EP0599049A2 - Use of carbon microfibres - Google Patents

Use of carbon microfibres Download PDF

Info

Publication number
EP0599049A2
EP0599049A2 EP93116853A EP93116853A EP0599049A2 EP 0599049 A2 EP0599049 A2 EP 0599049A2 EP 93116853 A EP93116853 A EP 93116853A EP 93116853 A EP93116853 A EP 93116853A EP 0599049 A2 EP0599049 A2 EP 0599049A2
Authority
EP
European Patent Office
Prior art keywords
micro
carbon fibers
fiber
carbon
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93116853A
Other languages
German (de)
French (fr)
Other versions
EP0599049A3 (en
EP0599049B1 (en
Inventor
Walter Dr. Stark
Rupert Laier
Barbara Matthis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH, Forschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0599049A2 publication Critical patent/EP0599049A2/en
Publication of EP0599049A3 publication Critical patent/EP0599049A3/en
Application granted granted Critical
Publication of EP0599049B1 publication Critical patent/EP0599049B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/18End pieces terminating in a probe

Definitions

  • the invention relates to the use of micro-carbon fibers for testing the electrical conductivity of the structural base of microstructured bodies in which microstructural elements made of electrically non-conductive material rise on an electrically conductive structural base.
  • a metallic carrier layer e.g. Made of chrome-nickel steel
  • a resist layer sensitive to X-rays is applied, which is partially exposed to synchrotron radiation using an X-ray mask.
  • the exposed areas are removed with a liquid developer, creating cavities corresponding to the microstructures.
  • a method is known from EP 0 328 161 A2 in which the tool, which carries microstructures on a base plate, is molded.
  • PMMA polymethyl methacrylate
  • the tool with an electrically insulating impression material, for. B. a resin, filled and layered.
  • the impression material has been thermoset, in which the electrically conductive material forms a firm connection with the hardening impression material, the tool is separated from the hardened impression material.
  • the electrically conductive material adheres to the structural base of the microstructures.
  • micro-structured bodies are produced in which micro-structural elements made of electrically non-conductive material rise on an electrically conductive structural base.
  • the microstructured bodies are to be galvanically molded with a metal in subsequent steps, either the base plate or the electrically conductive structure base being switched as the cathode.
  • the galvanic deposition is applied uniformly at all points on the structure base and is not hindered or completely inhibited in individual areas by poorly or non-electrically conductive defects in the structure base.
  • Such defects can arise in the first-mentioned method, for example, in that the areas exposed to X-rays are not completely removed by the developer, so that the electrically conductive carrier layer is not exposed.
  • Sources of error in the methods mentioned in the second and third place are, for example, that the electrically conductive layer is insufficiently transferred from the tool to the microstructured body or pressed into the structural base.
  • a control measurement can finally be expedient, with which it is determined whether the residual layer has already been completely removed.
  • the electrical conductivity of bodies can be measured by contacting a first location on the body with the first electrical lead of a continuity tester and any other location on the body with a stylus tip connected to the second electrical lead of the continuity tester is touched.
  • a first point is present in all microstructured bodies which are produced by the methods of the type mentioned above, because such a point is required for the subsequent galvanic impression when making contact.
  • the structure base is one to two size restrictions smaller than the height of the microstructure elements.
  • microstructure elements that are several hundred micrometers high separated by trenches that are only about 10 ⁇ m wide. If the structure base of such microstructured bodies is to be scanned, it is almost inevitable that the microstructure elements will be touched and destroyed.
  • a scanning needle with a size in the nanometer range for a scanning tunneling electron microscope which ends in a tip.
  • the stylus consists of a carbon matrix structure with embedded metal particles; according to its use, it has a rigid structure.
  • the risk that microstructure elements are destroyed in the process must be minimized as far as possible. Because of its rigid structure, the known stylus is not suitable for this.
  • micro-carbon fibers mentioned at the beginning for testing the electrical conductivity of the structural base of microstructured bodies in which microstructural elements made of electrically non-conductive material rise on an electrically conductive structural base.
  • micro-carbon fibers are particularly suitable for testing the electrical conductivity of the structural base. Even if microstructure elements are touched with micro-carbon fibers, there is no risk of destruction because micro-carbon fibers bend elastically.
  • micro-carbon fibers are to be understood as meaning carbon fibers with a diameter of less than 100 ⁇ m. Their electrical conductivity should be as high as possible.
  • Micro carbon fibers are commercially available.
  • micro-carbon fibers with a thickness of approx. 5 - 10 ⁇ m are offered as yarns with a number of filaments between 1000 and 24000 and a length of up to several 1000 meters. Such filaments can be pulled out of a section of a yarn and used.
  • short cut fibers with a length of a few millimeters are available, which can also be used.
  • the electrical resistance of such fibers is in the range of 1.5 - 10-3 Qcm (about an order of magnitude below the conductivity of mercury).
  • micro-carbon fibers that are smaller than the area of the structural base to be contacted are selected for checking the electrical conductivity according to the invention. Their length must also exceed the height of the neighboring microstructure elements. Micro-carbon fibers with a diameter of less than 20 .mu.m, in particular from 10 .mu.m to 5 .mu.m can be used for the usually produced microstructured bodies.
  • a micro-carbon fiber of a length which exceeds the height of the adjacent microstructure elements by 1.5 to 2 times is connected to the end of a conventional electrical lead wire.
  • This lead wire and an electrical lead, which is connected to the contact point provided for the electroplating, are connected to a conventional electrical continuity tester.
  • the contacting of the microcarbon fiber with the structural base will often have to be checked under the microscope.
  • the length of the micro-carbon fiber used is chosen so that at least the free fiber end is visible under the microscope.
  • the electrical lead wire is generally orders of magnitude thicker than the micro-carbon fiber, so that it obscures the view of the fiber.
  • the fiber should be approximately 5 mm long so that the fiber end remains visible in the microscope even at higher magnifications and a correspondingly narrow field of view.
  • the fiber is preferably attached to the lead wire not at a right angle, but rather at a slight angle, so that the angle between the lead wire and the fiber is somewhat greater than 900.
  • connection between micro-carbon fibers and a conventional lead wire can be made by conductive lacquers, e.g. B. be produced by conductive silver lacquer. If necessary, the micro carbon fibers can be easily replaced.
  • a conventional electroplating tester is suitable as a continuity tester.
  • micro-carbon fibers are that they can be processed through special treatment steps, e.g.
  • micro-carbon fibers can also be modified by chemical processes. Such treatment steps are known when using carbon fibers as microelectrodes in analytical electrochemistry.
  • the invention is based on an exemplary embodiment and a figure he he purifies.
  • the measurement setup is shown in the figure.
  • the microstructured body 1 to be examined is electrically contacted at the contact surface 2 provided for the electroplating and fixed on the work table of a microscope (not shown).
  • the electrical lead 3 from the microstructured body 1 is connected to an electronic conductivity tester (not shown), a continuity tester with its own power supply (UNITEST type V1X ohmic).
  • the other cable of the conductivity tester is connected to a wire 4 which can be moved by a micromanipulator (not shown).
  • a micro-carbon fiber 6 At the free end of this wire 4 there is a micro-carbon fiber 6, which is adjusted perpendicular to the base plate 5 of the micro-structured body 1.
  • the micro-carbon fiber 6 is about 5 mm long, 7 ⁇ m thick and was connected to the wire 4 by gluing with silver conductive varnish.
  • the micro-carbon fiber 6 is now brought under the objective 7 and over the micro-structured body 1, so that the micro-carbon fiber is visible.
  • the fiber By lifting the work table or lowering the fiber, it is now possible to use the fiber to get into the spaces 8 between the microstructure elements 9 of the microstructured body 1 until the electrically conductive structural base 10 of the microstructured body is contacted. If the structural base 10 is free of electrically insulating residual layers at this point, this is indicated by an optical or acoustic signal in the conductivity tester. If, on the other hand, there is an electrically insulating residual layer, no or only a small current flows between the micro-carbon fiber 6 and the contact surface 2.
  • micro-structured bodies have been examined. It has proven very useful. There were no problems with mechanical damage to microstructure elements due to contact with the microcarbon fiber, so that a non-destructive test method is available. This is mainly due to the special properties of micro-carbon fibers mentioned above.
  • the measuring arrangement can be automated with the aid of a suitable, programmable micromanipulator.
  • micro-structured bodies with different lateral dimensions could be examined.
  • the structural base between 120 ⁇ m high microstructure elements was contacted, the structural base having widths between 200 ⁇ m down to 20 ⁇ m.
  • microstructured bodies were partly in the form of gearwheels, partly in the form of closely adjacent plastic columns on a metallic structural base.

Abstract

The invention relates to the use of carbon microfibres for the non-destructive testing of the electro conductivity of the substrate of microstructured bodies, in which microstructure elements of electrically nonconducting material rise out of an electrically conducting substrate.

Description

Die Erfindung betrifft die Verwendung von Mikro-Carbonfasern zum Prüfen der elektrischen Leitfähigkeit des Strukturgrundes von mikrostrukturierten Körpern, bei denen sich auf einem elektrisch leitfähigen Strukturgrund Mikrostrukturelemente aus elektrisch nicht leitfähigem Material erheben.The invention relates to the use of micro-carbon fibers for testing the electrical conductivity of the structural base of microstructured bodies in which microstructural elements made of electrically non-conductive material rise on an electrically conductive structural base.

Bei dem Verfahren gemäß der DE-PS 37 12 268 wird auf eine metallische Trägerschicht, z.B. aus Chrom-Nickel-Stahl, eine für Röntgenstrahlen empfindliche Resistschicht aufgebracht, die über eine Röntgenmaske partiell mit Synchrotronstrahlung belichtet wird. Die belichteten Bereiche werden mit einem flüssigen Entwickler herausgelöst, wodurch den Mikrostrukturen entsprechende Hohlräume entstehen. Mit diesem Verfahren können Mikrostrukturen mit sehr hohen Aspektverhältnissen bei kleinsten, lateralen Abmessungen im um-Bereich erzeugt werden.In the process according to DE-PS 37 12 268, a metallic carrier layer, e.g. Made of chrome-nickel steel, a resist layer sensitive to X-rays is applied, which is partially exposed to synchrotron radiation using an X-ray mask. The exposed areas are removed with a liquid developer, creating cavities corresponding to the microstructures. With this method, microstructures with very high aspect ratios can be produced with the smallest lateral dimensions in the um range.

Aus der EP 0 328 161 A2 ist ein Verfahren bekannt, bei dem Werkzeug, das auf einer Grundplatte Mikrostrukturen trägt, abgeformt wird. Hierzu wird auf die Stirnflächen der Mikrostrukturen des Werkzeugs nacheinander eine Trennmittelschicht und eine elektrisch leitende Schicht aus niedermolekularem Polymethylmethacrylat (PMMA), gemischt mit 20 bis 50 Gew.- % Ruß aufgetragen. Danach wird das Werkzeug mit einer elektrisch isolierenden Abformmasse, z. B. einem Gießharz, ausgefüllt und überschichtet. Nach der Warmhärtung der Abformmasse, bei der das elektrisch leitende Material mit der aushärtenden Abformmasse eine feste Verbindung eingeht, wird das Werkzeug von der ausgehärteten Abformmasse getrennt. Dabei bleibt das elektrisch leitende Material auf dem Strukturgrund der Mikrostrukturen haften.A method is known from EP 0 328 161 A2 in which the tool, which carries microstructures on a base plate, is molded. For this purpose, a release agent layer and an electrically conductive layer of low molecular weight polymethyl methacrylate (PMMA), mixed with 20 to 50% by weight of carbon black, are applied to the end faces of the microstructures of the tool. Then the tool with an electrically insulating impression material, for. B. a resin, filled and layered. After the impression material has been thermoset, in which the electrically conductive material forms a firm connection with the hardening impression material, the tool is separated from the hardened impression material. The electrically conductive material adheres to the structural base of the microstructures.

Aus der DE 40 10 669 C1 ist ein hierzu alternatives Verfahren zur Herstellung mikrostrukturierter, plattenförmiger Körper bekannt, wobei deren Strukturgrund eine zusammenhängende Fläche bilden muß, bei dem auf einer elektrisch nicht leitenden Thermoplast-Schicht ein Film des elektrisch leitenden Materials aufgebracht wird, danach ein Werkzeug bei einer Temperatur, die oberhalb der Erweichungstemperatur des Thermoplasten liegt, durch den Film des elektrisch leitenden Materials hindurch in die Thermoplast-Schicht eingedrückt wird, Formeinsatz und Thermoplast-Schicht auf eine Temperatur unterhalb der Erweichungstemperatur des Thermoplasten abgekühlt werden und der Formeinsatz entfernt wird.From DE 40 10 669 C1 an alternative method for producing microstructured, plate-shaped bodies is known, the structure of which has to form a coherent surface, in which a film of the electrically conductive material is applied to an electrically non-conductive thermoplastic layer, then a Tool at a temperature that is above the softening temperature of the thermoplastic, pressed into the thermoplastic layer through the film of the electrically conductive material, mold insert and thermoplastic layer are cooled to a temperature below the softening temperature of the thermoplastic and the mold insert is removed.

Aus der DE 39 37 308 C1 ist ein Verfahren zur Herstellung von metallischen Mikrostrukturkörpern bekannt, bei dem auf einer elektrisch leitfähigen Grundplatte Mikrostrukturen aus Kunststoff erzeugt werden, wobei im Zuge der Erzeugung der Mikrostrukturen eine Restschicht des Kunststoffes auf der elektrisch leitfähigen Grundplatte belassen wird und erst anschließend die Restschicht des Kunststoffes durch reaktives lonenätzen mittels senkrecht gegen die Oberfläche der Grundplatte beschleunigter Ionen entfernt wird.From DE 39 37 308 C1 a method for producing metallic microstructure bodies is known in which microstructures made of plastic are produced on an electrically conductive base plate, a residual layer of the plastic being left on the electrically conductive base plate in the course of the generation of the microstructures and only then then the remaining layer of the plastic is removed by reactive ion etching by means of ions accelerated perpendicularly against the surface of the base plate.

Allen diesen Verfahren ist gemeinsam, daß mikrostrukturierte Körper hergestellt werden, bei denen sich auf einem elektrisch leitfähigen Strukturgrund Mikrostrukturelemente aus elektrisch nicht leitfähigem Material erheben. Bei allen Verfahren sollen die mikrostrukturierten Körper in nachfolgenden Schritten galvanisch mit einem Metall abgeformt werden, wobei entweder die Grundplatte oder der elektrisch leitfähig gemachte Strukturgrund als Kathode geschaltet wird.All of these methods have in common that micro-structured bodies are produced in which micro-structural elements made of electrically non-conductive material rise on an electrically conductive structural base. In all of the methods, the microstructured bodies are to be galvanically molded with a metal in subsequent steps, either the base plate or the electrically conductive structure base being switched as the cathode.

Für eine einwandfreie galvanische Abformung ist es unabdingbar, daß die galvanischen Abscheidung an allen Stellen des Strukturgrunds gleichmäßig einsetzt und nicht in einzelnen Bereichen durch elektrisch schlecht- oder nicht leitende Fehlstellen im Strukturgrund behindert oder vollständig gehemmt wird.For a perfect galvanic impression, it is essential that the galvanic deposition is applied uniformly at all points on the structure base and is not hindered or completely inhibited in individual areas by poorly or non-electrically conductive defects in the structure base.

Solche Fehlstellen können beim erstgenannten Verfahren beispielsweise dadurch entstehen, daß die mit Röntgenstrahlen belichteten Bereiche vom Entwickler nicht vollständig herausgelöst werden, so daß die elektrisch leitfähige Trägerschicht nicht freigelegt ist. Fehlerquellen bei den an zweiter und dritter Stelle genannten Verfahren sind beispielsweise, daß die elektrisch leitfähige Schicht unzureichend vom Werkzeug auf den mikrostrukturierten Körper übertragen oder in den Strukturgrund gepreßt wird. Bei dem an vierter Stelle genannten Verfahren kann schließlich eine Kontrollmessung zweckmäßig sein, mit der festgestellt wird, ob die Restschicht bereits vollständig entfernt ist.Such defects can arise in the first-mentioned method, for example, in that the areas exposed to X-rays are not completely removed by the developer, so that the electrically conductive carrier layer is not exposed. Sources of error in the methods mentioned in the second and third place are, for example, that the electrically conductive layer is insufficiently transferred from the tool to the microstructured body or pressed into the structural base. In the method mentioned in the fourth place, a control measurement can finally be expedient, with which it is determined whether the residual layer has already been completely removed.

Erfindungsgemäß soll eine Möglichkeit geschaffen werden, Fehlstellen dieser Art erkennen zu können.According to the invention, a possibility is to be created of being able to recognize defects of this type.

Es ist allgemein bekannt, daß die elektrische Leitfähigkeit von Körpern dadurch gemessen werden kann, daß eine erste Stelle des Körpers mit der ersten elektrischen Leitung eines Durchgangsprüfers kontaktiert und eine beliebige weitere Stelle des Körpers mit einer Tasterspitze, die mit der zweiten elektrischen Leitung des Durchgangsprüfers verbunden ist, berührt wird. Eine solche erste Stelle ist bei allen mikrostrukturierten Körpern vorhanden, die nach Verfahren der oben genannten Art hergestellt werden, denn eine solche Stelle wird bei der Kontaktierung für die anschließende galvanische Abformung benötigt.It is well known that the electrical conductivity of bodies can be measured by contacting a first location on the body with the first electrical lead of a continuity tester and any other location on the body with a stylus tip connected to the second electrical lead of the continuity tester is touched. Such a first point is present in all microstructured bodies which are produced by the methods of the type mentioned above, because such a point is required for the subsequent galvanic impression when making contact.

Es ist jedoch problematisch, den Strukturgrund von mikrostrukturierten Körpern abzutasten. Wie erwähnt, kann mit den oben genannten Verfahren ein hohes Aspektverhältnis erreicht werden; dies bedeutet, daß der Strukturgrund eine bis zwei Grö- ßenördnungen kleiner ist als die Höhe der Mikrostrukturelemente. Beispielsweise können einige hundert Mikrometer hohe Mikrostrukturelemente durch Gräben, die lediglich etwa 10 um breit sind, voneinander getrennt sein. Soll an solchen mikrostrukturierten Körpern der Strukturgrund abgetastet werden, so ist es nahezu unvermeidlich, daß die Mikrostrukturelemente berührt und zerstört werden.However, it is problematic to scan the structure of microstructured bodies. As mentioned, a high aspect ratio can be achieved with the above-mentioned methods; this means that the structure base is one to two size restrictions smaller than the height of the microstructure elements. For example, microstructure elements that are several hundred micrometers high separated by trenches that are only about 10 µm wide. If the structure base of such microstructured bodies is to be scanned, it is almost inevitable that the microstructure elements will be touched and destroyed.

Aus der EP 0 483 579 A2 ist eine Abtastnadel mit einer Größe in Nanometer-Bereich für ein Raster-Tunnel-Elektronenmikroskop bekannt, die in eine Spitze ausläuft. Die Abtastnadel besteht aus einer Carbon-Matrixstruktur mit eingelagerten Metallteilchen; sie weist entsprechend ihrer Verwendung eine starre Struktur auf.From EP 0 483 579 A2 a scanning needle with a size in the nanometer range for a scanning tunneling electron microscope is known, which ends in a tip. The stylus consists of a carbon matrix structure with embedded metal particles; according to its use, it has a rigid structure.

Bei der erfindungsgemäß zu schaffenden Möglichkeit, Fehlstellen im Strukturgrund erkennen zu können, muß die Gefahr, daß dabei Mikrostrukturelemente zerstört werden, so weit wie möglich minimiert werden. Wegen ihrer starren Struktur ist die bekannte Abtastnadel hierfür nicht geeignet.With the possibility, according to the invention, of being able to recognize defects in the structure base, the risk that microstructure elements are destroyed in the process must be minimized as far as possible. Because of its rigid structure, the known stylus is not suitable for this.

Die Lösung dieses Problems gelingt durch die eingangs angesprochene Verwendung von Mikro-Carbonfasern zum Prüfen der elektrischen Leitfähigkeit des Strukturgrundes von mikrostrukturierten Körpern, bei denen sich auf einem elektrisch leitfähigen Strukturgrund Mikrostrukturelemente aus elektrisch nicht leitfähigem Material erheben.This problem is solved by the use of micro-carbon fibers mentioned at the beginning for testing the electrical conductivity of the structural base of microstructured bodies in which microstructural elements made of electrically non-conductive material rise on an electrically conductive structural base.

Mikro-Carbonfasern eignen sich wegen ihrer hohen Elastizität, ihrer Formsteifheit und ihrer guten elektrischen Leitfähigkeit in besonderem Maß zum Prüfen der elektrischen Leitfähigkeit des Strukturgrundes. Selbst wenn mit Mikro-Carbonfasern Mikrostrukturelemente berührt werden, besteht nicht die Gefahr der Zerstörung, da sich Mikro-Carbonfasern elastisch verbiegen.Because of their high elasticity, their stiffness and their good electrical conductivity, micro-carbon fibers are particularly suitable for testing the electrical conductivity of the structural base. Even if microstructure elements are touched with micro-carbon fibers, there is no risk of destruction because micro-carbon fibers bend elastically.

Unter Mikro-Carbonfasern sollen im folgenden Carbonfasern mit einem Durchmesser von weniger als 100 um verstanden werden. Ihre elektrische Leitfähigkeit soll möglichst hoch sein.In the following, micro-carbon fibers are to be understood as meaning carbon fibers with a diameter of less than 100 μm. Their electrical conductivity should be as high as possible.

Mikro-Carbonfasern sind im Handel erhältlich.Micro carbon fibers are commercially available.

Beispielsweise werden Mikro-Carbonfasern mit einer Dicke von ca. 5 - 10 um als Garne mit einer Filamentzahl zwischen 1000 und 24000 und einer Länge bis zu mehreren 1000 Metern angeboten. Solche Filamente können aus einem Abschnitt eines Garns herausgezogen und verwendet werden. Daneben werden Kurzschnittfasern mit einigen Millimetern Länge angeboten, die ebenfalls brauchbar sind.For example, micro-carbon fibers with a thickness of approx. 5 - 10 µm are offered as yarns with a number of filaments between 1000 and 24000 and a length of up to several 1000 meters. Such filaments can be pulled out of a section of a yarn and used. In addition, short cut fibers with a length of a few millimeters are available, which can also be used.

Der elektrische Widerstand solcher Fasern liegt im Bereich von 1,5 - 10-3 Qcm (ca. eine Größenordnung unter der Leitfähigkeit von Quecksilber).The electrical resistance of such fibers is in the range of 1.5 - 10-3 Qcm (about an order of magnitude below the conductivity of mercury).

Ein kommerzieller Anbieter ist die Fa. Akzo Faser AG, Wuppertal.A commercial provider is Akzo Faser AG, Wuppertal.

Selbstverständlich werden zum erfindungsgemäßen Prüfen der elektrischen Leitfähigkeit solche Mikro-Carbonfasern ausgewählt, die kleiner sind als die Fläche des Strukturgrunds, die kontaktiert werden soll. Ihre Länge muß außerdem die Höhe der benachbarten Mikrostrukturelemente übersteigen. Für die üblicherweise hergestellten mikrostrukturierten Körper können Mikro-Carbonfasern mit einem Durchmesser von weniger als 20 um, insbesondere von 10 um bis 5 um eingesetzt werden.Of course, those micro-carbon fibers that are smaller than the area of the structural base to be contacted are selected for checking the electrical conductivity according to the invention. Their length must also exceed the height of the neighboring microstructure elements. Micro-carbon fibers with a diameter of less than 20 .mu.m, in particular from 10 .mu.m to 5 .mu.m can be used for the usually produced microstructured bodies.

Es ist für die erfindungsgemäße Verwendung völlig ausreichend, wenn eine Mikro-Carbonfaser einer Länge, die die Höhe der benachbarten Mikrostrukturelemente um das 1,5- bis 2-fache übersteigt, mit dem Ende eines üblichen elektrischen Leitungsdraht verbunden ist. Dieser Leitungsdraht und eine elektrische Leitung, die mit der für die Galvanik vorgesehenen Kontaktstelle verbunden ist, werden mit einem üblichen elektrischen Durchgangsprüfer verbunden.It is entirely sufficient for the use according to the invention if a micro-carbon fiber of a length which exceeds the height of the adjacent microstructure elements by 1.5 to 2 times is connected to the end of a conventional electrical lead wire. This lead wire and an electrical lead, which is connected to the contact point provided for the electroplating, are connected to a conventional electrical continuity tester.

Wegen der normalerweise geringen Größe der Mikrostrukturelemente und deren geringem Abstand zueinander wird die Kontaktierung der Mikro-Carbonfaser mit dem Strukturgrund häufig unter dem Mikroskop kontrolliert werden müssen. Die Länge der eingesetzten Mikro-Carbonfaser wird in diesen Fällen so gewählt, daß zumindest das freie Faserende unter dem Mikroskop sichtbar ist. Hierbei ist zu berücksichtigen, daß der elektrische Leitungsdraht im allgemeinen um Größenordnungen dicker ist als die Mikro-Carbonfaser, so daß er die Sicht auf die Faser verdeckt.Because of the normally small size of the microstructure elements and their small distance from one another, the contacting of the microcarbon fiber with the structural base will often have to be checked under the microscope. In these cases, the length of the micro-carbon fiber used is chosen so that at least the free fiber end is visible under the microscope. It should be noted here that the electrical lead wire is generally orders of magnitude thicker than the micro-carbon fiber, so that it obscures the view of the fiber.

Es hat sich gezeigt, daß bei elektrischen Leitungsdrähten von ca. 1 mm Durchmesser die Faser ca. 5 mm lang sein sollte, damit das Faserende auch bei höheren Vergrößerungen und einem entsprechend eomgeengten Sichtfeld im Mikroskop sichtbar bleibt. Vorzugsweise wird die Faser am Leitungsdraht nicht rechtwinklig, sondern leicht abgewinkelt angebracht, so daß der Winkel zwischen Leitungsdraht und Faser etwas größer ist als 900.It has been shown that in the case of electrical lead wires of approximately 1 mm in diameter, the fiber should be approximately 5 mm long so that the fiber end remains visible in the microscope even at higher magnifications and a correspondingly narrow field of view. The fiber is preferably attached to the lead wire not at a right angle, but rather at a slight angle, so that the angle between the lead wire and the fiber is somewhat greater than 900.

Da ein solcher Winkel im allgemeinen nicht exakt einstellbar ist, wird man eine längere Mikro-Carbonfaser am Ende des Leitungsdrahtes anbringen und die Faser entsprechend den gegebenen Sichtverhältnissen unter dem Mikroskop entsprechend kürzen.Since such an angle is generally not exactly adjustable, a longer micro-carbon fiber will be attached to the end of the lead wire and the fiber will be shortened under the microscope in accordance with the given visibility.

Die Verbindung zwischen Mikro-Carbonfasern und einem konventionellen Leitungsdraht kann durch Leitlacke, z. B. durch Silberleitlack hergestellt werden. Bei Bedarf können die Mikro-Carbonfasern leicht ausgetauscht werden. Als Durchgangsprüfer eignet sich ein üblicher Galvaniktester.The connection between micro-carbon fibers and a conventional lead wire can be made by conductive lacquers, e.g. B. be produced by conductive silver lacquer. If necessary, the micro carbon fibers can be easily replaced. A conventional electroplating tester is suitable as a continuity tester.

Ein besonderer Vorteil der Mikro-Carbonfasern ist, daß sie durch spezielle Behandlungsschritte, z.A particular advantage of micro-carbon fibers is that they can be processed through special treatment steps, e.g.

B. durch elektrochemische Verfahren, z. B. elektrochemisches Ätzen der Spitze, verjüngt und zugespitzt werden können. Außerdem können die Mikro-Carbonfasern durch chemische Verfahren modifiziert werden. Solche Behandlungsschritte sind bei der Verwendung von Kohlefasern als Mikroelektroden in der analytischen Elektrochemie bekannt.B. by electrochemical processes, e.g. B. electrochemical etching of the tip, can be tapered and tapered. The micro-carbon fibers can also be modified by chemical processes. Such treatment steps are known when using carbon fibers as microelectrodes in analytical electrochemistry.

Die Erfindung wird im folgenden anhand eines Durchführungsbeispiels und einer Figur näher erläutert.The invention is based on an exemplary embodiment and a figure he he purifies.

In der Figur ist der Meßaufbau dargestellt.The measurement setup is shown in the figure.

Der zu untersuchende mikrostrukturierte Körper 1 wird an der für die Galvanik vorgesehenen Kontaktfläche 2 elektrisch kontaktiert und auf dem Arbeitstisch eines Mikroskops (nicht dargestellt) fixiert. Die elektrische Ableitung 3 vom mikrostrukturierten Körper 1 wird mit einem (nicht dargestellten) elektronischen Leitfähigkeitstester, einem Durchgangsprüfer mit eigener Stromversorgung (UNITEST Typ V1X ohmvariant), verbunden. Das andere Kabel des Leitfähigkeitstesters ist mit einem Draht 4 verbunden, der durch einen (nicht dargestellten) Mikromanipulator bewegt werden kann. Am freien Ende dieses Drahtes 4 befindet sich eine Mikro-Carbonfaser 6, die senkrecht zur Grundplatte 5 des mikrostrukturierten Körpers 1 justiert ist. Die Mikro-Carbonfaser 6 ist ca. 5 mm lang, 7 um dick und wurde durch Kleben mit Silberleitlack mit dem Draht 4 verbunden.The microstructured body 1 to be examined is electrically contacted at the contact surface 2 provided for the electroplating and fixed on the work table of a microscope (not shown). The electrical lead 3 from the microstructured body 1 is connected to an electronic conductivity tester (not shown), a continuity tester with its own power supply (UNITEST type V1X ohmic). The other cable of the conductivity tester is connected to a wire 4 which can be moved by a micromanipulator (not shown). At the free end of this wire 4 there is a micro-carbon fiber 6, which is adjusted perpendicular to the base plate 5 of the micro-structured body 1. The micro-carbon fiber 6 is about 5 mm long, 7 µm thick and was connected to the wire 4 by gluing with silver conductive varnish.

Mit Hilfe des Mikromanipulators wird nun die Mikro-Carbonfaser 6 unter das Objektiv 7 und über den mikrostrukturierten Körper 1 gebracht, so daß die Mikro-Carbonfaser sichtbar ist. Durch Anheben des Arbeitstisches oder durch Absenken der Faser ist es nun möglich, mit der Faser in die Räume 8 zwischen den Mikrostrukturelementen 9 des mikrostrukturierten Körpers 1 zu gelangen, bis der elektrisch leitfähige Strukturgrund 10 des mikrostrukturierten Körpers kontaktiert ist. Ist der Strukturgrund 10 an dieser Stelle frei von elektrisch isolierenden Restschichten, so wird dies durch ein optisches oder akkustisches Signal im Leitfähigkeitstester angezeigt. Ist dagegen eine elektrisch isolierende Restschicht vorhanden, so fließt zwischen der Mikro-Carbonfaser 6 und der Kontaktfläche 2 kein oder nur ein geringer Strom.With the help of the micromanipulator, the micro-carbon fiber 6 is now brought under the objective 7 and over the micro-structured body 1, so that the micro-carbon fiber is visible. By lifting the work table or lowering the fiber, it is now possible to use the fiber to get into the spaces 8 between the microstructure elements 9 of the microstructured body 1 until the electrically conductive structural base 10 of the microstructured body is contacted. If the structural base 10 is free of electrically insulating residual layers at this point, this is indicated by an optical or acoustic signal in the conductivity tester. If, on the other hand, there is an electrically insulating residual layer, no or only a small current flows between the micro-carbon fiber 6 and the contact surface 2.

Mit Hilfe dieser Methode wurden bisher mehrere unterschiedlich gestaltete mikrostrukturierte Körper untersucht. Sie hat sich dabei als sehr nützlich erwiesen. Probleme bezüglich einer mechanischen Schädigung von Mikrostrukturelementen durch Berührungen mit der Mikro-Carbonfaser traten dabei nicht auf, so daß eine zerstörungsfreie Prüfmethode vorliegt. Dies ist vor allem den oben erwähnten besonderen Eigenschaften von Mikro-Carbonfasern zuzuschreiben. Für schnellere Untersuchungen kann die Meßanordnung mit Hilfe eines geeigneten, programmierbaren Mikromanipulators automatisiert werden.Using this method, several differently designed micro-structured bodies have been examined. It has proven very useful. There were no problems with mechanical damage to microstructure elements due to contact with the microcarbon fiber, so that a non-destructive test method is available. This is mainly due to the special properties of micro-carbon fibers mentioned above. For faster investigations, the measuring arrangement can be automated with the aid of a suitable, programmable micromanipulator.

Mit dem erfindungsgemäß zu verwendenden Mikro-Carbonfasern konnten mikrostrukturierte Körper mit unterschiedlichen lateralen Abmessungen untersucht werden. Es wurde der Strukturgrund zwischen 120 um hohen Mikrostrukturelementen kontaktiert, wobei der Strukturgrund Breiten zwischen 200 um bis herunter zu 20 um aufwies.With the micro-carbon fibers to be used according to the invention, micro-structured bodies with different lateral dimensions could be examined. The structural base between 120 μm high microstructure elements was contacted, the structural base having widths between 200 μm down to 20 μm.

Die mikrostrukturierten Körper hatten teilweise die Form von Zahnrädern, teilweise die Form von eng benachbarten Kunststoffsäulen auf einem metallischen Strukturgrund.The microstructured bodies were partly in the form of gearwheels, partly in the form of closely adjacent plastic columns on a metallic structural base.

Claims (3)

1. Verwendung von Mikro-Carbonfasern zum zerstörungsfreien Prüfen der elektrischen Leitfähigkeit des Strukturgrundes von mikrostrukturierten Körpern, bei denen sich auf einem elektrisch leitfähigen Strukturgrund Mikrostrukturelemente aus elektrisch nicht leitfähigem Material erheben.1. Use of micro-carbon fibers for the non-destructive testing of the electrical conductivity of the structural base of microstructured bodies in which microstructural elements made of electrically non-conductive material rise on an electrically conductive structural base. 2. Verwendung von in eine Spitze auslaufenden Mikro-Carbonfasern nach Anspruch 1.2. Use of tapered micro-carbon fibers according to claim 1. 3. Durchgangsprüfer mit zwei Kontaktelektroden, von denen mindestens eine eine Tasterspitze bestehend aus einer Mikro-Carbonfaser darstellt.3. Continuity tester with two contact electrodes, at least one of which is a probe tip consisting of a micro-carbon fiber.
EP93116853A 1992-11-25 1993-10-19 Use of carbon microfibres Expired - Lifetime EP0599049B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4239532A DE4239532C1 (en) 1992-11-25 1992-11-25 Use of micro carbon fibers
DE4239532 1992-11-25

Publications (3)

Publication Number Publication Date
EP0599049A2 true EP0599049A2 (en) 1994-06-01
EP0599049A3 EP0599049A3 (en) 1995-08-16
EP0599049B1 EP0599049B1 (en) 2000-04-12

Family

ID=6473568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93116853A Expired - Lifetime EP0599049B1 (en) 1992-11-25 1993-10-19 Use of carbon microfibres

Country Status (3)

Country Link
EP (1) EP0599049B1 (en)
AT (1) ATE191794T1 (en)
DE (2) DE4239532C1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992073A (en) * 1975-11-24 1976-11-16 Technical Wire Products, Inc. Multi-conductor probe
US4004843A (en) * 1975-09-25 1977-01-25 Westinghouse Electric Corporation Probe pin
JPH02253167A (en) * 1989-03-28 1990-10-11 Hitachi Ltd Probing device
JPH0495881A (en) * 1990-08-10 1992-03-27 Ibiden Co Ltd Electric check device of printed wiring board
EP0483579A2 (en) * 1990-10-31 1992-05-06 International Business Machines Corporation Nanometer scale probe for an atomic force microscope, and method for making the same
US5134364A (en) * 1990-06-19 1992-07-28 Prime Computer, Inc. Elastomeric test probe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537483C1 (en) * 1985-10-22 1986-12-04 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for producing a large number of plate-shaped microstructure bodies made of metal
DE3712268C1 (en) * 1987-04-10 1988-08-11 Kernforschungsz Karlsruhe Process for the production of electrical contact materials
DE3937308C1 (en) * 1989-11-09 1991-03-21 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
DE4010669C1 (en) * 1990-04-03 1991-04-11 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004843A (en) * 1975-09-25 1977-01-25 Westinghouse Electric Corporation Probe pin
US3992073A (en) * 1975-11-24 1976-11-16 Technical Wire Products, Inc. Multi-conductor probe
JPH02253167A (en) * 1989-03-28 1990-10-11 Hitachi Ltd Probing device
US5134364A (en) * 1990-06-19 1992-07-28 Prime Computer, Inc. Elastomeric test probe
JPH0495881A (en) * 1990-08-10 1992-03-27 Ibiden Co Ltd Electric check device of printed wiring board
EP0483579A2 (en) * 1990-10-31 1992-05-06 International Business Machines Corporation Nanometer scale probe for an atomic force microscope, and method for making the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 585 (P-1148) 27. Dezember 1990 & JP-A-02 253 167 (HITACHI) 11. Oktober 1990 *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 323 (P-1386) 15. Juli 1992 & JP-A-04 095 881 (IBIDEN CO) 27. März 1992 *

Also Published As

Publication number Publication date
EP0599049A3 (en) 1995-08-16
EP0599049B1 (en) 2000-04-12
DE4239532C1 (en) 1994-02-10
ATE191794T1 (en) 2000-04-15
DE59310006D1 (en) 2000-05-18

Similar Documents

Publication Publication Date Title
EP0446742B1 (en) Method and apparatus for manufacturing welded electrically-conductive microstructures on probe heads and use thereof
DE2439795C3 (en) Use of a photoelectric cell to determine the point in time at which an oxide layer applied to a semiconductor substrate is etched through
DE102008049200A1 (en) Method for manufacturing X-ray-optical lattice for X-ray dark field image and for X-ray phase contrast image, involves applying X-ray-sensitive layer with electrical conducting cover layer on base plate
EP0341472A2 (en) Ultramicro electrode and method for its production
DE3612651A1 (en) METHOD AND DEVICE FOR DETECTING CRACKS
DE4317285A1 (en) Capacitive measuring probe for the determination of workpiece dimensions
DE2921151A1 (en) DEVICE FOR DETECTING REVERSE ELECTRONES PROCESSING IN A ELECTRON BEAM MICROSCOPE
EP2663870B1 (en) Bar for electrically contacting an electrically conductive substrate
DE19936302A1 (en) Biochip, used in probe for investigating ion channels, has substrate with opening(s) to receive cell membrane with ion channel(s)
DE102011076109A1 (en) Semiconductor test method and apparatus and semiconductor device
DE4406674B4 (en) Method for testing an electrode plate
EP0599049B1 (en) Use of carbon microfibres
DE2301451C3 (en) Touch-sensitive signaling component
DE4328337C1 (en) Method of determining the temperature at a spot-welded joint and use of the method for evaluating the quality of the spot-welded joint
EP1380832B1 (en) Process for estimation of materials adhesive properties
DE19855268B4 (en) Method and device for producing a three-dimensional metallic component
DE102007005657B3 (en) Single walled carbon nano-tubes visualizing method for examination in e.g. atomic force microscope, involves performing electrolytic deposition of metal e.g. nickel, on carbon nano-tubes for forming number nickel beads
DE102019106425A1 (en) Measuring device and method for measuring moisture
EP1317674B1 (en) Method and device for testing the operativeness of printed circuit boards
DE10342644A1 (en) Raster force microscopy probe has nano structure probe tip arm with integrated CMOS piezoelectric sensor
DE102021102582A1 (en) Method for determining the thickness of a coating and method for manufacturing a component
DE102014211352B4 (en) Layer system and method for determining the specific resistance
DD234939A1 (en) MEASURING CELL FOR SIMULTANEOUS ELECTROCHEMICAL AND ESR SPECTROSCOPIC MEASUREMENT OF ELECTROCHEMICAL SYSTEMS
DE3106354C2 (en) Semiconductor device and method for manufacturing the same
DE69907265T2 (en) ELECTROCHEMICAL PROCESSING METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19950708

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990716

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 191794

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59310006

Country of ref document: DE

Date of ref document: 20000518

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001019

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031017

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503