EP0792943A1 - Iron-nickel alloy and cold-rolled strip with cubic texture - Google Patents

Iron-nickel alloy and cold-rolled strip with cubic texture Download PDF

Info

Publication number
EP0792943A1
EP0792943A1 EP97400203A EP97400203A EP0792943A1 EP 0792943 A1 EP0792943 A1 EP 0792943A1 EP 97400203 A EP97400203 A EP 97400203A EP 97400203 A EP97400203 A EP 97400203A EP 0792943 A1 EP0792943 A1 EP 0792943A1
Authority
EP
European Patent Office
Prior art keywords
iron
nickel alloy
strip
cold
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97400203A
Other languages
German (de)
French (fr)
Other versions
EP0792943B1 (en
Inventor
Lucien Coutu
Pierre Louis Reydet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Stainless Precision SAS
Original Assignee
Imphy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imphy SA filed Critical Imphy SA
Publication of EP0792943A1 publication Critical patent/EP0792943A1/en
Application granted granted Critical
Publication of EP0792943B1 publication Critical patent/EP0792943B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Definitions

  • the present invention relates to an iron-nickel alloy.
  • Iron-nickel alloys the chemical composition of which comprises, by weight, from 27% to 60% of nickel, from 0% to 7% of cobalt, the rest being iron and impurities resulting from the production, are used in the form cold-rolled and annealed strips, in particular for manufacturing soft magnetic cores.
  • Annealing carried out on very cold-worked cold-rolled strips, has the advantage of giving these alloys a cubic recrystallization texture whose magnetic properties are very favorable for certain applications such as wound cores for magnetic amplifiers.
  • the iron-nickel alloy strips with a cubic texture have a very rectangular hysteresis cycle (Br / Bs> 95%).
  • the annealing temperature range favorable to obtaining a good texture and satisfactory magnetic properties is too narrow, less than 25 ° C., for manufacturing to be reliable, in particular because the position of this temperature range depends poorly known parameters.
  • the object of the present invention is to remedy this drawback by proposing an iron-nickel alloy which is easier to manufacture than the alloy according to the prior art.
  • the subject of the invention is an iron-nickel alloy, the chemical composition of which comprises, by weight: 30% ⁇ Ni + Co ⁇ 85% 0% ⁇ Co + Cu + Mn ⁇ 10% 0% ⁇ Mo + W + Cr ⁇ 4% 0% ⁇ V + If ⁇ 2% 0% ⁇ Nb + Ta ⁇ 1% 0.003% ⁇ C ⁇ 0.05% 0.003% ⁇ Ti ⁇ 0.15% 0.003% ⁇ Ti + Zr + Hf ⁇ 0.15% 0.001% ⁇ S + Se + Te ⁇ 0.015% the remainder being iron and impurities resulting from the preparation, the chemical composition satisfying, moreover, the relation: 0% ⁇ Nb + Ta + Ti + Al ⁇ 1%
  • the chemical composition is such that: 0.005% ⁇ Ti ⁇ 0.05% 0.001% ⁇ Hf + Zr ⁇ 0.025%
  • the manganese content must be greater than 0.05% and it need not be greater than 1%. Likewise, it is preferable that Nb + Ta ⁇ 0.05%.
  • the contents of impurities are such that: Mg ⁇ 0.001% Ca ⁇ 0.0025% Al ⁇ 0.05% O ⁇ 0.0025% N ⁇ 0.005% P ⁇ 0.01% Sc + Y + La + Ce + Pr + Nd + Sm ⁇ 0.01%
  • the invention also relates to a cold-rolled strip of iron-nickel alloy according to the invention whose recrystallization texture is cubic of the type (100) ⁇ 001>, and its use for the manufacture of a shadow mask for tube. cathode visualization or toric magnetic core.
  • the inventors have found, unexpectedly, that by adding to an iron-nickel alloy otherwise in accordance with the prior art, a small amount of titanium, accompanied, possibly, small amounts of Zr or Hf, in the presence of small amounts of S, Se or Te, and possibly of Nb, Ta, C or Mn, the annealing temperature range of the alloy was very significantly enlarged, making it possible to obtain a cubic texture (100) ⁇ 001> very favorable for obtaining good magnetic properties. With these additions, the width of the satisfactory temperature range exceeds 50 ° C., while this width is usually less than 25 ° C.
  • the iron-nickel alloys concerned capable of exhibiting a cubic structure mainly contain iron and nickel, the nickel possibly being partially substituted by cobalt. They can also contain, in particular, copper, manganese, molybdenum, tungsten, vanadium, chromium and silicon.
  • the rest of the composition consists of iron, the elements specific to the invention, and impurities.
  • the impurities are, in particular, magnesium, calcium, aluminum, oxygen, nitrogen, phosphorus and rare earths.
  • the contents of these elements are such that: Mg ⁇ 0.001% Ca ⁇ 0.0025% Al ⁇ 0.05% 0 ⁇ 0.0025% N ⁇ 0.005% P ⁇ 0.01% Sc + Y + La + Ce + Pr + Nd + Sm ⁇ 0.01%
  • This alloy can be produced in an arc furnace, continuously cast in the form of a slab or thin strip, or in an ingot, then hot rolled in the form of a hot strip.
  • the hot strip is then cold rolled with a work hardening rate greater than 80%, and preferably greater than or equal to 90%, to obtain a cold rolled strip.
  • the annealing When the cold-rolled strip is intended for the production of toric magnetic cores, the annealing must give the alloy not only a cubic texture, but also a weakest coercive field possible. In this case, it is preferable, first, to cut and wind the strip to form a toric core. The O-ring is then annealed at a temperature between 850 ° C and 1200 ° C to cause primary recrystallization which generates the formation of a cubic texture (100) ⁇ 001>.
  • the annealing temperature must be adjusted to, on the one hand, remain below the critical secondary recrystallization temperature with giant grains, and, on the other hand, so that the quantities Bm, Bm-Br, H1 and ⁇ H measured by the CCFR method according to ASTM A598-92 in the chapter "Standard Method For Magnetic Properties of Magnetic Amplifier Cores" are such that: Bm> 14500 Gauss Bm-Br ⁇ 400 Gauss H1 between 0.15 and 0.30 Oersteds ⁇ H ⁇ 0.035 Oersteds.
  • the heat treatment can also be carried out directly on the cold-rolled strip, with possibly less constraints on the search for magnetic properties. This is, in particular, the case when the nickel content is close to 36% and the strip is used for the manufacture of shadow masks for cathode-ray viewing tubes; the cubic texture is, in fact, particularly favorable for a good quality of the drilling of holes by chemical etching.
  • Annealing is then carried out at a temperature above 550 ° C. and below the secondary recrystallization temperature. When it is not essential to have a particularly low coercive field, the annealing temperature is generally less than 800 ° C.
  • Critical temperatures were determined using a thermal gradient oven.
  • the chemical compositions of the alloys were, by weight%: Fe Or Mn Yes VS S Al Ti Hf AT ball 36.1 0.4 0.09 0.005 7 ppm ⁇ 0.005 0 0 B ball 36.4 0.3 0.1 0.012 30ppm 0.01 0.019 0.007
  • the critical temperatures were: 83% 90% 95% AT 970 ° C 1020 ° C 1040 ° C B 1060 ° C 1090 ° C 1090 ° C
  • the alloys 1, 2 and 3 were manufactured according to the prior art and the alloys 4, 5 and 6 according to the invention. These alloys were cold rolled in the form of strips of 0.05 mm thick with work hardening rates of 95%, then the annealing temperature range was determined making it possible to obtain a cubic structure (100) ⁇ 001> as well as the magnetic properties mentioned above.
  • the chemical compositions were, in% by weight: alloy Fe * Or Mn Yes VS S Al Ti Zr Hf Nb 1 Ball 47.5 0.38 0.1 0.007 0.005 ⁇ 0.005 - - - - 2 Ball 47.8 0.51 0.21 0.005 0.005 ⁇ 0.005 - - - - 3 Ball 48 0.49 0.23 0.001 0.004 ⁇ 0.005 - - - - 4 Ball 47.5 0.48 0.22 0.009 0.005 ⁇ 0.005 0.021 0.003 - - 5 Ball 47.4 0.49 0.24 0.008 0.004 0.011 0.023 - - 0.02 6 Ball 47.5 0.26 0.01 0.0011 0.005 0.015 0.023 - 0.002 0.026 * Fe and impurities
  • the magnetic properties and the satisfactory annealing temperature range were: alloy Bm (gauss) Bm-Br (gauss) H1 (Oersteds) ⁇ H (Oersteds) ⁇ satisfactory annealing ° C 1 14800 140 0.34 0.042 - 2 14500 170 0.36 0.021 - 3 14600 240 0.27 0.032 975/1000 4 14500 190 0.28 0.029 1040/1100 5 14700 130 0.28 0.024 950/1050 6 15000 140 0.26 0.031 1000/1100
  • alloys 1 and 2 according to the prior art it is not possible to obtain all of the magnetic characteristics required, namely: Bm> 14500 Gauss, Bm-Br ⁇ 400 Gauss, H1 between 0.15 and 0.30 Oersteds, ⁇ H ⁇ 0.035 Oersteds.
  • the satisfactory annealing temperature range has a range of 25 ° C
  • the satisfactory annealing temperature range has a range of 60 ° C, 100 ° C and 100 ° C respectively.

Abstract

Iron-nickel alloy has the composition (by wt.): 30-85%Ni + Co, 0-10% Co + Cu + Mn, 0-4% Mo + W + Cr, 0-2% V + Si, 0-1% Nb + Ta, 0.003-0.05% C, 0.003-0.15% Ti, 0.003-0.15% Ti + Zr + Hf, 0.001-0.015% (exclusive) S + Se + Te, 0-1% Nb + Ta + Ti + Al, balance Fe and impurities. Also claimed are: (i) a method of producing a cubic textured cold rolled strip of the above alloy; and (ii) a method of producing a toric magnetic core of the above alloy. Also claimed are: (i) a cold rolled strip of the above iron-nickel alloy, having a cubic recrystallisation texture of (100)(001) type; (ii) use of this strip for making a shadow mask for a CRT; and (iii) a toric magnetic core of the above alloy having a cubic texture. Preferably, the alloy contains 0.005-0.05% Ti, 0.001-0.025% Hf + Zr, 0.002-0.007% S, 0.005-0.02% C, 0.05-1% Mn and ≤ 0.05% Nb + Ta. The impurities preferably comprise less than 0.001% Mg, less than 0.0025% Ca, less than 0.05% Al, 0.0025% O, less than 0.005% N, less than 0.01% P and less than 0.01% total of Sc, Y, La, Ce, Pr, Nd and Sm.

Description

La présente invention concerne un alliage fer-nickel.The present invention relates to an iron-nickel alloy.

Les alliages fer-nickel dont la composition chimique comprend, en poids, de 27% à 60% de nickel, de 0% à 7% de cobalt, le reste étant du fer et des impuretés résultant de l'élaboration, sont utilisés sous forme de bandes laminées à froid et recuites, notamment pour fabriquer des noyaux magnétiques doux. Le recuit, effectué sur des bandes laminées à froid très fortement écrouies, a l'avantage de conférer à ces alliages une texture de recristallisation cubique dont les propriétés magnétiques sont très favorables pour certaines applications telles que les noyaux bobinés pour amplificateurs magnétiques. En particulier, les bandes en alliage fer-nickel à texture cubique ont un cycle d'hystérésis très rectangulaire (Br/Bs > 95 %). Cependant, ces alliages ont l'inconvénient d'être difficiles à fabriquer. Le domaine de température de recuit favorable à l'obtention d'une bonne texture et de propriétés magnétiques satisfaisantes est trop étroit, moins de 25 °C, pour que la fabrication soit fiable, en particulier parce que la position de ce domaine de température dépend de paramètres mal connus.Iron-nickel alloys, the chemical composition of which comprises, by weight, from 27% to 60% of nickel, from 0% to 7% of cobalt, the rest being iron and impurities resulting from the production, are used in the form cold-rolled and annealed strips, in particular for manufacturing soft magnetic cores. Annealing, carried out on very cold-worked cold-rolled strips, has the advantage of giving these alloys a cubic recrystallization texture whose magnetic properties are very favorable for certain applications such as wound cores for magnetic amplifiers. In particular, the iron-nickel alloy strips with a cubic texture have a very rectangular hysteresis cycle (Br / Bs> 95%). However, these alloys have the disadvantage of being difficult to manufacture. The annealing temperature range favorable to obtaining a good texture and satisfactory magnetic properties is too narrow, less than 25 ° C., for manufacturing to be reliable, in particular because the position of this temperature range depends poorly known parameters.

Le but de la présente invention est de remédier à cet inconvénient en proposant un alliage fer-nickel plus facile à fabriquer que l'alliage selon l'art antérieur.The object of the present invention is to remedy this drawback by proposing an iron-nickel alloy which is easier to manufacture than the alloy according to the prior art.

A cet effet, l'invention a pour objet un alliage fer-nickel dont la composition chimique comprend, en poids: 30% ≤ Ni + Co ≤ 85%

Figure imgb0001
0% ≤ Co + Cu + Mn ≤ 10%
Figure imgb0002
0% ≤ Mo + W + Cr ≤ 4%
Figure imgb0003
0% ≤ V + Si ≤ 2%
Figure imgb0004
0% ≤ Nb + Ta ≤ 1%
Figure imgb0005
0,003% ≤ C ≤ 0,05%
Figure imgb0006
0,003% ≤ Ti ≤ 0,15%
Figure imgb0007
0,003% ≤ Ti + Zr + Hf ≤ 0,15%
Figure imgb0008
0,001% ≤ S + Se + Te ≤ 0,015%
Figure imgb0009
le reste étant du fer et des impuretés résultant de l'élaboration, la composition chimique satisfaisant, en outre, la relation: 0% ≤ Nb + Ta + Ti + Al ≤ 1%
Figure imgb0010
To this end, the subject of the invention is an iron-nickel alloy, the chemical composition of which comprises, by weight: 30% ≤ Ni + Co ≤ 85%
Figure imgb0001
0% ≤ Co + Cu + Mn ≤ 10%
Figure imgb0002
0% ≤ Mo + W + Cr ≤ 4%
Figure imgb0003
0% ≤ V + If ≤ 2%
Figure imgb0004
0% ≤ Nb + Ta ≤ 1%
Figure imgb0005
0.003% ≤ C ≤ 0.05%
Figure imgb0006
0.003% ≤ Ti ≤ 0.15%
Figure imgb0007
0.003% ≤ Ti + Zr + Hf ≤ 0.15%
Figure imgb0008
0.001% ≤ S + Se + Te ≤ 0.015%
Figure imgb0009
the remainder being iron and impurities resulting from the preparation, the chemical composition satisfying, moreover, the relation: 0% ≤ Nb + Ta + Ti + Al ≤ 1%
Figure imgb0010

De préférence, la composition chimique est telle que: 0,005 % ≤ Ti ≤ 0,05 % 0,001% ≤ Hf + Zr ≤ 0,025%

Figure imgb0011
Preferably, the chemical composition is such that: 0.005% ≤ Ti ≤ 0.05% 0.001% ≤ Hf + Zr ≤ 0.025%
Figure imgb0011

Il est également préférable que: 0,002% ≤ S ≤ 0,007%

Figure imgb0012
et il est souhaitable que: 0,005% ≤ C ≤ 0,02 %
Figure imgb0013
It is also preferable that: 0.002% ≤ S ≤ 0.007%
Figure imgb0012
and it is desirable that: 0.005% ≤ C ≤ 0.02%
Figure imgb0013

De préférence, la teneur en manganèse doit être supérieure à 0,05% et il n'est pas utile qu'elle soit supérieure à 1%. De même, il est préférable que Nb + Ta ≤ 0,05%.Preferably, the manganese content must be greater than 0.05% and it need not be greater than 1%. Likewise, it is preferable that Nb + Ta ≤ 0.05%.

IL est souhaitable que les teneurs en impuretés soient telles que: Mg < 0,001%

Figure imgb0014
Ca ≤ 0,0025%
Figure imgb0015
Al ≤ 0,05%
Figure imgb0016
O < 0,0025%
Figure imgb0017
N < 0,005%
Figure imgb0018
P < 0,01%
Figure imgb0019
Sc + Y + La + Ce + Pr + Nd + Sm < 0,01%
Figure imgb0020
It is desirable that the contents of impurities are such that: Mg <0.001%
Figure imgb0014
Ca ≤ 0.0025%
Figure imgb0015
Al ≤ 0.05%
Figure imgb0016
O <0.0025%
Figure imgb0017
N <0.005%
Figure imgb0018
P <0.01%
Figure imgb0019
Sc + Y + La + Ce + Pr + Nd + Sm <0.01%
Figure imgb0020

L'invention concerne également une bande laminée à froid en alliage fer-nickel selon l'invention dont la texture de recristallisation est cubique du type (100)<001>, et son utilisation pour la fabrication d'un masque d'ombre pour tube de visualisation cathodique ou d'un noyau magnétique torique.The invention also relates to a cold-rolled strip of iron-nickel alloy according to the invention whose recrystallization texture is cubic of the type (100) <001>, and its use for the manufacture of a shadow mask for tube. cathode visualization or toric magnetic core.

L'invention va maintenant être décrite de façon plus précise mais non limitative, et être illustrée par les exemples qui suivent.The invention will now be described in a more precise but nonlimiting manner, and will be illustrated by the examples which follow.

Les inventeurs ont constaté, de façon inattendue, qu'en ajoutant à un alliage fer-nickel par ailleurs conforme à l'art antérieur, une petite quantité de titane, accompagnée, éventuellement, petites quantités de Zr ou Hf, en présence de petites quantités de S, Se ou Te, et, éventuellement, de Nb, Ta, C ou Mn, on élargissait de façon très sensible le domaine de température de recuit de l'alliage permettant d'obtenir une texture cubique (100)<001> très favorable à l'obtention de bonnes propriétés magnétiques. Avec ces additions, la largeur du domaine de température satisfaisant dépasse 50 °C alors qu'habituellement, cette largeur est inférieure à 25°C.The inventors have found, unexpectedly, that by adding to an iron-nickel alloy otherwise in accordance with the prior art, a small amount of titanium, accompanied, possibly, small amounts of Zr or Hf, in the presence of small amounts of S, Se or Te, and possibly of Nb, Ta, C or Mn, the annealing temperature range of the alloy was very significantly enlarged, making it possible to obtain a cubic texture (100) <001> very favorable for obtaining good magnetic properties. With these additions, the width of the satisfactory temperature range exceeds 50 ° C., while this width is usually less than 25 ° C.

Les alliages fer-nickel concernés susceptibles de présenter une structure cubique contiennent principalement du fer et du nickel, le nickel pouvant être partiellement substitué par du cobalt. Ils peuvent également contenir, notamment, du cuivre, du manganèse, du molybdène, du tungstène, du vanadium, du chrome et du silicium.The iron-nickel alloys concerned capable of exhibiting a cubic structure mainly contain iron and nickel, the nickel possibly being partially substituted by cobalt. They can also contain, in particular, copper, manganese, molybdenum, tungsten, vanadium, chromium and silicon.

Exprimées en poids %, les teneurs en ces éléments sont telles que: 30% ≤ Ni + Co ≤ 85%

Figure imgb0021
0% ≤ Co + Cu + Mn ≤ 10%
Figure imgb0022
0% ≤ Mo + W + Cr ≤ 4%
Figure imgb0023
0% ≤ V + Si ≤ 2%
Figure imgb0024
Expressed by weight%, the contents of these elements are such that: 30% ≤ Ni + Co ≤ 85%
Figure imgb0021
0% ≤ Co + Cu + Mn ≤ 10%
Figure imgb0022
0% ≤ Mo + W + Cr ≤ 4%
Figure imgb0023
0% ≤ V + If ≤ 2%
Figure imgb0024

Le reste de la composition est constitué par du fer, les éléments propres à l'invention, et des impuretés.The rest of the composition consists of iron, the elements specific to the invention, and impurities.

Pour que ces alliages puissent avoir une structure cubique, il est également nécessaire que, si ils contiennent du titane, de l'aluminium, du niobium ou du tantale, on ait: Ti + Al + Nb + Ta ≤ 1%

Figure imgb0025
So that these alloys can have a cubic structure, it is also necessary that, if they contain titanium, aluminum, niobium or tantalum, we have: Ti + Al + Nb + Ta ≤ 1%
Figure imgb0025

Les impuretés sont, notamment, le magnésium, le calcium, l'aluminium, l'oxygène, l'azote, le phosphore et les terres rares. De préférence, les teneurs en ces éléments sont telles que: Mg < 0,001%

Figure imgb0026
Ca < 0,0025%
Figure imgb0027
Al < 0,05%
Figure imgb0028
0 < 0,0025%
Figure imgb0029
N < 0,005%
Figure imgb0030
P < 0,01%
Figure imgb0031
Sc + Y + La + Ce + Pr + Nd + Sm < 0,01%
Figure imgb0032
The impurities are, in particular, magnesium, calcium, aluminum, oxygen, nitrogen, phosphorus and rare earths. Preferably, the contents of these elements are such that: Mg <0.001%
Figure imgb0026
Ca <0.0025%
Figure imgb0027
Al <0.05%
Figure imgb0028
0 <0.0025%
Figure imgb0029
N <0.005%
Figure imgb0030
P <0.01%
Figure imgb0031
Sc + Y + La + Ce + Pr + Nd + Sm <0.01%
Figure imgb0032

Conformément à l'invention, l'alliage contient:

  • de 0,003% à 0,15% de titane,
  • éventuellement, au moins un élément pris parmi Zr et Hf, la somme des teneurs en Ti, Zr et Hf étant comprise entre 0,003% et 0,15%; il est préférable d'avoir simultanément 0,005% ≤ Ti ≤ 0,05% et 0,001% ≤ Hf + Zr ≤ 0,025%;
  • de 0,003% à 0,05%, et de préférence, de 0,005% à 0,02% de carbone;
  • éventuellement au moins un élément pris parmi Nb et Ta, la somme des teneurs en ces éléments ne dépassant pas, de préférence, 0,05%;
  • de préférence, plus de 0,05% de manganèse; lorsqu'une forte addition de manganèse n'est pas utile ou pas souhaitable, la teneur en cet élément est limitée à 1%.
According to the invention, the alloy contains:
  • from 0.003% to 0.15% titanium,
  • optionally, at least one element taken from Zr and Hf, the sum of the contents of Ti, Zr and Hf being between 0.003% and 0.15%; it is preferable to have simultaneously 0.005% ≤ Ti ≤ 0.05% and 0.001% ≤ Hf + Zr ≤ 0.025%;
  • from 0.003% to 0.05%, and preferably from 0.005% to 0.02% carbon;
  • optionally at least one element taken from Nb and Ta, the sum of the contents of these elements preferably not exceeding 0.05%;
  • preferably more than 0.05% manganese; when a strong addition of manganese is not useful or undesirable, the content of this element is limited to 1%.

Cet alliage peut être élaboré au four à arc, coulé en continu sous forme de brame ou de bande mince, ou en lingot, puis laminé à chaud sous forme de bande à chaud. La bande à chaud est alors laminée à froid avec un taux d'écrouissage supérieur à 80%, et de préférence supérieur ou égal à 90%, pour obtenir une bande laminée à froid.This alloy can be produced in an arc furnace, continuously cast in the form of a slab or thin strip, or in an ingot, then hot rolled in the form of a hot strip. The hot strip is then cold rolled with a work hardening rate greater than 80%, and preferably greater than or equal to 90%, to obtain a cold rolled strip.

Lorsque la bande laminée à froid est destinée à la fabrication de noyaux magnétiques toriques, le recuit doit conférer à l'alliage non seulement une texture cubique, mais, également, un champ coercitif le plus faible possible. Dans ce cas, il est préférable, d'abord, de découper et d'enrouler la bande pour former un noyau torique. Le noyau torique est alors recuit à une température comprise entre 850°C et 1200°C pour provoquer une recristallisation primaire qui engendre la formation d'une texture cubique (100)<001>. La température de recuit doit être ajustée pour, d'une part, rester inférieure à la température critique de recristallisation secondaire à grains géants, et, d'autre part, pour que les grandeurs Bm, Bm-Br, H1 et ΔH mesurées par la méthode CCFR selon la norme ASTM A598-92 au chapitre "Standard Method For Magnetic Properties of Magnetic Amplifier Cores" soient telles que: Bm > 14500 Gauss

Figure imgb0033
Bm-Br < 400 Gauss
Figure imgb0034
H1 compris entre 0,15 et 0,30 Oersteds ΔH < 0,035 Oersteds.
Figure imgb0035
When the cold-rolled strip is intended for the production of toric magnetic cores, the annealing must give the alloy not only a cubic texture, but also a weakest coercive field possible. In this case, it is preferable, first, to cut and wind the strip to form a toric core. The O-ring is then annealed at a temperature between 850 ° C and 1200 ° C to cause primary recrystallization which generates the formation of a cubic texture (100) <001>. The annealing temperature must be adjusted to, on the one hand, remain below the critical secondary recrystallization temperature with giant grains, and, on the other hand, so that the quantities Bm, Bm-Br, H1 and ΔH measured by the CCFR method according to ASTM A598-92 in the chapter "Standard Method For Magnetic Properties of Magnetic Amplifier Cores" are such that: Bm> 14500 Gauss
Figure imgb0033
Bm-Br <400 Gauss
Figure imgb0034
H1 between 0.15 and 0.30 Oersteds ΔH <0.035 Oersteds.
Figure imgb0035

Le traitement thermique peut également être effectué directement sur la bande laminée à froid, avec éventuellement moins de contraintes sur la recherche de propriétés magnétiques. C'est, notamment, le cas lorsque la teneur en nickel est voisine de 36 % et que la bande est utilisée pour la fabrication de masques d'ombre pour tubes de visualisation cathodique; la texture cubique est, en effet, particulièrement favorable à une bonne qualité du perçage de trous par gravure chimique. Le recuit est alors réalisé à une température supérieure à 550°C et inférieure à la température de recristallisation secondaire. Lorsqu'il n'est pas indispensable d'avoir un champ coercitif particulièrement bas, la température de recuit est, en général, inférieure à 800°C.The heat treatment can also be carried out directly on the cold-rolled strip, with possibly less constraints on the search for magnetic properties. This is, in particular, the case when the nickel content is close to 36% and the strip is used for the manufacture of shadow masks for cathode-ray viewing tubes; the cubic texture is, in fact, particularly favorable for a good quality of the drilling of holes by chemical etching. Annealing is then carried out at a temperature above 550 ° C. and below the secondary recrystallization temperature. When it is not essential to have a particularly low coercive field, the annealing temperature is generally less than 800 ° C.

A titre d'exemple, et pour mettre en évidence les effets de l'invention, on a déterminé la température critique d'apparition de la recristallisation secondaire à grains géants des alliages A (selon l'art antérieur) et B (selon l'invention) laminée à froid avec des taux d'écrouissage de 83%, 90% et 95%. Les températures critiques ont été déterminées en utilisant un four à gradient thermique.By way of example, and in order to highlight the effects of the invention, the critical temperature for the appearance of secondary recrystallization with giant grains of the alloys A (according to the prior art) and B (according to the invention) cold rolled with hardening rates of 83%, 90% and 95%. Critical temperatures were determined using a thermal gradient oven.

Les compositions chimiques des alliages étaient, en poids %: Fe Ni Mn Si C S Al Ti Hf A bal 36,1 0,4 0,09 0,005 7 ppm < 0,005 0 0 B bal 36,4 0,3 0,1 0,012 30ppm 0,01 0,019 0,007 The chemical compositions of the alloys were, by weight%: Fe Or Mn Yes VS S Al Ti Hf AT ball 36.1 0.4 0.09 0.005 7 ppm <0.005 0 0 B ball 36.4 0.3 0.1 0.012 30ppm 0.01 0.019 0.007

Pour les différents taux d'écrouissage, les températures critiques étaient: 83% 90% 95% A 970°C 1020°C 1040°C B 1060°C 1090°C 1090°C For the different work hardening rates, the critical temperatures were: 83% 90% 95% AT 970 ° C 1020 ° C 1040 ° C B 1060 ° C 1090 ° C 1090 ° C

Ces exemples montrent que l'alliage selon l'invention conserve une structure cubique à une température supérieure à 1050°C même pour un taux d'écrouissage relativement faible (83%), et, dans tous les cas, supérieure de 50°C aux températures de recristallisation de l'alliage selon l'art antérieur.These examples show that the alloy according to the invention retains a cubic structure at a temperature greater than 1050 ° C. even for a relatively low work hardening rate (83%), and, in all cases, greater than 50 ° C. recrystallization temperatures of the alloy according to the prior art.

Egalement à titre d'exemple et de comparaison, on a fabriqué les alliages 1, 2 et 3 selon l'art antérieur et les alliages 4, 5 et 6 selon l'invention. Ces alliages on été laminés à froid sous forme de bandes de 0,05 mm d'épaisseur avec des taux d'écrouissage de 95 %, puis on a déterminé le domaine de température de recuit permettant d'obtenir une structure cubique (100)<001> ainsi que les propriétés magnétiques citées plus haut.Also by way of example and comparison, the alloys 1, 2 and 3 were manufactured according to the prior art and the alloys 4, 5 and 6 according to the invention. These alloys were cold rolled in the form of strips of 0.05 mm thick with work hardening rates of 95%, then the annealing temperature range was determined making it possible to obtain a cubic structure (100) < 001> as well as the magnetic properties mentioned above.

Les compositions chimiques étaient, en % en poids: alliage Fe* Ni Mn Si C S Al Ti Zr Hf Nb 1 Bal 47,5 0,38 0,1 0,007 0,005 < 0,005 - - - - 2 Bal 47,8 0,51 0,21 0,005 0,005 < 0,005 - - - - 3 Bal 48 0,49 0,23 0,001 0,004 < 0,005 - - - - 4 Bal 47,5 0,48 0,22 0,009 0,005 < 0,005 0,021 0,003 - - 5 Bal 47,4 0,49 0,24 0,008 0,004 0,011 0,023 - - 0,02 6 Bal 47,5 0,26 0,01 0,0011 0,005 0,015 0,023 - 0,002 0,026 * Fe et impuretés The chemical compositions were, in% by weight: alloy Fe * Or Mn Yes VS S Al Ti Zr Hf Nb 1 Ball 47.5 0.38 0.1 0.007 0.005 <0.005 - - - - 2 Ball 47.8 0.51 0.21 0.005 0.005 <0.005 - - - - 3 Ball 48 0.49 0.23 0.001 0.004 <0.005 - - - - 4 Ball 47.5 0.48 0.22 0.009 0.005 <0.005 0.021 0.003 - - 5 Ball 47.4 0.49 0.24 0.008 0.004 0.011 0.023 - - 0.02 6 Ball 47.5 0.26 0.01 0.0011 0.005 0.015 0.023 - 0.002 0.026 * Fe and impurities

Les propriétés magnétiques et le domaine de température de recuit satisfaisant étaient: alliage Bm(gauss) Bm-Br(gauss) H1(Oersteds) ΔH(Oersteds) Θ recuit satisfaisante °C 1 14800 140 0,34 0,042 - 2 14500 170 0,36 0,021 - 3 14600 240 0,27 0,032 975/1000 4 14500 190 0,28 0,029 1040/1100 5 14700 130 0,28 0,024 950/1050 6 15000 140 0,26 0,031 1000/1100 The magnetic properties and the satisfactory annealing temperature range were: alloy Bm (gauss) Bm-Br (gauss) H1 (Oersteds) ΔH (Oersteds) Θ satisfactory annealing ° C 1 14800 140 0.34 0.042 - 2 14500 170 0.36 0.021 - 3 14600 240 0.27 0.032 975/1000 4 14500 190 0.28 0.029 1040/1100 5 14700 130 0.28 0.024 950/1050 6 15000 140 0.26 0.031 1000/1100

On constate sur ces résultats qu'avec les alliages 1 et 2 selon l'art antérieur il n'est pas possible d'obtenir l'ensemble des caractéristiques magnétiques requises à savoir: Bm > 14500 Gauss, Bm-Br < 400 Gauss, H1 compris entre 0,15 et 0,30 Oersteds, ΔH < 0,035 Oersteds. Pour l'alliage 3 selon l'art antérieur le domaine de température de recuit satisfaisant a une étendue de 25 °C, alors que, pour les alliages 4, 5 et 6, le domaine de température de recuit satisfaisant a une étendue de 60 °C, 100°C et 100°C respectivement. Ces exemples illustrent clairement les difficultés rencontrées avec les alliages selon l'art antérieur et l'avantage apporté par l'invention.It can be seen from these results that with alloys 1 and 2 according to the prior art it is not possible to obtain all of the magnetic characteristics required, namely: Bm> 14500 Gauss, Bm-Br <400 Gauss, H1 between 0.15 and 0.30 Oersteds, ΔH <0.035 Oersteds. For alloy 3 according to the prior art, the satisfactory annealing temperature range has a range of 25 ° C, whereas, for alloys 4, 5 and 6, the satisfactory annealing temperature range has a range of 60 ° C, 100 ° C and 100 ° C respectively. These examples clearly illustrate the difficulties encountered with the alloys according to the prior art and the advantage provided by the invention.

Claims (13)

Alliage fer-nickel caractérisé en ce que sa composition chimique comprend, en poids: 30% ≤ Ni + Co ≤ 85%
Figure imgb0036
0% ≤ Co + Cu + Mn ≤ 10%
Figure imgb0037
0% ≤ Mo + W + Cr ≤ 4%
Figure imgb0038
0% ≤ V + Si ≤ 2%
Figure imgb0039
0% ≤ Nb + Ta ≤ 1%
Figure imgb0040
0,003% ≤ C ≤ 0,05%
Figure imgb0041
0,003% ≤ Ti ≤ 0,15%
Figure imgb0042
0,003% ≤ Ti + Zr + Hf ≤ 0,15%
Figure imgb0043
0,001% < S + Se + Te < 0,015%
Figure imgb0044
le reste étant du fer et des impuretés résultant de l'élaboration, la composition chimique satisfaisant, en outre la relation: 0% ≤ Nb + Ta + Ti + Al ≤ 1%
Figure imgb0045
Iron-nickel alloy characterized in that its chemical composition comprises, by weight: 30% ≤ Ni + Co ≤ 85%
Figure imgb0036
0% ≤ Co + Cu + Mn ≤ 10%
Figure imgb0037
0% ≤ Mo + W + Cr ≤ 4%
Figure imgb0038
0% ≤ V + If ≤ 2%
Figure imgb0039
0% ≤ Nb + Ta ≤ 1%
Figure imgb0040
0.003% ≤ C ≤ 0.05%
Figure imgb0041
0.003% ≤ Ti ≤ 0.15%
Figure imgb0042
0.003% ≤ Ti + Zr + Hf ≤ 0.15%
Figure imgb0043
0.001% <S + Se + Te <0.015%
Figure imgb0044
the remainder being iron and impurities resulting from the preparation, the chemical composition satisfying, in addition the relationship: 0% ≤ Nb + Ta + Ti + Al ≤ 1%
Figure imgb0045
Alliage fer-nickel selon la revendication 1 caractérisé en ce que: 0,005 % ≤ Ti ≤ 0,05 %
Figure imgb0046
0,001% ≤ Hf + Zr ≤ 0,025%
Figure imgb0047
Iron-nickel alloy according to claim 1 characterized in that: 0.005% ≤ Ti ≤ 0.05%
Figure imgb0046
0.001% ≤ Hf + Zr ≤ 0.025%
Figure imgb0047
Alliage fer-nickel selon la revendication 1 ou la revendication 2 caractérisé en ce que: 0,002% ≤ S ≤ 0,007%
Figure imgb0048
Iron-nickel alloy according to claim 1 or claim 2 characterized in that: 0.002% ≤ S ≤ 0.007%
Figure imgb0048
Alliage fer-nickel selon l'une quelconque des revendications 1 à 3 caractérisé en ce que: 0,005% ≤ C ≤ 0,02 %
Figure imgb0049
Iron-nickel alloy according to any one of Claims 1 to 3, characterized in that: 0.005% ≤ C ≤ 0.02%
Figure imgb0049
Alliage fer-nickel selon l'une quelconque des revendications 1 à 4 caractérisé en ce que: 0,05% ≤ Mn
Figure imgb0050
Iron-nickel alloy according to any one of Claims 1 to 4, characterized in that: 0.05% ≤ Mn
Figure imgb0050
Alliage fer-nickel selon l'une quelconque des revendications 1 à 5 caractérisé en ce que: Mn ≤ 1%
Figure imgb0051
Iron-nickel alloy according to any one of Claims 1 to 5, characterized in that: Mn ≤ 1%
Figure imgb0051
Alliage fer-nickel selon l'une quelconque des revendications 1 à 6 caractérisé en ce que: Nb + Ta ≤ 0,05%
Figure imgb0052
Iron-nickel alloy according to any one of Claims 1 to 6, characterized in that: Nb + Ta ≤ 0.05%
Figure imgb0052
Alliage fer-nickel selon l'une quelconque des revendications 1 à 7 caractérisé en ce que les teneurs en impuretés sont telles que: Mg < 0,001%
Figure imgb0053
Ca < 0,0025%
Figure imgb0054
Al < 0,05%
Figure imgb0055
O < 0,0025%
Figure imgb0056
N < 0,005%
Figure imgb0057
P < 0,01%
Figure imgb0058
Sc + Y + La + Ce + Pr + Nd + Sm < 0,01%
Figure imgb0059
Iron-nickel alloy according to any one of Claims 1 to 7, characterized in that the impurity contents are such that: Mg <0.001%
Figure imgb0053
Ca <0.0025%
Figure imgb0054
Al <0.05%
Figure imgb0055
O <0.0025%
Figure imgb0056
N <0.005%
Figure imgb0057
P <0.01%
Figure imgb0058
Sc + Y + La + Ce + Pr + Nd + Sm <0.01%
Figure imgb0059
Procédé de fabrication d'une bande laminée à froid en alliage selon l'une quelconque des revendications 1 à 8 ayant une texture cubique caractérisé en ce que: - on fabrique une bande laminée à chaud, - on lamine à froid la bande avec un taux d'écrouissage supérieur à 80%, - et on recuit la bande à froid à une température supérieure à 550°C et inférieure à la température de recristallisation secondaire de l'alliage, pour lui conférer une texture cubique. Method for manufacturing a cold-rolled alloy strip according to any one of Claims 1 to 8 having a cubic texture, characterized in that: - we make a hot rolled strip, - the strip is cold rolled with a work hardening rate greater than 80%, - And the cold strip is annealed at a temperature above 550 ° C and below the secondary recrystallization temperature of the alloy, to give it a cubic texture. Procédé de fabrication d'un noyau magnétique torique en alliage selon l'une quelconque des revendications 1 à 8 caractérisé en ce que: - on fabrique une bande laminée à froid ayant un taux d'écrouissage supérieur à 80%, - on découpe la bande et on l'enroule pour former un noyau torique, - et on recuit le noyau torique à une température supérieure à 850°C et inférieure à la température de recristallisation secondaire de l'alliage. Method for manufacturing a toroidal magnetic alloy core according to any one of Claims 1 to 8, characterized in that: - a cold rolled strip is manufactured having a work hardening rate of more than 80%, - the strip is cut and rolled up to form an O-ring, - And the ring core is annealed at a temperature above 850 ° C and below the secondary recrystallization temperature of the alloy. Bande laminée à froid en alliage fer-nickel selon l'une quelconque des revendications 1 à 8 dont la texture de recristallisation est cubique du type (100)<001>.Cold-rolled strip of iron-nickel alloy according to any one of claims 1 to 8, the recrystallization texture of which is cubic of the type (100) <001>. Utilisation d'une bande selon la revendication 11 pour la fabrication d'un masque d'ombre pour tube de visualisation cathodique.Use of a strip according to claim 11 for the manufacture of a shadow mask for cathode-ray display tube. Noyau magnétique torique en alliage selon l'une quelconque des revendication 1 à 8 ayant une texture cubique.A toroidal magnetic alloy core according to any one of claims 1 to 8 having a cubic texture.
EP97400203A 1996-02-27 1997-01-29 Iron-nickel alloy and cold-rolled strip with cubic texture Expired - Lifetime EP0792943B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9602404 1996-02-27
FR9602404A FR2745298B1 (en) 1996-02-27 1996-02-27 IRON-NICKEL ALLOY AND COLD-ROLLED TAPE WITH CUBIC TEXTURE

Publications (2)

Publication Number Publication Date
EP0792943A1 true EP0792943A1 (en) 1997-09-03
EP0792943B1 EP0792943B1 (en) 2001-08-16

Family

ID=9489608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400203A Expired - Lifetime EP0792943B1 (en) 1996-02-27 1997-01-29 Iron-nickel alloy and cold-rolled strip with cubic texture

Country Status (6)

Country Link
US (1) US5783145A (en)
EP (1) EP0792943B1 (en)
AT (1) ATE204342T1 (en)
DE (1) DE69706083T2 (en)
ES (1) ES2162204T3 (en)
FR (1) FR2745298B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057136C (en) * 1997-11-19 2000-10-04 西北有色金属研究院 Method for preparing cubic texture nickel-base strip
EP1156126A1 (en) * 2001-01-24 2001-11-21 Imphy Ugine Precision Process for manufacturing an Fe-Ni alloy strip
DE10258356B3 (en) * 2002-12-12 2004-05-27 Thyssenkrupp Vdm Gmbh Use of an iron-nickel-cobalt alloy for shadow masks and their frames in flat monitors and TV screens
WO2006064030A1 (en) * 2004-12-14 2006-06-22 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Semifinished product based on nickel and having a cubic texture, and method for the production thereof
US7226515B2 (en) 2000-09-29 2007-06-05 Hippon Yakin Kogyo Co., Ltd. Fe—Ni based permalloy and method of producing the same and cast slab
WO2015136333A1 (en) * 2014-03-14 2015-09-17 Aperam Iron-nickel alloy having improved weldability
US9309592B2 (en) 2007-08-31 2016-04-12 Arcelormittal-Stainless And Nickel Alloys Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475311B1 (en) * 1999-03-31 2002-11-05 American Superconductor Corporation Alloy materials
FR2791704B1 (en) * 1999-04-02 2001-05-25 Imphy Ugine Precision SOFT MAGNETIC ALLOY FOR WATCHMAKING
WO2000060132A1 (en) * 1999-04-03 2000-10-12 Institut für Festkörper- und Werkstofforschung Dresden e.V. Nickel-based metallic material and method for producing same
FR2809747B1 (en) * 2000-05-30 2002-12-20 Imphy Ugine Precision HARDENED FE-NI ALLOY FOR THE MANUFACTURE OF INTEGRATED CIRCUIT SUPPORT GRIDS AND MANUFACTURING METHOD
FR2811684B1 (en) * 2000-07-13 2002-08-30 Imphy Ugine Precision FE-NI OR FE-NI-CO OR FE-NI-CO-CU ALLOY BAND WITH IMPROVED CUT
FR2816959B1 (en) 2000-11-17 2003-08-01 Imphy Ugine Precision PROCESS FOR MANUFACTURING A STRIP OR A CUT PIECE IN A COLD-ROLLED MARAGING STEEL STRIP
FR2836155B1 (en) * 2002-02-15 2005-01-07 Imphy Ugine Precision SOFT MAGNETIC ALLOY FOR WATCHMAKING
CN1300366C (en) * 2004-12-28 2007-02-14 西北有色金属研究院 NiTi alloy cube textured base band and preparation method thereof
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
DE102009043539A1 (en) * 2009-09-30 2011-04-21 Vacuumschmelze Gmbh & Co. Kg Magnetic strip, sensor comprising a magnetic strip and method of making a magnetic strip
DE102011001488B4 (en) * 2010-09-10 2014-07-10 Vacuumschmelze Gmbh & Co. Kg Use of a soft magnetic alloy in a rotor or stator of an electric motor
US10923248B2 (en) 2013-06-07 2021-02-16 Vdm Metals International Gmbh Method for producing a metal film
EP3004409B1 (en) 2013-06-07 2017-08-09 VDM Metals International GmbH Method for producing a metal film
CN104064306A (en) * 2014-07-01 2014-09-24 张家港市佳晟机械有限公司 Nickel base flexible magnetic alloy
CN111979502B (en) * 2020-07-06 2021-09-10 河南师范大学 Preparation method of high-strength textured metal base band
CN116162868A (en) * 2023-01-17 2023-05-26 北京北冶功能材料有限公司 Medium nickel soft magnetic alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425043A (en) * 1966-12-21 1969-01-28 Bell Telephone Labor Inc Magnetic memory element comprising ni-fe and zr and composition comprising ni-fe-zr
US3723106A (en) * 1969-05-23 1973-03-27 Driver Co Wilbur B Magnetic alloy
FR2507627A1 (en) * 1981-06-15 1982-12-17 Kawasaki Steel Co ALLOY HAVING A LOW COEFFICIENT OF THERMAL EXPANSION THAT DOES NOT CRUISE TO WELDING
JPH04120233A (en) * 1990-09-07 1992-04-21 Takeshi Masumoto Nickel-iron material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1493034A (en) * 1966-07-12 1967-08-25 Soc Metallurgique Imphy Process for improving the weldability of iron-nickel alloys with a high nickel content and alloys obtained by this process
JPS5949316B2 (en) * 1976-07-09 1984-12-01 株式会社東芝 Corrosion resistant magnetic material
US5304346A (en) * 1990-10-26 1994-04-19 Inco Alloys International, Inc. Welding material for low coefficient of thermal expansion alloys
US5211771A (en) * 1991-03-13 1993-05-18 Nisshin Steel Company, Ltd. Soft magnetic alloy material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425043A (en) * 1966-12-21 1969-01-28 Bell Telephone Labor Inc Magnetic memory element comprising ni-fe and zr and composition comprising ni-fe-zr
US3723106A (en) * 1969-05-23 1973-03-27 Driver Co Wilbur B Magnetic alloy
FR2507627A1 (en) * 1981-06-15 1982-12-17 Kawasaki Steel Co ALLOY HAVING A LOW COEFFICIENT OF THERMAL EXPANSION THAT DOES NOT CRUISE TO WELDING
JPH04120233A (en) * 1990-09-07 1992-04-21 Takeshi Masumoto Nickel-iron material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 16, no. 375 (C - 973) 12 August 1992 (1992-08-12) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057136C (en) * 1997-11-19 2000-10-04 西北有色金属研究院 Method for preparing cubic texture nickel-base strip
US7226515B2 (en) 2000-09-29 2007-06-05 Hippon Yakin Kogyo Co., Ltd. Fe—Ni based permalloy and method of producing the same and cast slab
US7419634B2 (en) 2000-09-29 2008-09-02 Nippon Yakin Kogyo Co., Ltd. Fe-Ni based permalloy and method of producing the same and cast slab
US7435307B2 (en) 2000-09-29 2008-10-14 Nippon Yakin Kogyo Co., Ltd Fe-Ni based permalloy and method of producing the same and cast slab
EP1156126A1 (en) * 2001-01-24 2001-11-21 Imphy Ugine Precision Process for manufacturing an Fe-Ni alloy strip
FR2819825A1 (en) * 2001-01-24 2002-07-26 Imphy Ugine Precision METHOD FOR MANUFACTURING A FE-NI ALLOY STRIP
DE10258356B3 (en) * 2002-12-12 2004-05-27 Thyssenkrupp Vdm Gmbh Use of an iron-nickel-cobalt alloy for shadow masks and their frames in flat monitors and TV screens
WO2006064030A1 (en) * 2004-12-14 2006-06-22 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Semifinished product based on nickel and having a cubic texture, and method for the production thereof
US9309592B2 (en) 2007-08-31 2016-04-12 Arcelormittal-Stainless And Nickel Alloys Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
WO2015136333A1 (en) * 2014-03-14 2015-09-17 Aperam Iron-nickel alloy having improved weldability
US10633728B2 (en) 2014-03-14 2020-04-28 Aperam Iron-nickel alloy having improved weldability

Also Published As

Publication number Publication date
US5783145A (en) 1998-07-21
ATE204342T1 (en) 2001-09-15
DE69706083T2 (en) 2002-03-21
ES2162204T3 (en) 2001-12-16
DE69706083D1 (en) 2001-09-20
FR2745298B1 (en) 1998-04-24
FR2745298A1 (en) 1997-08-29
EP0792943B1 (en) 2001-08-16

Similar Documents

Publication Publication Date Title
EP0792943B1 (en) Iron-nickel alloy and cold-rolled strip with cubic texture
ES2379579T3 (en) Iron and nickel alloy
WO2011122490A1 (en) Cu-co-si alloy material
KR100227354B1 (en) Iron nickel alloy with low thermal expansion coefficient
EP0756015B1 (en) Nickel-iron alloy for planar masks
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
KR100416116B1 (en) Iron-cobalt-nickel alloys and shadow masks made therefrom
JP4405008B2 (en) Electrode / wiring material for liquid crystal display and manufacturing method thereof
JP2001049395A (en) Iron-nickel-cobalt alloy excellent in etching characteristic and low thermal expansion characteristic, and shadow mask excellent in smoothness of inside peripheral shape of etch pit
JP2929881B2 (en) Metal sheet for shadow mask with excellent etching processability
WO2012096351A1 (en) Cu-co-si-zr alloy material and method for producing same
US8328961B2 (en) Iron-nickel alloy strip for the manufacture of support grids for the integrated circuits
US20050067067A1 (en) Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
JP2970316B2 (en) Fe-Ni-based alloy sheet and Fe-Ni-Co-based alloy sheet having excellent blackening properties for shadow mask
JP2001181796A (en) Fe-Ni-Co ALLOY EXCELLENT IN ETCHING CHARACTERISTIC AND LOW THERMAL EXPANSION CHARACTERISTIC, AND SHADOW MASK EXCELLENT IN ETCHING PIT SHAPE CHARACTERISTIC
JP2002544378A (en) Steel for making cathode ray tube parts and method for producing steel plate for use in making cathode ray tube parts
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
JPH02111838A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JP3284732B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for a color picture tube having excellent magnetic properties and method of manufacturing the same
JP3367147B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JP2001032046A (en) Fe-Ni-Co ALLOY EXCELLENT IN ETCHING PROPERTY AND LOW THERMAL EXPANDING CHARACTERISTIC
JP3293222B2 (en) Fe-Ni alloy sheet and Fe-Ni-Co alloy sheet having excellent magnetic properties for shadow mask and method for producing the same
JP2000313943A (en) Fe-Ni-Co ALLOY EXCELLENT IN ETCHING CHARACTERISTIC AND LOW THERMAL EXPANSION CHARACTERISTIC, AND SHADOW MASK EXCELLENT IN SMOOTHNESS OF INSIDE SURFACE SHAPE OF ETCH PIT
JPH06122945A (en) Electrode material for fe-ni electron gun

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19970919

17Q First examination report despatched

Effective date: 19991206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMPHY UGINE PRECISION

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010816

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010816

REF Corresponds to:

Ref document number: 204342

Country of ref document: AT

Date of ref document: 20010915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69706083

Country of ref document: DE

Date of ref document: 20010920

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011117

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011214

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2162204

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011217

Year of fee payment: 6

Ref country code: CH

Payment date: 20011217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011226

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011227

Year of fee payment: 6

Ref country code: LU

Payment date: 20011227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011228

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020102

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020220

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030129

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030129

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030130

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050129