzahl aufweisenden Hälften des Magnetrotors für Feststoffmischungen mit unterschiedlichen Fraktionen verwenden. Ein derartiger, eine verringerte Zahl Permanentmagnete aufweisender Magnetrotor ist vorteilhaft, wenn nicht so große Materialmengen in unterschiedlichen Fraktionen anfallen, so daß eine breite Maschine in ihrer Leistung nicht ausgeschöpft werden könnte. Außerdem läßt sich dieser Magnetrotor gegebenenfalls derart umrüsten, daß auch die zweite Hälfte durchgehend mit Permanentmagneten in jeder Reihe bestückt wird. Vorzugsweise können sich die Permanentmagnete jeder zweiten Magnetreihe von einer Stirn­seite aus axial bis zur Mitte des magnetrotors erstrecken, wobei nach einer vorteilhaften Ausgestaltung die Hälfte des Magnetrotors mit weniger Reihen Permanentmagnete mindestens zwei jeweils aus zwei benachbarten Reihen Permanentmagnete gebildete Magnetpaare aufweisen kann.It is proposed that one half of the magnetic rotor have more rows of permanent magnets than the other half. With such a magnetic rotor, the two halves of the magnetic rotor having a different magnetic number can be used for solid mixtures with different fractions. Such a magnetic rotor, which has a reduced number of permanent magnets, is advantageous if not so large amounts of material are obtained in different fractions, so that the performance of a wide machine could not be exhausted. In addition, this magnetic rotor can, if necessary, be converted in such a way that the second half also has permanent magnets in every row is loaded. The permanent magnets of each second row of magnets can preferably extend axially from one end face to the center of the magnet rotor, whereby according to an advantageous embodiment half of the magnet rotor with fewer rows of permanent magnets can have at least two magnet pairs each formed from two adjacent rows of permanent magnets.

Nach einer weiteren Ausgestaltung ist im Bereich über der Material-Abwurfzone mit Abstand über der Trommel im Magnet­feld des Magnetrotors ein Richtkörper angeordnet. Dieser besteht vorzugsweise aus magnetisch gut und elektrisch schlecht leitfähigem Material. Unter einem Richtkörper, der beispielsweise eine ebene oder gekrümmte Platte sein kann, wird im vorliegenden Zusammenhang ein die von dem Magnetro­tor erzeugten Feldlinien in Richtung auf seine Oberfläche ausrichtender, die Feldlinien anziehender Körper verstan­den. Die Feldlinien lassen sich somit so konzentrieren, daß auch auf diese Weise eine intensive Kraftwirkung des Magnet­feldes auf die NE-Metalle im Bereich der Material-Abwurf­zone begünstigt wird. Durch die damit erreichten tieferen Täler bzw. Einschnitte zwischen den kurvenförmigen Feldli­nien wird der sich in dem Ringfeld um den Rotor aufbauende, dort aufgrund der gegenseitigen Beeinflussung der Feldli­nien keine wirksamen Impulse mehr an die NE-Metalle abgeben­de Bereich durchbrochen und das magnetische Feld auch dort in seiner Kraftwirkung gestärkt. Diese Maßnahme bringt es mit sich, daß insbesondere auch kleinere Fraktionen (klei­ner 15 mm) der Feststoffmischung magnetisch ausreichend beeinflußt und damit besser getrennt werden können.According to a further embodiment, a straightening body is arranged in the area above the material discharge zone at a distance above the drum in the magnetic field of the magnetic rotor. This is preferably made of magnetically good and electrically poorly conductive material. In the present context, a straightening body, which can be, for example, a flat or curved plate, is understood to mean a body that generates the field lines generated by the magnetic rotor in the direction of its surface and attracts the field lines. The field lines can thus be concentrated in such a way that an intensive force effect of the magnetic field on the non-ferrous metals in the area of the material discharge zone is also promoted in this way. As a result of the deeper valleys or incisions between the curved field lines that are achieved, the area that builds up in the ring field around the rotor and no longer gives any effective impulses to the non-ferrous metals due to the mutual influence of the field lines, and the magnetic field also breaks in there strengthened its power. This measure means that, in particular, even smaller fractions (less than 15 mm) of the solid mixture can be influenced magnetically sufficiently and can thus be separated better.

Vorteilhaft sollte sich der Richtkörper verstellen lassen. Wenn der Richtkörper sowohl radial einstellbar als auch auf einem Radius um die Drehachse des Magnetrotors zu ver­ schwenken ist, läßt sich sein Abstand zur Trommel bzw. zum Magnetrotor an die in der Feststoffmischung enthaltenen Fraktionen anpassen, wobei dieser Abstand der eineinhalb- bis dreifachen Größe des größten Korndurchmessers des verar­beiteten Materials entsprechen sollte; außerdem kann er genau in den Bereich der Material-Abwurfzone verschwenkt werden.The straightening body should advantageously be adjustable. If the straightening body is both adjustable radially and ver on a radius around the axis of rotation of the magnet rotor can be pivoted, its distance to the drum or to the magnet rotor can be adapted to the fractions contained in the solid mixture, this distance should correspond to one and a half to three times the size of the largest grain diameter of the processed material; it can also be swiveled exactly into the area of the material drop zone.

Vorzugsweise ist die Breite des Richtkörpers gleich der Breite des Magnetrotors. Damit läßt sich die Kraftwirkung des Magnetfeldes über den gesamten Bereich der Material-­Abwurfzone optimieren.The width of the straightening body is preferably equal to the width of the magnetic rotor. The force effect of the magnetic field can thus be optimized over the entire area of the material discharge zone.

Es empfiehlt sich, daß der Richtkörper gekühlt wird, wozu er beispielsweise von Öl durchströmte Kühlrippen und/oder Kühlrohrleitungen aufweisen kann. Eine aufgrund der Wir­belstromdurchflutung übermäßige Erwärmung des Richtkörpers läßt sich somit vermeiden.It is recommended that the straightening body is cooled, for which purpose it can have cooling fins and / or cooling pipes through which oil flows, for example. Excessive heating of the straightening body due to the eddy current flow can thus be avoided.

Der Antrieb des Magnetrotors läßt sich vorzugsweise mit einer Drehzahlregelung versehen; beispielsweise läßt sich die Drehzahl eines den Magnetrotor über Riemen antreibenden Elektromotors über einen Frequenzumrichter regeln. Mittels des Frequenzumrichters kann die Drehzahl zum Beispiel im Bereich von ca. 1000 bis 3600 U/min. geregelt und damit eine weitergehende Anpassung der Frequenz des Wechselmagnet­feldes an das zu trennende Feststoffgemisch erreicht wer­den, wobei sehr unterschiedliche und insbesondere fein­körnige Nichteisenmetall-Bestandteile in dem Gemisch eine entsprechend höhere Drehzahl und damit höhere Frequenz er­fordern.Es läßt sich vorteilhaft ein Antrieb für den Magnet­rotor innerhalb der Trommel anordnen.The drive of the magnetic rotor can preferably be provided with a speed control; For example, the speed of an electric motor that drives the magnetic rotor via belts can be controlled by means of a frequency converter. Using the frequency converter, the speed can be in the range of approx. 1000 to 3600 rpm, for example. regulated and thus a further adjustment of the frequency of the alternating magnetic field to the solid mixture to be separated can be achieved, whereby very different and in particular fine-grained non-ferrous metal components in the mixture require a correspondingly higher speed and thus higher frequency. It is advantageous to drive the magnet rotor within arrange the drum.

Nach einer bevorzugten Ausgestaltung ist ein die Trommel umschlingender, angetriebener Fördergurt mit mindestens ei­nem quer angeordneten Mitnehmer versehen. Mittels des För­dergurtes läßt sich nämlich die zugeführte Feststoffmi­schung von der Aufgabestelle bis zur Material-Abwurfzone an der Trommel vergleichmäßigen, indem die Schichthöhe der Feststoffmischung aufgrund einer gegenüber dem Aufgabeförde­rer, z.B. einer Vibrationsrinne größeren Bandgeschwindig­keit reduziert wird. Der Fördergurt läßt sich über einen im Aufgabebereich angeordneten Trommelmotor antreiben. Der Mit­nehmer hat den nachfolgend erläuterten Zweck. Das Verhält­nis von Außendurchmesser des Magnetrotors zum Innendurchmes­ser der Trommel läßt sich so groß wählen, daß der Au­ßendurchmesser des Magnetrotors erheblich kleiner ist als der Innendurchmesser der Trommel, so daß dem Fördergurt möglicherweise anhaftende magnetische Teile spätestens an der tiefsten Stelle der Trommel von selbst herunterfallen, weil das Magnetfeld des Magnetrotors dort durch den großen Abstand unwirksam ist. Solche Teile und anhaftende Schmutz­bestandteile können aber auch unter Zuhilfenahme eines Ab­streifers vom Untertrum des Fördergurtes entfernt werden. Jedoch ist nicht völlig auszuschließen, daß Eisenpartikel von einer eventuell vorgeschalteten Fe-Separierung nicht erfaßt werden. Das hat zur Folge, daß die feinen Ei­senteilchen im Wirkbereich des Magnetrotors gehalten wer­den, so daß der Fördergurt unterhalb durchläuft, ohne diese Teilchen mitzunehmen. Abgesehen von der dauernden Reibung und der immer größer werdenden, sich an diesem Punkt ansam­melnden Teilchenmenge (Schwellenwirkung), erwärmen sich die Teilchen aufgrund der Wirbelstromdurchflutung nach wenigen Sekunden so stark, daß dies zu Verbrennungen am Fördergurt führen kann. Dieser Gefährdung läßt sich mittels des sich in Transportrichtung quer über den Fördergurt erstreckenden Mitnehmers vorbeugen, denn sobald der Mitnehmer in den Bereich der Teilchen-Ansammlung gelangt, reißt er diese Teilchen mit und transportiert sie aus dem Wirkbereich des Magnetrotors bzw. aus der Erwärmungszone ab.According to a preferred embodiment, a driven conveyor belt wrapping around the drum is provided with at least one transversely arranged driver. By means of the conveyor belt, the supplied solid mixture can be evened out from the feed point to the material discharge zone on the drum by reducing the layer height of the solid mixture due to a higher belt speed than the feed conveyor, for example a vibrating trough. The conveyor belt can be driven via a drum motor arranged in the feed area. The carrier has the following purpose. The ratio of the outer diameter of the magnetic rotor to the inner diameter of the drum can be chosen to be so large that the outer diameter of the magnetic rotor is considerably smaller than the inner diameter of the drum, so that any magnetic parts that may adhere to the conveyor belt automatically fall down at the lowest point of the drum because the magnetic field of the magnetic rotor is ineffective there due to the large distance. Such parts and adhering dirt components can also be removed from the lower run of the conveyor belt with the help of a scraper. However, it cannot be completely ruled out that iron particles may not be caught by an upstream Fe separation. As a result, the fine iron particles are held in the effective area of the magnetic rotor, so that the conveyor belt passes underneath without taking these particles with them. Apart from the constant friction and the increasing amount of particles accumulating at this point (threshold effect), the particles heat up so strongly after a few seconds due to the eddy current flow that this can lead to burns on the conveyor belt. This danger can be avoided by means of the one extending across the conveyor belt in the transport direction Prevent entrainment, because as soon as the entrainer reaches the area of particle accumulation, it entrains these particles and transports them out of the effective area of the magnetic rotor or out of the heating zone.

Vorzugsweise läßt sich eine Wellenende einer Antriebstrommel des Fördergurtes mit einer Kupplungsscheibe versehen, die bei Netzausfall mit einem netzunabhängigen Hilfsantrieb ge­kuppelt wird. Das Problem von Beschädigungen, die sich erwärmende Teilchen hervorrufen, tritt insbesondere auch bei Stromausfall in der Anlage oder beim Abschalten der Anlage ein. Die dann im Wirkungsbereich des Magnetrotors verbleibenden Metallteile erwärmen sich durch den aufgrund seiner großen Schwungmasse noch weiterlaufenden und Wirbel­ströme in den Metallteilen induzierenden Magnetrotor inner­halb weniger Sekunden so stark, daß mit Beschädigungen sowohl an dem üblicherweise aus Kunststoff bestehenden För­dergurt als auch an der Trommel zu rechnen ist. Ein Abbrem­sen des Magnetrotors auf eine unkritische Drehzahl benötigt wegen des großen Schwungmomentes zuviel Zeit. Hingegen kann der Fördergurt, ohne daß er zum Stillstand kommt, mittels des sich verzögerungsfrei einschaltenden Hilfsantriebs wei­terbewegt werden, d.h. der Fördergurt muß nicht aus der Ruhe heraus beschleunigt werden. Der Fördergurt wird nach einem Stromausfall solange weiterbewegt, bis sich kein Mate­rial mehr im Bereich des Magnetrotors befindet. Der Hilfs­antrieb braucht dabei nicht die volle Fördergeschwindigkeit aufrechtzuerhalten. Als Hilfsantrieb eignen sich wegen ihrer robusten und einfachen Bauweise insbesondere mecha­nische Hilfsmotoren, wie beispielsweise ein mittels einer zuvor aufgezogenen Feder in Betriebsbereitschaft gesetzter Federmotor oder ein aus Uhrwerken bekannter Motor mit Ge­wichtsantrieb. Die mechanischen Hilfsmotoren erfordern au­ßerdem fast keine Wartung und sind auch im Winter bei großer Kälte betriebssicher. Es lassen sich als Hilfsmotor alternativ ein Preßluftantrieb mit einer gespeicherten Preß­luftmenge, ein Notstromaggregat mit ständig laufender Schwungmasse zum sofortigen Einschalten, oder ein Gleich­strommotor mit Akkumulatorantrieb einsetzen.A shaft end of a drive drum of the conveyor belt can preferably be provided with a clutch disk which is coupled with a mains-independent auxiliary drive in the event of a power failure. The problem of damage caused by warming particles also occurs in the event of a power failure in the system or when the system is switched off. The metal parts then remaining in the effective range of the magnetic rotor heat up within a few seconds due to the magnetic rotor that continues to run due to its large flywheel mass and induce eddy currents in the metal parts, so that damage to both the conveyor belt, which is usually made of plastic, and the drum can be expected . Braking the magnetic rotor to an uncritical speed takes too much time because of the large moment of inertia. On the other hand, the conveyor belt can be moved further without delay, by means of the auxiliary drive which switches on without delay, ie the conveyor belt does not have to be accelerated out of rest. After a power failure, the conveyor belt is moved on until there is no more material in the area of the magnetic rotor. The auxiliary drive does not have to maintain the full conveying speed. Because of their robust and simple construction, mechanical auxiliary motors are particularly suitable as auxiliary drives, such as, for example, a spring motor put into operation by means of a previously wound spring or a motor with weight drive known from clockworks. The mechanical auxiliary motors also require almost no maintenance and are also available in winter great cold reliable. Alternatively, a compressed air drive with a stored amount of compressed air, an emergency power unit with a continuously rotating flywheel for immediate switching on, or a direct current motor with a battery drive can be used as the auxiliary motor.

Gemäß einer weiteren Ausführung kann als Hilfsantrieb bei Stromausfall der Magnetrotor die Antriebstrommel des Förder­gurtes direkt oder indirekt antreiben. Zum indirekten An­trieb läßt sich der Magnetrotor vorzugsweise mit einem die Antriebstrommel antreibenden Generator versehen. Auf diese Weise wird die Rotationsenergie des bei Stromausfall noch eine gewisse Zeit nachlaufenden Magnetrotors zum Antreiben der Antriebstrommel und damit Weiterbewegen des Fördergur­tes ausgenutzt.According to a further embodiment, the magnetic rotor can drive the drive drum of the conveyor belt directly or indirectly as an auxiliary drive in the event of a power failure. For indirect drive, the magnet rotor can preferably be provided with a generator that drives the drive drum. In this way, the rotational energy of the magnetic rotor, which continues to run for a certain time in the event of a power failure, is used to drive the drive drum and thus to move the conveyor belt further.

Eine vorzugsweise wellenlose Lagerung der Trommel mittels Trommeleinsätzen ermöglicht es vorteilhaft, daß die Rotor­welle durch die Trommel hindurchgeführt wird und von jeder Seite ein Trommeleinsatz in die Trommel eingreifen kann. Die sich mit ihrem Außenmantel bündig an den Innenmantel der Trommel anlegenden, mit der Trommel verschraubten Trom­meleinsätze brauchen dabei nur geringfügig in die Trommel einzugreifen, so daß im Inneren der Trommel ein gegenüber der Eingriffslänge vielfach größerer, freier Raum ver­bleibt, der auf jeden Fall ausreicht, die exzentrisch ange­ordnete Rotorwelle mit dem Magnetrotor aufzunehmen.A preferably shaftless mounting of the drum by means of drum inserts advantageously makes it possible for the rotor shaft to be guided through the drum and for a drum insert to engage in the drum from each side. The drum inserts which lie flush with the inner casing of the drum and which are screwed to the drum need only engage in the drum to a slight extent, so that inside the drum there is a free space which is many times larger than the engagement length and which is sufficient in any case. to record the eccentrically arranged rotor shaft with the magnet rotor.

Vorzugsweise lassen sich Wellenzapfen der Rotorwelle in Lagerkonsolen lagern, die einen mit einem Lochkreis versehe­nen Außenflansch besitzen, wobei vorzugsweise in den Lager­konsolen angeordnete, verdrehbare Einstellflansche auf ei­nem dem Lochkreis des Außenflansches entsprechenden Loch­ kreis mit Gewindebohrungen für jeweils den Außenflansch mit dem Einstellflansch verbindende Schrauben versehen sind. Der Magnetrotor läßt sich auf diese Weise in der Lochtei­lung entsprechenden Stufen in einem festgelegten Bereich verlagern, d.h. konzentrisch um die Trommeldrehachse ver­schwenken und der Wirkbereich der Magnete dabei beispiels­weise aus der Vertikalen der Drehachse der Trommel bis ca. 75o im Umlaufrichtung des Fördergurtes nach unten einstel­len. Die Gewindebohrungen können nämlich mit einer bestimm­ten Teilung, z.B. mit einem Teilungsmaß von jeweils 6o, auf dem Lochkreis angeordnet sein, so daß sich nach dem Lösen der die Außenflansche der Lagerkonsolen mit den Einstell­flanschen fest verbindenden Schrauben die in den Lagerkonso­len drehbar gelagerten Einstellflansche verdrehen und auf eine neue, die exzentrische Rotorlage bestimmende Teilung einstellen lassen.Shaft journals of the rotor shaft can preferably be mounted in bearing brackets which have an outer flange provided with a bolt circle, rotatable adjusting flanges preferably arranged in the bearing brackets on a hole corresponding to the bolt circle of the outer flange are provided with threaded holes for the screws connecting the outer flange to the adjusting flange. In this way, the magnet rotor can be shifted in the perforation corresponding steps in a defined area, that is, pivoted concentrically around the axis of rotation of the drum, and the effective range of the magnets can be adjusted, for example, from the vertical of the axis of rotation of the drum to approximately 75 ° in the direction of rotation of the conveyor belt . The threaded bores can namely be arranged with a certain pitch, for example with a pitch of 6 o , on the bolt circle, so that after loosening the screws firmly connecting the outer flanges of the bearing brackets with the adjusting flanges, the adjusting flanges rotatably mounted in the bearing brackets twist and set to a new pitch that determines the eccentric rotor position.

An der der Antriebsseite abgewandten Lagerseite des Magnet­rotors lagert das Rotorwellenende unmittelbar in einem La­ger, das in den exzentrisch in der Trommel angeordneten Einstellflansch eingebaut ist. Aus baulichen Gründen lagert die Rotorwelle an ihrer antriebsseitigen Lagerseite hinge­gen vorteilhaft in einem in der Trommel exzentrisch angeord­neten Lagerträger, der drehfest mit dem Einstellflansch verbunden ist und als Tragkörper für das Lager des Trommel­einsatzes dient. Durch das Verdrehen der Einstellflansche gegenüber den Außenflanschen werden über die an der der Antriebsseite abgewandten Lagerseite den Eintellflansch mit dem Lagerdeckel und an der antriebsseitigen Lagerseite den Einstellflansch mit dem Lagerträger verbindenden Schrau­ben die Rotorwellenlager entsprechend mitverstellt und da­mit die exzentrische Lage des Magnetrotors in der Trommel verändert.On the bearing side of the magnetic rotor facing away from the drive side, the rotor shaft end is mounted directly in a bearing which is installed in the adjusting flange arranged eccentrically in the drum. For structural reasons, however, the rotor shaft is advantageously supported on its drive-side bearing side in a bearing bracket which is arranged eccentrically in the drum and which is non-rotatably connected to the adjusting flange and serves as a supporting body for the bearing of the drum insert. By turning the adjusting flanges in relation to the outer flanges, the adjusting flange with the bearing cover on the bearing side facing away from the drive side and the screws connecting the adjusting flange on the drive side bearing side with the bearing bracket adjust the rotor shaft bearings accordingly, thus changing the eccentric position of the magnet rotor in the drum.

Gemäß eine Ausführung der Erfindung lassen sich Deckel mit Axialkragen und darauf angeordneten Lagern von jeder Stirn­seite in die Trommel einsetzen und relativ zur Trommel verdrehen. Sofern die Rotorwelle vorzugsweise in den Deckeln gelagert ist, wobei vorteilhaft das antriebsseitige Wellenende den Deckel durchdringen kann, läßt sich die exzentrische Lage des Magnetrotors und damit der Wirkbe­reich des vom Magnetrotor erzeugten Wechselmagnetfeldes durch Verdrehen der Deckel erreichen. Beispielsweise können Gewindebohrungen mit einer bestimmten Teilung auf einem Lochkreis der Deckel angeordnet werden, denen ein ent­sprechender Lochkreis mit Gewindebohrungen, z.B. in Halte­ringen für die Trommel, gegenüberliegen kann. Nach dem Lösen und Entfernen von in die Bohrungen geschraubten Schrauben lassen sich die Deckel danach auf das gewünschte Teilungsmaß verdrehen, wobei sie den Magnetrotor mitnehmen.According to one embodiment of the invention, covers with axial collars and bearings arranged thereon can be inserted into the drum from each end face and rotated relative to the drum. If the rotor shaft is preferably mounted in the covers, whereby the drive-side shaft end can advantageously penetrate the cover, the eccentric position of the magnet rotor and thus the effective range of the alternating magnetic field generated by the magnet rotor can be achieved by turning the cover. For example, threaded bores with a certain pitch can be arranged on a bolt circle of the cover, to which a corresponding bolt circle with threaded bores, e.g. in retaining rings for the drum. After loosening and removing screws screwed into the holes, the lids can then be turned to the desired pitch, taking the magnetic rotor with them.

Vorzugsweise läßt sich mindestens ein Achsende einer durch die Deckel hindurchgeführten, an diesen befestigten Trag­achse in einer Lagerkonsole lagern, die einen mit einem Lochkreis versehenen, stationären Außenflansch besitzt, dem ein starr mit der Tragachse verbundener Einstellflansch gegenüberliegt, der auf einem entsprechenden Lochkreis mit Gewindebohrungen versehen ist. Bei einer solchen Ausführung werden die Deckel durch Verdrehen der Tragachse verstellt. Das von der Lagerkonsole abgewandte Achsende kann dabei vorteilhaft in einem Auflager angeordnet sein, d.h. es braucht nicht in einer Lagerkonsole mit Lochkreise auf­weisenden Einstellflanschen gelagert zu sein. Beidseitige Lagerkonsolen sind allenfalls dann erforderlich, wenn ledig­lich - um im Trommelinneren Freiraum zu schaffen - Achs­stummel von beiden Seiten die Deckel durchdringen; in die­sem Fall könnte eine Lochkreis-Lagerkonsole für jedes außen­liegende Achsende angeordnet werden.Preferably, at least one axle end of a support axle guided through the cover and fastened to it can be stored in a bearing bracket which has a stationary outer flange provided with a bolt circle, opposite which is an adjusting flange rigidly connected to the carrier axle and provided with threaded holes on a corresponding bolt circle is. In such an embodiment, the covers are adjusted by turning the supporting axis. The end of the axle facing away from the bearing bracket can advantageously be arranged in a support, ie it does not need to be mounted in a bearing bracket with adjusting flanges with bolt circles. Bearing brackets on both sides are only necessary if only - to create space inside the drum - stub axles penetrate the covers from both sides; in this case, a bolt circle bearing bracket could be arranged for each outer end of the axle.

Es empfiehlt sich, die Rotorwelle des Magnetrotors in Stüt­zen zu lagern, die im Trommelinnenraum mit Abstand von den Deckeln an der Tragachse befestigt sind. Es läßt sich damit einerseits das Verdrehen des Magnetrotors über die Trag­achse erreichen und andererseits zumindest an einer Seite des Magnetrotors soviel Freiraum im Trommelinnern schaffen, daß dort vorteilhaft ein an eine der Stützen angeflansch­ter, die Rotorwelle antreibender Hydraulikmotor angeordnet werden kann. Durch einen im Trommelinneren liegenden Motor für die Rotorwelle bedarf es keiner Kraftübertragungsglie­der.It is advisable to mount the rotor shaft of the magnetic rotor in supports that are attached to the support axis in the interior of the drum at a distance from the covers. Thus, on the one hand, the rotation of the magnet rotor can be achieved via the supporting axis and, on the other hand, at least on one side of the magnet rotor create enough space inside the drum that a hydraulic motor flanged to one of the supports and driving the rotor shaft can advantageously be arranged there. A motor for the rotor shaft located inside the drum means that no power transmission elements are required.

Der Hydraulikmotor kann vorzugsweise über Leitungen an Ver­sorgungsbohrungen der Tragachse angeschlossen werden und somit von einem nicht dargestellten Hydraulikaggregat mit Hydraulikflüssigkeit versorgt werden.The hydraulic motor can preferably be connected via lines to supply bores on the supporting axle and can thus be supplied with hydraulic fluid by a hydraulic unit (not shown).

Die Erfindung wird nachfolgend anhand des in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zei­gen:

  • Fig. 1 eine Wirbelstromscheidevorrichtung mit vorgeschal­tetem Materialaufgabeförderer und erfindungsgemäß einstellbarem Magnetrotor, der exzentrisch im Qua­dranten der Abwurfzone einer von einem Fördergurt angetriebenen Trommel gelagert ist, in schemati­scher Seitenansicht;
  • Fig. 2 den Fördergurt mit Trommel und Magnetrotor gemäß Fig. 1, in der Draufsicht;
  • Fig. 3 den gemäß Fig. 1 in der Trommel gelagerten Magnet­rotor, in der Seitenansicht als Einzelheit ver­größert dargestellt;
  • Fig. 4 als Einzelheit einen zwei diametral gegenüberlie­gende Magnetpaare aufweisenden Magnetrotor, im Querschnitt;
  • Fig. 5 den Magnetrotor gemäß Fig. 4 mit konkaven Ein­schnitten in den Bereichen zwischen den Magnet­paaren;
  • Fig. 6 perspektivisch und schematisch dargestellt einen Magnetrotor, bei dem die Permanentmagnete jeder zweiten Reihe axial lediglich bis zur Mitte des Grundkörpers angeordnet sind;
  • Fig. 6a die weniger Reihen Permanentmagnete aufweisende Hälfte des Magnetrotors gemä Fig. 6, jedoch mit zwei diametral gegenüberliegenden Magnetpaaren;
  • Fig. 7 die Trommel mit der gemäß Fig. 1 darin exzen­trisch gelagerten Magnetrotorwelle, im Längs­schnitt;
  • Fig. 8 als Einzelheit eine Lagerkonsole mit einem ange­schweißten Außenflansch, der mit einem Einstell­flansch verschraubt ist, wobei beide Flansche mit gleichen Lochkreisen versehen sind, in der Vorder­ansicht;
  • Fig. 9 schematisch dargestellt einen mechanischen, feder­betätigten Not-Antrieb für eine Fördergurt-An­triebstrommel der Wirbelstromscheidevorrichtung gemäß Fig. 1;
  • Fig. 10 eine Ausführung einer erfindungsgemäßen Wirbel­stromscheidevorrichtung mit einer durch stirnsei­tige Deckel der Trommel hindurchgeführten Trag­achse und einem auf einer zur Achse exzentrisch angeordneten Rotorwelle gelagerten Magnetrotor, im Längsschnitt; und
  • Fig. 11 eine unter Beibehaltung des Tragachsen-Prinzips gemäß Fig. 10 abgewandelte Ausführung einer erfin­dungsgemäßen Wirbelstromscheidevorrichtung, bei der der Rotorantrieb im Trommelinneren angeordnet ist.
The invention is explained in more detail below with reference to the embodiment shown in the drawing. Show it:
  • 1 shows an eddy current separating device with an upstream material feed conveyor and a magnetic rotor which can be adjusted according to the invention and which is mounted eccentrically in the quadrant of the discharge zone of a drum driven by a conveyor belt, in a schematic side view;
  • FIG. 2 the conveyor belt with drum and magnetic rotor according to FIG. 1, in a top view;
  • 3 shows the magnetic rotor mounted in the drum according to FIG. 1, enlarged in detail in the side view;
  • 4 shows in detail a magnet rotor having two diametrically opposed magnet pairs, in cross section;
  • 5 shows the magnet rotor according to FIG. 4 with concave incisions in the areas between the magnet pairs;
  • 6 is a perspective and schematic representation of a magnetic rotor in which the permanent magnets of every other row are arranged axially only up to the center of the base body;
  • 6a the half of the magnet rotor according to FIG. 6 which has fewer rows of permanent magnets, but with two diametrically opposed magnet pairs;
  • FIG. 7 the drum with the magnetic rotor shaft mounted therein eccentrically according to FIG. 1, in longitudinal section;
  • 8 shows in detail a bearing bracket with a welded-on outer flange which is screwed to an adjusting flange, both flanges being provided with the same bolt circles, in the front view;
  • FIG. 9 schematically shows a mechanical, spring-operated emergency drive for a conveyor belt drive drum of the eddy current separating device according to FIG. 1;
  • FIG. 10 shows an embodiment of an eddy current separating device according to the invention with a supporting axis guided through the front cover of the drum and a magnetic rotor mounted on a rotor shaft arranged eccentrically to the axis, in longitudinal section; and
  • 11 shows an embodiment of an eddy current separating device according to the invention which has been modified while maintaining the carrying axis principle according to FIG. 10 and in which the rotor drive is arranged inside the drum.

Bei einer im Rahmen der erfindungsgemäßen Wirbelstromschei­devorrichtung bevorzugten Anlage wird gemäß Fig. 1 eine Nichteisen-Metalle enthaltende Feststoffmischung auf eine als Zuführförderer ausgebildete Vibrationsrinne 1 aufgege­ben. Während des Transportes in Förderrichtung 2 wird das Aufgabegut in der Höhe und der Breite auf der Vibrations­rinne 1 vergleichmäßigt, was das spätere Trennen der Ge­misch-Bestandteile unterstützt. Die in Förderrichtung 2 ge­neigte Vibrationsrinne 1 gibt das Gemisch aus geringer Höhe auf einen Fördergurt 3 ab. Der Fördergurt 3 arbeitet mit insbesondere horizontalem Obertrum (Förderebene) und um­schlingt eine unterhalb des Abgabeendes der Vibrationsrinne 1 angeordnete Antreibstrommel 4 und eine in Förderrichtung 2 weiter vorne angeordnete Trommel 5. Die Geschwindigkeit des Fördergurtes 3 ist größer als die Fördergeschwindigkeit der Vibrationsrinne 1, so daß sich die Schichthöhe des Ge­misches durch die bei der Übergabe auf den Fördergurt 3 erreichte einschichtige Lage weiter verringert.In a system preferred in the context of the eddy current separating device according to the invention, a solid mixture containing nonferrous metals is placed on a vibrating trough 1 designed as a feed conveyor according to FIG. During transport in the direction of conveyance 2, the feed material is evened out in height and width on the vibrating trough 1, which supports the later separation of the mixture components. The vibrating trough 1 inclined in the conveying direction 2 discharges the mixture from a low height onto a conveyor belt 3. The conveyor belt 3 works in particular with a horizontal upper run (conveyor level) and loops around a drive drum 4 arranged below the discharge end of the vibrating trough 1 and a drum 5 arranged further forward in the conveying direction 2. The speed of the conveyor belt 3 is greater than the conveying speed of the vibrating trough 1, so that the layer height of the mixture is further reduced as a result of the single-layer position achieved when the material is transferred to the conveyor belt 3.

In der Trommel 5 ist exzentrisch ein Magnetrotor 6 ange­ordnet, der sich in Längsrichtung der Rotorwelle 7 er­streckende, mit abwechselnder Nord-Südpolung im Grundkörper 8 befestigte Reihen von Permanentmagneten 9 aufweist. Ein drehzahlregelbarer Antrieb 10, für den ein Elektromotor verwendet wird, treibt den Magnetrotor 6 über einen Riemen 11 an; der Riemen treibt zu diesem Zweck eine Riemenscheibe 12 an, die an der Antriebsseite des Magnetrotors 6 mit einem verlängerten Rotorwellenende 13 verkeilt ist (vgl. Fig. 7). Die Drehachse 14 des Magnetrotors 6 und damit die Rotorwelle 7 bzw. der Magnetrotor 6 ist konzentrisch auf einem Radius um die Trommeldrehachse 15 zu verstellen. Der Wirkbereich der Permanentmagnete 9 des Magnetrotors 6 kann in einem von den durch die Drehachse 15 der Trommel 5 gehenden Vertikalen 16 und Horizontalen 17 begrenzten Qua­dranten 18 der Abwurfzone, die den Bereich definiert, in dem das dem Fördergurt 3 aufliegende Gemisch aufgrund der Schwerkraft ins Rutschen oder Fallen kommt, verstellt wer­den. Der Luftspalt 19 zwischen dem Magnetrotor 6 und dem Innenmantel der Trommel 5 ist in diesem außerdem die Mate­rial-Abwurfzone 20 - diese ist in Fig. 3 als Winkel zwi­schen den gestrichelten und doppeltpunktierten Bezugslinien eingezeichnet - aufweisenden Bereich am geringsten.A magnet rotor 6 is arranged eccentrically in the drum 5 and has rows of permanent magnets 9 extending in the longitudinal direction of the rotor shaft 7 and fastened in the base body 8 with alternating north-south polarity. A speed-adjustable drive 10, for which an electric motor is used, drives the magnet rotor 6 via a belt 11; for this purpose the belt drives a pulley 12 which is wedged on the drive side of the magnetic rotor 6 with an extended rotor shaft end 13 (cf. FIG. 7). The axis of rotation 14 of the magnet rotor 6 and thus the rotor shaft 7 or the magnet rotor 6 can be adjusted concentrically on a radius around the drum axis of rotation 15. The effective range of the permanent magnets 9 of the magnetic rotor 6 can be defined in a quadrant 18 of the discharge zone which is delimited by the vertical 16 and horizontal 17 passing through the axis of rotation 15 of the drum 5 and which defines the area in which the mixture lying on the conveyor belt 3 slips due to gravity or falling comes to be adjusted. The air gap 19 between the magnetic rotor 6 and the inner jacket of the drum 5 is also the material discharge zone 20 in this area - this is shown in FIG. 3 as the angle between the dashed and double-dotted reference lines - having the smallest area.

Bei den in den Fig. 4 und 5 dargestellten Magnetrotoren 306 bzw. 406 sind die Grundkörper 308 bzw. 408 mit zwei diame­tral gegenüberliegenden Magnetpaaren 78, 79 versehen. Das Winkelmaß 80 zwischen benachbarten, ein Magnetpaar 78 bzw. 79 bildenden Reihen Permanentmagnete 9 ist wesentlich klei­ner als das Winkelmaß 81 zwischen den beiden Magnetpaaren 78 bzw. 79. Aufgrund der einerseits eng beieinander liegen­den Reihen Permanentmagnete 9 der Magnetpaare 78 bzw. 79 und der andererseits weit voneinander entfernten Magnet­paare 78 bzw. 79 wird bewirkt, daß die von dem Magnetrotor 306 bzw. 408 erzeugten magnetischen Feldlinien weitest­gehend auf den Bereich der eng beieinanderliegenden Pole der benachbarten Reihen Permanentmagnete 9 begrenzt werden, so daß sich ausgeprägtere Magnetimpulse ausbilden. Das Be­grenzen der magnetischen Feldlinien auf den Bereich der eng beieinanderliegenden Pole der beiden Reihen Permanentmagne­te der Magnetpaare 78 bzw. 79 wird auch durch die gemäß Fig. 5 konkaven, axial durchgehenden Ausnehmungen 82 im Grundkörper 408 unterstützt.In the case of the magnet rotors 306 and 406 shown in FIGS. 4 and 5, the base bodies 308 and 408 are provided with two diametrically opposed magnet pairs 78, 79. The angular dimension 80 between adjacent rows of permanent magnets 9 forming a magnet pair 78 or 79 is substantially smaller than the angular dimension 81 between the two magnet pairs 78 and 79. Due to the closely spaced rows of permanent magnets 9 of the magnet pairs 78 and 79, on the one hand and, on the other hand, the magnet pairs 78 and 79, which are far apart from one another, has the effect that the magnetic field lines generated by the magnet rotor 306 and 408 are largely limited to the region of the closely spaced poles of the adjacent rows of permanent magnets 9, so that more pronounced magnetic pulses are formed. The limitation of the magnetic field lines to the region of the closely spaced poles of the two rows of permanent magnets of the magnet pairs 78 and 79 is also supported by the concave, axially continuous recesses 82 in the base body 408 according to FIG. 5.

Bei einer weiteren Ausführung eines Magnetrotors 506 weist die eine Hälfte 506a mehr Reihen Permanentmagnete 9a, 9b als die andere Hälfte 506b auf; gemäß Fig. 6 weist ledig­lich jede zweite Reihe der im Grundkörper 508 mit wechseln­der Polfolge peripher angeordneten Reihen von Permanent­magneten sich über die gesamte Breite des Magnetrotors 506 erstreckende Permanentmagnete 9a auf, während die anderen Reihen von einer Stirnseite aus axial lediglich bis zu der durch die Linie 83 gekennzeichneten Mitte des Magnetrotors 506 mit Permanentmagneten 9b versehen sind. Wie in der lediglich die rechte, mit weniger Reihen Permanentmagnete 9a versehen Hälfte 506b des Magnetrotors 506 gemäß Fig. 6 darstellenden Fig. 6a zu erkennen ist, sind dort zwei aus jeweils zwei benachbarten Reihen Permanentmagnete gebildete Magnetpaare 78a, 79a angeordnet, die sich diametral gegen­überliegen. Die zwischen den Magnetpaaren 78a, 79a liegen­den Reihen sind bis zu der durch die Linie 83a gekennzeich­neten Mitte des Magnetrotors 506 frei von Permanentmagne­ten. Dem Magnetrotor 506 können Feststoffmischungen unter­schiedlicher Fraktionen separat auf die in den in Fig. 6 links bzw. rechts von der Linie 83 liegenden Hälften 506a bzw. 506b gegeben und auf diese Weise mit einem Magnetrotor 506 zwei unterschiedliche Feststoffmischungen behandelt wer­den. Zum getrennten Zuführen der Feststoffmischungen kann dem vorhandenen Zuführförderer 1 bzw. dem Fördergurt 3 eine mittig, sich in Förderrichtung erstreckende Trennwand (Trennblech) zugeordnet werden; alternativ können zwei sepa­rate Zuführungen vorhanden sein.In a further embodiment of a magnetic rotor 506, one half 506a has more rows of permanent magnets 9a, 9b than the other half 506b; 6, only every second row of the rows of permanent magnets arranged peripherally in the base body 508 with an alternating pole sequence has permanent magnets 9a extending over the entire width of the magnet rotor 506, while the other rows from an end face only axially up to that through the line 83 marked center of the magnetic rotor 506 are provided with permanent magnets 9b. As can be seen in only the right half 506b of the magnet rotor 506 according to FIG. 6, which is provided with fewer rows of permanent magnets 9a, there are two magnet pairs 78a, 79a formed from two adjacent rows of permanent magnets, which are diametrically opposed . The rows lying between the magnet pairs 78a, 79a are free of permanent magnets up to the center of the magnet rotor 506, which is identified by the line 83a. Solid magnet mixtures of different fractions can be added to the magnet rotor 506 separately onto the halves 506a or 506b lying on the left or right of the line 83 in FIG. 6 and in this way with a magnet rotor 506 two different solid mixtures are treated. For the separate feeding of the solid mixtures, the existing feed conveyor 1 or the conveyor belt 3 can be assigned a partition wall (partition plate) which extends in the middle in the conveying direction; alternatively, there may be two separate feeders.

Das mittels des Fördergurtes 3 bis weit über den Scheitel­mittelpunkt (vgl. die Vertikale 16) der Trommel 5 hinaus transportierte Gemisch befindet sich schon in einer Wurf­parabel 21, für die sich aufgrund der an der Material-Ab­wurfzone 20 vollwirksamen Kraft des Wirbelstromes ein am weitesten ausgelenkter Kurvenverlauf mit einer entsprechend starken Abstoßung der Nichteisen-Metalle ergibt. Die ent­sprechend der Wurfparabel 21 ausgelenkten Nichteisen-Metal­le fallen definiert in einen von der Sammelstelle für die übrigen Gemisch-Bestandteile entfernt aufgestellten, nicht dargestellten Sammelbehälter. Mittels eines mit seinem Scheitelpunkt in im wesentlichen horizontaler Richtung ein­stellbaren Trennsattels 22 wird die Trennung in wertvolle Nichteisen-Metall-Bestandteile und übrige Bestandteile un­terstützt. Die letzteren Bestandteile fallen gemäß Pfeil 23 im wesentlichen ohne Auslenkung nach unten und gelangen in Transportrichtung 2 gesehen in einen Bereich vor dem Trenn­sattel 22. Ein Mitnehmer 24 des Fördergurtes 3 verhindert Material-Ansammlungen etwaiger FE-Bestandteile im Wirkbe­reich des Magnetrotors und ein Abstreifer 37 unterhalb des Untertrums des Fördergurtes 3 streift möglicherweise auf­grund der Magnetkraft hartnäckig an dem Fördergurt 3 ver­bleibende Eisenteilchen sowie anhaftende feine Schmutzbe­standteile endgültig ab. Gemäß den Fig. 1 und 3 nimmt der Magnetrotor 6 eine Lage ein, in der der Winkel zwischen der durch die Trommeldreh­achse 15 gehenden Vertikalen 16 und einer Verbindungslinie 25′ (strichpunktiert dargestellt) der Trommeldrehachse 15 mit der Drehachse 14 der Rotorwelle 7 ca. 45o beträgt. Der Verstellwinkel des Wirkbereichs des Magnetfeldes des Magnet­rotors 6 kann - ausgehend von der Vertikalen 16 - in Rota­tionsrichtung 75o betragen, wie von dem Winkel 26 zwischen der durchgezogenen Verbindungslinie 25 und der Vertikalen 16 in Fig. 1 und 3 definiert; die gewünschte Lage des Magnetrotors läßt sich entsprechend variieren.The mixture transported by means of the conveyor belt 3 far beyond the center of the apex (see vertical 16) of the drum 5 is already in a throwing parabola 21, for which there is a most deflected force due to the force of the eddy current which is fully effective at the material discharge zone 20 Curve with a correspondingly strong repulsion of the non-ferrous metals results. The non-ferrous metals deflected according to the throwing parabola 21 fall in a defined manner into a collecting container, not shown, which is removed from the collecting point for the other mixture components. The separation into valuable non-ferrous metal components and other components is supported by means of a separating saddle 22 which can be adjusted with its apex in a substantially horizontal direction. According to arrow 23, the latter components fall downward essentially without deflection and, viewed in the direction of transport 2, reach an area in front of the separating saddle 22 of the lower strand of the conveyor belt 3 possibly finally sticks to iron particles remaining on the conveyor belt 3 as well as adhering fine dirt components due to the magnetic force. 1 and 3, the magnet rotor 6 occupies a position in which the angle between the vertical 16 passing through the drum axis of rotation 15 and a connecting line 25 '(shown in broken lines) of the drum axis of rotation 15 with the axis of rotation 14 of the rotor shaft 7 is approximately 45 o is. The adjustment angle of the effective range of the magnetic field of the magnetic rotor 6 can - starting from the vertical 16 - be 75 o in the direction of rotation, as defined by the angle 26 between the solid connecting line 25 and the vertical 16 in FIGS. 1 and 3; the desired position of the magnetic rotor can be varied accordingly.

Die Güte des Trenneffektes, insbesondere wenn in der zu­geführten Feststoffmischung Fraktionen kleiner Korngröße enthalten sind, wird weiter durch einen in Fig. 3 darge­stellten Richtkörper 84 verbessert, der sich im Bereich über der Material-Abwurfzone 20 mit Abstand über der Trom­mel 5 im Magnetfeld des Magnetrotors 6 befindet und sich über die gesamte Breite des Magnetrotors 6 erstreckt. Der Richtkörper 84 bewirkt nämlich, daß sich die Feldlinien des von dem Magnetrotor 6 erzeugten Wechselmagnetfeldes bis zu dem Richtkörper 84 verlängern, der die Feldlinien anzieht und in gewünschter Weise konzentriert. Es lassen sich somit langgestreckte Feldlinien mit tief eingeschnittenen, von der Oberfläche der Trommel 5 nur noch wenig entfernten Tälern ausbilden, die für definierte Impulse auf die Ma­terialbestandteile sorgen. Eine optimale Kraftwirkung des Magnetfeldes läßt sich erreichen, wenn der wie der Magnet­rotor 6 in Umfangsrichtung verschwenkbare und/ oder in seinem radialen Abstand zu der Oberfläche der Trommel 5 verstellbare Richtkörper 84 die in Fig. 3 dargestellte Lage einnimmt, d.h. auf der Verlängerung der durch die Material-­Abwurfzone 20 und die Trommeldrehachse 15 verlaufenden Ver­bindungslinie 25′ liegt.The quality of the separation effect, in particular if fractions of small grain size are contained in the solid mixture supplied, is further improved by a straightening body 84 shown in FIG. 3, which is located in the area above the material discharge zone 20 at a distance above the drum 5 in the magnetic field of the magnetic rotor 6 is located and extends over the entire width of the magnetic rotor 6. The straightening body 84 namely causes the field lines of the alternating magnetic field generated by the magnetic rotor 6 to extend to the straightening body 84, which attracts the field lines and concentrates them in the desired manner. It is thus possible to form elongated field lines with deeply incised valleys which are only a short distance from the surface of the drum 5 and which provide defined impulses on the material components. An optimal force effect of the magnetic field can be achieved if the straightening body 84, which can be pivoted in the circumferential direction and / or is adjustable in its radial distance from the surface of the drum 5, assumes the position shown in FIG. 3, ie on the extension of that by the Material drop zone 20 and the drum axis of rotation 15 extending connecting line 25 '.

Wie in Fig. 7 dargestellt ist, greifen von beiden Seiten Trommeleinsätze 27 bündig mit der Innenmantelfläche in die Trommel 5 ein; die Trommel 5 ist damit wellenlos gelagert. Die Trommeleinsätze 27 sind mittels Schrauben 28 und Halte­ringen 29 drehfest mit der Trommel 5 verbunden und rotieren um Lager 30, von denen das Lager der Antriebsseite 31 auf einen Lagerträger 32 und an der gegenüberliegenden Seite auf einen Einstellflansch 33 aufgezogen ist. Der Lagerträ­ger 32 und der Einstellflansch 33 nehmen Rotorwellenlager 34 auf, in denen die Rotorwelle 7 mit Wellenzapfen 35, 36 rotiert. Der Lagerträger 32 und der Einstellflansch 33 an der gegenüberliegenden Seite nehmen die Rotorwellenlager 34 exzentrisch auf. Der Lagerträger 32 der Antriebsseite 31 ist mittels Schrauben 39 mit einem Einstellflansch 40 der Antriebsseite 31 verbunden.As shown in FIG. 7, drum inserts 27 engage the drum 5 flush with the inner lateral surface from both sides; the drum 5 is thus shaftless. The drum inserts 27 are rotatably connected to the drum 5 by means of screws 28 and retaining rings 29 and rotate about bearings 30, of which the drive side 31 bearing is mounted on a bearing bracket 32 and on the opposite side on an adjusting flange 33. The bearing bracket 32 and the adjustment flange 33 accommodate rotor shaft bearings 34, in which the rotor shaft 7 rotates with shaft journals 35, 36. The bearing bracket 32 and the adjusting flange 33 on the opposite side receive the rotor shaft bearings 34 eccentrically. The bearing bracket 32 on the drive side 31 is connected by means of screws 39 to an adjusting flange 40 on the drive side 31.

Sowohl der Eintellflansch 33 als auch der Einstellflansch 40 besitzt an seinem Außenumfang mit einem bestimmten Tei­lungsmaß 41 (vgl. Fig. 8) radial voneinander angeordnete Gewindebohrungen 42; diese liegen auf einem Lochkreis 43, der einem Lochkreis 44 für Bohrungen 45 in einem sowohl an der Antriebsseite 31 als auch der gegenüberliegenden Lager­seite mit einer Lagerkonsole 49 verschweißten Außenflansch 47 entspricht. Solange in die korrespondierenden Bohrungen 42 und 45 geschraubte Schrauben 48 den Außen- und Einstell­flansch 47 und 33 bzw. 40 miteinander verbinden, bleibt die exzentrisch Lage der Rotorwelle 7 in der Trommel 5 unver­ändert. Erst nach dem Lösen und Herausziehen der Schrauben 48 und anschließendem Verdrehen der zur gemeinsamen Verstel­lung über einen Bügel 38 (in Fig. 8 sind Einstellagen des Bügels 38 gestrichelt dargestellt) miteinander verbundenen Einstellflansche 33, 40 um eine oder mehrere Teilungen 41 verstellen sich aufgrund der Verbindung des Einstellflan­ sches 40 mittels Schrauben 39 mit dem Lagerträger 32 bzw. über den Einstellflansch 33 die darin angeordneten Rotorwel­lenlager 34.Both the adjusting flange 33 and the adjusting flange 40 have threaded bores 42 arranged radially from one another on their outer circumference with a certain pitch 41 (cf. FIG. 8); these lie on a bolt circle 43, which corresponds to a bolt circle 44 for bores 45 in an outer flange 47 welded to a bearing bracket 49 both on the drive side 31 and on the opposite bearing side. As long as screws 48 screwed into the corresponding bores 42 and 45 connect the outer and adjusting flanges 47 and 33 or 40 to one another, the eccentric position of the rotor shaft 7 in the drum 5 remains unchanged. Only after loosening and removing the screws 48 and then turning the adjustment flanges 33, 40 which are connected to one another for common adjustment via a bracket 38 (adjustment positions of the bracket 38 are shown in dashed lines in FIG. 8) by one or more divisions 41 are adjusted due to the connection of the adjustment flange cal 40 by means of screws 39 with the bearing bracket 32 or via the adjusting flange 33 the rotor shaft bearings 34 arranged therein.

In Fig. 8 ist als Einzelheit die Lagerkonsole 49 der Antriebsseite 31 mit an den Außenflansch 47 angeschraubtem dahinterliegendem und daher nicht sichtbaren Einstell­flansch 40 dargestellt. Die Lagerkonsolen 49 können bei­spielsweise an den über Träger 62 (fig. 7) mit dem Funda­ment verankerten Lagerarmen 46 des Fördergurtes 3 ange­schraubt werden. Zur Versteifung und Erhöhung der Festig­keit der Lagerung der Rotorwelle 7 ist die Lagerkonsole 49 mit einer vertikalen Stütze 50 und einer gebogenen, einer­seits mit der Stütze 50 und andererseits mit der Lagerkonso­le 49 verschweißten Rippe 51 versehen. Die zum Verstellen der Drehachse 14 des Magnetrotors 6 konzentrisch zur Trom­meldrehachse 15 notwendigerweise zu lösenden Schrauben 48 sind sämtlich frei zugänglich.In Fig. 8, the bearing bracket 49 of the drive side 31 is shown as a detail with the underlying and therefore not visible adjusting flange 40 screwed to the outer flange 47. The bearing brackets 49 can, for example, be screwed to the bearing arms 46 of the conveyor belt 3 anchored to the foundation by means of supports 62 (FIG. 7). To stiffen and increase the strength of the bearing of the rotor shaft 7, the bearing bracket 49 is provided with a vertical support 50 and a curved rib 51 welded on the one hand to the bracket 50 and on the other hand to the bearing bracket 49. The screws 48 which are necessarily to be loosened to adjust the axis of rotation 14 of the magnet rotor 6 concentrically to the axis of rotation 15 of the drum are all freely accessible.

Damit der Fördergurt 3 bei einem Stromausfall nicht augen­blicklich stoppt, sondern zumindest noch so lange läuft, bis das darauf liegende Gemisch über die Trommel 5 hinaus ausgetragen ist, wird gemäß Fig. 9 auf einem Wellenende 52 der Antreibstrommel 4 eine Kupplungsscheibe 53 angeordnet, die bei Netzausfall mit einem Hilfsantrieb 61 (vgl. Fig. 1) gekuppelt wird. Der dargestellte Hilfsantrieb 61 ist als mechanisch arbeitender Federmotor ausgebildet und besitzt ein der Kupplungsscheibe 53 gegenüberliegendes, bei an­liegender Netzspannung ausgerastetes, korrespondierendes Kupplungsteil 54 auf einer Welle 55. Das Kupplungsteil 54 greift mit einem Sperrfinger 56 in ein ebenfalls auf der Welle 55 gelagertes, eine Feder aufnehmendes Federgehäuse 57 ein. Durch Drehen des Federgehäuses 57 mittels eines Motors 58 wird die Feder aufgezogen, d.h. vorgespannt, wo­bei die Anzahl der Umdrehungen von einem Umdrehungszähler 59 überwacht wird. An den Motor 58 ist ein Strommesser 60 angeschlossen, der zur Kontrolle auf Federbruch oder sonsti­ge Beschädigungen eine Motor-Strommessung beim Aufwickeln bzw. Aufziehen der Feder erlaubt. Fällt die Netzspannung zusammen, greift das Kupplungsteil 54 in die Kupplungsschei­be 52 ein, wobei der Sperrfinger 56 aus dem Federgehäuse 57 ausrastet, so daß die gespeicherte Energie der Feder frei wird. Das dann samt der Welle 55 rotierende Federgehäuse 57 leitet die Rotationsbewegung über die aus der Kupplungs­scheibe 53 und dem Kupplungsteil 54 bestehende Elektromag­netkupplung auf die Antriebstrommel 4 weiter; der För­dergurt 3 bewegt sich dadurch entsprechend vorwärts.So that the conveyor belt 3 does not stop immediately in the event of a power failure, but at least continues to run until the mixture lying thereon is discharged beyond the drum 5, a clutch disc 53 is arranged on a shaft end 52 of the drive drum 4, which at Power failure is coupled with an auxiliary drive 61 (see. Fig. 1). The auxiliary drive 61 shown is designed as a mechanically working spring motor and has a corresponding coupling part 54 on a shaft 55 opposite the clutch disc 53 and disengaged when the mains voltage is applied. The coupling part 54 engages with a locking finger 56 in a spring which is also mounted on the shaft 55 receiving spring housing 57 a. By rotating the spring housing 57 by means of a Motor 58, the spring is wound, ie preloaded, the number of revolutions being monitored by a revolution counter 59. A current meter 60 is connected to the motor 58, which allows a motor current measurement to be carried out to check for spring breakage or other damage when the spring is being wound or wound. If the mains voltage falls together, the clutch part 54 engages in the clutch disc 52, the locking finger 56 disengaging from the spring housing 57, so that the stored energy of the spring is released. The spring housing 57, which then rotates together with the shaft 55, transmits the rotational movement to the drive drum 4 via the electromagnetic clutch consisting of the clutch disc 53 and the clutch part 54; the conveyor belt 3 moves accordingly forward.

Alternativ kann bei Stromausfall die Nachlaufenergie des Magnetrotors 6 ausgenutzt und beispielsweise über eine Kupp­lung die Antriebstrommel 4 von dem noch eine gewisse Zeit nachlaufenden, d.h. auch ohne Strom umlaufenden Magnetrotor 6 angetrieben werden. Wie in Fig. 2 schematisch darge­stellt, speist die Nachlaufenergie des Magnetrotors 6 einen auf der Rotorwelle angeordneten Generator 85, der elek­trisch gemäß der gestrichelten Linie 86 an die Antriebstrom­mel 4 angeschlossen und über einen Zwischenschalter 87 außerdem mit einer Stromquelle 88 verbunden ist. Wenn bei Stromausfall die Netzspannung auf Null abfällt, fällt ent­sprechend ein Relais des Zwischenschalters 87 ab und schal­tet den Generator 85 auf Stromzufuhr zur Antriebstrommel 4. Da der Zwischenschalter 87 an die Stromquelle 88 angeschlos­sen ist, schaltet das Zwischenschalter-Relais unverzüglich den normalen Antrieb zu und den Generator 85 ab, sobald die Netzspannung wieder anliegt.Alternatively, in the event of a power failure, the run-on energy of the magnet rotor 6 can be used and, for example, the drive drum 4 can be driven by a magnet rotor 6 which continues to run for a certain time, ie also without current, via a clutch. As shown schematically in FIG. 2, the wake energy of the magnetic rotor 6 feeds a generator 85 arranged on the rotor shaft, which generator is electrically connected to the drive drum 4 according to the broken line 86 and is also connected to a current source 88 via an intermediate switch 87. If the mains voltage drops to zero in the event of a power failure, a relay of the intermediate switch 87 drops out accordingly and switches the generator 85 to the power supply to the drive drum 4. Since the intermediate switch 87 is connected to the power source 88, the intermediate switch relay switches on the normal drive immediately and the generator 85 as soon as the mains voltage is present again.

Bei der in Fig. 10 dargestellten Ausführung einer erfin­dungsgemäßen Wirbelstromscheidevorrichtung greift von je­der Stirnseite ein Deckel 63 mit einem Axialkragen 64 und einem darauf angeordneten Lager 65 in die Trommel ein. Wäh­rend des Betriebes rotiert die Trommel 105 auf den Lagern 65, während die Deckel 63 an eine in Längsrichtung durch die Trommel hindurchgeführte Tragachse 66 festgeschweißt sind und in ihrer Position verharren. Die gleichzeitig die Trommeldrehachse 115 definierende Tragachse 66 ragt mit Achsenden 67, 68 aus den Deckeln 63 hervor und lagert außerhalb der Trommel 105 einerseits in einer Lagerkonsole 146 und andererseits in einem Auflager 69. Die das Achsende 67 aufnehmende Lagerkonsole 146 besteht aus einem statio­nären, mit einem Lochkreis 144 versehen Außenflansch 147, dem ein starr mit der Tragachse 66 verbundener Einstell­flansch 133 gegenüberliegt; der Einstellflansch ist auf einem entsprechenden Lochkreis 143 mit Gewindebohrungen 142 versehen.In the embodiment of an eddy current separating device according to the invention shown in FIG. 10, a cover 63 with an axial collar 64 and a bearing 65 arranged thereon engages in the drum from each end face. During operation, the drum 105 rotates on the bearings 65, while the covers 63 are welded to a support shaft 66 which is guided through the drum in the longitudinal direction and remain in their position. The support axis 66, which at the same time defines the axis of rotation 115 of the drum, projects with axles 67, 68 from the covers 63 and is mounted outside the drum 105 in a bearing bracket 146 on the one hand and in a support 69 on the other a bolt circle 144 is provided with an outer flange 147 which is opposite an adjustment flange 133 rigidly connected to the support shaft 66; the adjustment flange is provided on a corresponding bolt circle 143 with threaded holes 142.

Der Magnetrotor 106 mit seiner Drehachse 114 liegt exzen­trisch in der Trommel 105. Das der Antriebsseite 131 abge­wandte Wellenende der Rotorwelle 107 wird von einem Lager 70 getragen, das ebenso wie das Lager 71 an dem antriebssei­tigen Wellenende 136 in einem innenliegenden Lageransatz 72 der Deckel 63 angeordnet ist. An der Antriebsseite 131 durchdringt die Rotorwelle 107 mit dem Wellenende 136 den Deckel 63; auf dem Wellenende 136 ist eine Riemenscheibe 112 angeordnet.The magnet rotor 106 with its axis of rotation 114 lies eccentrically in the drum 105. The shaft end of the rotor shaft 107 facing away from the drive side 131 is supported by a bearing 70 which, like the bearing 71, is arranged on the drive-side shaft end 136 in an inner bearing shoulder 72 of the cover 63 is. On the drive side 131, the rotor shaft 107 penetrates the cover 63 with the shaft end 136; A pulley 112 is arranged on the shaft end 136.

Zum Verstellen der Lage des Magnetrotors 106 in der Trommel 105 wird nach dem Lösen und Entfernen der durch die Boh­rungen des Einstellflansches 133 und des Außenflansches 147 gesteckten, durch Striche symbolisierten Schrauben der fest mit der Tragachse 66 verbundene Einstellflansch 133 auf die mittels der Lochteilung festzulegende neue Position relativ zu dem nicht beweglichen Außenflansch 147 verdreht. Da die Deckel 63 mit der Tragachse 66 verschweißt sind, überträgt sich die Drehbewegung des Einstellflansches 133 auf die Deckel 63, die somit die in den Deckeln gelagerte Rotor­welle 107 und folglich den Magnetrotor 106 mitnehmen.In order to adjust the position of the magnetic rotor 106 in the drum 105, after loosening and removing the screws symbolized by lines through the bores of the adjusting flange 133 and the outer flange 147, the screws are fixed with the support shaft 66 connected adjusting flange 133 rotated relative to the non-movable outer flange 147 to the new position to be determined by means of the hole division. Since the covers 63 are welded to the support shaft 66, the rotational movement of the adjusting flange 133 is transmitted to the covers 63, which thus take the rotor shaft 107 mounted in the covers and consequently the magnet rotor 106 with them.

Die in Fig. 11 dargestellte Ausführung einer erfindungsge­mäßen Wirbelstromscheidevorrichtung unterscheidet sich hin­sichtlich des Tragachsen-Aufbaus und der Einstellbarkeit des Magnetrotors 206 mit seiner Drehachse 214 nicht von der Ausführung gemäß Fig. 10. Auch hier besteht die das Achs­ende 67 aufnehmende Lagerkonsole 246 aus einem stationären, mit einem Lochkreis 244 versehenen Außenflansch 247, dem ein starr mit der Tragachse 66 verbundener Einstellflansch 233 gegenüberliegt; der Einstellflansch ist auf einem ent­sprechenden Lochkreis 243 mit Gewindebohrungen 242 ver­sehen. Abweichend ist demgegenüber lediglich die Lagerung der Rotorwelle 207 des Magnetrotors 206 in separaten Stüt­zen 73, 74, die im Trommelinnenraum mit Abstand von den Deckeln 63 mit der gleichzeitig die Trommeldrehachse 215 definierenden Tragachse 66 verschweißt sind. Die Stütze 74 ist dabei soweit nach innen versetzt, daß ein ausreichender Freiraum für einen unmittelbar an der Stütze 74 angeflansch­ten Antrieb verbleibt, der als ein die Rotorwelle 207 antreibender Hydraulikmotor 75 ausgebildet ist. Der Hydrau­likmotor 75 ist über Leitungen 76 an Versorgungsbohrungen 77 für den Zu- und Ablauf der Hydraulikflüssigkeit ange­schlossen, die durch die Tragachse 66 bzw. deren Achsenende 68 zu einer nicht dargestellten Druckmittelquelle führen. Beim Drehen des Einstellflansches 233 dreht sich aufgrund der festen Verbindung der Stützen 73, 74 mit der Tragachse 66 entsprechend die in den Stützen 73, 74 gelagerte Rotor­welle 207. Bei dieser Ausführung der Wirbelstromscheidevor­richtung brauchen die Deckel 63 nicht mit der Tragachse 66 verbunden, d.h. nicht mit verdreht zu werden, um eine neue Einstelllage des Magnetrotors 206 in der Trommel 205 zu ermöglichen.The embodiment of an eddy current separating device according to the invention shown in FIG. 11 does not differ from the embodiment according to FIG. 10 with regard to the structure of the supporting axis and the adjustability of the magnetic rotor 206 with its axis of rotation 214. Here too, the bearing bracket 246 receiving the axis end 67 consists of a stationary, with a bolt circle 244 provided outer flange 247, which is opposite an adjusting flange 233 rigidly connected to the support shaft 66; the adjusting flange is provided on a corresponding hole circle 243 with threaded bores 242. The only difference, however, is the mounting of the rotor shaft 207 of the magnetic rotor 206 in separate supports 73, 74, which are welded in the interior of the drum at a distance from the covers 63 to the support axis 66 which simultaneously defines the drum axis of rotation 215. The support 74 is displaced inward to such an extent that there is sufficient free space for a drive flanged directly to the support 74, which is designed as a hydraulic motor 75 driving the rotor shaft 207. The hydraulic motor 75 is connected via lines 76 to supply bores 77 for the inlet and outlet of the hydraulic fluid, which lead through the support shaft 66 or the shaft end 68 thereof to a pressure medium source, not shown. When the adjusting flange 233 is rotated, the supports 73, 74 are connected to the supporting axis due to the fixed connection 66 corresponds to the rotor shaft 207 mounted in the supports 73, 74. In this embodiment of the eddy current separating device, the covers 63 do not need to be connected to the supporting axis 66, that is to say they do not have to be rotated in order to enable a new setting position of the magnetic rotor 206 in the drum 205.

Claims (36)

1. Vorrichtung zum Abtrennen von nichtmagnetisierbaren Metallen, insbesondere Nichteisen-Metallen, aus einer Feststoffmischung mittels einer rotierenden Trommel, in der ein rotierender, mit Permanentmagneten bestück­ter Magnetrotor angeordnet ist, dadurch gekennzeich­net, daß zum Einstellen des Wirkbereichs des vom Mag­netrotor (6) erzeugten Wechselmagnetfeldes die Lage der Drehachse (14) des Magnetrotors (6) im Quadranten (18) der Materialabwurfzone (20) durch Verschwenken in Umfangsrichtung und/oder radiales Verlagern zu ver­stellen ist.1. Device for separating non-magnetizable metals, in particular non-ferrous metals, from a solid mixture by means of a rotating drum in which a rotating magnet rotor equipped with permanent magnets is arranged, characterized in that for adjusting the effective range of the alternating magnetic field generated by the magnet rotor (6) the position of the axis of rotation (14) of the magnetic rotor (6) in the quadrant (18) of the material discharge zone (20) can be adjusted by swiveling in the circumferential direction and / or radial displacement. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Lage der Rotorwelle (7) konzentrisch auf einem Radius um die Trommeldrehachse (15) zu verstellen ist.2. Device according to claim 1, characterized in that the position of the rotor shaft (7) is to be adjusted concentrically on a radius around the drum axis of rotation (15). 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß der Luftspalt (19) zwischen dem Magnet­ rotor (6) und der Trommel (5) im Bereich der Mate­rial-Abwurfzone (20) am geringsten ist.3. Apparatus according to claim 1 or 2, characterized in that the air gap (19) between the magnet rotor (6) and the drum (5) in the area of the material discharge zone (20) is lowest. 4. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Umfangsgeschwin­digkeit der Trommel (5) einstellbar ist.4. The device according to one or more of claims 1 to 3, characterized in that the peripheral speed of the drum (5) is adjustable. 5. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Magnetrotor (6) mindestens zwei in Längsrichtung der Rotorwelle (7) angeordnete Reihen Permanentmagnete (9) aufweist.5. The device according to one or more of claims 1 to 4, characterized in that the magnetic rotor (6) has at least two rows of permanent magnets (9) arranged in the longitudinal direction of the rotor shaft (7). 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Magnetrotor (306 bzw. 406) mindestens zwei jeweils aus zwei benachbarten Reihen Permanentmagnete (9) gebildete Magnetpaare (78, 79) aufweist und das Winkelmaß (80) zwischen den jeweils ein Magnetpaar (78 bzw. 79) bildenden Reihen Permanentmagnete (9) kleiner ist als das Winkelmaß (81) zwischen den Magnetpaaren (78, 79).6. The device according to claim 5, characterized in that the magnet rotor (306 or 406) has at least two magnet pairs (78, 79) formed in each case from two adjacent rows of permanent magnets (9) and the angular dimension (80) between each a magnet pair ( 78 or 79) forming rows of permanent magnets (9) is smaller than the angular dimension (81) between the magnet pairs (78, 79). 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Grundkörper (408) des Magnetrotors (406) in den Bereichen zwischen den Magnetpaaren (78, 79) Aus­nehmungen (82) aufweist.7. The device according to claim 6, characterized in that the base body (408) of the magnetic rotor (406) in the areas between the magnet pairs (78, 79) has recesses (82). 8. Vorrichtung nach Anspruch 7, gekennzeichnet durch kon­kave Ausnehmungen (82).8. The device according to claim 7, characterized by concave recesses (82). 9. Vorrichtung nach einem oder mehreren der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß eine Hälfte (506a) des Magnetrotors (506) mehr Reihen Permanentmagnete (9a, 9b) als die andere Hälfte (506b) aufweist.9. The device according to one or more of claims 5 to 8, characterized in that one half (506a) of the magnetic rotor (506) has more rows of permanent magnets (9a, 9b) than the other half (506b). 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß sich die Permanentmagnete (9b) jeder zweiten Mag­netreihe von einer Stirnseite aus axial nur bis zur Mitte (83) des Magnetrotors (506) erstrecken.10. The device according to claim 9, characterized in that the permanent magnets (9b) of each second row of magnets extend axially from one end face only to the middle (83) of the magnet rotor (506). 11. Vorrichtung nach einem oder mehreren der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß die Hälfte (506b) des Magnetrotors (506) mit weniger Reihen Permanent­magnete (9a) mindestens zwei jeweils aus zwei benach­barten Reihen Permanentmagnete (9a) gebildete Magnet­paare (78a, 79a) aufweist, die sich von einer Stirn­seite aux axial bis zur Mitte (83a) des Magnetrotors (506) erstrecken.11. The device according to one or more of claims 5 to 9, characterized in that the half (506b) of the magnetic rotor (506) with fewer rows of permanent magnets (9a) at least two magnet pairs (78a) each formed from two adjacent rows of permanent magnets (9a), 79a), which extend axially from one end face axially to the center (83a) of the magnet rotor (506). 12. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß im Bereich über der Material-Abwurfzone (20) mit Abstand über der Trom­mel (5) im Magnetfeld des Magnetrotors (6) ein Richt­körper (84) angeordnet ist.12. The device according to one or more of claims 1 to 11, characterized in that a straightening body (84) is arranged in the region above the material discharge zone (20) at a distance above the drum (5) in the magnetic field of the magnetic rotor (6). 13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß der Richtkörper (84) verstellbar ist.13. The apparatus according to claim 12, characterized in that the straightening body (84) is adjustable. 14. Vorrichtung nach Anspruch 12 oder 13, dadurch gekenn­zeichnet, daß der Richtkörper (84) aus magnetisch gut und elektrisch schlecht leitfähigem Material besteht.14. The apparatus according to claim 12 or 13, characterized in that the straightening body (84) consists of magnetically good and electrically poorly conductive material. 15. Vorrichtung nach einem oder mehreren der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß die Breite des Richtkörpers (84) gleich der Breite des Magnetrotors (6) ist.15. The device according to one or more of claims 12 to 14, characterized in that the width of the straightening body (84) is equal to the width of the magnetic rotor (6). 16. Vorrichtung nach einem oder mehreren der Ansprüche 12 bis 15,dadurch gekennzeichnet, daß der Richtkörper (84) ein mit der Geschwindigkeit des Fördergurtes (3) umlaufender Rotor ist.16. The device according to one or more of claims 12 to 15, characterized in that the straightening body (84) is a rotor rotating at the speed of the conveyor belt (3). 17. Vorrichtung nach einem oder mehreren der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß der Richtkörper (84) gekühlt ist.17. The device according to one or more of claims 12 to 16, characterized in that the straightening body (84) is cooled. 18. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 17, gekennzeichnet durch einen Antrieb (10; 75) des Magnetrotors (6) mit Drehzahlregelung.18. The device according to one or more of claims 1 to 17, characterized by a drive (10; 75) of the magnetic rotor (6) with speed control. 19. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 18, gekennzeichnet durch einen innerhalb der Trom­mel (5) angeordneten Antrieb (75) des Magnetrotors (6).19. The device according to one or more of claims 1 to 18, characterized by a drive (75) of the magnet rotor (6) arranged inside the drum (5). 20. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß ein die Trommel (5) umschlingender, angetriebener Fördergurt (3) mit mindestens einem quer angeordneten Mitnehmer (24) ver­sehen ist.20. The device according to one or more of claims 1 to 19, characterized in that a driven conveyor belt (3) wrapping around the drum (5) is provided with at least one transversely arranged driver (24). 21. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß ein Wellenende (52) einer Antriebstrommel (4) des Fördergurtes (3) mit einer Kupplungsscheibe (53) versehen ist, die bei Netzausfall mit einem netzunabhängigen Hilfsantrieb (61, 85) gekuppelt wird.21. The device according to one or more of claims 1 to 20, characterized in that a shaft end (52) of a drive drum (4) of the conveyor belt (3) is provided with a clutch disc (53) which in the event of a power failure with a mains-independent auxiliary drive (61 , 85) is coupled. 22. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 21, dadurch gekennzeichnet, da bei Stromausfall der Magnetrotor (6) die Antriebstrommel (4) des Förder­gurtes (3) antreibt.22. The device according to one or more of claims 1 to 21, characterized in that in the event of a power failure, the magnet rotor (6) drives the drive drum (4) of the conveyor belt (3). 23. Vorrichtung nach Anspruch 21 oder 22, dadurch gekenn­zeichnet, daß der Magnetrotor (6) mit einem die An­triebstrommel (4) antreibenden Generator (85) versehen ist.23. The device according to claim 21 or 22, characterized in that the magnetic rotor (6) is provided with a generator (85) driving the drive drum (4). 24. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 23, gekennzeichnet durch eine wellenlose Lagerung der Trommel (5) mittels Trommeleinsätzen (27).24. The device according to one or more of claims 1 to 23, characterized by a shaftless mounting of the drum (5) by means of drum inserts (27). 25. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Rotorwelle (7) durch die Trommel (5) hindurchgeführt ist und von jeder Seite ein Trommeleinsatz (27) in die Trommel (5) eingreift.25. The device according to one or more of claims 1 to 24, characterized in that the rotor shaft (7) is guided through the drum (5) and a drum insert (27) engages in the drum (5) from each side. 26. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß die Wellenzapfen (35, 36) der Rotorwelle (7) in Lagerkonsolen (49, 46, 32, 33) lagern, die jeweils einen mit einem Lochkreis (44) versehenen Außenflansch (47) besitzen.26. The device according to one or more of claims 1 to 25, characterized in that the shaft journals (35, 36) of the rotor shaft (7) are mounted in bearing brackets (49, 46, 32, 33), each with a bolt circle (44 ) provided outer flange (47). 27. Vorrichtung nach Anspruch 26, gekennzeichnet durch an den Lagerkonsolen (49) angeordnete, verdrehbare Ein­stellflansche (33, 40), die auf einem dem Lochkreis (44) des Außenflansches (47) entsprechenden Lochkreis (43) mit Gewindebohrungen (42) für jeweils den Außen­flansch (47) mit dem Einstellflansch (33 bzw. 40) verbindende Schrauben (48) versehen sind.27. The apparatus according to claim 26, characterized by on the bearing brackets (49) arranged, rotatable adjusting flanges (33, 40) on a hole circle (44) of the outer flange (47) corresponding hole circle (43) with threaded holes (42) for each screws (48) connecting the outer flange (47) with the adjusting flange (33 or 40) are provided. 28. Vorrichtung nach Anspruch 26 oder 27, dadurch gekenn­zeichnet, daß die Rotorwelle (7) an ihrer Antriebssei­te (31) in einem in der Trommel (5) exzentrisch ange­ordneten Lagerträger (32) lagert, der als Tragkörper für das Lager (30) des Trommeleinsatzes (27) mit dem Zwischenflansch (40) verbunden ist.28. The apparatus of claim 26 or 27, characterized in that the rotor shaft (7) on its drive side (31) in an eccentrically arranged in the drum (5) bearing support (32), which acts as a support body for the bearing (30) Drum insert (27) is connected to the intermediate flange (40). 29. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß Deckel (63) mit Axialkragen (64) und darauf angeordneten Lagern (65) von jeder Stirnseite in die Trommel (105, 205) ein­greifen und relativ zur Trommel (105, 205) verdrehbar sind.29. The device according to one or more of claims 1 to 24, characterized in that cover (63) with axial collar (64) and bearings (65) arranged thereon engage from each end face in the drum (105, 205) and relative to the drum ( 105, 205) can be rotated. 30. Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, daß die Rotorwelle (107) in den Deckeln (63) gelagert ist.30. The device according to claim 29, characterized in that the rotor shaft (107) is mounted in the covers (63). 31. Vorrichtung nach Anspruch 29 oder 30, dadurch gekenn­zeichnet, daß das antriebsseitige Wellenende (136) der Rotorwelle (107) den Deckel (63) durchdringt.31. The device according to claim 29 or 30, characterized in that the drive-side shaft end (136) of the rotor shaft (107) penetrates the cover (63). 32. Vorrichtung nach einem oder mehreren der Ansprüche 29 bis 31, dadurch gekennzeichnet, daß mindestens ein Achsende (67) einer durch die Deckel (63) hindurch­geführten und an diesen drehfest befestigten Tragachse (66) in einer Lagerkonsole (146, 246) lagert, die einen mit einem Lochkreis (144, 244) versehenen, sta­tionären Außenflansch (147, 247) besitzt, dem ein starr mit der Tragachse (66) verbundener Einstell­flansch (133, 233) gegenüberliegt, der auf einem ent­sprechenden Lochkreis (143, 243) mit Gewindebohrungen (142, 242) versehen ist.32. Device according to one or more of claims 29 to 31, characterized in that at least one axis end (67) of a support shaft (66) which is guided through the cover (63) and is secured to it in a rotationally fixed manner, is mounted in a bearing bracket (146, 246), which has a stationary outer flange (147, 247) which is provided with a bolt circle (144, 244) and which is opposed by an adjusting flange (133, 233) rigidly connected to the supporting axis (66) and which is mounted on a corresponding bolt circle (143, 243) Threaded bores (142, 242) is provided. 33. Vorrichtung nach einem oder mehreren der Ansprüche 29 bis 32, gekennzeichnet durch ein Auflager (69) für das von der Lagerkonsole (146, 246) abgewandte Achsende (68).33. Device according to one or more of claims 29 to 32, characterized by a support (69) for the axis end (68) facing away from the bearing bracket (146, 246). 34. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 24 und 29, 32 oder 33, dadurch gekennzeichnet, daß die Rotorwelle (207) des Magnetrotors (206) in Stützen (73, 74) lagert, die im Trommelinnenraum mit Abstand von den Deckeln (63) an der Tragachse (66) befestigt sind.34. Device according to one or more of claims 1 to 24 and 29, 32 or 33, characterized in that the rotor shaft (207) of the magnetic rotor (206) is supported in supports (73, 74) which are spaced from the covers in the interior of the drum (63) are attached to the support shaft (66). 35. Vorrichtung nach Anspruch 34, gekennzeichnet durch ei­nen an eine der Stützen (74) angeflanschten, die Rotor­welle (207) antreibenden Hydraulikmotor (75).35. Device according to claim 34, characterized by a hydraulic motor (75) flanged to one of the supports (74) and driving the rotor shaft (207). 36. Vorrichtung nach Anspruch 35, dadurch gekennzeichnet, daß der Hydraulikmotor (75) über Leitungen (76) an Versorgungsbohrungen (77) der Tragachse (66) ange­schlossen ist.36. Apparatus according to claim 35, characterized in that the hydraulic motor (75) via lines (76) to supply bores (77) of the support shaft (66) is connected.
EP89104611A 1988-05-19 1989-03-15 Device for separating non magnetic metals from a solid mixture Expired - Lifetime EP0342330B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT89104611T ATE95084T1 (en) 1988-05-19 1989-03-15 DEVICE FOR SEPARATING NON-MAGNETIZABLE METALS FROM A SOLID MIXTURE.
JP1115219A JPH02218452A (en) 1988-05-19 1989-05-10 Device for clarification of demagnetized metal from solid mixture
BR898902354A BR8902354A (en) 1988-05-19 1989-05-19 INSTALLATION FOR THE SEPARATION OF NON-MAGNETIZABLE METALS, OVERALL NON-FERROUS METALS, FROM A MIXTURE OF SOLID MATERIALS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3817003 1988-05-19
DE19883817003 DE3817003C1 (en) 1988-05-19 1988-05-19 Apparatus for separating non-magnetisable metals from a mixture of solids
DE3906422A DE3906422C1 (en) 1989-03-01 1989-03-01
DE3906422 1989-03-01

Publications (3)

Publication Number Publication Date
EP0342330A2 true EP0342330A2 (en) 1989-11-23
EP0342330A3 EP0342330A3 (en) 1990-09-12
EP0342330B1 EP0342330B1 (en) 1993-09-29

Family

ID=25868236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89104611A Expired - Lifetime EP0342330B1 (en) 1988-05-19 1989-03-15 Device for separating non magnetic metals from a solid mixture

Country Status (3)

Country Link
EP (1) EP0342330B1 (en)
DE (1) DE58905733D1 (en)
ES (1) ES2043920T3 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339195A2 (en) * 1988-04-25 1989-11-02 Steinert Electromagnetbau GmbH Magnetic separator
FR2657544A1 (en) * 1990-01-29 1991-08-02 Andrin G MAGNETIC PARTICLE SEPARATOR AND NON-FERROUS METAL PIECES.
US5057210A (en) * 1989-03-01 1991-10-15 Lindemann Maschinenfabrik Gmbh Apparatus for separating non-magnetizable metals from a solid mixture
US5080234A (en) * 1990-08-15 1992-01-14 Walker Magnetics Group, Inc. Eddy current separator
US5207330A (en) * 1991-11-01 1993-05-04 Miller Compressing Company Magnetic pulley
EP0550867A1 (en) * 1992-01-04 1993-07-14 Lindemann Maschinenfabrik GmbH Device for separating non-magnetisable metals from a mixture of solids
US5494172A (en) * 1994-05-12 1996-02-27 Miller Compressing Company Magnetic pulley assembly
US5522513A (en) * 1994-03-30 1996-06-04 Howell; Billy R. Separator disc
WO1997000138A1 (en) * 1995-06-14 1997-01-03 Lindemann Maschinenfabrik Gmbh System for separating non-magnetisable metals from a mixture of solids
WO1998003266A1 (en) * 1996-07-19 1998-01-29 Wester Tonbergbau Kg Process and device for separating mixtures of finely divided materials by means of a magnetic field
WO1998029190A1 (en) * 1997-01-03 1998-07-09 Eriez Magnetics Europe Limited Powder separation
US5860532A (en) * 1996-11-08 1999-01-19 Arvidson; Bo R. Material separator
WO1999006151A1 (en) * 1997-07-30 1999-02-11 Huron Valley Steel Corporation Apparatus and method for sorting non-ferromagnetic particles
DE10056658C1 (en) * 2000-11-15 2002-07-04 Steinert Gmbh Elektromagnetbau Device and method for separating a solid mixture containing metals
WO2005120714A1 (en) * 2004-06-07 2005-12-22 Sgm Gantry S.P.A. Magnetic separator for ferromagnetic materials with controlled-slip rotating roller and relevant operating method
US7367457B2 (en) 2000-11-20 2008-05-06 Steinert Elektromagnetbau Gmbh Device for the separation of non-magnetizable metals and ferrous components from a solid mixture and method for operating such device
DE202009014381U1 (en) 2009-10-23 2010-12-09 Imro Maschinenbau Gmbh Device for the separation of non-ferrous metals
EP2289628A1 (en) * 2009-08-27 2011-03-02 Lux Magnet Magnetic separator with eddy current, with optimised trajectory and interaction zone of the particles
NL2011525C2 (en) * 2013-09-30 2015-04-01 Recco B V Eddy current seperator unit having a magnetic rotor positioned eccentrically inside an outer drum and coaxially inside an inner drum.
WO2016003286A1 (en) * 2014-07-04 2016-01-07 Goudsmit Magnetic Systems B.V. Diverter roller for a non ferrous waste separator, as well as non ferrous waste separator provided with the diverter roller
CN107790280A (en) * 2017-10-26 2018-03-13 南京西普环保科技有限公司 A kind of deironing apparatus
CN114950720A (en) * 2022-08-02 2022-08-30 山东汇格生物科技有限公司 Bulk agricultural product raw material impurity sorting and demagnetizing equipment
CN115970886A (en) * 2023-02-20 2023-04-18 唐山职业技术学院 Permanent magnet disc type electric roller

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005054811B4 (en) * 2005-07-01 2007-06-14 Steinert Elektromagnetbau Gmbh Method and device for separating metal fractions and / or parts from material mixtures
DE202006005845U1 (en) * 2006-02-20 2007-07-05 Wagner Magnete Gmbh & Co. Kg Non-ferrous metal separator, e.g. in shredder system, has magnetic rotor with at least one magnetically inactive region without permanent magnets or electromagnets made of non-magnetic metal or non-magnetic composite material
TW201204468A (en) * 2010-07-30 2012-02-01 Yung Hsing Machine Industry Co Ltd Eddy current separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE915921C (en) * 1944-11-07 1954-08-02 Westfalia Dinnendahl Groeppel Magnetic separator
US3448857A (en) * 1966-10-24 1969-06-10 Eriez Magnetics Electrodynamic separator
JPS57119856A (en) * 1981-01-20 1982-07-26 Hitachi Metals Ltd Separator of non-magnetic metal
DE3416504A1 (en) * 1984-05-04 1985-11-07 Wagner Kg, Fabrik Elektromagnetischer Apparate, 8941 Heimertingen Method and device for separating conglomerates of materials with different electrical conductivities
EP0339195A2 (en) * 1988-04-25 1989-11-02 Steinert Electromagnetbau GmbH Magnetic separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE915921C (en) * 1944-11-07 1954-08-02 Westfalia Dinnendahl Groeppel Magnetic separator
US3448857A (en) * 1966-10-24 1969-06-10 Eriez Magnetics Electrodynamic separator
JPS57119856A (en) * 1981-01-20 1982-07-26 Hitachi Metals Ltd Separator of non-magnetic metal
DE3416504A1 (en) * 1984-05-04 1985-11-07 Wagner Kg, Fabrik Elektromagnetischer Apparate, 8941 Heimertingen Method and device for separating conglomerates of materials with different electrical conductivities
EP0339195A2 (en) * 1988-04-25 1989-11-02 Steinert Electromagnetbau GmbH Magnetic separator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 6, Nr. 214 (C-131)[1092], 27. Oktober 1982, Seite 95 C 131; & JP-A-57 119 856 (HITACHI KINZOKU K.K.) 26-07-1982 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339195A2 (en) * 1988-04-25 1989-11-02 Steinert Electromagnetbau GmbH Magnetic separator
EP0339195A3 (en) * 1988-04-25 1990-07-11 Steinert Gmbh Electromagnetbau Magnetic separator
US5057210A (en) * 1989-03-01 1991-10-15 Lindemann Maschinenfabrik Gmbh Apparatus for separating non-magnetizable metals from a solid mixture
FR2657544A1 (en) * 1990-01-29 1991-08-02 Andrin G MAGNETIC PARTICLE SEPARATOR AND NON-FERROUS METAL PIECES.
EP0439983A2 (en) * 1990-01-29 1991-08-07 ETS G. ANDRIN ET FILS (Société Anonyme) Magnetic separator for non-ferrous metal particles or pieces
EP0439983A3 (en) * 1990-01-29 1991-11-06 Ets G. Andrin Et Fils (Societe Anonyme) Magnetic separator for non-ferrous metal particles or pieces
US5080234A (en) * 1990-08-15 1992-01-14 Walker Magnetics Group, Inc. Eddy current separator
US5207330A (en) * 1991-11-01 1993-05-04 Miller Compressing Company Magnetic pulley
EP0550867A1 (en) * 1992-01-04 1993-07-14 Lindemann Maschinenfabrik GmbH Device for separating non-magnetisable metals from a mixture of solids
US5522513A (en) * 1994-03-30 1996-06-04 Howell; Billy R. Separator disc
US5494172A (en) * 1994-05-12 1996-02-27 Miller Compressing Company Magnetic pulley assembly
WO1997000138A1 (en) * 1995-06-14 1997-01-03 Lindemann Maschinenfabrik Gmbh System for separating non-magnetisable metals from a mixture of solids
US6068133A (en) * 1995-06-14 2000-05-30 Steinert Elecktromagnetbau Gmbh System for separating non-magnetizable metals from a mixture of solids
WO1998003266A1 (en) * 1996-07-19 1998-01-29 Wester Tonbergbau Kg Process and device for separating mixtures of finely divided materials by means of a magnetic field
EP0977633A4 (en) * 1996-11-08 2000-02-09 Bo R Arvidson Material separator
EP0977633A1 (en) * 1996-11-08 2000-02-09 ARVIDSON, Bo R. Material separator
US5860532A (en) * 1996-11-08 1999-01-19 Arvidson; Bo R. Material separator
WO1998029190A1 (en) * 1997-01-03 1998-07-09 Eriez Magnetics Europe Limited Powder separation
WO1999006151A1 (en) * 1997-07-30 1999-02-11 Huron Valley Steel Corporation Apparatus and method for sorting non-ferromagnetic particles
US5931308A (en) * 1997-07-30 1999-08-03 Huron Valley Steel Corporation Eddy current separator and separation method having improved efficiency
DE10056658C1 (en) * 2000-11-15 2002-07-04 Steinert Gmbh Elektromagnetbau Device and method for separating a solid mixture containing metals
US7367457B2 (en) 2000-11-20 2008-05-06 Steinert Elektromagnetbau Gmbh Device for the separation of non-magnetizable metals and ferrous components from a solid mixture and method for operating such device
WO2005120714A1 (en) * 2004-06-07 2005-12-22 Sgm Gantry S.P.A. Magnetic separator for ferromagnetic materials with controlled-slip rotating roller and relevant operating method
US8056730B2 (en) 2004-06-07 2011-11-15 Sgm Gantry S.P.A. Magnetic separator for ferromagnetic materials with controlled-slip rotating roller and relevant operating methods
AU2004320545B2 (en) * 2004-06-07 2011-03-03 Sgm Gantry S.P.A. Magnetic separator for ferromagnetic materials with controlled-slip rotating roller and relevant operating method
EP2644277A3 (en) * 2009-08-27 2014-03-05 Lux Magnet Magnetic separator with eddy current, with optimised trajectory and interaction zone of the particles
EP2289628A1 (en) * 2009-08-27 2011-03-02 Lux Magnet Magnetic separator with eddy current, with optimised trajectory and interaction zone of the particles
EP2314378A1 (en) 2009-10-23 2011-04-27 IMRO Maschinenbau GmbH Device for separating non-ferrous metals
DE202010014509U1 (en) 2009-10-23 2011-02-24 Imro Maschinenbau Gmbh Device for the separation of non-ferrous metals
DE202009014381U1 (en) 2009-10-23 2010-12-09 Imro Maschinenbau Gmbh Device for the separation of non-ferrous metals
NL2011525C2 (en) * 2013-09-30 2015-04-01 Recco B V Eddy current seperator unit having a magnetic rotor positioned eccentrically inside an outer drum and coaxially inside an inner drum.
WO2015047095A1 (en) * 2013-09-30 2015-04-02 Recco B.V. Eddy current separator unit having a magnetic rotor positioned eccentrically inside an outer drum and coaxially inside an inner drum.
WO2016003286A1 (en) * 2014-07-04 2016-01-07 Goudsmit Magnetic Systems B.V. Diverter roller for a non ferrous waste separator, as well as non ferrous waste separator provided with the diverter roller
NL2013128B1 (en) * 2014-07-04 2016-09-09 Goudsmit Magnetic Systems B V Deflecting roller for a non-ferrous waste separator, as well as non-ferrous waste separator equipped with the deflecting roller.
CN107790280A (en) * 2017-10-26 2018-03-13 南京西普环保科技有限公司 A kind of deironing apparatus
CN114950720A (en) * 2022-08-02 2022-08-30 山东汇格生物科技有限公司 Bulk agricultural product raw material impurity sorting and demagnetizing equipment
CN114950720B (en) * 2022-08-02 2022-10-04 山东汇格生物科技有限公司 Bulk agricultural product raw material impurity sorting and demagnetizing equipment
CN115970886A (en) * 2023-02-20 2023-04-18 唐山职业技术学院 Permanent magnet disc type electric roller
CN115970886B (en) * 2023-02-20 2023-09-15 唐山职业技术学院 Permanent magnet disc type electric roller

Also Published As

Publication number Publication date
ES2043920T3 (en) 1994-01-01
EP0342330B1 (en) 1993-09-29
EP0342330A3 (en) 1990-09-12
DE58905733D1 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
EP0342330B1 (en) Device for separating non magnetic metals from a solid mixture
EP0388626B1 (en) Apparatus for separating non-magnetisable metals from a mixture of solids
DE3823944C1 (en)
EP2168416B1 (en) Single grain metering device
DE60128493T2 (en) Feed screw for a centrifuge
DE3817003C1 (en) Apparatus for separating non-magnetisable metals from a mixture of solids
EP0898496A1 (en) Device and process for separating particles with a rotary magnet system
WO2003078070A1 (en) Helical conveyor centrifuge
EP3501689B1 (en) Device for separating and aligning pin-shaped goods
DE2637851C2 (en) Device for the mechanical separation of individual parts of different shapes and sizes
DE19838170C2 (en) Method and device for eddy current separation of material mixtures in particle form
DE4014969A1 (en) METHOD AND DEVICE FOR SEPARATING IN PARTICULAR LOW-MAGNETIZABLE MATERIALS FROM A SOLID MIXTURE
EP0550867B1 (en) Device for separating non-magnetisable metals from a mixture of solids
EP0718219A2 (en) Singulating device
EP0083445A1 (en) Process and apparatus for sorting conducting non ferromagnetic mixtures
EP0389767B1 (en) Apparatus for separating non-magnetisable metals from a mixture of solids
DE19737161A1 (en) Separation of shredded ferrous and nonferrous metals
DE4317640A1 (en) Device for influencing the position of parts of electrically conductive, non-ferromagnetic materials, in particular for transporting and/or sorting such parts
DE4214428C2 (en) Device and method for separating magnetizable and non-magnetizable constituents of a mixture from one another and feed device therefor
EP0012461B1 (en) Coal gasification plant
EP0912248B1 (en) Process and device for separating mixtures of finely divided materials by means of a magnetic field
DE3036976A1 (en) Solid and liq. separator uses filtering and magnetic effects - which are combined on endless filtering belt or drum
DE3115806C2 (en) Vibratory finishing machine
DE4238988C2 (en) Device for separating metals from a mixture passed through a magnetic field
DE2632210A1 (en) PROCESS AND DEVICE FOR SEPARATING MAGNETIZABLE AND NON-MAGNETIZABLE MATERIAL, IN PARTICULAR IN WASTE PROCESSING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890325

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT NL

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

EM Fr: revised translation of claims filed
AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB IT NL

RHK1 Main classification (correction)

Ipc: B03C 1/24

17Q First examination report despatched

Effective date: 19910320

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 95084

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58905733

Country of ref document: DE

Date of ref document: 19931104

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931119

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2043920

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: STEINERT ELEKTROMAGNETBAU GMBH

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SVEDALA LINDEMANN GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080328

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080320

Year of fee payment: 20

Ref country code: IT

Payment date: 20080321

Year of fee payment: 20

Ref country code: NL

Payment date: 20080318

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080314

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080321

Year of fee payment: 20

Ref country code: FR

Payment date: 20080314

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090314

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090316