EP0440606A1 - Macrocyclic chelating agents and chelates thereof - Google Patents

Macrocyclic chelating agents and chelates thereof

Info

Publication number
EP0440606A1
EP0440606A1 EP89900817A EP89900817A EP0440606A1 EP 0440606 A1 EP0440606 A1 EP 0440606A1 EP 89900817 A EP89900817 A EP 89900817A EP 89900817 A EP89900817 A EP 89900817A EP 0440606 A1 EP0440606 A1 EP 0440606A1
Authority
EP
European Patent Office
Prior art keywords
tetraaza
carboxymethyl
benzyloxy
hydroxy
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP89900817A
Other languages
German (de)
French (fr)
Inventor
Ernst Felder
Carlo Musu
Luciano Fumagalli
Fulvio Uggeri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bracco SpA
Original Assignee
Bracco SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bracco SpA filed Critical Bracco SpA
Publication of EP0440606A1 publication Critical patent/EP0440606A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations

Definitions

  • the present invention relates to novel macrocyclic chela ⁇ ting agents deriving from 1, , 7,10-tetraazacyclododecane of general formula I ⁇
  • A is a group of formula
  • R is H or a C -C straight or branched alkyl group, or a benzyl group which can be mono- or poly-substituted on the aromatic ring by halogen, hydroxy, carboxy, carbamoyl, alkoxycarbonyl, sulphamoyl, lower alkyl, lower hydroxyalkyl, amino, acylamino, acyl, hydroxyacyl groups, or a group of formula H(OCH CH ) -,
  • X is a O-R group in which R.. is H or a C -C_ alkyl, 1 1 5 hydroxyalkyl, alkoxyalkyl, alkoxyhydroxyalkyl group, or a polyoxaalkyl group having 1 to 15 oxygen atoms and 3 to 45 carbon atoms, or X is a -NR R group in which R and R , which can be the same or different, are C -C 3 1 6 alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydroxyalkyl groups having up to 5 hydroxy groups and
  • B , B and B which can be the same or different, have the same meaning as A or they are H or a group of formula
  • R is H or a C -C straight or branched alkyl group
  • Y is a O-R group in which R is H or a C -C alkyl, hydroxyalkyl, alkoxyalkyl, alkoxyhydroxyalkyl group, or a polyoxaalkyl group having 1 to 15 oxygen atoms and 3 to 45 carbon atoms, or Y is a-NR R group in which R
  • R which can be the same or different, are H or
  • the present invention also relates to the preparation of compounds of general formula I and of the complex salts thereof, to their uses and, when indicated, to the pharma- ceutical and diagnostic compositions thereof.
  • the chelating compounds of the present invention and the complex salts thereof can have a wide range of applica ⁇ tions.
  • No limiting examples of use of said chelating agents are jthe recovery, separation, selective extraction of metal ions even at very low concentrations, their therapeutical use as detoxifying agents in cases of inadvertent bodily incorporation of metals or radioiso- topes, their use as ion carriers, or the other ones appa ⁇ rent to those skilled in the art.
  • the chelat- ing agents may be used directly or often they have been bonded covalently or non-covalently to macromolecules or insoluble surfaces or have been otherwise incorporated into structures that can carry them to specific sites.
  • the complex salts of the chelating agents of formula I with the metal ions of the elements with atomic numbers of 20 to 31, 39, 42, 43, 44, 49 or 57 to 83 and, optionally, salified by physiologically biocompatible ions of organic or inorganic acids or organic or inorganic bases or aminoacids are surprisingly suitable for use as contrast agents in medical diagnosis in nuclear medicine and in N.M.R., E.S.R., X-ray and/or ultrasonic diagnosis.
  • Said derivatives for the purpose of optimal diagnostic use, can also be bound or incorporated covalently or non-covalently into biomolecules, .macromolecules or mole- cular aggregates characterized in that they can selective- ly concentrate in the organ or in the tissue under examination.
  • radioisotopes as internal tracers in the organism should be mentioned.
  • One of the biggest problems connected with the use of radioisotopes is their selectivity of distribution, while another important aspect is their excretion in an accepta- ble time.
  • Another imaging technique concerns with the use of ultrasounds to measure the difference in the reflections at the interfaces between tissues of different density.
  • the administration of a suitable amount of a dense non-radioactive element or metal ion can give such a dif ⁇ ference in reflectivity that can emphasize even small otherwise non detectable lesions.
  • a third diagnostic technique uses nuclear magnetic reso ⁇ nance to create internal images of the human body.
  • the development of contrast agents is of particular importance for the following reasons: a) to improve the specificity of the diagnosis, b) to identify at an earlier stage small lesions, c) to more precisely define the extension of a tumoral mass, d) to improve the signal to noise ratio and to shorten the time of acquisition of the images, allowing also better use of the instruments, e) to increase the contrast between those contiguous areas (for instance abdominal or pelvic) where it is parti- cularly difficult to obtain well defined images, f) to obtain good informations on blood flow and on tissue perfusion.
  • contrast media containing paramagnetic complex salts of lanthanides and transition metals have already been claimed for instance in EP 71564 and in US-Pat. 4,639,365, and in patent appli ⁇ cations DE 3401052, EP-A 135125, EP-A 130934, DE 3324236, EP-A 124766, EP-A 165728, WO 87/02893, EP-A 230893.
  • contrast agents for N.M.R. present some problems as far as regards their capa ⁇ city of influencing the relaxation time of the atomic nuclei involved, their often insufficient selectivity in bonding the metal ion, their stability, their selectivity for the organ under' examination, or their biological tole ⁇ rability.
  • Gd-DTPA/N-Methyl-D-glucamine is too quickly removed from the blood stream and from the lesions of the tissues under examination. This reduces the time available for obtaining images significant from diagnostic point of view. Moreover the diffusion of the contrast agent between the, healthy part and the diseased one is often so fast that the contrast between the two regions can be too weak. To overcome these difficulties, the problem has been ap ⁇ proached in many ways among which the most interesting are: a) Other chelating agents have been studied, in particular macrocyclic ones, of which the most effective proved to be 1,4,7,10-tetraazacyclododecane-N,N' ,N",N" '-tetra- acetic acid (DOTA).
  • DOTA 1,4,7,10-tetraazacyclododecane-N,N' ,N",N" '-tetra- acetic acid
  • Gadolinium and its chelating agents have been che ⁇ mically-conjugated to macromolecules such as, for in ⁇ stance, proteins (albumin, etc.), immunoglobulins, or to cellulose or other polymeric matrices.
  • macromolecules such as, for in ⁇ stance, proteins (albumin, etc.), immunoglobulins, or to cellulose or other polymeric matrices.
  • this generally improved the relaxivity of Gd, but on the other hand it was necessarily accompanied by a sub-optimal dosage, because of limitations in solubili ⁇ ty, toxicity and the substitution density of the macro ⁇ molecules.
  • the chelating agents of formula I have shown an excellent scavenging capacity for metal ions even in very diluted solutions. A significant example of said property is the
  • soluble and the poorly soluble compounds are suitable for oral or enteral administration, and therefore of particular usefulness for visualization of the gastrointestinal tract.
  • parenteral administration they are preferably formulated as a sterile aqueous suspension or solution, whose pH can range for instance from 6.0 to 8.5. Said sterile aqueous suspensions or solutions can be administered in concentrations varying from 0.002 to 1.0 molar.
  • Said formulations can also be lyophilized and supplied as such, to be reconstituted at the moment of their use.
  • said agents can be formulated as a suspension or a solution containing additives suitable for instance to increase viscosity.
  • chela ⁇ ted metal ions For oral administration they can be formulated according to preparation methods commonly used in pharmaceutical technology, optionally also as a coated formulation so as to have additional protection against the acid pH of the stomach, preventing in that way the release of the chela ⁇ ted metal ions which takes place in particular at the pH values typical of gastric juices.
  • Other excipients such as sweetening or flavouring agents, can be added according to known pharmaceutical formulation techniques.
  • Suspensions or solutions of complex salts can also be formulated as aerosols to be used in aerosol-bronchogra- phy.
  • Some of the complex compounds of the invention have a surprising organ specificity, in that they particularly concentrate in the liver, in the spleen or, after intra- lymphatic, intraparenchymal, intramuscular or subcutaneous application, in the lymphatic vases and in the lymph no- des.
  • the resulting contrast between the organ under examination and adjacent tissues permits improved imaging of said organ by N.M.R.
  • metal complexes of the chelating agents object of the present invention can also be used as contrast agents in nuclear medicine and for electron spin resonance or echographic analyses.
  • the metal central ions in the chelated complexes are, respectively, a radioisotope for
  • A is preferably a ⁇ -hydroxy- ⁇ X-propionic, ⁇ -methoxy-Wrpropionic or ⁇ -benzylo- xy-O-propionic group, optionally esterified or preferably substituted by an amide residue which can be free, mono- or bi-substituted by alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydroxyalkyl groups.
  • R can preferably be H or a straight or branched alkyl group, such as a methyl, ethyl, propyl, isopropyl, butyl, isobutyl group or a benzyl or a substituted benzyl group as. defined in formula I.
  • R can also be an acyl or hydroxyacyl group.
  • R can also be a polyoxaethylene group of formula H(OHCH_CH.)_ -, Me(OCH_CH.)_ -, o Et(OCH.CH.)_ -. 2 2 2-4 2 2 2-4 2 2 2-4 2 2-4
  • X can be a hydroxy group or also a-O-R group, wherein R is as defined in formula I.
  • R are the following: methyl, ethyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 1,3-di- hydroxyisopropyl, polyoxaalkyl groups.
  • X can preferably be also an hydroxyalkylamino group of formula -NR R , in which R and R are as defined in formula I.
  • R and R are as defined in formula I.
  • Non-limiting examples of said groups are the following ones: amino-, 2-hydroxyethylamino-, 2-hydroxypropylamino-,
  • ⁇ ir preferably are an acetic or an ( -propionic group, eventually esterified or substituted by an amido residue which can be in the free form or mono- or bi-substituted by alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydroxyalkyl groups.
  • R can preferably be hydrogen or straight or branched lower alkyl, preferably methyl.
  • R are the following: hydrogen, methyl, straight or branched propyl, butyl and pentyl groups, as defined in formula I.
  • Y can preferably be a hydroxy group or a -O-R group, in which R has the above defined meanings of formula I.
  • R_ are the following: methyl,
  • Y can preferably be also a hydroxyalkylamino group of formula -NR R in which R and R have the above mentioned meanings of formula I.
  • Non-limiting examples of said groups are the following ones: amino, 2-hydroxyethylamino-, 2-hydroxypropylamino-, 2,3- dihydroxypropylamino- 1,3-dihydroxyisopropylamino-, 1,3- dihydroxy-2-methyl-isopropylamino-, 2, 3,4-trihydroxy-l-bu- tyla ino-, 1,3,4-trihydroxy-2-butylamino-, 1,3-dihydro- xy-2-hydroxymethyl-isopropylamino-, N-methyl-N-2-hydroxy- ethylamino-, N-methyl-N-2,3-dihydroxypropylamino-, N-me- thyl-N-1,3-dihydroxyisopropylamino-, N-methyl-N-2,3,4,5,6- -pentahydroxyhexylamino-, N-2-hydroxyethyl-N-2,3-dihydro ⁇ xypropylamino-,
  • Metal ions suited to form complex salts with the chelating agents of general formula I are mainly the di- or triva— lent ions of the elements having atomic numbers ranging from 20 to 31, 39, 42, 43, 44, 49, or from 57 to 83 and particularly preferred are Fe , Fe , Cu , Cr , perhaps,(3+) _ (3+) n (3+) M (2+) Gd , Eu , Dy or Mn
  • metal radioisotopes particularly preferred are
  • Preferred inorganic acid anions comprise ions such as chlorides, bromides, iodides or other ions such as sulfate.
  • Preferred organic acid anions comprise ions of acids which are generally pharmaceutically used to salify basic substances, such as acetate, succinate, citrate, fumarate, maleate.
  • Preferred inorganic base cations comprise alkali metal ions, such as lithium, potassium and sodium, the latter being particularly preferred.
  • Preferred organic base cations comprise primary, secondary and tertiary amines, such as ethanolamine, diethanolamine, morpholine, glucamine, N,N-dimethylglucamine and N-methyl- glucamine, the latter being preferred.
  • Preferred amino acid cations comprise, for example, those of lysine, arginine and ornithine.
  • Non-limiting examples of the macromolecules suited for conjugation with the chelate complexes of the invention are the following: biomolecules, such as hormones (insu ⁇ lin), prostaglandins, steroidal hormones, amino sugars, peptides, proteins (albumin, human serum albumin), lipids, antibodies such as monoclonal antibodies, polysaccharide chains.
  • biomolecules such as hormones (insu ⁇ lin), prostaglandins, steroidal hormones, amino sugars, peptides, proteins (albumin, human serum albumin), lipids, antibodies such as monoclonal antibodies, polysaccharide chains.
  • the chelated complexes of the invention can also be incorporated into liposomes, used "in form of mono- or multi-lamellar vescicles.
  • the chelating agents of general * formula I and the complex salts thereof are preferably prepared by reacting 1, ,7,10-tetraazacyclododecane (II), prepared according to the method of Atkins et al. (JACS 96, 2268 (1974)),
  • Compound IV can also be obtained, for example, by protect ⁇ ing diethylenetriamine V with a suitable protecting group P, wherein P can be, for example, a phthaloyl group or another appropriate protective group known in the literature (T.W. Greene: "Protective groups in organic synthesis”- 1980),
  • Compound IV or the polysubstituted analogues thereof can in turn be subjected to condensation with the appropriate 0(-halo-acetic derivative VIII, or with a suitable precursor thereof (such as an ester or a nitrile).
  • chelation of the desired metal ion is obtained preferably by reacting the appropriate derivative of for- mula I with the stoichiometric amount of metal, in form of a salt or an oxide, possibly in the presence of the base or acid amounts necessary for neutralization.
  • Condensation of II with III is carried out preferably in water or in a dipolar aprotic organic solvent, such as dimethylformamide (DMF) or dimethylace amide (DMAC) or in a mixture thereof, at a temperature from 30 to 150°C, preferably from 40 to 100°C.
  • a dipolar aprotic organic solvent such as dimethylformamide (DMF) or dimethylace amide (DMAC) or in a mixture thereof, at a temperature from 30 to 150°C, preferably from 40 to 100°C.
  • Subsequent condensation of IV with VIII can be effected in an aqueous medium or in an organic solvent, in the presence of an appropriate inorganic or organic base, such as sodium hydroxide, potassium hydroxide, potassium carbo ⁇ nate or tetrabutylammonium hydroxide (TBAOH), at a pH ranging from 8 to 12, preferably from 9 to 11.
  • an appropriate inorganic or organic base such as sodium hydroxide, potassium hydroxide, potassium carbo ⁇ nate or tetrabutylammonium hydroxide (TBAOH)
  • TSAOH tetrabutylammonium hydroxide
  • the temperature can range from 40 to 100°C , preferably from 50 to 70°C.
  • a suspension of 17.2 g of 1,4,7,10-tetraazacyclodode ⁇ cane (0.1 mol) and of 71 g of sodium 2-chloro-3-ben- zyloxypropionate (0.3 mol) in 70 ml of water was heated to 50°C for 24 h.
  • the resulting solution was diluted to 400 ml with water, dropped into 200 ml of 2N HCl, extracted several times with ethylene chloride and then was evaporated to dryness under vacuum.
  • the crude residue was taken up into 400 ml of water and adsorbed on amberlite IR 120, from which it was eluted by means of 5N sodium hydroxide.
  • EXAMPLE 2 2-/1, 4,7, 10-tetraaza-7-(l-carboxy-2-benzyloxy-ethyl)-cy- clododecane-l-yl7 ⁇ 3-benzyloxypropionic acid.
  • the organic phase was evaporated to dryness and the resi ⁇ due was dissolved in 200 ml of 0.01N HCl and washed with ethyl ether..
  • the pH was adjusted to 6 with 10% sodium hydroxide and the aqueous solution was evaporated to dryness.
  • the crude residue was taken up into 30 ml of water and adsorbed on amberlite IR 120, from which it was eluted with 5N ammonium hydroxide. By concentration of the basic eluate, a residue of 7 g was obtained, which was crystallized from water.
  • the mixture was heated to 50°O for 17 h and .the pH was kept at 10 by further additions of 6N sodium hydroxide.
  • the solution was cooled and applied to amberlite IR 120, from which the product was eluted with 5N ammonium hydroxide.
  • the basic eluate was evaporated to dryness, the resulting crude compound was dissolved in water and the solution was acidified to pH 3 with 5N HCl.
  • the precipitate was filtered and crystallized from water to give the desired compound.
  • D(-)-N-methylglucamine salt of the Gd /2-/I,4, 7,10-te- traaza-4, 7,10-tri(carboxymethyl)-cyclododecane-l-yl7-3-ben- zyloxypr ⁇ pionic acid complex To a suspension of 100 g of 2- ⁇ ,4,7,10-tetraaza-4,7,10- tri(carboxymethyl)-cyclododecane-l- l7 ⁇ 3-benzyloxypropionic acid (0.19 mol), obtained according to the process de ⁇ scribed in example 3, in 150 ml of water 36.6 g of D(-)-N-methylglucamine (0.187 mol) were added.
  • the catalyst was removed by filtration and the aqueous solution was evaporated under vacuum at 50°C. Upon drying the residue to constant weight, the desired debenzylated compound was obtained.
  • A Gd /2-/1,4, 7,10-tetraaza-4,7,10-tri(carboxyme ⁇ thyl)-cyclododecane-l-yl7-3-benzyloxypropionic acid, 15 neutralized with N-methylglucamine.
  • An anhydrous lipidic mixture was prepared, having the following composition: egg phosphatidylcholine 75 mol % and cholesterol 25 mol % using the REV method (F. Szoka et al., (1978), Proc Natl. Acad. Sci. U.S.A. 75,4194).
  • A Gd + /2-/1,4,7,10-tetraaza-4,7,10-tri(carboxy e- thyl)-cyclododecane-l-yl7 ⁇ 3-benzyloxypropionic acid, neu ⁇ tralized with N-methylglucamine.
  • EXAMPLE 14 Preparation of a solution of D(-)-N-methylglucamine salt of Gd / 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)- -cyclododecane-l-yl7 ⁇ 3-benzyloxypropionic acid complex. 436.8 g (0.500 mol) of the compound obtained according to the procedure described in example 5 were dissolved in 300 ml of pro iniectione (p.i.) water. The solution volume was taken to 500 ml by addition of water p.i., then the solu ⁇ tion was filtered, put in vials and sterilized.
  • pro iniectione p.i.
  • EXAMPLE 15 Preparation of a solution of D(-)-N-methylglucamine salt of Gd / 2-/1,4,7,l ' O-tetraaza-4,7,10-tri(carboxymethyl)- -cyclododecane-l-yl7 ⁇ 3-hydroxypropionic acid complex. 398.8 g (0.500 mol) of the compound obtained according to the procedure described in example 6, were dissolved in 300 ml of water p.i.. The solution volume was taken to 500 ml by addition of water p.i., then the solution was filtered, put in vials -and sterilized.

Abstract

La présente invention décrit des dérivés macrocycliques de 1,4,7,10-tétraazacyclododécane représentés par la formule générale (I), où A représente un groupe de la formule (II), où R représente H ou un alkyle, ou un benzyle éventuellement substitué ou un groupe H(OCH2CH2)1-4-, Me(OCH2CH2)1-4- ou Et(OCH2CH2)1-4-, X représente O-R1, R1 représentant H ou un alkyle, un hydroxyalkyle, un alkoxyalkyle, un alkoxyhydroxyalkyle ou un groupe polyoxaalkyle, ou X représente -NR2R3, R2 et R3 représentant H ou un alkyle, un hydroxyalkyle, un alkoxyalkyle ou un alkoxyhydroxyalkyle, et B1, B2 et B3 ont les mêmes significations que A ou représentent H ou un groupe de la formule (III), où R4 représente H ou un alkyle, Y représente un groupe O-R5, R5 représentant H ou un alkyle, un hydroxyalkyle, un alkoxyalkyle, un alkoxyhydroxyalkyle ou un groupe polyoxaalkyle, ou Y représente un groupe -NR6R7, R6 et R7 représentant H ou un alkyle, un hydroxyalkyle, un alkoxyalkyle, ou un alkoxyhydroxyalkyle. Ces dérivés, qui sont éventuellement salifiés, et leurs sels complexes sont utilisés comme produits pharmaceutiques et/ou comme agents diagnostiques.The present invention describes macrocyclic derivatives of 1,4,7,10-tetraazacyclododecane represented by the general formula (I), where A represents a group of the formula (II), where R represents H or an alkyl, or a benzyl optionally substituted or a group H (OCH2CH2) 1-4-, Me (OCH2CH2) 1-4- or Et (OCH2CH2) 1-4-, X represents O-R1, R1 representing H or an alkyl, a hydroxyalkyl, an alkoxyalkyl, an alkoxyhydroxyalkyl or a polyoxaalkyl group, or X represents -NR2R3, R2 and R3 representing H or an alkyl, a hydroxyalkyl, an alkoxyalkyl or an alkoxyhydroxyalkyl, and B1, B2 and B3 have the same meanings as A or represent H or a group of formula (III), where R4 represents H or an alkyl, Y represents a group O-R5, R5 represents H or an alkyl, a hydroxyalkyl, an alkoxyalkyl, an alkoxyhydroxyalkyl or a polyoxaalkyl group, or Y represents a group -NR6R7, R6 and R7 represent H or alkyl, hydroxyalkyl, alkoxyalkyl, or alkoxyhydroxyalkyl. These derivatives, which are optionally salified, and their complex salts are used as pharmaceuticals and / or as diagnostic agents.

Description

MACROCYCLIC CHELATING AGENTS AND CHELATES THEREOF
The present invention relates to novel macrocyclic chela¬ ting agents deriving from 1, , 7,10-tetraazacyclododecane of general formula I λ
wherein
A is a group of formula
in which R is H or a C -C straight or branched alkyl group, or a benzyl group which can be mono- or poly-substituted on the aromatic ring by halogen, hydroxy, carboxy, carbamoyl, alkoxycarbonyl, sulphamoyl, lower alkyl, lower hydroxyalkyl, amino, acylamino, acyl, hydroxyacyl groups, or a group of formula H(OCH CH ) -,
Me(OCH.CH_). -, or Et(OCH.CH.) -, 2 2 1-4 2 2 1-4
X is a O-R group in which R.. is H or a C -C_ alkyl, 1 1 5 hydroxyalkyl, alkoxyalkyl, alkoxyhydroxyalkyl group, or a polyoxaalkyl group having 1 to 15 oxygen atoms and 3 to 45 carbon atoms, or X is a -NR R group in which R and R , which can be the same or different, are C -C 3 1 6 alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydroxyalkyl groups having up to 5 hydroxy groups and
B , B and B , which can be the same or different, have the same meaning as A or they are H or a group of formula
in which
R is H or a C -C straight or branched alkyl group,
Y is a O-R group in which R is H or a C -C alkyl, hydroxyalkyl, alkoxyalkyl, alkoxyhydroxyalkyl group, or a polyoxaalkyl group having 1 to 15 oxygen atoms and 3 to 45 carbon atoms, or Y is a-NR R group in which R
6 7 6 and R , which can be the same or different, are H or
C -C alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydro- 1 6 xyalkyl groups having up to 5 hydroxy groups, said derivatives being, if necessary, salified with suitable organic or inorganic bases, and the complex salts of the abovesaid chelating agents with suitable metal ions in the acid, basic or neutral form or, if necessary, neutralized with inorganic or orga¬ nic acid or base ions, and eventually chemically conjugated with macromolecules or incorporated in suitable carriers .
The present invention also relates to the preparation of compounds of general formula I and of the complex salts thereof, to their uses and, when indicated, to the pharma- ceutical and diagnostic compositions thereof.
The chelating compounds of the present invention and the complex salts thereof can have a wide range of applica¬ tions. No limiting examples of use of said chelating agents are jthe recovery, separation, selective extraction of metal ions even at very low concentrations, their therapeutical use as detoxifying agents in cases of inadvertent bodily incorporation of metals or radioiso- topes, their use as ion carriers, or the other ones appa¬ rent to those skilled in the art. In such uses the chelat- ing agents may be used directly or often they have been bonded covalently or non-covalently to macromolecules or insoluble surfaces or have been otherwise incorporated into structures that can carry them to specific sites. • In particular the complex salts of the chelating agents of formula I with the metal ions of the elements with atomic numbers of 20 to 31, 39, 42, 43, 44, 49 or 57 to 83 and, optionally, salified by physiologically biocompatible ions of organic or inorganic acids or organic or inorganic bases or aminoacids, are surprisingly suitable for use as contrast agents in medical diagnosis in nuclear medicine and in N.M.R., E.S.R., X-ray and/or ultrasonic diagnosis. Said derivatives, for the purpose of optimal diagnostic use, can also be bound or incorporated covalently or non-covalently into biomolecules, .macromolecules or mole- cular aggregates characterized in that they can selective- ly concentrate in the organ or in the tissue under examination.
The imaging of internal structures of living subjects is becoming more and more relevant in medical diagnosis. Among the most recent techniques, the use of radioisotopes as internal tracers in the organism should be mentioned. One of the biggest problems connected with the use of radioisotopes is their selectivity of distribution, while another important aspect is their excretion in an accepta- ble time.
Another imaging technique concerns with the use of ultrasounds to measure the difference in the reflections at the interfaces between tissues of different density. The administration of a suitable amount of a dense non-radioactive element or metal ion can give such a dif¬ ference in reflectivity that can emphasize even small otherwise non detectable lesions.
A third diagnostic technique uses nuclear magnetic reso¬ nance to create internal images of the human body. In this field, the development of contrast agents is of particular importance for the following reasons: a) to improve the specificity of the diagnosis, b) to identify at an earlier stage small lesions, c) to more precisely define the extension of a tumoral mass, d) to improve the signal to noise ratio and to shorten the time of acquisition of the images, allowing also better use of the instruments, e) to increase the contrast between those contiguous areas (for instance abdominal or pelvic) where it is parti- cularly difficult to obtain well defined images, f) to obtain good informations on blood flow and on tissue perfusion. As far as regards N.M.R. diagnosis, contrast media containing paramagnetic complex salts of lanthanides and transition metals have already been claimed for instance in EP 71564 and in US-Pat. 4,639,365, and in patent appli¬ cations DE 3401052, EP-A 135125, EP-A 130934, DE 3324236, EP-A 124766, EP-A 165728, WO 87/02893, EP-A 230893. However all the till now developed contrast agents for N.M.R. present some problems as far as regards their capa¬ city of influencing the relaxation time of the atomic nuclei involved, their often insufficient selectivity in bonding the metal ion, their stability, their selectivity for the organ under' examination, or their biological tole¬ rability. The tendency of many complexes to exchange the central metal ion with trace-metals essential to the
(2+) organism or with ions, for example Ca , which in v vo are present in relatively great amounts (see on the subject P.M. May "The present status of chelating agents in Medicine", page 233), further limits their possibili¬ ties of use. In fact, in case of insufficient stability of the complex, the organism may be deprived of trace-metals of vital importance and receive undesired and toxic heavy metals such as Gd, Eu or Dy. Although it is true that the toxicity of the complex is often, but not always, lower than the one of the free paramagnetic ion, it is also true that the complexation usually brings a decrease of the magnetic relaxation efficacy, responsible for some contrasting effects. Several unsolved problems in connection with an optimal contrast agent therefore still remain, chiefly concerning: a strong effect on the relaxation time of the relevant nuclei, a high stability of the complex both in solution and in the organism, an adequate water solubility, a specificity of distribution in the various parts of the organism, a suitable rate of elimination from the involved organ and tissue.
(3+) One of the most studied paramagnetic metal ions is Gd , in particular when complexed with the chelating agent die- thylenetriamino-pentaacetic acid (DTPA) (Runge et al.
(1983) Am. J. Radiol. V 141, p. 1209 and Weinman et al.
(1984) Am. J. Radiol. V 142, p. 619). Said complex salified with D(-)N-methyl-glucamine is considered at the moment one of the most satisfying from the point of view of activity, toxicity and of its use in general. However, in spite of these positive features, this compound cannot yet be considered fully respondent to the characteristics of an optimal contrast agent for various reasons, among which for instance the fact that
Gd-DTPA/N-Methyl-D-glucamine is too quickly removed from the blood stream and from the lesions of the tissues under examination. This reduces the time available for obtaining images significant from diagnostic point of view. Moreover the diffusion of the contrast agent between the, healthy part and the diseased one is often so fast that the contrast between the two regions can be too weak. To overcome these difficulties, the problem has been ap¬ proached in many ways among which the most interesting are: a) Other chelating agents have been studied, in particular macrocyclic ones, of which the most effective proved to be 1,4,7,10-tetraazacyclododecane-N,N' ,N",N" '-tetra- acetic acid (DOTA). However its complexes continue to present problems analogous to the ones cf DTPA. b) Gadolinium and its chelating agents have been che¬ mically-conjugated to macromolecules such as, for in¬ stance, proteins (albumin, etc.), immunoglobulins, or to cellulose or other polymeric matrices. On the one hand this generally improved the relaxivity of Gd, but on the other hand it was necessarily accompanied by a sub-optimal dosage, because of limitations in solubili¬ ty, toxicity and the substitution density of the macro¬ molecules. Furthermore, when one of the ligand sites of the chelating agents is used to form the chemical bond with the macromolecule, there is also normally a reduc¬ tion in the stability of the resulting complex. The chelating agents of formula I have shown an excellent scavenging capacity for metal ions even in very diluted solutions. A significant example of said property is the
(2+) capacity to capture the Cu ion from its aqueous solu¬ tions by 2-/J. ,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)- cyclododeca-ne-l-yl"7-3-benzyloxypropionic acid, the method of synthesis of which is reported in examples 2 and 3. With regards to their use in diagnosis, metal complexes with the chelating agents object of the present invention have proved surprisingly satisfying for instance with respect to the requirements for an N.M.R. contrast agent. Among the complexes particular importance is to be given to the complexes of Gd , which distinguish themselves for excellent stability, relaxivity and selectivity for the organ or tissue under examination.
These compounds have a wide field of application, allowing administration by intravasal route (for example intravenous, intraarterial, intracoronaric, intraventricu- lar, etc.), as well as intrathecal, intraperitoneal, intralymphatical, intracavital and intraparenchymal routes. Both the soluble and the poorly soluble compounds are suitable for oral or enteral administration, and therefore of particular usefulness for visualization of the gastrointestinal tract. For parenteral administration they are preferably formulated as a sterile aqueous suspension or solution, whose pH can range for instance from 6.0 to 8.5. Said sterile aqueous suspensions or solutions can be administered in concentrations varying from 0.002 to 1.0 molar.
Said formulations, can also be lyophilized and supplied as such, to be reconstituted at the moment of their use. For gastrointestinal use or for injection in body cavities said agents can be formulated as a suspension or a solution containing additives suitable for instance to increase viscosity.
For oral administration they can be formulated according to preparation methods commonly used in pharmaceutical technology, optionally also as a coated formulation so as to have additional protection against the acid pH of the stomach, preventing in that way the release of the chela¬ ted metal ions which takes place in particular at the pH values typical of gastric juices. Other excipients, such as sweetening or flavouring agents, can be added according to known pharmaceutical formulation techniques. Suspensions or solutions of complex salts can also be formulated as aerosols to be used in aerosol-bronchogra- phy. Some of the complex compounds of the invention have a surprising organ specificity, in that they particularly concentrate in the liver, in the spleen or, after intra- lymphatic, intraparenchymal, intramuscular or subcutaneous application, in the lymphatic vases and in the lymph no- des. The resulting contrast between the organ under examination and adjacent tissues permits improved imaging of said organ by N.M.R.
With regard to their use in diagnosis, metal complexes of the chelating agents object of the present invention can also be used as contrast agents in nuclear medicine and for electron spin resonance or echographic analyses. In these cases however the metal central ions in the chelated complexes are, respectively, a radioisotope for
. 51 68^, 111 99mm 140τ 168„. example Cr, Ga, In, Tc, La, Yb or a non-radioisotope able to alter, owing to the density of its solutions, the speed of the ultrasonic waves tran¬ smitted and reflected.
In the compounds of general formula I, A is preferably a β-hydroxy-<X-propionic, β-methoxy-Wrpropionic or β-benzylo- xy-O-propionic group, optionally esterified or preferably substituted by an amide residue which can be free, mono- or bi-substituted by alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydroxyalkyl groups. R can preferably be H or a straight or branched alkyl group, such as a methyl, ethyl, propyl, isopropyl, butyl, isobutyl group or a benzyl or a substituted benzyl group as. defined in formula I.
R can also be an acyl or hydroxyacyl group.
R can also be a polyoxaethylene group of formula H(OHCH_CH.)_ -, Me(OCH_CH.)_ -, o Et(OCH.CH.)_ -. 2 2 2-4 2 2 2-4 2 2 2-4
X can be a hydroxy group or also a-O-R group, wherein R is as defined in formula I.
Non-limiting examples of R are the following: methyl, ethyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 1,3-di- hydroxyisopropyl, polyoxaalkyl groups.
X can preferably be also an hydroxyalkylamino group of formula -NR R , in which R and R are as defined in formula I. Non-limiting examples of said groups are the following ones: amino-, 2-hydroxyethylamino-, 2-hydroxypropylamino-,
2,3-dihydroxypropylamino-, 1,3-dihydroxyisopropylamino-,
1,3-dihydroxy-2-methyl-isopropylamino-, 2,3,4-trihydroxy- 1-butylamino-, 1,3, -trihydroxy-2-butylamino-, 1,3-di- hydroxy-2-hydroxymethyl-isopropylamino-, N-methyl-N-2-hy- droxyethylamino-, N-methyl-N-2,3-dihydroxypropylamino-, N-methyl-N-1,3-dihydroxyisopropylamino-, N-methyl-N-2,3,- 4,5, 6-pentahydroxyhexylamino-, N-2-hydroxyethyl-N-2,3- dihydroxypropylamino-, N-2-hydroxyethyl-N-l,3-dihydroxyi¬ sopropylamino-, N,N-bis-(2-hydroxyethyl)amino-, N,N-bis- (2,3-dihydroxypropyl)amino-, N,N-bis-(1,3-dihydroxyisopro- pyl)amino grou s. In compounds of general formula I, the B , B , B groups
^ ir preferably are an acetic or an ( -propionic group, eventually esterified or substituted by an amido residue which can be in the free form or mono- or bi-substituted by alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydroxyalkyl groups.
R can preferably be hydrogen or straight or branched lower alkyl, preferably methyl. Non-limiting examples for R are the following: hydrogen, methyl, straight or branched propyl, butyl and pentyl groups, as defined in formula I.
Y can preferably be a hydroxy group or a -O-R group, in which R has the above defined meanings of formula I. Non limiting- examples of R_ are the following: methyl,
5 ethyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 1,3-di- hydroxyisopropyl, polyoxaalkyl groups.
Y can preferably be also a hydroxyalkylamino group of formula -NR R in which R and R have the above mentioned meanings of formula I.
Non-limiting examples of said groups are the following ones: amino, 2-hydroxyethylamino-, 2-hydroxypropylamino-, 2,3- dihydroxypropylamino- 1,3-dihydroxyisopropylamino-, 1,3- dihydroxy-2-methyl-isopropylamino-, 2, 3,4-trihydroxy-l-bu- tyla ino-, 1,3,4-trihydroxy-2-butylamino-, 1,3-dihydro- xy-2-hydroxymethyl-isopropylamino-, N-methyl-N-2-hydroxy- ethylamino-, N-methyl-N-2,3-dihydroxypropylamino-, N-me- thyl-N-1,3-dihydroxyisopropylamino-, N-methyl-N-2,3,4,5,6- -pentahydroxyhexylamino-, N-2-hydroxyethyl-N-2,3-dihydro¬ xypropylamino-, N-2-hydroxyethyl-N-l,3-dihydroxyisopropyl¬ amino-, N,N-bis-(2-hydroxyethyl)amino-, N,N-bis-(2,3-dihy- droxypropyl)amino-, N,N-bis-(1,3-dihydroxyisoρropyl)amino groups. Metal ions suited to form complex salts with the chelating agents of general formula I are mainly the di- or triva— lent ions of the elements having atomic numbers ranging from 20 to 31, 39, 42, 43, 44, 49, or from 57 to 83 and particularly preferred are Fe , Fe , Cu , Cr , „,(3+) _ (3+) n (3+) M (2+) Gd , Eu , Dy or Mn
Among the metal radioisotopes, particularly preferred are
5l 68^ 111 99ια 140x -168,... Cr, Ga, In, Tc, La, Yb."
Preferred inorganic acid anions comprise ions such as chlorides, bromides, iodides or other ions such as sulfate. Preferred organic acid anions comprise ions of acids which are generally pharmaceutically used to salify basic substances, such as acetate, succinate, citrate, fumarate, maleate. Preferred inorganic base cations comprise alkali metal ions, such as lithium, potassium and sodium, the latter being particularly preferred.
Preferred organic base cations comprise primary, secondary and tertiary amines, such as ethanolamine, diethanolamine, morpholine, glucamine, N,N-dimethylglucamine and N-methyl- glucamine, the latter being preferred.
Preferred amino acid cations comprise, for example, those of lysine, arginine and ornithine.
Non-limiting examples of the macromolecules suited for conjugation with the chelate complexes of the invention are the following: biomolecules, such as hormones (insu¬ lin), prostaglandins, steroidal hormones, amino sugars, peptides, proteins (albumin, human serum albumin), lipids, antibodies such as monoclonal antibodies, polysaccharide chains. The chelated complexes of the invention can also be incorporated into liposomes, used "in form of mono- or multi-lamellar vescicles.
The chelating agents of general* formula I and the complex salts thereof are preferably prepared by reacting 1, ,7,10-tetraazacyclododecane (II), prepared according to the method of Atkins et al. (JACS 96, 2268 (1974)),
with the desired 0^-halo-propionyl derivative III
wherein Z is halogen and R and X have the above defined meanings, to give the addition product IV
or the corresponding polysubstituted products on the nitrogen atoms of II, depending on the excess of III used. Compound IV can also be obtained, for example, by protect¬ ing diethylenetriamine V with a suitable protecting group P, wherein P can be, for example, a phthaloyl group or another appropriate protective group known in the literature (T.W. Greene: "Protective groups in organic synthesis"- 1980),
V VI
by alkylating the resulting compound VI with the proper halo-derivative III
and by finally condensing the resulting product VII, after deprotection and subsequent tosylation, with tosyldietha- nolamine.
Compound IV or the polysubstituted analogues thereof can in turn be subjected to condensation with the appropriate 0(-halo-acetic derivative VIII, or with a suitable precursor thereof (such as an ester or a nitrile).
wherein Z is halogen and R, and Y have the above defined
4 meanings, to give the desired chelating agents of general formula I.
Finally, chelation of the desired metal ion is obtained preferably by reacting the appropriate derivative of for- mula I with the stoichiometric amount of metal, in form of a salt or an oxide, possibly in the presence of the base or acid amounts necessary for neutralization. Condensation of II with III is carried out preferably in water or in a dipolar aprotic organic solvent, such as dimethylformamide (DMF) or dimethylace amide (DMAC) or in a mixture thereof, at a temperature from 30 to 150°C, preferably from 40 to 100°C.
Subsequent condensation of IV with VIII can be effected in an aqueous medium or in an organic solvent, in the presence of an appropriate inorganic or organic base, such as sodium hydroxide, potassium hydroxide, potassium carbo¬ nate or tetrabutylammonium hydroxide (TBAOH), at a pH ranging from 8 to 12, preferably from 9 to 11. The temperature can range from 40 to 100°C , preferably from 50 to 70°C.
Finally, preparation of the metal complex salt is prefera¬ bly carried out in water or in an appropriate water-alco¬ hol mixture, while the temperature can range from 25 to 100°C, preferably from 40 to 80°C. The choice of the metal ion and, if necessary, of the neutralizing ion is strictly related to the use of the resulting complex. EXAMPLE 1
2-(l,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxypropio- nic acid, trihydrochloride.
A) Sodium 2-chloro-3-benzyloxypropionate
85 g of 2-chloro-3-benzyloxypropionic acid (0.396 mol) were suspended in 550 ml of water and neutralized to pH 7 with 10% sodium hydroxide. After stirring for 15 min, the resulting aqueous solution was washed with ethyl ether and evaporated to dryness under vacuum to give the desired compound.
90.6 g sodium 2-chloro-3-benzyloxypropionate (0.383 mol) were obtained. Yield: 96.7%;
Elemental analysis:
% calc.:- C 50.75 ; H 4.26 ; Cl 14.98
% found: C 50.68 ; H 4.33 ; Cl 14.89
B) 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy- propionic acid, trihydrochloride.
A suspension of 17.2 g of 1,4,7,10-tetraazacyclodode¬ cane (0.1 mol) and of 71 g of sodium 2-chloro-3-ben- zyloxypropionate (0.3 mol) in 70 ml of water was heated to 50°C for 24 h. The resulting solution was diluted to 400 ml with water, dropped into 200 ml of 2N HCl, extracted several times with ethylene chloride and then was evaporated to dryness under vacuum. The crude residue was taken up into 400 ml of water and adsorbed on amberlite IR 120, from which it was eluted by means of 5N sodium hydroxide. By concen¬ tration of the basic eluate 29 g of a residue were obtained, which were dissolved in 400 ml of absolute ethanol at 60°C; the solution was acidified with 200 ml of 6N HCl/EtOH and the resulting precipitate was stirred at 60°C for 1 h. After cooling, the solid was filtered and dried to give the desired compound. 33.5 g of 2-( 1, 4, 7, 10-tetraazacyclόdodecane-l-yl )-3- benzyloxypropionic acid, trihydrochloride (0.0729 mol) were obtained.
Yield: 72.9% m.p. 221-224°C
Titres:
(NaOH) : 96.9% (AgNO ): 99.0% Elemental analysis:
% calc: C 47.01 ; H 7.23 ; Cl 23.13 ; N 12.18 ; % found : C 47.13 ; H 7.32 ; Cl 22.92 ; N 12.09 ; TLC: Support: silica gel plate (Merck G60) Eluent: CHC1 : AcOH : H 0 = 5 : 5 : 1 Developer : Cl + o-Toluidine
Rf = 0.35
1 13 H-NMR, C-NMR and IR spectra agreed with the indicated structure.
EXAMPLE 2 2-/1, 4,7, 10-tetraaza-7-(l-carboxy-2-benzyloxy-ethyl)-cy- clododecane-l-yl7~3-benzyloxypropionic acid. A solution of 12 g of 1,4, 7,10-tetraazacyclododecane (0.069 mol) and 82.32 g of sodium 2-chloro-3-benzylo- xypropionate (0.348 mol), obtained according to the pro- cess described in example 1-A, in 120 ml of DMF was placed in a sealed vessel and heated to 50°C for 30 h. The salt formed was filtered and the solvent was distilled off under reduced pressure. The residue was taken up into 300 ml of water, the pH was adjusted to 2.5 with 10% hydrochloric acid, then the mixture was extracted with four 50 ml portions of methylene chloride.
The organic phase was evaporated to dryness and the resi¬ due was dissolved in 200 ml of 0.01N HCl and washed with ethyl ether.. The pH was adjusted to 6 with 10% sodium hydroxide and the aqueous solution was evaporated to dryness. The crude residue was taken up into 30 ml of water and adsorbed on amberlite IR 120, from which it was eluted with 5N ammonium hydroxide. By concentration of the basic eluate, a residue of 7 g was obtained, which was crystallized from water. 5.85 g of 2-/~~, 4 ,7,10-tetraaza-7(l-carboxy-2-benzyloxy- ethyl)-cyclododecane-l-yl7-3-benzyloxypropionic acid (0.011 mol) were obtained. Yield: 16% m.p.: 170°-175°C
Elemental analysis:
% calc: C 63.61 ; H 7.63 ; N 10.60 % found: C 63.48 ; H 7.82 ; N 10.51 Analogously, the following compounds were obtained: - 2- Ϊ,4,7,10-tetraaza-4-(l-carboxy-2-benzyloxy-ethyl)-cy- clododecane-l-yl7-3-benzyloxypropionic acid; - 2-/~~,4,7,10-tetraaza-4,7-di(l-carboxy-2-benzyloxy-ethyl)- cyclododecane-l-yϊ7-3-benzyloxypropionic acid. EXAMPLE 3 2-/L,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclododeca- ne-l-yl7~3-benzyloxypropionic acid. (Method A) . To a suspension of 23 g of 2-(1, 4, 7, 10-tetraazacyclodode¬ cane-l-yl)-3-benzyloxypropionic acid trihydrochloride (0.05 mol), obtained according to the process described in example 1, and 27.8 g of bromoacetic acid (0.2 mol ) in 100 ml of water about 60 ml of 6N sodium hydroxide were added, under stirring, to reach pH=10. The mixture was heated to 50°O for 17 h and .the pH was kept at 10 by further additions of 6N sodium hydroxide. The solution was cooled and applied to amberlite IR 120, from which the product was eluted with 5N ammonium hydroxide. The basic eluate was evaporated to dryness, the resulting crude compound was dissolved in water and the solution was acidified to pH 3 with 5N HCl. The precipitate was filtered and crystallized from water to give the desired compound.
15.3 g of 2- 1,4, 7,10-tetraaza-4, 7, 10-tri(carboxyme¬ thyl)-cyclododecane-l-yl7. -3-benzyloxypropionic acid (0.029 mol) were obtained. Yield: 58.4% ; m.p.: 173°C with dec.
Titre:
(NaOHj : 99.6%
(ZnSO : 99.5% 4
(HPLC) : 99.0% Elemental analysis:
% calc: C 54.95 ; H 6.92 ; N 10.68
% found: C 54.77 ; H 6.96 ; N 10.77
1 13 H-NMR, C-NMR and IR spectra agreed with the indicated structure. EXAMPLE 4
2- T,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclododeca ne-l-yl/-3-benzyloxypropionic acid (Method B). A mixture of 10 g of 2-(1,4,7,10-tetraazacyclododecane-l- yl)-3-benzyloxypropionic acid (0.028 mol), obtained ac¬ cording to the process described in example 1 but without formation of the hydrochloride, and 15.57 g of bromoacetic acid (0.112 mol) in 60 ml of water was treated according to the same process as in example 3, to give the desired compound.
7.93 g of 2- 1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)- cyclododecane-l-yl7-3-benzyloxypropionic acid (0.015 mol) were obtained. Yield: 54% m.p.: 169-172°C with dec. Titre:
(NaOH) : 99.3%
(ZnSOJ: 99.5% 4
Elemental analysis:
% calc: C 54.95 ; H 6.92 ; N 10.68 % found: C 54.71 ; H 7.00 ; N 10.64
The other chemico-physical characteristics agreed with the ones of the compound obtained according to method (example 3) .
Analogously, the following compounds were obtained: - 2-/~~, 4 ,7,10-tetraaza-4,7,10-tri(1-carboxy-ethyl)-cyclod decane-l-yl7-3-benzyloxypropionic acid. - 2-/ ,4,7,10-tetraaza-4-(l-carboxy-2-benzyloxy-ethyl)-7, -di(carboxymethyl)-cyclododecane-l-yl/-3-benzyloxypropi nic acid. - 2-/T,4,7,10-tetraaza-7-(l-carboxy-2-benzyloxy-ethyl)-7, -di(carboxymethyl)-cyclododecane-l-yl7-3-benzyloxypropio- nic acid. - 2- I,4,7,10-tetraaza- ,7-di(l-carboxy-2-benzyloxy-ethyl)-
10-carboxyme hyl-eyelododecane-l-yl7_3-Benzyloxypropionic acid. EXAMPLE 5
D(-)-N-methylglucamine salt of the Gd /2-/I,4, 7,10-te- traaza-4, 7,10-tri(carboxymethyl)-cyclododecane-l-yl7-3-ben- zyloxyprόpionic acid complex. To a suspension of 100 g of 2- Ϊ,4,7,10-tetraaza-4,7,10- tri(carboxymethyl)-cyclododecane-l- l7~3-benzyloxypropionic acid (0.19 mol), obtained according to the process de¬ scribed in example 3, in 150 ml of water 36.6 g of D(-)-N-methylglucamine (0.187 mol) were added. 19.47 g of Gd 0 (0.095 mol) were added to the solution and the resulting suspension was heated to 50°C for 4 hours. The reaction mixture was filtered and the pH was adjusted to 6.5 by means of a 10% aqueous D(-)-N-methylglucamine solution. The resulting solution was then evaporated and dried to give the desired compound.
(3+) 159 g of D(-)-N-methylglucamιne salt of the Gd /2- l,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclododecane- l-yl7-3-benzyloxypropionic acid complex (0.182 mol ) were obtained. Yield: 95.8% m.p.: 137°C
Titre:
(HPLC) : 99.3%
Elemental analysis :
% calc : C 42 . 56 ; H 5 . 76 ; Gd 17 . 99 ; N 8. 01 % found: C 42 .42 ; H 5 .96 ; Gd 17 . 63 ; N 7 . 92 ^-7326°5 = -15 - 36° &?I ~ -11 ' 220 ^754°6 = -6 ' 7° ^58 = ~5 - 7 ° ( C = 5% H O )
Analogously, the following compounds were obtained:
- Dy /2- T,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cy clododecane-l-yl7-3-benzyloxypropionic acid salt of
D(-)-N-me.thylglucamine, obtained with Dy O .
- La /2- T,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cy clododecane-l-yl7_3-benzyloxypropionic acid salt of D(-)-N-methylglucamine, obtained with La_0 . - Yb /2-/Ϊ,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cy clododecane-l-yl7-3-benzyloxypropionic acid salt of D(-)-N-methylglucamine, obtained with Yb 0 . EXAMPLE 6
D(-)-N-methylglucamine salt of Gd /2-β. ,4,7,10-tetra- aza-4,7,10-tri(carboxymethyl)-cyclododecane-l-yl7-3-hy- droxypropionic acid complex.
A solution of 92 g of D(-)-N-methylglucamine salt of
(3+) - Gd /2-/L,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cy- clododecane-l-yl7-3-benzyloxypropionic acid complex (0.105 mol), obtained according to the process described in example 5, in 550 ml of water, to which 153 g of 5% palladium on charcoal had been added, was hydrogenated for
5 h at room temperature.
The catalyst was removed by filtration and the aqueous solution was evaporated under vacuum at 50°C. Upon drying the residue to constant weight, the desired debenzylated compound was obtained.
67 g of D(-)-N-methylglucamine salt of Gd /2- L, ,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cy- clododecane-l-yl7-3- hydroxypropionic acid complex (0.084 mol) were obtained.
Yield: 80% m.p.: 180°C (dec.)
Elemental analysis:
% calc: C 36.77 ; H 5.65 ; Gd 20.06 ; N 8.93 % found: C 36.47 ; H 5.47 ; Gd 20.29 ; N 8.83
Λf∞ - -16.7" ; /* 26= -11.2' , A °6 - -6. " .- ° -
-5.8° (C = 5% H O) .
Analogously, the following compounds were obtained:
- 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-hydroxypropio- nic acid.
- 2- 1,4,7,10-tetraaza-4-(l-carboxy-2-hydroxy-ethyl)-cy- clododecane-l-yl7-3-hydroxypropionic acid.
- 2-/1,4,7,10-tetraaza-7-(l-carboxy-2-hydroxy-ethyl)-cy- clododecane-l-yl7-3-hydroxypropionic acid. - 2-/1,4, 7,10-tetraaza-4,7-di(l-carboxy-2-hydroxy-ethyl)- cyclododecane-l-yl7-3-hydroxypropionic acid.
- 2-/1,4,7,10-tetraaza-4-(l-carboxy-2-hydroxy-ethyl)-7,10-di- (carboxymethyl)-cyclododecane-l-yl7-3-hydroxypropionic acid. - 2- 1,4,7,10-tetraaza-7-(l-carboxy-2-hydroxy-ethyl)-4,10- di(carboxymethyl)-cyclododecane-1-yJT)-3-hydroxypropion- ic acid.
- 2-/1,4,7,10-tetraaza-4,7-di(l-carboxy-2-hydroxy-ethyl)- 10-carboxymethyl-cyclododecane-l-y_O~3-hydroxypropionic acid.
- 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodode- cane-l-y 7~3-hydroxypropionic acid.
EXAMPLE 7
2- ( 1 , 4 , 7 , 10-tetraazacyclododecane-l-yl ) -3-benzyloxy-N- ( 1 , 3- dihydroxyisopropyD -propionamide . A) 3-benzyloxy-2-chloropropionylchloride.
119 g of thionyl chloride (1 mol) were added dropwise to 107.3 g of 3-benzyloxy-2-chloroρropionic acid (0.5 mol) at 30°C. After refluxing the reaction mixture for 2 h, 33 g additional thionyl chloride (0.277 mol) were added and the mixture was refluxed for another 30 min.
Excess thionyl chloride was distilled off under reduced pressure and the desired compound was distilled under vacuum.
95.8 g of 3-benzyloxy-2-chloropropionylchloride (0.41 mol) were obtained.
Yield: 82% b.p.: 125-131°C; 0.05 mbar
Titre: (reduction with Zn) : 99.9% (Argentometric) : 96.0%
Elemental analysis:
% calc: C 51.53% ; H 4.32% ; Cl 30.42%
% found: C 51.30% ; H 4.46% ; Cl 29.48% H-NMR, C-NMR and IR spectra agreed with the indicated structure.
B) 2-Chloro-3-benzyloxy-N-(1,3-dihydroxyisopropyl)-propio namide.
A solution of 70 g of 3-benzyloxy-2-chloropropionyl- chloride (0.3 mol) in 150 ml of tetrahydrofuran was added dropwise during about 2 h to a solution of 32.6 g of 2-amino-l,3-dihydroxyisopropane (0.36 mol) in 150 ml of water and 250 ml of tetrahydrofuran. During the addition of the chloride, the pH of the solution was kept constant at 10 by addition of 6N sodiu hydroxide.
To the reaction mixture 250 ml of water were added.
Upon concentration to 450 ml a white product precipitated, which was filtered and crystallized from water, after treatment with Carbopuron 4N to give the desired compound.
62.2 g of 2-chloro-3-benzyloxy-N-(1, 3-dihydroxyisopro- pyl)-propionamide (0.218 mol) were obtained.
Yield: 72.6% m.p.: 133-135°C Titre:
(Argentometric) : 99.8%
Elemental analysis:
% calc: C 54.27 ; H 6.30 ; Cl 12.32 ; N 4.87
% found: C 54.19 ; H 6.38 ; Cl 12.24 ; N 4.84 ; H O 0.22
HPLC: 99%
1 13
H-NMR, C-NMR and IR spectra agreed with the indicated structure.
C) 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy- N-(1, 3-dihydroxyisopropyl)-propionamide, trihydrochlo¬ ride.
51.6 g of 1,4,7,10-tetraazacyclododecane (0.3 mol ) and 258.75 g of 2-chloro-3-benzyloxy-N-(1,3-dihydroxy¬ isopropyl)-propionamide (0.9 mol), obtained according to the process described in example 7-B, were reacted at 70°C in DMF for 24 h.
After evaporation of the solvent under vacuum, the residue was taken up in water and adsorbed on an ion exchange resin IR 120, from which it was eluted by means of 5N ammonium hydroxide. The ammonia solution was evaporated to dryness and the residue was transformed .into the corresponding trihydrochloride, as described in example 1. 63.84 g of 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3- benzyloxy-N-(l,3-dihydroxyisopropyl)-propionamide, trihydrochloride (0.120 mol) were obtained. Yield: 40.0% m.p.: 125°C (dec.)
Elemental analysis:
% calc: C 47.33 ; H 7.56 ; Cl 19.96 ; N 13.14. % found: C 47.41 ; H 7.68 ; Cl 19.85 ; N 13.08 HPLC: 97.6% Analogously, the following compounds were obtained:
- 2-(l,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy-pro- pionamide. - 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy-N-(2- hydroxyethyl)-propionamide.
- 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy-N- (2,3-dihydroxypropyl)-propionamide.
- 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy- N,N-di(2-hydroxyethyl)-propionamide.
EXAMPLE 8
2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodode- cane-l-yl-7_3-benzyloxy-N-(l,3-dihydroxyisopropyl)-propio¬ namide. A mixture of 16 g of 2-(l,4,7,10-tetraazacyclododecane- l-yl)-3-benzyloxy-N-(1,3-dihydroxyisopropyl)-propionamide (0.038 mol), obtained according to the process described in example 7, and of 21.13 g of bromoacetic acid (0.152 mol) in 100 ml of water was reacted by the same process as described in example 3, to give the desired compound. 12.4 g of 2-/1,4, 7, 10-tetraaza-4, 7, 10-tri(carboxymethyl ) cyclododecane-l-yl7~3-benzyloxy-N-( 1, 3-dihydroxyisopropyl propionamide (0.0207 mol) were obtained. Yield: 54.4% m.p.: 137°C (dec.) Titre:
(NaOH) 98.8% Elemental analysis:
% calc: C 53.98 ; H 7.72 ; N 11.66 % found: C 53.91 ; H 7.85 ; N 11.59 Analogously, the following compounds were obtained:
- 2-/1, 4,7, 10-tetraaza-4, 7, 10-tri (carboxymethyl)-cyclodod cane-l-yl7-3-benzyloxy-propionamide.
- 2-/1, 4,7, 10-tetraaza-4,7, 10-tri (carboxymethyl )-cyclodod cane-l-yl7-3-benzyloxy-N-(2-hydroxyethyl )-propionamide. - 2-/1, 4, 7, 10-tetraaza-4, 7, 10-tri(carboxymethyl )-cyclodod cane-l-yl7~3-benzyloxy-N-(2, 3-dihydroxypropyl )-propiona mide.
- 2- 1, 4,7, 10-tetraaza-4, 7, 10-tri (carboxymethyl )-cyclo- dodecane-l-yl7~3-benzyloxy-N,N-di(2-hydroxyethyl)-propi namide. EXAMPLE 9
Gd /2-/l,4, 7, 10-tetraaza-4, 7, 10-tri(carboxymethyl )-cy- clododecane-l-yl7-3-benzyloxy-N-(1, 3-dihydroxyisopropyl)- propionamide. To a suspension of 8 g of 2-/1,4, 7,10-tetraaza-4, 7, 10-tri- (carboxymethyl)-cyclododecane-l-yl7-3-benzyloxy-N-(1, 3-di¬ hydroxyisopropyl )-propionamide (0.013 mol), obtained according to the process described in example 8, in 30 ml of water 1.33 g of Gd 0 (0.0065 mol) were added and the mixture was reacted at 50°C according to the procedure of example 5.
The resulting solution was evaporated to dryness to give the desired product.
9 g of Gd /2- l,4,7,10-tetraaza-4,7,10-tri(carboxy- 5 methyl)-cycJododecane-l-yl7-3-benzyloxy-N-(1,3-dihydroxy¬ isopropyl)-propionamide (0.012 mol) were obtained.
Yield: 92.3%
Elemental analysis:
% calc: C 42.95-; H 5.74 ; N 9.28 0 % found: C 42.87 ; H 5.80 ; N 9.23 HPLC: 97.5% EXAMPLE 10
Gd /2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cy- clododecane-l-yl7-3-hydroxy-N-(l,3-dihydroxyisopropyl)-pro-
15 piona ide.
9 g of Gd /2- l,4,7,10-tetraaza-4,7,10-tri(carboxyme- thyl)-cyclododecane-l-yl7-3-benzyloxy-N-(l,3-dihydroxyiso¬ propyl)-propionamide (0.012 mol), obtained according to the process described in example 9, were dissolved in 60
20 ml of water. After addition of 15 g of 5% palladium on charcoal, the solution was hydrogenated according to the procedure of example 6 to give the desired compound. 6.22 g of Gd /2-/l,4,7,10-tetraaza-4,7,10-tri(carboxy¬ methyl)-cyclododecane-l-yl7~3-hydroxy-N-(1,3-dihydroxyiso-
25 propyl)-propionamide (0.0096 mol) were obtained. Yield: 80% Elemental analysis:
% calc: C 36.13 ; H 5.61 ; N 10.53 % found: C 36.06 ; H 5.64 ; N 10.48
30 Analogously, the following compounds were obtained: - 2-( 1, 4, 7, 10-tetraazacyclododecane-l-yl)-3-hydroxy-propio namide
- 2-( 1, 4, 7, 10-tetraazacyclododecane-l-yl )-3-hydroxy-N-( 2- hydroxyethyl ) -propionamide. - 2-( 1, 4, 7, 10-tetraazacyclododecane-l-yl)-3-hydroxy-N-( 2, 3 dihydroxypropyl )-propionamide .
- 2-( 1, 4, 7,.10-tetraazacyclododecane-l-yl)-3-hydroxy-N,N-di ( 2-hydroxymethyl )-propionamide .
- 2-/1,4, 7, 10-tetraaza-4, 7, 10-tri(carboxymethyl)-cyclodode cane-l-yl7-3-hydroxy-propionamide .
- 2-/1, ,7, 10-tetraaza-4, 7, 10-tri(carboxymethyl )-cyclodode cane-l-yl7-3-hydroxy-N-(2-hydroxyethyl )-propionamide .
- 2-/1,4,7, 10-tetraaza-4, 7,10-tri(carboxymethyl )-cyclodode cane-l-yJ-7-3-hydroxy-N- (2, 3-dihydroxypropyl )-propionamid - 2-/1, 4, 7, 10-tetraaza-4, 7,10-tri(carboxymethyl )-cyclodode cane-l-yl7~3-hydroxy-N, -di ( 2-hydroxyethyl )-propionamide
EXAMPLE 11
Determination of the relaxivity of the compounds of the present invention. Operative conditions
A) Apparatus: MINISPEC PC 120 (BRUKER)
B) Observation frequency: 20 MHz (proton)
C) Temperature: 39°C, with pre-thermostatization of the NMR test tube for 10 min at the operative temperature
D) Concentrations: in the range from 0 to 5 mM with the following specific measuring points: 0/0.1/0.2/0.5/1.0/2.0/5.0 mM E) Solvent: 0.154 M NaOH (0.9%), water
F) pH: 7.3, to be checked again potentiometrically before the relaxation measurement. Longitudinal relaxivity (R ) measurements were calculated using the "Inversion Recovery" sequence with an 8 point minimum and a 3 parameter fit, according to the program provided for the MINISPEC 120 BRUKER instrument, by which measurements were taken. Transverse relaxivity (R ) measurements were calculated using the sequence of Carr, Purcell, Meiboom and Gill, according to the program provided for the MINISPEC 120 BRUKER instrument, by means of which measurements were taken, adjusting the apparatus in such a way as to observe the decay of the signal to about 1/3 of the starting value, with a score number higher or equal to 10 and a 2 parameter fit.
In table I, and R values calculated for compounds A and B in comparison with Gd/DTPA neutralized with N-methylglucamine, are reported as non-limiting examples.
TABLE I
A = Gd /2-/1,4, 7,10-tetraaza-4,7,10-tri(carboxyme¬ thyl)-cyclododecane-l-yl7-3-benzyloxypropionic acid, 15 neutralized with N-methylglucamine.
B = Gd + /2-/1,4,7,10-tetraaza-4,7,10-tri(carboxyme¬ thyl)-cyclododecane-l-yl7-3-hydroxypropionic acid, neutralized with N-methylglucamine. * = neutralized with N-methylglucamine; R and R values 20 were determined in aqueous solvent. EXAMPLE 12
Preparation of liposomes incorporating the (3+)
Gd /2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cy- clododecane-l-yl7~3-benzyloxypropionic acid complex,
25 neutralized with N-methylglucamine.
An anhydrous lipidic mixture was prepared, having the following composition: egg phosphatidylcholine 75 mol % and cholesterol 25 mol % using the REV method (F. Szoka et al., (1978), Proc Natl. Acad. Sci. U.S.A. 75,4194).
30 400 mg of said mixture were dissolved in 35 ml of chloro- form to which 10 ml of a 0.05 M solution of N-methyl- D-glucamine salt of Gd /2-/1,4,7,10-tetraaza-4,7,10- tri(carboxymethyl)-cyclododecane-l-yl7-3-benzyloxypropio- nic complex acid were added dropwise under sonication. When the addition was over, sonication was continued for 5 min, then the crude compound was heated to 50°C and the solvent was evaporated under vacuum. The resulting gelly residue was suspended in a 1% NaCl solution and freed from unincorporated chelate by means of five consecutive centrifugations and resuspension steps (26.000 g/10 min). EXAMPLE 13
Determination of LD ςn ^n ~ -e mouse by intravenous administration of the compounds of the present invention. In table II are reported, as non-limiting examples, the LD values for compounds A and B of the present invention, in comparison with GdCl and with Gd/DTPA neutralized with N-methylglucamine.
TABLE II
* = male and female mice were used,
Strain: Crl:CD1(ICR)BR ** = N-methylglucamine salt.
A = Gd + /2-/1,4,7,10-tetraaza-4,7,10-tri(carboxy e- thyl)-cyclododecane-l-yl7~3-benzyloxypropionic acid, neu¬ tralized with N-methylglucamine.
(3+) - B = Gd /2-/l,4,7,10-tetraaza-4,7,10-tri(carboxyme- thyl)-cyclododecane-l-yl,7-3-hydroxypropionic acid, neutra¬ lized with N-methylglucamine. Table II shows that, in this pharmacological test, gadolinium complexes with the macrocyclic chelating agents of the invention have substantially decreased toxicities with respect to both GdCl and Gd/DTPA. EXAMPLE 14 Preparation of a solution of D(-)-N-methylglucamine salt of Gd / 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)- -cyclododecane-l-yl7~3-benzyloxypropionic acid complex. 436.8 g (0.500 mol) of the compound obtained according to the procedure described in example 5 were dissolved in 300 ml of pro iniectione (p.i.) water. The solution volume was taken to 500 ml by addition of water p.i., then the solu¬ tion was filtered, put in vials and sterilized. EXAMPLE 15 Preparation of a solution of D(-)-N-methylglucamine salt of Gd / 2-/1,4,7,l'O-tetraaza-4,7,10-tri(carboxymethyl)- -cyclododecane-l-yl7~3-hydroxypropionic acid complex. 398.8 g (0.500 mol) of the compound obtained according to the procedure described in example 6, were dissolved in 300 ml of water p.i.. The solution volume was taken to 500 ml by addition of water p.i., then the solution was filtered, put in vials -and sterilized. EXAMPLE 16
Preparation of a solution of D(-)-N-methylglucamine salt of Gd /2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)- 5 cyclododecane -l-yl7~3-benzyloxypropionic acid complex.
218.4 g (0.250 mol) of the salt cited in example 14 were dissolved in 260 ml of water p.i., 0.6 g of ascorbic acid were added and the solution was diluted to 500 ml with water p.i. The solution was sterilized by filtration and
10 put in vials. EXAMPLE 17
Preparation of a solution of the D(-)-N-methylglucamine salt of Gd / 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxy¬ methyl)-cyclododecane-l-yl7_3-benzyloxypropionic acid com-
15 plex.
218.4 g (0.250 mol) of the salt cited in example 14 were dissolved in 200 ml of water p.i., 0.45 g of tromethamine hydrochloride were added and the solution was diluted to 500 ml with water p.i. The solution was filtered, put in
20 vials and sterilized. EXAMPLE 18
Preparation of a solution of the D(-)-N-methylglucamine salt of Gd / 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxyme¬ thyl)-cyclododecane-l-yl/-3-hydroxypropionic acid complex.
25 199.4 g (0.250 mol) of the salt cited in example 15 were dissolved in 200 ml of water p.i., 0.6 g of ascorbic acid were added and the solution was diluted to 500 ml with water p.i. The solution was sterilized by filtration an put into vials.
30 EXAMPLE 19
Preparation of a solution of the D(-)-N-methylglucamine salt of Gd / 2-/l,4,7,10-tetraaza-4,7,l -tri(carboxyme- thyl)-cyclododecane-l-yl7~3-hydroxypropionic acid complex. 199.4 g (0.250 mol) of the salt cited in example 15 were dissolved- in 200 ml of water p.i., 0.45 g of tromethamine hydrochloride were added and the solution was diluted to 500 ml with water p.i. The solution was filtered, put into vials and sterilized.

Claims

1. 1,4,7,10-tetraazacyclododecane of general formula I
wherein 2
A is a group of formula
in which
R is H or a C -C straight or branched alkyl group, or a benzyl group which can be mono- or poly-substituted on the aromatic ring by halogen, hydroxy, carboxy, carbamoyl, alkoxycarbonyl, sulphamoyl, lower alkyl, lower hydroxyalkyl, amino, acylamino, acyl, hydroxyacyl groups, or a group of formula H(OCH CH ) -,
Me(OCH2CH2)1_4-, or Et(OCH2CH2) - ,
X is a O-R group in which R is H or a C -C alkyl, hydroxyalkyl, alkoxyalkyl, alkoxyhydroxyalkyl group, or a polyoxaalkyl group having 1 to 15 oxygen atoms and 3 to 45 carbon atoms-, or X is a -NR R group in which R and R . which can be the same or different, are C -C^ 3 1 6 alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydroxyalkyl groups having up to 5 hydroxy groups and
B , B and B , which can be the same or different, have the same meaning as A or they are H or a group of formula
-CH
\
CO-Y in which R is H or a C -C straight or branched alkyl group,
Y is a 0-R_ group in which R is H or a C.-C_ alkyl, 5 5 1 5 hydroxyalkyl, alkoxyalkyl, alkoxyhydroxyalkyl group, or a polyoxaalkyl group having 1 to 15 oxygen atoms and 3 to 45 carbon atoms, or Y is a -NR R group in which R
6 7 6 and R , which can be the same or different, are H or
C -C alkyl, hydroxyalkyl, alkoxyalkyl or alkoxyhydro- 1 6 xyalkyl groups having up to 5 hydroxy groups, said derivatives being, if necessary, salified with suitable organic or inorganic bases, as well as the chelates of compound of formula I with suitable metal ions, which chelates, if necessary, can in turn be neutralized with inorganic or organic acid or bases.
2. 1,4,7,10-Tetraazacyclododecane derivatives of general formula II
wherein
R,R , and Y have the meanings defined in claim 1, and the chelates thereof with appropriate bi- or trivalent ions of metal elements having atomic numbers from 20 to 31, 39, 42, 43, 44, 49 or from 57 to 83.
3. 1,4,7,10-Tetraazacyclododecane derivatives of general formula III
R-O-CH--CH-CO-X
wherein R and X have the meanings defined in claim 1, and the chelates thereof with appropriate bi- or trivalent ions of metal elements having atomic numbers from 20 to 31, 39, 42, 43, 44, 49 or from 57 to 83.
4. Serine derivatives of general formula IV wherein R is H or benzyl, X is OH, -NH , - NHCH CH OH, 8 -NHCH(CH OH) , -NHCH CH(OH)CH OH, -N(CH2CH2OH)2,
-NH-CH -CH(OH)-CH OCH or -NH-CH -CH(OH)-CH(OH)-CH OH, and the chelates thereof with appropriate bi- or trivalent ions of metal elements having atomic numbers from 20 to 31, 38, 42, 43 , 44, 49, or from 57 to 83.
5. A chelate of a compound as claimed in claims 1-4, in
. _ (2+) _ (3+) _ (2+ which the chelate metal ion is Fe , Fe , Cu ) , rGd ~+ ) , E -u(3+) , Dy(3+) or MMn(2+)
6. Chelates as claimed in claim 2 with the ions of the f __.ol,l,owi.ng rad.ni-oi•sotopes: 51C~r, 8G„a, 111In, 99ιτtTc, 140L..a,
168 Yb.
7. A compound as claimed in claims 1-6, selected from the group consisting of:
- 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxypro- pionic acid, - 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-hydroxypropio- nic acid,
- 2-/1,4,7,10-tetraaza-4-(l-carboxy-2-benzyloxy-ethyl)- cyclododecane-l-yl7-3-benzyloxypropionic acid,
- 2-/1,4,7,10-tetraaza-4-(l-carboxy-2-hydroxy-ethyl)- cyclododecane-l-yl7-3-hydroxypropionic acid. - 2-/1,4,7,10-tetraaza-7-(l-carboxy-2-benzyloxy-ethyl)- cyclododecane-l-yl7~3-benzyloxypropionic acid,
- 2- 1,4,7,10-tetraaza-7-(l-carboxy-2-hydroxy-ethyl)- cyclododecane-l-y )-3-hydroxypropionic acid, - 2-/1,4,7,10-tetraaza-4,7-di(l-carboxy-2-benzyloxy-ethyl)- cyclododecane-l-yl7_3-benzyloxypropionic acid,
- 2-/1,4,7,10-tetraaza-4,7-di(l-carboxy-2-hydroxy-ethyl)- cyclododecane-l-yl7~3-hydroxypropionic acid,
- 2- 1,4,7,10-tetraaza-4-(l-carboxy-2-benzyloxy-ethyl)- 7,10-di(carboxymethyl)-cyclododecane-l-yl7~3-benzyloxy- propionic acid,
- 2-/1,4,7,10-tetraaza-4-(l-carboxy-2-hydroxy-ethyl)-7,10- di(carboxymethyl)-cyclododecane-l-yl7~3-hydroxypropio- nic acid, - 2-/1,4,7,10-tetraaza-7-(l-carboxy-2-benzyloxy-ethyl)-
4,10-di(carboxymethyl)-cyclododecane-l-yl7-3-benzyloxy- propionic acid,
- 2-/ ,4,7,10-tetraaza-7-(l-carboxy-2-hydroxy-ethyl)-
4,10-di(carboxymethyl)-cyclododecane-l-yl7-3-hydroxypro- pionic acid,
- 2-/1,4,7,10-tetraaza-4,7-di(l-carboxy-2-benzyloxy-ethyl)- 10-carboxymethyl-cyclododecane-l-yl7-3-benzyloxypropionic acid,
- 2-/Ϊ,4,7,10-tetraaza-4,7-di(l-carboxy-2-hydroxy-ethyl)- 10-carboxymethyl-cyclododecane-l-y17-3-hydroxypropionic acid,
- 2-/1, , 1 ,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-yl7-3-benzyloxypropionic acid,
- 2-/1,4,7,10-tetraaza-4 ,7,10-tri(carboxymethyl)-cyclodo- decane-l-y_l7~3-hydroxypropionic acid. - 2-(l,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy-pro- pionamide,
- 2-(l,4, 7,10-tetraazacycϊododecane-l-yl)-3-hydroxy-pro- pionamide, - 2-(l, , 7,10-tetraazacyclododecane-l-yl)-3-benzyloxy-N- (2-hydroxyethyl)-propionamide,
- 2-(1,4, 7,10-tetraazacyclododecane-l-yl)-3-hydroxy-N-(2- ' hydroxyethyl)-propionamide,
- 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy-N- (1,3-dihydroxyisopropyl)-propionamide,
- 2-(l,4, 7,10-tetraazacyclododecane-l-yl)-3-hydroxy-N- (1,3-dihydroxyisopropyl)-propionamide,
- 2-(1,4, 7,10-tetraazacyclododecane-l-yl)-3-benzyloxy-N- (2,3-dihydroxypropyl)-propionamide, - 2-(1,4,7,10-tetraazacyclododecane-l-yl)-3-hydroxy-N- (2,3-dihydroxypropyl)-propionamide,
- 2-(l,4,7,10-tetraazacyclododecane-l-yl)-3-benzyloxy- N,N-di(2-hydroxyethy.l)-propionamide,
- 2-(l,4,7,10-tetraazacyclododecane-l-yl)-3-hydroxy-N,N-di- (2-hydroxyethyl)-propionamide,
- 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-yl7-3-benzyloxy-propionamide,
- 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-y!7-3-hydroxy-propionamide, - 2-/1, , 1 ,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-y 7-3-benzyloxy-N-(2-hydroxyethyl)-propionamide,
- 2-/T,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-yl7-3-hydroxy-N-(2-hydroxyethyl)-propionamide,
- 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-y_l7-3-benzyloxy-N-(l, 3-dihydroxyisopropyl)-pro- pionamide,
- 2-/1, 4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-yl7-3-hydroxy-N-(1, 3-dihydroxyisopropyl)-pro¬ pionamide, - 2-/1,4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-y /-3-benzyloxy-N-(2, 3-dihydroxypropyl)-propio¬ namide,
- 2- 1,4, 7,10-tetraza-4, 7, 10-tri(carboxymethyl)-cyclodo- decane-l-y!7-3-hydroxy-N-(2, 3-dihydroxypropyl)-propiona- mide,
- 2-/T",4,7,10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-yl/-3-benzyloxy-N,N-di(2-hydroxyethyl)-propio¬ namide,
- 2-/T,4, 7, 10-tetraaza-4,7,10-tri(carboxymethyl)-cyclodo- decane-l-yl7~3-hydroxy-N, -di(2-hydroxyethyl)-propiona¬ mide, the respective chelate complexes with Fe , Cu ,
M (2+) „,(3+) Λ (3+) _ (3+) _ (3+) v, (3+) . .. Mn , Gd , Dy , In , La , Yb and the corresponding salts with D(-)-N-methylglucamine.
8. A method for the preparation of metal chelates of compounds of formula I of claim 1, which consists in reacting a salt or a metal oxide selected from the ones having atomic numbers from 20 to 31, 39, 42, 43, 44, 49 or from 57 to 83 with a compound of formula I of claim 1, possibly in the presence of the acid or base amount "necessary for neutralization.
9. A diagnostic preparation comprising a) a physiolo¬ gically acceptable complex salt, in which the chelating agent is a compound of general formula I according to claimes 1-4 and the metal ion is selected from the group of the elements having atomic numbers comprised from 20 to 31, 38, from 42 to 44, 49 or from 57 to 83, b) if necessa¬ ry, an ion of an inorganic or organic acid or base, c) a suitable physiologically acceptable carrier, d) eventually, physiologically acceptable additives.
10. A diagnostic preparation according to claim 9, in which the complex salt is present in a concentration from 0,002 to 1 mol/1.
11. An N.M.R. diagnostic method, wherein a diagnostic composition according to claim 9, in which the complex salt contains as the metal ion one of those according to claim 5, is administered to a patient.
12. A diagnostic method which can be used in nuclear medicine, wherein a diagnostic composition according to claim 9, in which the complex salt contains as the metal ion a radioisotope according to claim 6, is administered to a patient.
EP89900817A 1987-12-24 1988-12-16 Macrocyclic chelating agents and chelates thereof Pending EP0440606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2321787 1987-12-24
IT23217/87A IT1224416B (en) 1987-12-24 1987-12-24 MACROCYCLIC CHELANTS AND THEIR CHELATES

Publications (1)

Publication Number Publication Date
EP0440606A1 true EP0440606A1 (en) 1991-08-14

Family

ID=11204998

Family Applications (2)

Application Number Title Priority Date Filing Date
EP88121087A Expired - Lifetime EP0325762B1 (en) 1987-12-24 1988-12-16 Macrocyclic chelating agents and chelates thereof
EP89900817A Pending EP0440606A1 (en) 1987-12-24 1988-12-16 Macrocyclic chelating agents and chelates thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP88121087A Expired - Lifetime EP0325762B1 (en) 1987-12-24 1988-12-16 Macrocyclic chelating agents and chelates thereof

Country Status (14)

Country Link
EP (2) EP0325762B1 (en)
JP (1) JP2744920B2 (en)
KR (1) KR900700467A (en)
AT (1) ATE120191T1 (en)
DE (1) DE3853415T2 (en)
ES (1) ES2070845T3 (en)
IE (1) IE67551B1 (en)
IL (1) IL88762A (en)
IT (1) IT1224416B (en)
MX (1) MX9203262A (en)
NZ (1) NZ227421A (en)
PH (1) PH26255A (en)
WO (1) WO1989005802A1 (en)
ZA (1) ZA889597B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3869251D1 (en) * 1987-07-16 1992-04-23 Nycomed As AMINOPOLYCARBONIC ACIDS AND THEIR DERIVATIVES.
DE4001655A1 (en) 1990-01-18 1991-07-25 Schering Ag 6-RING MACROCYCLIC TETRAAZA COMPOUNDS, METHOD FOR PRODUCING THE SAME AND PHARMACEUTICAL PRODUCTS CONTAINING THEM
US6039931A (en) * 1989-06-30 2000-03-21 Schering Aktiengesellschaft Derivatized DTPA complexes, pharmaceutical agents containing these compounds, their use, and processes for their production
US5695739A (en) * 1989-06-30 1997-12-09 Schering Aktiengesellschaft Derivatized DTPA complexes, pharmaceutical agents containing these compounds, their use, and processes for their production
DE4009119A1 (en) * 1990-03-19 1991-09-26 Schering Ag 1,4,7,10-TETRAAZACYCLODODECANE-BUTYLTRIOLS, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS CONTAINING THEM
US5162109A (en) * 1990-09-13 1992-11-10 Mallinckrodt Medical, Inc. Magnetic resonance imaging agents
DE4035760A1 (en) * 1990-11-08 1992-05-14 Schering Ag MONO-N-SUBSTITUTED 1,4,7,10-TETRAAZACYCLODODECAN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS CONTAINING THEM
US6875864B2 (en) 1991-08-01 2005-04-05 Bracco International B.V. Aminocarboxylate ligands having substituted aromatic amide moieties
EP0565930A1 (en) * 1992-03-27 1993-10-20 Nihon Medi-Physics Co., Ltd. Tetraazacyclododecane tetraacetic acid derivatives and the use thereof as diagnostic agents
US5310535A (en) * 1992-04-24 1994-05-10 The Dow Chemical Company Carboxamide modified polyamine chelators and radioactive complexes thereof for conjugation to antibodies
EP0588229A3 (en) * 1992-09-12 1994-06-15 Hoechst Ag Macrocyclic chelating agents for the preparation of technetium or rhenium complexes
AU7384394A (en) * 1993-06-30 1995-01-24 Akzo Nobel N.V. Chelating compounds
WO1995027705A1 (en) * 1994-04-08 1995-10-19 Bracco International B.V. Aromatic amide compounds and metal chelates thereof
US6693190B1 (en) 1994-05-11 2004-02-17 Bracco International B.V. Enhanced relaxivity monomeric and multimeric compounds
IT1274038B (en) * 1994-07-29 1997-07-14 Bracco Spa MACROCYCLIC CHELANTS THEIR CHELATES AND RELATED USES IN THE DIAGNOSTIC FIELD
US5672335A (en) * 1994-11-30 1997-09-30 Schering Aktiengesellschaft Use of metal complexes as liver and gallbladder X-ray diagnostic agents
DE19507820A1 (en) * 1995-02-21 1996-08-22 Schering Ag Novel substituted DTPA derivatives, their metal complexes, pharmaceutical compositions containing these complexes, their use in diagnostics, and methods for producing the complexes and compositions
IT1291624B1 (en) * 1997-04-18 1999-01-11 Bracco Spa COMPLEX CHELATES OF PARAMAGNETIC METALS WITH LOW TOXICITY
IT1293777B1 (en) * 1997-07-25 1999-03-10 Bracco Spa PROCESS FOR THE PREPARATION OF TETRAAZAMACROCYCLES
IT1293778B1 (en) * 1997-07-25 1999-03-10 Bracco Spa 1,4,7,10-TETRAAZABICICLO (8.2.2.)TETRADECAN-2 ONE, ITS PREPARATION AND USE FOR THE PREPARATION OF TETRAAZAMACROCYCLES
US6495118B1 (en) 1997-09-26 2002-12-17 Schering Aktiengesellschaft Lipophilic metal complexes for necrosis and infarction imaging
DE19744004C1 (en) * 1997-09-26 1999-07-22 Schering Ag Lipophilic metal complexes for necrosis and infarct imaging
IT1297035B1 (en) 1997-12-30 1999-08-03 Bracco Spa 1,4,7,10-TETRAAZACICLODODECAN-1,4-DIACETIC ACID DERIVATIVES
IT1297034B1 (en) 1997-12-30 1999-08-03 Bracco Spa 1,4,7,10-TETRAAZACICLODODECAN-1,4-DIACETIC ACID

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281474A2 (en) * 1987-02-28 1988-09-07 Sumitomo Electric Industries Limited Process for manufacturing a compound oxide-type superconducting wire
EP0282286A2 (en) * 1987-03-13 1988-09-14 Kabushiki Kaisha Toshiba Superconducting wire and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL194579C (en) * 1983-01-21 2002-08-05 Schering Ag Diagnostic.
DE3316703A1 (en) * 1983-05-04 1984-11-08 Schering AG, 1000 Berlin und 4709 Bergkamen ORAL CONTRAST AGENT FOR MRI MRI AND THE PRODUCTION THEREOF
US4639365A (en) * 1984-10-18 1987-01-27 The Board Of Regents, The University Of Texas System Gadolinium chelates as NMR contrast agents
EP0232751B1 (en) * 1986-01-23 1991-09-11 E.R. Squibb &amp; Sons, Inc. 1-substituted-4,7,10-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs
FR2596992B1 (en) * 1986-04-11 1988-12-16 Guerbet Sa GYSOLINIUM-DOTA COMPLEX LYSINE SALT AND ITS APPLICATIONS TO DIAGNOSIS
DE3625417C2 (en) * 1986-07-28 1998-10-08 Schering Ag Tetraazacyclododecane derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281474A2 (en) * 1987-02-28 1988-09-07 Sumitomo Electric Industries Limited Process for manufacturing a compound oxide-type superconducting wire
EP0282286A2 (en) * 1987-03-13 1988-09-14 Kabushiki Kaisha Toshiba Superconducting wire and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 26, no. 10, October 1987, pages 1653-1656, Tokyo, JP; O. KOHNO et al.: "Critical current density of Y-Ba-Cu oxide wires" *

Also Published As

Publication number Publication date
NZ227421A (en) 1990-10-26
ZA889597B (en) 1989-09-27
MX9203262A (en) 1992-07-01
JPH03501848A (en) 1991-04-25
PH26255A (en) 1992-04-01
IT1224416B (en) 1990-10-04
KR900700467A (en) 1990-08-13
IE883844L (en) 1989-06-24
EP0325762B1 (en) 1995-03-22
ES2070845T3 (en) 1995-06-16
IL88762A (en) 1995-07-31
IL88762A0 (en) 1989-07-31
IE67551B1 (en) 1996-04-17
IT8723217A0 (en) 1987-12-24
WO1989005802A1 (en) 1989-06-29
EP0325762A1 (en) 1989-08-02
DE3853415T2 (en) 1995-08-31
JP2744920B2 (en) 1998-04-28
DE3853415D1 (en) 1995-04-27
ATE120191T1 (en) 1995-04-15

Similar Documents

Publication Publication Date Title
EP0325762B1 (en) Macrocyclic chelating agents and chelates thereof
US5132409A (en) Macrocyclic chelating agents and chelates thereof
US5582814A (en) 1-(p-n-butylbenzyl) DTPA for magnetic resonance imaging
US4647447A (en) Diagnostic media
EP0255471B1 (en) 1,4,7,10-tetraazacyclododecane-derivatives
FI79026C (en) Diagnostic agents for use ultrasound, NMR and X-ray diagnostics, process for their preparation, complex salts contained therein and their use for the production of diagnostic agents.
US5334371A (en) Marcocyclic polyaza bicyclo compounds containing 5 or 6 membered rings, and method for MRI
EP0438206B1 (en) 6-Ring-containing macrocyclic tetraaza compounds, processes for their preparation, and pharmaceutical agents containing them
US8961927B2 (en) Agents for magnetic imaging method
JPH0665174A (en) Diethylenetriaminepentaacetic acid monoamide, its complex and complex salt, its preparation, nmr-, roentogen- and radiation-diagnostic agent containing same, and
HU210208B (en) Process for preparing derivatived dtpa-complexes and pharmaceutical compositions and diangnostic compositions containing them
EP3442949B1 (en) Contrast agents
EP3551614B1 (en) Dimeric contrast agents
EP0565930A1 (en) Tetraazacyclododecane tetraacetic acid derivatives and the use thereof as diagnostic agents
US6254850B1 (en) Metal complexes, suitable for use in diagnosis and therapy
WO2000056723A1 (en) Perfluoroalkylamide, the production thereof and the use thereof in diagnostics
US20020052354A1 (en) Paramagnetic DOTA derivatives, pharmaceutical agents that contain the latter, process for their production, and their use for MR imaging of necrosis and infarction
SK85498A3 (en) Cascade polymer complexes, process for producing the same and pharmaceuticals containing the same
KR20030022381A (en) Complexes Containing Perfluoroalkyl With Polar Radicals, Method For The Production And Use Thereof
AU620841B2 (en) Macrocyclic chelating agents and chelates thereof
AU617338B2 (en) Aminopolycarboxylic acids and derivatives thereof
EP0822180B1 (en) Chelating compounds, their chelates with paramagnetic metal ions, their preparation and use
AU637052B2 (en) Macrocyclic polyaza compounds containing 5 or 6 rings, process for producing them and pharmaceutical media containing them
EP1061957B1 (en) Manganese (ii) chelates with high relaxivity in serum
JPH0656802A (en) Tetraazacyclododecane derivative and its use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 19900615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

EL Fr: translation of claims filed
XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 88121087.6/0325762 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 18.11.91.

DET De: translation of patent claims
EL1 Fr: translation or corrected translation of claims filed