EP0794423A1 - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
EP0794423A1
EP0794423A1 EP97101950A EP97101950A EP0794423A1 EP 0794423 A1 EP0794423 A1 EP 0794423A1 EP 97101950 A EP97101950 A EP 97101950A EP 97101950 A EP97101950 A EP 97101950A EP 0794423 A1 EP0794423 A1 EP 0794423A1
Authority
EP
European Patent Office
Prior art keywords
gas
gas analyzer
radiation source
analyzer according
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97101950A
Other languages
German (de)
French (fr)
Inventor
Wilfried Bytyn
Peter Seefeld
Stefan Vaihinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Conducta GmbH and Co KG
Original Assignee
Endress and Hauser Conducta Gesellschaft fuer Mess und Regeltechnik mbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Conducta Gesellschaft fuer Mess und Regeltechnik mbH and Co KG filed Critical Endress and Hauser Conducta Gesellschaft fuer Mess und Regeltechnik mbH and Co KG
Publication of EP0794423A1 publication Critical patent/EP0794423A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions

Definitions

  • the invention relates to a gas analyzer for the continuous determination of the concentration of a gas in a gas mixture with an energy source, a measuring cell, a radiation source, a detector and devices for signal processing.
  • the invention further relates to a measuring cell for the photometric measurement of the concentration of a gas in a gas mixture.
  • NDIR non-dispersive infrared spectroscopy
  • the basic structure of a gas analyzer is essentially always the same.
  • the radiation emitted by a radiation source radiates through a measuring cell with the gas to be measured and strikes a detector.
  • the initial intensity emitted by the radiation source is weakened by absorption processes.
  • Lambert-Beer law applies to the relationship between the gas concentration to be determined and the attenuation in intensity.
  • the generation of a detector signal with a sufficient signal / noise ratio requires modulation of the radiation emitted by the radiator.
  • the gas to be measured either enters the measuring cell in diffusion mode or with the help of a pump.
  • Measuring devices of the above type are known for example from US 5,163,332 and GB 1 398 977.
  • No. 5,163,332 describes an NDIR single-beam gas analyzer with a measuring cell, which can be operated in diffusion mode.
  • the measuring cell consists of a closed tube which has several discrete gas access openings distributed over the length of the tube. The gas exchange takes place via a membrane that spans the gas access openings is.
  • the radiation source and the detector are fixed at the two ends of the tube-like measuring cell.
  • the measurement system is comparatively complicated due to the membrane system.
  • GB 1 398 977 also describes a single-beam infrared photometer for the measurement of gases, the lamp serving as the radiation source being clocked with the aid of an oscillator.
  • the radiation modulated in this way with a clock frequency of a few Hz passes the gas measuring section and passes through an optical filter, which is transparent to a certain wavelength, to a radiation-sensitive detector.
  • the measuring cuvette consists of an all-round closed tube with a reflecting inner surface.
  • the radiation source and the detector are located at the respective ends of the tube.
  • the gas is admitted through a small opening in the area of the optical filter or detector.
  • the known cuvettes are only suitable for a narrow measuring range because the relationship between the sample gas concentration and the output signals is not linear and the measurement becomes inaccurate with increasing concentration.
  • the object of the invention is to develop gas analyzers of the type mentioned above in such a way that the disadvantages mentioned are eliminated, in particular an optimal adaptation of the cell lengths to the gas concentration range to be detected is possible.
  • the solution is that the radiation source is slidably arranged in the measuring cell.
  • the gas analyzer according to the invention enables an easy-to-handle adaptation of the absorption path between the radiation source and detector to different concentration ranges of the measurement gas and thus an optimization of the measurement accuracy in the concentration range to be monitored in each case, corresponding to the logarithmic decrement in a range over 5-7 orders of magnitude.
  • CO 2 concentration ranges to be measured can be very different depending on the application.
  • CO 2 concentrations between approx. 350ppm (outside air content) and 5000ppm (MAK value) must be monitored.
  • the CO 2 concentrations to be measured are typically between 10 and 20% by volume. In special applications there are also CO 2 concentrations up to 100% by volume (with less resolution requirements).
  • the ratio of transmitted radiation intensity I and source intensity Io decreases exponentially as a function of the concentration c and the length of the measuring section (cuvette length) d.
  • the proportionality factor ⁇ is the extinction coefficient.
  • Photometric measuring methods have an optimal working point for the extinction determined by the optics and electronics of the measuring device.
  • the relationship is not linear and that there is an ideal working area for absorbance measurement.
  • the gas analyzer according to the invention now makes it possible for the layer thickness d, ie the distance between the radiation source and the detector, to be varied mechanically cheaply and simply, even in the case of very different gas concentration ranges to be monitored, and the Absorbance can always be kept in the optimal working area thanks to this simple mechanical adjustment.
  • the gas analyzer according to the invention therefore enables an application-specific optimization of the measurement accuracy for any concentration ranges.
  • the gas analyzer is advantageously designed in such a way that the radiation source is slidably fixed in a longitudinal slot provided in the measuring cell, for example fixed with a clamping screw. It has proven to be particularly favorable to arrange the radiation source in a holder which may be provided with a reflector and which in turn is provided with a threaded hole for the clamping screw. In order to ensure the greatest possible variation in the layer thickness, the detector is fixed at one end of the measuring cell.
  • the longitudinal slot, in which the radiation source is slidably fixed is as long as possible and advantageously extends over the entire length of the measuring cell. This has the further advantage that the diffusion of the gas mixture to be analyzed is simplified.
  • the rapid gas exchange ie the good ventilation through the longitudinal slot, leads to a short T g0 time. The mass transfer is faster. On a pump or similar can be dispensed with. The response time is reduced.
  • the cuvette is advantageously a metal tube, e.g. Made of aluminum or stainless steel, which can have a diffusely reflective inner surface to improve its optical properties.
  • the gas analyzer according to the invention can be adapted for each gas to be analyzed which absorbs in the wavelength range of the radiation emitted by the radiation source.
  • the gas analyzer advantageously sits in an at least partially gas-permeable housing, which can have an opening on one side, which is covered, for example, with a metal fiber fleece.
  • the rapid material exchange between the measuring gas space and the cuvette thereby achieved likewise leads to short response times of the gas analyzer according to the invention when the gas is applied.
  • a convective mass transfer as a result of heating processes in the area of the radiation source can also be superimposed on the mass transfer by diffusion.
  • the good retention properties of the metal fiber fleece against particles, suspended matter and settable contaminants lead to a reduced tendency towards contamination of the optics of the measuring system.
  • the gas analyzer according to the invention can also be used under difficult operating conditions, e.g. when measuring particle-laden gas flows.
  • the metal fiber fleece acts as a flow straightener and minimizes possible dependencies of the measurement signal on aerodynamic flow conditions in the sample gas space.
  • the metal fiber fleece can be cleaned by backwashing.
  • the components forming the optics of the gas analysis device according to the invention are in good thermal contact with one another. This reduces the risk of thermally related misalignments of the optics and measurement errors caused thereby.
  • the invention further relates to an improved measuring cell for measuring the concentration of a gas in a gas mixture in the form of an elongated tube which is slit lengthways.
  • the measuring cuvette is preferably made of metal, for example stainless steel, and preferably has a non-reflecting reflective inner surface in order to allow diffuse reflection of the beam inside the measuring cuvette.
  • the invention advantageously has one or more bores on its underside, with which it can be fixed in a housing.
  • the circuit symbol sketch in FIG. 1 relates to an NDIR single-beam photometer in microprocessor technology.
  • a CO 2 sensor was chosen as the exemplary embodiment. CO 2 has an absorption maximum at a wavelength of 4.24 ⁇ m.
  • An infrared radiation source is therefore required as the radiation source, for example in the form of a long-life, low-drift, miniaturized IR radiator. In the simplest and preferred case, this can be a miniature light bulb.
  • Surface emitters in thick-film and thin-film technology can also be used as an IR radiation source.
  • the IR radiation source is clocked using an oscillator.
  • the clock frequency is a few Hz; the use of thin-layer emitters enables clock frequencies of up to 100 Hz.
  • the omission of mechanically moving parts e.g. a chopper wheel) enables a miniaturized design.
  • the electromagnetic radiation emitted by the IR radiation source passes through the measuring section with the gas to be measured and, after passing through an interference filter, strikes a detector.
  • the interference filter can be used as a discrete component, but can also be integrated in the detector.
  • the pass band of the interference filter is matched to the absorption maximum of a specific absorption band of the gas component to be determined, in the example to the CO 2 absorption band at 4.24 ⁇ m.
  • An infrared-sensitive electronic component is used as the detector, for example a pyroelectric detector or a thermopile.
  • Semiconductor components PbS, PbSe
  • the output signal of the radiation-sensitive detector is detected with a phase-controlled AC amplification circuit with tunable zero point detection.
  • the clocking of the radiation source which is necessary, for example, when using a detector that only responds to the radiation intensity, requires a periodically delayed increase and a decay of the thermally induced emission before or after reaching the maximum lamp temperature.
  • Capacitive or comparable electronic coupling methods allow AC voltage symmetrization of the modulated detection signal.
  • the phase switching point for the phase-dependent signal amplification can be determined by triggering the zero point pass.
  • an emitter temperature optimized for the absorption of the measuring gas can be presented. Signal components during the thermal decay and The heating-up time can be compensated against the useful signal phase in order to achieve interference signal elimination.
  • the signal output is either an electrical voltage (0 to 10 V) or a current (0/4 to 20 mA).
  • FIG. 2a shows a possible embodiment of the gas analyzer 20 according to the invention.
  • the housing 2 accommodates the electronics, of which only one circuit board 3 is indicated on the bottom of the housing 2. There are threaded bores 5 in the corners 4 of the housing 2.
  • the signal output 7 is located on a side wall 6 of the housing 2 and is connected to the circuits on the circuit board 3 via cable 8 and also serves to supply energy.
  • 9 denotes an electrolytic capacitor 220 ⁇ F.
  • Figures 2b and 2c show a cover 10 for closing the housing 2. It has 11 holes 12 at its four corners.
  • the lid 10 is placed on the housing 2 so that the bolts 5 and 12 are aligned, and is screwed.
  • the lid 10 also has an opening 13 which the Gas passage serves.
  • the opening 13 is closed on its side facing the outside atmosphere with a metal net 14.
  • a metal fiber fleece 16 is fastened to the metal net 14 or the inner surface of the lid 10, for example glued on with adhesive 15.
  • the metal fiber fleece 16 preferably consists of fibers with diameters of up to 2 ⁇ m, which are read into random fibers in uniform basis weights and rolled to defined thicknesses.
  • Corresponding metal fiber fleeces have porosity levels of up to 80% with a very narrow pore size distribution. This creates a large-area inlet zone for the measuring gas, with the advantage of improved diffusion and convection properties and a lower tendency to contamination, which increases the service life of the gas analyzer.
  • the measuring cuvette 21 of the gas analyzer 20 consists of an elongated tube with a longitudinal slot 22, which is not shown somewhat too large in FIG. 3. Due to the longitudinal slot 22 oriented towards the sample gas inlet 21, the sample gas can be rapidly supplied and removed by diffusion and convection.
  • the radiation source 23, in the present case a miniature light bulb, sits in a holder 24 and is bordered by a reflector 25.
  • FIG. 4 again shows in detail for the exemplary embodiment that the measuring cuvette 21 has an outer diameter D k of 10 mm and an inner diameter d k of 8 mm with a length l k of approximately 70 mm.
  • the longitudinal slot 22 is about 2mm wide.
  • the hole 27 being approximately 7.5 mm from the rear end 21 'of the measuring cell 21 and the hole 26 being approximately 37 mm away.
  • the material is V4A stainless steel.
  • the measuring cell 21 with the longitudinal slot 22 is located directly behind the metal net 14 and closes tightly therewith. Then the gas volume to be flushed is almost exactly the (small) volume of the measuring cuvettes, so that short response times can be achieved. In this case, the measuring gas space is actually the entire geometric space above the metal wire network (e.g. office space, lecture hall). With 2 'is a dead space in the housing 2, which, however, must be rinsed out. This dead space 2 'should be kept small.
  • the bracket 24 for the radiation source 23 is shown again. It has a diameter d H of approximately 8 mm, which corresponds to the inner diameter d k of the measuring cell 21 and a length l H of 6 mm.
  • One to one end the radiation source 23 receives conically widened through opening 29.
  • the conical extension is designed as a reflector 25, which comprises the radiation source 23.
  • the holder 24 has a further bore 30 with an M2 thread for the clamping screw 26. The holder 24 is thus inserted into the measuring cell 21, the bore 30 being oriented toward the longitudinal slot 22. Then the clamping screw 26 is screwed into the bore 26.
  • the head of the clamping screw 30 is wider than the longitudinal slot 22, so that a clamping effect between the clamping screw 26 and the measuring cell 21 is effected when screwing into the bore 30.
  • the holder 24 with the IR radiation source 23 can be guided in the longitudinal slot 22 of the measuring cell, which is open towards the measuring gas, in the direction of arrow A in FIG. 3.
  • FIG. 3 also shows a detector 31 which is fixed to the end 21 'of the measuring cuvette 21 remote from the radiation source 23.
  • the detector 31 is connected to the circuit on the circuit board 3 by lines 32.
  • the detector 31 has the largest possible detector area, which corresponds approximately to its cross-sectional area in the exemplary embodiment.
  • An interference filter 33 is also connected in front of the detector 31.
  • the interference filter can also be integrated in the detector. He is in Exemplary embodiment for IR radiation in the wavelength range of 4.24 ⁇ m transmissive.
  • the length of the measuring section, ie the distance between the radiation source 23 and the detector 31, is variable and can be optimized for different gas concentration ranges.
  • the individual components that form the optics of the sensor are in good thermal contact in this exemplary embodiment.
  • the diffuse reflection on the inner wall of the measuring cell 21 and the use of a detector 31 with a large dimensioned detector surface thermally induced misalignments of the optics and measurement errors caused thereby are negligible. This has advantages over gas sensors with complex imaging optics when using mirrors that require precise adjustments and isothermally guided mechanical assemblies.

Abstract

The analyser (2) has a measurement trough (21) with a radiation source (23), a detector (31) and signal processing device (3,7). The radiation source (23) can be moved along the trough (21) via a longitudinal slit (22) and then fixed in position with a locking screw (26). Typically the radiation source (23) is a modulated infra-red radiator. An interference filter (33) is arranged between source and detector (32) the characteristics of the filter being optimised for the gas components to be analysed. The measurement trough (21) is typically made from a stainless steel or aluminium tube the cross-section of which the other components, source, filter and detector are matched to.

Description

Die Erfindung betrifft einen Gasanalysator zur kontinuierlichen Bestimmung der Konzentration eines Gases in einem Gasgemisch mit einer Energiequelle, einer Meßküvette, einer Strahlungsquelle, einem Detektor und Einrichtungen zur Signalverarbeitung. Die Erfindung betrifft ferner eine Meßküvette zur photometrischen Messung der Konzentration eines Gases in einem Gasgemisch.The invention relates to a gas analyzer for the continuous determination of the concentration of a gas in a gas mixture with an energy source, a measuring cell, a radiation source, a detector and devices for signal processing. The invention further relates to a measuring cell for the photometric measurement of the concentration of a gas in a gas mixture.

Die Gasanalyse mit Hilfe von Meßgeräten, die nach dem Prinzip der nicht-dispersiven Infrarotspektroskopie (NDIR) arbeiten, ist seit langem bekannt. Die Einsatzbereiche sind weit gespannt und umfassen unter anderem die Rauchgasanalytik, die Prozeßmesstechnik in der chemischen Verfahrenstechnik sowie neuerdings verstärkt den Bereich Raumluftmessung und Klima- bzw. Luftgüteregelung in Gebäuden.Gas analysis using measuring devices that work on the principle of non-dispersive infrared spectroscopy (NDIR) has been known for a long time. The areas of application are wide-ranging and include, among other things, flue gas analysis, process measurement technology in chemical process engineering and more recently the area Indoor air measurement and climate or air quality control in buildings.

Der prinzipielle Aufbau eines Gasanalysators ist im wesentlichen stets gleich. Die von einer Strahlungsquelle emittierte Strahlung durchstrahlt eine Meßküvette mit dem zu messenden Gas und trifft auf einen Detektor. Auf dem Weg durch die Meßküvette wird die von der Strahlungsquelle abgestrahlte Anfangsintensität durch Absorptionsprozesse abgeschwächt. Für den Zusammenhang zwischen zu bestimmender Gaskonzentration und Intensitätsabschwächung gilt das Lambert-Beer'sche Gesetz. Die Erzeugung eines Detektorsignals mit ausreichendem Signal/Rausch-Verhältnis erfordert eine Modulation der vom Strahler ausgehenden Strahlung. Das zu messende Gas gelangt entweder im Diffusionsbetrieb oder mit Hilfe einer Pumpe in die Meßküvette.The basic structure of a gas analyzer is essentially always the same. The radiation emitted by a radiation source radiates through a measuring cell with the gas to be measured and strikes a detector. On the way through the measuring cell, the initial intensity emitted by the radiation source is weakened by absorption processes. Lambert-Beer law applies to the relationship between the gas concentration to be determined and the attenuation in intensity. The generation of a detector signal with a sufficient signal / noise ratio requires modulation of the radiation emitted by the radiator. The gas to be measured either enters the measuring cell in diffusion mode or with the help of a pump.

Meßgeräte der o.g. Art sind z.B. aus der US 5,163,332 und der GB 1 398 977 bekannt. Die US 5,163,332 beschreibt einen NDIR-Einstrahl-Gasanalysator mit einer Meßküvette, der im Diffusionsmodus betrieben werden kann. Die Meßküvette besteht dabei aus einem geschlossenen Rohr, welches mehrere, über die Rohrlänge verteilte diskrete Gaszugangsöffnungen besitzt. Der Gasaustausch erfolgt über eine Membran, die in den Gaszugangsöffnungen aufgespannt ist. Die Strahlungsquelle und der Detektor sind an den beiden Enden der rohrartigen Meßküvette fixiert. Durch das Membransystem wird der Meßaufbau vergleichsweise kompliziert. Die GB 1 398 977 beschreibt ebenfalls ein Einstrahl-Infrarot-Photometer für die Messung von Gasen, wobei die als Strahlungsquelle dienende Lampe mit Hilfe eines Oszillators getaktet wird. Die auf diese Weise mit einer Taktfrequenz von einigen Hz modulierte Strahlung passiert die Gasmeßstrecke und gelangt durch ein optisches Filter, welches für eine bestimmte Wellenlänge durchlässig ist, an einen strahlungsempfindlichen Detektor. Die Meßküvette besteht aus einem rundum geschlossenen Röhrchen mit reflektierender Innenfläche. Die Strahlungsquelle und der Detektor befinden sich an den jeweiligen Enden des Röhrchens. Der Gaszutritt erfolgt durch eine kleine Öffnung im Bereich des optischen Filters bzw. Detektors. Die Verwendung einer derart getakteten Lichtquelle besitzt den Vorteil, daß kleine, leichte, preisgünstige, prinzipiell batteriebetreibbare und tragbare, aber trotzdem leistungsfähige Gasanalysatoren realisierbar sind.Measuring devices of the above type are known for example from US 5,163,332 and GB 1 398 977. No. 5,163,332 describes an NDIR single-beam gas analyzer with a measuring cell, which can be operated in diffusion mode. The measuring cell consists of a closed tube which has several discrete gas access openings distributed over the length of the tube. The gas exchange takes place via a membrane that spans the gas access openings is. The radiation source and the detector are fixed at the two ends of the tube-like measuring cell. The measurement system is comparatively complicated due to the membrane system. GB 1 398 977 also describes a single-beam infrared photometer for the measurement of gases, the lamp serving as the radiation source being clocked with the aid of an oscillator. The radiation modulated in this way with a clock frequency of a few Hz passes the gas measuring section and passes through an optical filter, which is transparent to a certain wavelength, to a radiation-sensitive detector. The measuring cuvette consists of an all-round closed tube with a reflecting inner surface. The radiation source and the detector are located at the respective ends of the tube. The gas is admitted through a small opening in the area of the optical filter or detector. The use of such a clocked light source has the advantage that small, light, inexpensive, in principle battery-operated and portable, but nevertheless powerful gas analyzers can be implemented.

Nachteilig ist jedoch, daß die bekannten Küvetten nur für einen engen Meßbereich tauglich sind, weil die Beziehung zwischen Meßgaskonzentration und Ausgangssignale nicht linear ist und die Messung mit zunehmender Konzentration ungenau wird.However, it is disadvantageous that the known cuvettes are only suitable for a narrow measuring range because the relationship between the sample gas concentration and the output signals is not linear and the measurement becomes inaccurate with increasing concentration.

Aufgabe der Erfindung ist es, Gasanalysatoren der o.g. Art derart weiterzubilden, daß die genannten Nachteile beseitigt werden, insbesondere eine optimale Anpassung der Küvettenlängen an den jeweils zu erfassenden Gaskonzentrationsbereich möglich wird. The object of the invention is to develop gas analyzers of the type mentioned above in such a way that the disadvantages mentioned are eliminated, in particular an optimal adaptation of the cell lengths to the gas concentration range to be detected is possible.

Die Lösung besteht darin, daß die Strahlungsquelle in der Meßküvette verschieblich angeordnet ist.The solution is that the radiation source is slidably arranged in the measuring cell.

Der erfindungsgemäße Gasanalysator ermöglicht eine leicht handhabbare Anpassung der Absorptionsstrecke zwischen Strahlungsquelle und Detektor an unterschiedliche Konzentrationsbereiche des Meßgases und somit eine Optimierung der Meßgenauigkeit im jeweils zu überwachenden Konzentrationsbereich, entsprechend dem logarithmischen Dekrement in einem Bereich über 5-7 Größenordnungen.The gas analyzer according to the invention enables an easy-to-handle adaptation of the absorption path between the radiation source and detector to different concentration ranges of the measurement gas and thus an optimization of the measurement accuracy in the concentration range to be monitored in each case, corresponding to the logarithmic decrement in a range over 5-7 orders of magnitude.

Diese Meßbereichsanpassung ist bspw. für die Messung von Kohlendioxid (CO2) von Interesse, da die zu messenden CO2-Konzentrationsbereiche je nach Einsatzfall sehr unterschiedlich sein können. Im Bereich der Klima- und Lüftungstechnik sind CO2-Konzentrationen zwischen ca. 350ppm (Gehalt der Außenluft) und 5000ppm (MAK-Wert) zu überwachen. In der Rauchgasmeßtechnik liegen die zu messenden CO2-Konzentrationen typischerweise zwischen 10 und 20 Vol.-%. In speziellen Einsatzfällen sind auch CO2-Konzentrationen bis 100 Vol.-% (bei geringerer Anforderung an die Auflösung) zu überwachen.This adjustment of the measuring range is of interest, for example, for the measurement of carbon dioxide (CO 2 ), since the CO 2 concentration ranges to be measured can be very different depending on the application. In the area of air conditioning and ventilation technology, CO 2 concentrations between approx. 350ppm (outside air content) and 5000ppm (MAK value) must be monitored. In flue gas measurement technology, the CO 2 concentrations to be measured are typically between 10 and 20% by volume. In special applications there are also CO 2 concentrations up to 100% by volume (with less resolution requirements).

Beim Durchtritt der Strahlung durch das Meßmedium tritt durch Absorption eine Abschwächung der Intensität der Strahlung ein. Die Zusammenhänge können quantitativ mit Hilfe des Lambert-Beer'schen Gesetzes beschrieben werden: ln I/I0 = - εcd.When the radiation passes through the measuring medium, the intensity of the radiation is weakened by absorption. The relationships can be described quantitatively with the help of Lambert-Beer law: ln I / I 0 = - εcd.

Das Verhältnis von durchgelassener Strahlungsintensität I und Quellintensität Io nimmt exponentiell als Funktion der Konzentration c und der Meßstreckenlänge (Küvettenlänge) d ab. Der Proportionalitätsfaktor ε ist der Extinktionskoeffizient.The ratio of transmitted radiation intensity I and source intensity Io decreases exponentially as a function of the concentration c and the length of the measuring section (cuvette length) d. The proportionality factor ε is the extinction coefficient.

Photometrische Meßverfahren besitzen einen durch die Optik und die Elektronik des Meßgerätes bestimmten optimalen Arbeitspunkt für die Extinktion. Schon aus dem voranstehend wiedergegebenen Lambert-Beer'schen Gesetz ist ersichtlich, daß die Beziehung nicht linear ist und daß es einen idealen Arbeitsbereich für Extinktionsmessung gibt. Der erfindungsgemäße Gasanalysator ermöglich es nun, daß auf mechanische Weise billig und einfach die Schichtdicke d, d.h. der Abstand zwischen Strahlungsquelle und Detektor, auch im Falle sehr unterschiedlicher zu überwachender Gaskonzentrationsbereiche variiert werden und die Extinktion durch diese einfache mechanische Justierung stets im optimalen Arbeitsbereich gehalten werden kann. Der erfindungsgemäße Gasanalysator ermöglicht daher eine einsatzspezifische Optimierung der Meßgenauigkeit für beliebige Konzentrationsbereiche.Photometric measuring methods have an optimal working point for the extinction determined by the optics and electronics of the measuring device. Already from the Lambert-Beer law given above it can be seen that the relationship is not linear and that there is an ideal working area for absorbance measurement. The gas analyzer according to the invention now makes it possible for the layer thickness d, ie the distance between the radiation source and the detector, to be varied mechanically cheaply and simply, even in the case of very different gas concentration ranges to be monitored, and the Absorbance can always be kept in the optimal working area thanks to this simple mechanical adjustment. The gas analyzer according to the invention therefore enables an application-specific optimization of the measurement accuracy for any concentration ranges.

Der Gasanalysator ist vorteilhafterweise so konzipiert, daß die Strahlungsquelle in einem in der Meßküvette vorgesehenen Längsschlitz verschieblich fixiert ist, z.B. mit einer Klemmschraube fixiert ist. Als besonders günstig hat es sich erwiesen, die Strahlungsquelle in einer ggf. mit einem Reflektor versehenen Halterung anzuordnen, die ihrerseits mit einer Gewindebohrung für die Klemmschraube versehen ist. Um die größtmögliche Variation der Schichtdicke zu gewährleisten, ist der Detektor an einem Ende der Meßküvette fixiert. Außerdem ist der Längsschlitz, in dem die Strahlungsquelle verschieblich fixiert ist, möglichst lang und erstreckt sich vorteilhafterweise über die gesamte Länge der Meßküvette. Das hat den weiteren Vorteil, daß die Diffusion des zu analysierenden Gasgemisches vereinfacht wird. Der schnelle Gasaustausch, d.h. die gute Durchlüftung durch den Längsschlitz, führt zu einer kurzen Tg0-Zeit. Der Stoffaustausch wird schneller. Auf eine Pumpe o.ä. kann verzichtet werden. Die Ansprechzeit wird verringert.The gas analyzer is advantageously designed in such a way that the radiation source is slidably fixed in a longitudinal slot provided in the measuring cell, for example fixed with a clamping screw. It has proven to be particularly favorable to arrange the radiation source in a holder which may be provided with a reflector and which in turn is provided with a threaded hole for the clamping screw. In order to ensure the greatest possible variation in the layer thickness, the detector is fixed at one end of the measuring cell. In addition, the longitudinal slot, in which the radiation source is slidably fixed, is as long as possible and advantageously extends over the entire length of the measuring cell. This has the further advantage that the diffusion of the gas mixture to be analyzed is simplified. The rapid gas exchange, ie the good ventilation through the longitudinal slot, leads to a short T g0 time. The mass transfer is faster. On a pump or similar can be dispensed with. The response time is reduced.

Die Küvette ist vorteilhafterweise ein Metallröhrchen, z.B. aus Aluminium oder Edelstahl, das eine diffus reflektierende Innenfläche zur Verbesserung seiner optischen Eigenschaften aufweisen kann.The cuvette is advantageously a metal tube, e.g. Made of aluminum or stainless steel, which can have a diffusely reflective inner surface to improve its optical properties.

Besonders vorteilhaft ist es, zwischen Strahlungsquelle und Detektor ein Interferenzfilter anzuordnen. Je nach Durchlaßbereich dieses Filters kann der erfindungsgemäße Gasanalysator für jedes zu analysierende Gas angepaßt werden, das im Wellenlängenbereich der von der Strahlungsquelle emittierten Strahlung absorbiert.It is particularly advantageous to arrange an interference filter between the radiation source and the detector. Depending on the pass band of this filter, the gas analyzer according to the invention can be adapted for each gas to be analyzed which absorbs in the wavelength range of the radiation emitted by the radiation source.

Der Gasanalysator sitzt vorteilhafterweise in einem mindestens teilweise gasdurchlässigen Gehäuse, das auf einer Seite eine Öffnung aufweisen kann, die z.B. mit einem Metallfaservlies überzogen ist. Damit wird für das Meßgas eine großflächige Einlaßzone geschaffen, mit dem Vorteil verbesserter Diffusions- und Konvektionseigenschaften. Der dadurch verwirklichte schnelle Stoffaustausch zwischen Meßgasraum und Küvette führt ebenfalls zu kurzen Ansprechzeiten des erfindungsgemäßen Gasanalysators bei der Gasbeaufschlagung. Dem Stoffaustausch durch Diffusion kann auch ein konvektiver Stoffaustausch als Folge von Erwärmungsvorgängen im Bereich der Strahlungsquelle überlagert sein.The gas analyzer advantageously sits in an at least partially gas-permeable housing, which can have an opening on one side, which is covered, for example, with a metal fiber fleece. This creates a large inlet zone for the sample gas, with the advantage of improved diffusion and convection properties. The rapid material exchange between the measuring gas space and the cuvette thereby achieved likewise leads to short response times of the gas analyzer according to the invention when the gas is applied. A convective mass transfer as a result of heating processes in the area of the radiation source can also be superimposed on the mass transfer by diffusion.

Die guten Rückhalteeigenschaften des Metallfaservlieses gegenüber Partikeln, Schwebstoffen und absetzbaren Verunreinigungen, führen zu einer verringerten Verschmutzungsneigung der Optik des Meßsystems. Der Einsatz des erfindungsgemäßen Gasanalysegeräts ist auch unter erschwerten Einsatzbedingungen, z.B. bei der Vermessung partikelbeladener Gasströme, möglich. Darüber hinaus wirkt das Metallfaservlies als Strömungsgleichrichter und minimiert mögliche Abhängkeiten des Meßsignals von aerodynamischen Strömungsverhältnissen im Meßgasraum. Das Metallfaservlies kann durch Rückspülen gereinigt werden.The good retention properties of the metal fiber fleece against particles, suspended matter and settable contaminants lead to a reduced tendency towards contamination of the optics of the measuring system. The gas analyzer according to the invention can also be used under difficult operating conditions, e.g. when measuring particle-laden gas flows. In addition, the metal fiber fleece acts as a flow straightener and minimizes possible dependencies of the measurement signal on aerodynamic flow conditions in the sample gas space. The metal fiber fleece can be cleaned by backwashing.

Es ist vorteilhaft, daß die die Optik des erfindungsgemäßen Gasanalysegeräts bildenden Bauelemente in gutem thermischem Kontakt zueinander stehen. Dies verringert die Gefahr thermisch bedingter Dejustierungen der Optik und dadurch verursachte Meßfehler.It is advantageous that the components forming the optics of the gas analysis device according to the invention are in good thermal contact with one another. This reduces the risk of thermally related misalignments of the optics and measurement errors caused thereby.

Gegenstand der Erfindung ist ferner eine verbesserte Meßküvette zur Messung der Konzentration eines Gases in einem Gasgemisch in Form eines länglichen Röhrchens, das der Länge nach geschlitzt ist. Die Meßküvette besteht vorzugsweise aus Metall, z.B. aus Edelstahl und weist vorzugsweise eine nichtspiegelnde reflektierende Innenfläche auf, um eine diffuse Reflexion des Strahles im Innern der Meßküvette zu ermöglichen. Die erfindungsgemäße Meßküvette besitzt an ihrer Unterseite vorteilhafterweise eine oder mehrere Bohrungen, mit der sie in einem Gehäuse fixiert werden kann.The invention further relates to an improved measuring cell for measuring the concentration of a gas in a gas mixture in the form of an elongated tube which is slit lengthways. The measuring cuvette is preferably made of metal, for example stainless steel, and preferably has a non-reflecting reflective inner surface in order to allow diffuse reflection of the beam inside the measuring cuvette. The invention The measuring cuvette advantageously has one or more bores on its underside, with which it can be fixed in a housing.

Ein Ausführungsbeispiel der vorliegenden Erfindung wird im folgenden anhand der beigefügten Zeichnungen näher beschrieben. Es zeigen:

Figur 1
eine Schaltsymbolskizze des erfindungsgemäßen Gasanalysators;
Figur 2a
eine perspektivische, teilweise schematische Darstellung des erfindungsgemäßen Gasanalysators in einem Gehäuse;
Figur 2b, 2c
den Deckel des Gehäuses aus Figur 2a von oben bzw. von unten;
Figur 3
eine Draufsicht auf eine erfindungsgemäße Meßküvette;
Figur 4
eine Schnittansicht der Meßküvette aus Figur 3;
Figur 5
einen Schnitt durch eine Halterung für eine Strahlungsquelle.
An embodiment of the present invention is described below with reference to the accompanying drawings. Show it:
Figure 1
a circuit symbol sketch of the gas analyzer according to the invention;
Figure 2a
a perspective, partially schematic representation of the gas analyzer according to the invention in a housing;
Figure 2b, 2c
the cover of the housing of Figure 2a from above or from below;
Figure 3
a plan view of a measuring cell according to the invention;
Figure 4
a sectional view of the measuring cell of Figure 3;
Figure 5
a section through a holder for a radiation source.

Die Schaltsymbolskizze in Figur 1 betrifft ein NDIR-Einstrahl-Photometer in Mikroprozessortechnologie. Als Ausführungsbeispiel wurde ein CO2-Sensor gewählt. CO2 besitzt ein Absorptionsmaximum bei einer Wellenlänge von 4,24 µm. Man benötigt daher als Strahlungsquelle eine Infrarot-Strahlungsquelle, z.B. in Form eines langlebigen, driftarmen, miniaturisierten IR-Strahlers. Im einfachsten und bevorzugten Fall kann dies ein Miniatur-Glühbirnchen sein. Auch Oberflächenstrahler in Dickschicht- und Dünnschichttechnologie sind als IR-Strahlungsquelle einsetzbar.The circuit symbol sketch in FIG. 1 relates to an NDIR single-beam photometer in microprocessor technology. A CO 2 sensor was chosen as the exemplary embodiment. CO 2 has an absorption maximum at a wavelength of 4.24 µm. An infrared radiation source is therefore required as the radiation source, for example in the form of a long-life, low-drift, miniaturized IR radiator. In the simplest and preferred case, this can be a miniature light bulb. Surface emitters in thick-film and thin-film technology can also be used as an IR radiation source.

Zur Modulation wird die IR-Strahlungsquelle mit Hilfe eines Oszillators getaktet. Bei Verwendung einer Miniatur-Glühbirne beträgt die Taktfrequenz einige wenige Hz; der Einsatz von Dünnschichstrahlern ermöglicht Taktfrequenzen bis zu 100 Hz. Der Verzicht auf mechanisch bewegte Teile (z.B. ein Chopperrad) erlaubt eine miniaturisierte Bauform.For modulation, the IR radiation source is clocked using an oscillator. When using a miniature light bulb, the clock frequency is a few Hz; the use of thin-layer emitters enables clock frequencies of up to 100 Hz. The omission of mechanically moving parts (e.g. a chopper wheel) enables a miniaturized design.

Die von der IR-Strahlungsquelle emittierte elektromagnetische Strahlung durchläuft die Meßstrecke mit dem zu messenden Gas und trifft nach Passieren eines Interferenzfilters auf einen Detektor. Das Interferenzfilter kann als diskretes Bauteil eingesetzt werden, aber auch im Detektor integriert sein. Der Durchlaßbereich des Interferenzfilters ist auf das Absorptionsmaximum einer spezifischen Absorptionsbande der zu bestimmenden Gaskomponente abgestimmt, im Beispiel auf die CO2-Absorptionsbande bei 4,24 µm. Als Detektor findet ein infrarotempfindliches elektronisches Bauelement Verwendung, z.B. ein pyroelektrischer Detektor oder ein Thermopile. Auch Halbleiterbauelemente (PbS, PbSe) sind einsetzbar. Das Ausgangssignal des strahlungsempfindlichen Detektors wird mit einer phasensteuerbaren Wechselstromverstärkungschaltung mit abstimmbarer Nullpunktdurchlauferkennung erfaßt.The electromagnetic radiation emitted by the IR radiation source passes through the measuring section with the gas to be measured and, after passing through an interference filter, strikes a detector. The interference filter can be used as a discrete component, but can also be integrated in the detector. Of the The pass band of the interference filter is matched to the absorption maximum of a specific absorption band of the gas component to be determined, in the example to the CO 2 absorption band at 4.24 μm. An infrared-sensitive electronic component is used as the detector, for example a pyroelectric detector or a thermopile. Semiconductor components (PbS, PbSe) can also be used. The output signal of the radiation-sensitive detector is detected with a phase-controlled AC amplification circuit with tunable zero point detection.

Das Takten der Strahlungsquelle, das z.B. bei Verwendung eines lediglich auf die Strahlungsintensität ansprechenden Detektors notwendig ist, bedingt eine jeweils periodisch verzögerte Zunahme und ein Abklingen der thermisch induzierten Emission, vor bzw. nach Erreichen der maximalen Strahlertemperatur. Kapazitive bzw. vergleichbare elektronische Einkoppelverfahren gestatten eine Wechselspannungsymmetrierung des modulierten Detektionssignals. Durch Triggern des Nullpunkt-Durchlaufs kann der Phasenschaltpunkt für die phasenabhängige Signalverstärkung bestimmt werden. Während der Nutzsignalphase kann eine auf die Absorption des Meßgases optimierte Strahlertemperatur vorgelegt werden. Signalanteile während der thermischen Abkling- und Aufheizdauer können gegen die Nutzsignalphase kompensiert werden, um eine Störsignalelimination zu erzielen. Der Signalausgang ist wahlweise eine elektrische Spannung (0 bis 10 V) oder ein Strom (0/4 bis 20 mA).The clocking of the radiation source, which is necessary, for example, when using a detector that only responds to the radiation intensity, requires a periodically delayed increase and a decay of the thermally induced emission before or after reaching the maximum lamp temperature. Capacitive or comparable electronic coupling methods allow AC voltage symmetrization of the modulated detection signal. The phase switching point for the phase-dependent signal amplification can be determined by triggering the zero point pass. During the useful signal phase, an emitter temperature optimized for the absorption of the measuring gas can be presented. Signal components during the thermal decay and The heating-up time can be compensated against the useful signal phase in order to achieve interference signal elimination. The signal output is either an electrical voltage (0 to 10 V) or a current (0/4 to 20 mA).

Zusammen mit einer integrierten Temperaturfühlerschaltung wird die Ausgabe eines temperaturkompensierten Signals ermöglicht. Eine andere Möglichkeit besteht darin, eine temperaturabhängige Spannungsquelle einzusetzen. Aus Figur 2a ist zu ersehen, eine mögliche Ausführungsform des erfindungsgemäßen Gasanalysators 20 zu ersehen. Das Gehäuse 2 nimmt die Elektronik auf, von der hier nur eine Platine 3 am Boden des Gehäuses 2 angedeutet ist. In den Ecken 4 des Gehäuses 2 befinden sich Gewindebohrungen 5. An einer Seitenwand 6 des Gehäuses 2 befindet sich der Signalausgang 7, der über Kabel 8 mit den Schaltungen auf der Platine 3 verbunden ist und auch der Energieversorgung dient. 9 bezeichnet einen Elektrolytkondensator 220 µF.Together with an integrated temperature sensor circuit, the output of a temperature-compensated signal is made possible. Another possibility is to use a temperature-dependent voltage source. FIG. 2a shows a possible embodiment of the gas analyzer 20 according to the invention. The housing 2 accommodates the electronics, of which only one circuit board 3 is indicated on the bottom of the housing 2. There are threaded bores 5 in the corners 4 of the housing 2. The signal output 7 is located on a side wall 6 of the housing 2 and is connected to the circuits on the circuit board 3 via cable 8 and also serves to supply energy. 9 denotes an electrolytic capacitor 220 µF.

Die Figuren 2b und 2c zeigen einen Deckel 10 zum Verschließen des Gehäuses 2. Er weist an seinen vier Ecken 11 Bohrungen 12 auf. Der Deckel 10 wird auf das Gehäuse 2 aufgesetzt, so daß die Bolzen 5 und 12 fluchten, und wird verschraubt.Figures 2b and 2c show a cover 10 for closing the housing 2. It has 11 holes 12 at its four corners. The lid 10 is placed on the housing 2 so that the bolts 5 and 12 are aligned, and is screwed.

Der Deckel 10 weist ferner eine Öffnung 13 auf, die dem Gasdurchlaß dient. Die Öffnung 13 ist auf ihrer zur Außenatmosphäre gerichteten Seite mit einem Metallnetz 14 verschlossen. Auf der zur Meßküvette 21 hin ausgerichteten Seite, ist, wie aus Figur 2c ersichtlich, an das Metallnetz 14 bzw. die Innenfläche des Deckels 10 ein Metallfaservlies 16, befestigt, z.B. mit Klebstoff 15 aufgeklebt. Das Metallfaservlies 16 besteht vorzugsweise aus Fasern mit Durchmessern bis zu 2 µm, die in gleichmäßigen Flächengewichten zu Wirrfasern verliest und auf definierte Dicken gewalzt sind. Entsprechende Metallfaservliese besitzen Porositätsgrade bis zu 80% bei gleichzeitg sehr enger Porengrößenverteilung. Damit wird für das Meßgas eine großflächige Einlaßzone geschaffen, mit dem Vorteil verbesserter Diffusions- und Konvektionseigenschaften und geringerer Verschmutzungsneigung, was die Standzeit des Gasanalysators erhöht.The lid 10 also has an opening 13 which the Gas passage serves. The opening 13 is closed on its side facing the outside atmosphere with a metal net 14. On the side oriented towards the measuring cell 21, as can be seen from FIG. 2c, a metal fiber fleece 16 is fastened to the metal net 14 or the inner surface of the lid 10, for example glued on with adhesive 15. The metal fiber fleece 16 preferably consists of fibers with diameters of up to 2 μm, which are read into random fibers in uniform basis weights and rolled to defined thicknesses. Corresponding metal fiber fleeces have porosity levels of up to 80% with a very narrow pore size distribution. This creates a large-area inlet zone for the measuring gas, with the advantage of improved diffusion and convection properties and a lower tendency to contamination, which increases the service life of the gas analyzer.

Aus den Figuren 2 und 3 geht hervor, daß die Meßküvette 21 des erfindungsgemäßen Gasanalysators 20 aus einem länglichen Röhrchen mit einem Längsschlitz 22 besteht, der in Figur 3 nicht maßstabsgetreu etwas zu groß dargestellt ist. Durch den zum Meßgaszutritt 21 hin orientierten Längsschlitz 22 kann das Meßgas durch Diffusion und Konvektion rasch zu- und abgeführt werden. Die Strahlungsquelle 23, im vorliegenden Fall eine Minitaturglühbirne, sitzt in einer Halterung 24 und wird von einem Reflektor 25 eingefaßt. In Figur 4 ist noch einmal im Detail für das Ausführungsbeispiel dargestellt, daß die Meßküvette 21 einen Außendurchmesser Dk von 10mm und einen Innendurchmesser dk von 8mm bei einer Länge lk von etwa 70mm hat. Der Längsschlitz 22 ist etwa 2mm breit. An der Unterseite der Meßküvette 21 gegenüber dem Längsschlitz 22 sitzen zwei Bohrungen 17, 28 mit M3-Gewinde, wobei die Bohrung 27 etwa 7,5mm vom hinteren Ende 21' der Meßküvette 21 und die Bohrung 26 etwa 37mm davon entfernt ist. Das Material ist V4A-Edelstahl.It can be seen from FIGS. 2 and 3 that the measuring cuvette 21 of the gas analyzer 20 according to the invention consists of an elongated tube with a longitudinal slot 22, which is not shown somewhat too large in FIG. 3. Due to the longitudinal slot 22 oriented towards the sample gas inlet 21, the sample gas can be rapidly supplied and removed by diffusion and convection. The radiation source 23, in the present case a miniature light bulb, sits in a holder 24 and is bordered by a reflector 25. FIG. 4 again shows in detail for the exemplary embodiment that the measuring cuvette 21 has an outer diameter D k of 10 mm and an inner diameter d k of 8 mm with a length l k of approximately 70 mm. The longitudinal slot 22 is about 2mm wide. On the underside of the measuring cell 21 opposite the longitudinal slot 22 there are two holes 17, 28 with an M3 thread, the hole 27 being approximately 7.5 mm from the rear end 21 'of the measuring cell 21 and the hole 26 being approximately 37 mm away. The material is V4A stainless steel.

Idealerweise befindet sich die Meßküvette 21 mit dem Längsschlitz 22 unmittelbar hinter dem Metallnetz 14 und schließt dicht damit ab. Dann ist das zu spülende Gasvolumen ziemlich genau das (geringe) Volumen der Meßküvetten, so daß kurze Ansprechzeiten realisierbar sind. Der Meßgasraum ist in diesem Fall dann eigentlich der gesamte geometrische Raum oberhalb des Metalldrahtnetzes (z.B. Büroraum, Hörsaal). Mit 2' ist ein Totraum im Gehäuse 2, der allerdings ausgespült werden muß, bezeichnet. Dieser Totraum 2' sollte gering gehalten werden.Ideally, the measuring cell 21 with the longitudinal slot 22 is located directly behind the metal net 14 and closes tightly therewith. Then the gas volume to be flushed is almost exactly the (small) volume of the measuring cuvettes, so that short response times can be achieved. In this case, the measuring gas space is actually the entire geometric space above the metal wire network (e.g. office space, lecture hall). With 2 'is a dead space in the housing 2, which, however, must be rinsed out. This dead space 2 'should be kept small.

In Figur 5 ist die Halterung 24 für die Strahlungsquelle 23 noch einmal dargestellt. Sie hat einen Durchmesser dH von etwa 8mm, was dem Innendurchmesser dk der Meßküvette 21 entspricht und eine Länge lH von 6mm. Eine zu einem Ende hin konisch erweiterte Durchgangsöffnung 29 nimmt die Strahlungsquelle 23 auf. Die konische Erweiterung ist als Reflektor 25 ausgebildet, der die Strahlungsquelle 23 umfaßt. Im rechten Winkel zur Durchgangsöffnung 29 weist die Halterung 24 eine weitere Bohrung 30 mit einem M2-Gewinde für die Klemmschraube 26 auf. Die Halterung 24 wird also in die Meßküvette 21 eingesetzt, wobei die Bohrung 30 zum Längsschlitz 22 hin orientiert ist. Dann wird die Klemmschraube 26 in die Bohrung 26 eingeschraubt. Der Kopf der Klemmschraube 30 ist breiter als der Längsschlitz 22, so daß beim Einschrauben in die Bohrung 30 eine Klemmwirkung zwischen der Klemmschraube 26 und der Meßküvette 21 bewirkt wird. Auf diese Weise kann die Halterung 24 mit der IR-Strahlungsquelle 23 im zum Meßgas hin geöffneten Längsschlitz 22 der Meßküvette in Richtung des Pfeils A in Figur 3 geführt werden.In Figure 5, the bracket 24 for the radiation source 23 is shown again. It has a diameter d H of approximately 8 mm, which corresponds to the inner diameter d k of the measuring cell 21 and a length l H of 6 mm. One to one end the radiation source 23 receives conically widened through opening 29. The conical extension is designed as a reflector 25, which comprises the radiation source 23. At a right angle to the through opening 29, the holder 24 has a further bore 30 with an M2 thread for the clamping screw 26. The holder 24 is thus inserted into the measuring cell 21, the bore 30 being oriented toward the longitudinal slot 22. Then the clamping screw 26 is screwed into the bore 26. The head of the clamping screw 30 is wider than the longitudinal slot 22, so that a clamping effect between the clamping screw 26 and the measuring cell 21 is effected when screwing into the bore 30. In this way, the holder 24 with the IR radiation source 23 can be guided in the longitudinal slot 22 of the measuring cell, which is open towards the measuring gas, in the direction of arrow A in FIG. 3.

In Figur 3 ist weiterhin ein Detektor 31 dargestellt, der an dem von der Strahlungsquelle 23 entfernten Ende 21' der Meßküvette 21 fixiert ist. Der Detektor 31 ist durch Leitungen 32 mit der Schaltung auf der Platine 3 verbunden. Der Detektor 31 besitzt eine möglichst große Detektorfläche, die im Ausführungsbeispiel etwa seiner Querschnittsfläche entspricht. Vor den Detektor 31 ist noch ein Interferenzfilter 33 geschaltet. Das Interferenzfilter kann aber auch in den Detektor integriert sein. Er ist im Ausführungsbeispiel für IR-Strahlung im Wellenlängenbereich von 4,24µm durchlässig. Die Länge der Meßstrecke, d.h. der Abstand zwischen der Strahlungsquelle 23 und dem Detektor 31, ist variabel und für unterschiedliche Gaskonzentrationsbereiche optimierbar.FIG. 3 also shows a detector 31 which is fixed to the end 21 'of the measuring cuvette 21 remote from the radiation source 23. The detector 31 is connected to the circuit on the circuit board 3 by lines 32. The detector 31 has the largest possible detector area, which corresponds approximately to its cross-sectional area in the exemplary embodiment. An interference filter 33 is also connected in front of the detector 31. The interference filter can also be integrated in the detector. He is in Exemplary embodiment for IR radiation in the wavelength range of 4.24 µm transmissive. The length of the measuring section, ie the distance between the radiation source 23 and the detector 31, is variable and can be optimized for different gas concentration ranges.

Die einzelnen, die Optik des Sensors ausbildenden Bauelemente befinden sich bei diesem Ausführungsbeispiel im guten thermischen Kontakt. Im Zusammenhang mit der Führung der Strahlungsquelle 23 längs der Meßstrecke, der diffusen Reflexion an der Innenwand der Meßküvette 21 sowie durch die Verwendung eines Detektors 31 mit groß dimensionierter Detektorfläche, sind thermisch bedingte Dejustierungen der Optik und dadurch verursachte Meßfehler vernachlässigbar. Dieses hat Vorteile gegenüber Gassensoren mit aufwendigen Abbildungsoptiken bei Verwendung von Spiegeln, die präzise Justierungen und isotherm geführte mechanische Verbunde erfordern.The individual components that form the optics of the sensor are in good thermal contact in this exemplary embodiment. In connection with the guiding of the radiation source 23 along the measuring section, the diffuse reflection on the inner wall of the measuring cell 21 and the use of a detector 31 with a large dimensioned detector surface, thermally induced misalignments of the optics and measurement errors caused thereby are negligible. This has advantages over gas sensors with complex imaging optics when using mirrors that require precise adjustments and isothermally guided mechanical assemblies.

BezugszeichenlisteReference list

11
GesamtvorrichtungOverall device
22nd
Gehäusecasing
2'2 '
MeßgasraumSample gas space
33rd
Platinecircuit board
44th
Ecken von 2Corners of 2
55
GewindebohrungenTapped holes
66
Seitenwand von 2Sidewall of 2
77
SignalausgangSignal output
88th
Kabelelectric wire
99
Batteriebattery
1010th
Deckel von 2Cover of 2
1111
Ecken von 10Corners of 10
1212th
BohrungenHoles
1313
Öffnung in 10Opening in 10
1414
MetallnetzMetal mesh
1515
Klebstoffadhesive
1616
MetallfaservliesMetal fiber fleece
2020th
GasanalysatorGas analyzer
2121
MeßküvetteMeasuring cell
21'21 '
Ende von 21End of 21
2222
Längsschlitz in 21Longitudinal slot in 21
2323
StrahlungsquelleRadiation source
2424th
Halterung für 23Bracket for 23
2525th
Reflektorreflector
2626
KlemmschraubeClamping screw
27,2827.28
Bohrungen in 21Holes in 21
2929
Durchgangsöffnung in 24Through opening in 24
3030th
Bohrung in 24Hole in 24
3131
Detektordetector
3232
Leitungencables
3333
InterferenzfilterInterference filter
AA
Verschiebungsrichtung der LichtquelleDirection of displacement of the light source
lk l k
Länge von 21Length of 21
Dk D k
Außendurchmesser von 21Outside diameter of 21
dk d k
Innendurchmesser von 21Inner diameter of 21
lH l H
Länge von 24Length of 24
dH d H
Durchmesser von 24Diameter of 24

Claims (19)

Gasanalysator (20) zur kontinuierlichen Bestimmung der Konzentration eines Gases in einem Gasgemisch, mit einer Meßküvette (21), einer darin angeordneten Strahlungsquelle (23), einem Detektor (31) und Einrichtungen zur Signalverarbeitung (3, 7), dadurch gekennzeichnet, daß die Strahlungsquelle (23) in der Meßküvette (21) verschieblich angeordnet ist.Gas analyzer (20) for the continuous determination of the concentration of a gas in a gas mixture, with a measuring cell (21), a radiation source (23) arranged therein, a detector (31) and devices for signal processing (3, 7), characterized in that the Radiation source (23) in the measuring cell (21) is arranged displaceably. Gasanalysator nach Anspruch 1, dadurch gekennzeichnet, daß die Strahlungsquelle (23) in einem in der Meßküvette (21) vorgesehenen Längsschlitz (22) verschieblich fixiert ist.Gas analyzer according to claim 1, characterized in that the radiation source (23) is displaceably fixed in a longitudinal slot (22) provided in the measuring cell (21). Gasanalysator nach Anspruch 2, dadurch gekennzeichnet, daß die Strahlungsquelle (23) mit einer Klemmschraube (26) fixiert ist.Gas analyzer according to claim 2, characterized in that the radiation source (23) is fixed with a clamping screw (26). Gasanalysator nach Anspruch 2, dadurch gekennzeichnet, daß die Strahlungsquelle (23) in eine Halterung (24) gehalten ist, die eine Bohrung (30) für Klemmschraube (25) aufweist.Gas analyzer according to claim 2, characterized in that the radiation source (23) is held in a holder (24) which has a bore (30) for the clamping screw (25). Gasanalysator nach Anspruch 4, dadurch gekennzeichnet, daß die Halterung (24) einen Reflektor (25) aufweist.Gas analyzer according to claim 4, characterized in that the holder (24) has a reflector (25). Gasanalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Detektor (31) an dem von der Strahlungsquelle (23) entfernten Ende (21') der Meßküvette (21) befestigt ist.Gas analyzer according to one of the preceding claims, characterized in that the detector (31) is attached to the end (21 ') of the measuring cuvette (21) remote from the radiation source (23). Gasanalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Detektorfläche des Detektors (31) in etwa seiner Querschnittsfläche entspricht.Gas analyzer according to one of the preceding claims, characterized in that the detector area of the detector (31) corresponds approximately to its cross-sectional area. Gasanalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Meßküvette (21) in Form eines Metallröhrchens, vorzugsweise aus Aluminium oder Edelstahl, ausgebildet ist.Gas analyzer according to one of the preceding claims, characterized in that the measuring cell (21) is in the form of a metal tube, preferably made of aluminum or stainless steel. Gasanalysator nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß der Längsschlitz (22) sich über die gesamte Länge der Meßküvette (21) erstreckt.Gas analyzer according to one of claims 2 to 8, characterized in that the longitudinal slot (22) extends over the entire length of the measuring cell (21). Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Meßküvette (21) eine diffus reflektierende Innenfläche aufweist.Device according to one of the preceding claims, characterized in that the measuring cuvette (21) has a diffusely reflecting inner surface. Gasanalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen der Strahlungsquelle (23) und dem Detektor (31) ein Interferenzfilter (33) angeordnet ist, dessen Durchlaßbereich auf das Absorptionsmaximum einer spezifischen Absorptionsbande der zu bestimmenden Gaskomponente abgestimmt ist.Gas analyzer according to one of the preceding claims, characterized in that between the Radiation source (23) and the detector (31) an interference filter (33) is arranged, the pass band is matched to the absorption maximum of a specific absorption band of the gas component to be determined. Gasanalysator nach Anspruch 11, dadurch gekennzeichnet, daß der Interferenzfilter (33) in den Detektor (31) integriert ist.Gas analyzer according to claim 11, characterized in that the interference filter (33) is integrated in the detector (31). Gasanalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er in einem mindestens teilweise gasdurchlässigen Gehäuse (2) angeordnet ist.Gas analyzer according to one of the preceding claims, characterized in that it is arranged in an at least partially gas-permeable housing (2). Gasanalysator nach Anspruch 13, dadurch gekennzeichnet, daß das Gehäuse (2) eine mit einem Metallfaservlies (16) bedeckte Öffnung (13) aufweist.Gas analyzer according to claim 13, characterized in that the housing (2) has an opening (13) covered with a metal fiber fleece (16). Gasanalysator nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die die Optik bildenden Bauelemente so in dem Gehäuse (2) angeordnet sind, daß sie in gutem thermischen Kontakt zueinander stehen.Gas analyzer according to claim 13 or 14, characterized in that the components forming the optics are arranged in the housing (2) in such a way that they are in good thermal contact with one another. Meßküvette (21) zur photometrischen Messung der Konzentration eines Gases in einem Gasgemisch, dadurch gekennzeichnet, daß sie in Form eines über deren gesamte Länge mit einem Längsschlitz (22) versehenen Röhrchens ausgebildet ist.Measuring cuvette (21) for the photometric measurement of the concentration of a gas in a gas mixture, characterized in that it is in the form of a entire length is formed with a longitudinal slot (22) provided tube. Meßküvette nach Anspruch 16, dadurch gekennzeichnet, daß sie aus Metall, z.B. Aluminium oder Edelstahl besteht.Measuring cell according to claim 16, characterized in that it is made of metal, e.g. Aluminum or stainless steel. Meßküvette nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß ihre Innenfläche diffus reflektierend ist.Measuring cell according to claim 16 or 17, characterized in that its inner surface is diffusely reflective. Meßküvette nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß sie auf der dem Längsschlitz (22) gegenüberliegenden Seite mindestens eine Bohrung (27, 28) zur Fixierung in einem Gehäuse (2) aufweist.Measuring cell according to one of claims 16 to 18, characterized in that it has at least one bore (27, 28) on the side opposite the longitudinal slot (22) for fixing in a housing (2).
EP97101950A 1996-03-06 1997-02-07 Gas analyzer Withdrawn EP0794423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608604 1996-03-06
DE19608604A DE19608604C2 (en) 1996-03-06 1996-03-06 Gas analyzer and measuring cell for use in a gas analyzer

Publications (1)

Publication Number Publication Date
EP0794423A1 true EP0794423A1 (en) 1997-09-10

Family

ID=7787357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97101950A Withdrawn EP0794423A1 (en) 1996-03-06 1997-02-07 Gas analyzer

Country Status (4)

Country Link
US (1) US5874737A (en)
EP (1) EP0794423A1 (en)
CA (1) CA2199336A1 (en)
DE (1) DE19608604C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1027592A1 (en) * 1997-10-28 2000-08-16 Engelhard Sensor Technologies, Inc. Diffusion-type ndir gas analyzer with convection flow
DE19922590A1 (en) * 1999-03-08 2000-09-28 Inst Chemo Biosensorik Gas sensor and method for operating a gas sensor
DE19926121C2 (en) * 1999-06-08 2001-10-18 Cs Halbleiter Solartech Analyzer
US6825471B1 (en) 1999-03-08 2004-11-30 Gasbeetle Gas detector and method of operating a gas detector
EP2677300A3 (en) * 2012-06-19 2014-01-29 General Electric Company Non-dispersive infrared gas sensor with a reflective diffuser
DE102016108267A1 (en) 2016-05-04 2017-11-09 Wi.Tec-Sensorik GmbH Apparatus and method for determining a concentration of at least one gas component of a gas mixture
DE202019101137U1 (en) 2019-02-28 2019-03-13 Wi.Tec - Sensorik GmbH Simultaneous measurement of SO2 concentration, NO2 concentration and NO concentration in a gas mixture

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742053C1 (en) * 1997-09-24 1999-01-28 Draeger Sicherheitstech Gmbh Infrared absorption measuring device for gas analysis
US6382500B1 (en) 2000-08-22 2002-05-07 Advanced Micro Devices, Inc. Solder reflow furnace with flux effluent collector and method of preventing flux contamination
DE10138508A1 (en) * 2001-08-06 2003-03-06 Testo Gmbh & Co Method and device for quantitative gas analysis
DE10221708B4 (en) * 2002-05-16 2004-09-30 Infratec Gmbh Infrarotsensorik Und Messtechnik Method for determining the concentration of gases and vapors and non-dispersive infrared gas analyzer for carrying out the method
US6882426B1 (en) 2002-06-26 2005-04-19 Digital Control Systems, Inc. Gas sensor with slotted diffusive gas sample chamber
FR2843196B1 (en) * 2002-08-01 2005-07-01 Sarl Agebos INFRARED RADIATION SENSOR DETECTOR FOR DIRECT MEASUREMENT OF GAS PRODUCTION IN THE ENVIRONMENT OF AN APPARATUS
US7089781B2 (en) * 2003-11-04 2006-08-15 Honeywell International, Inc. Detector with condenser
SE534082C2 (en) * 2004-12-29 2011-04-26 Senseair Ab A gas detecting arrangement
DE102005044479A1 (en) * 2005-09-16 2007-03-22 Werner Woelke Gas meter for gull gas explosive mines
DE102006038365B3 (en) * 2006-08-16 2007-12-20 Dräger Safety AG & Co. KGaA Gas concentration measuring device, has radiation guiding device with main optics unit that includes cylinder-like optic unit such that radiation source is formed in radiation spot running along preferred direction
SE533411C2 (en) * 2008-08-28 2010-09-21 Senseair Ab A spectral analysis of a compressed gas, such as a gas at small gas concentrations at atmospheric pressure, adapted arrangement
SE535674C2 (en) * 2010-11-09 2012-11-06 Hoek Instr Ab Multifunctional exhalation analyzer
US8222606B1 (en) * 2011-05-31 2012-07-17 Airware, Inc. Air sampler for recalibration of absorption biased designed NDIR gas sensors
WO2014048335A1 (en) * 2012-09-28 2014-04-03 华瑞科学仪器(上海)有限公司 Explosion-proof miniaturized combustible gas sensor
CN112649389B (en) * 2020-12-07 2022-03-08 珠海格力电器股份有限公司 Sensor optical path component, gas sensor, measuring method and air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398977A (en) * 1971-10-07 1975-06-25 Emi Ltd Gas detector
DE3446756C1 (en) * 1984-12-21 1985-10-31 Betz, Michael, Dr., 2300 Molfsee Photometer for analyzing liquid media
US5163332A (en) * 1990-04-02 1992-11-17 Gaztech International Corporation Gas sample chamber
DE9315508U1 (en) * 1993-10-13 1994-03-31 Palocz Andresen Michael Dr Ing Infrared absorption gas analyzer with separate optical cuvette
DE4438244C1 (en) * 1994-10-26 1996-03-07 Frobenius Wolf Dietrich Prof D Gas component concn. in mixture measuring appts. for esp. carbon dioxide in atmos.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2132973C3 (en) * 1970-07-04 1974-05-30 Horiba Ltd., Kyoto, Kyoto (Japan) Optical measuring device. Elimination in: 2166382
US4323777A (en) * 1980-05-19 1982-04-06 Infrared Industries, Inc. Hydrocarbon gas analyzer
US4709150A (en) * 1986-03-18 1987-11-24 Burough Irvin G Method and apparatus for detecting gas
DE3809160A1 (en) * 1988-03-18 1989-09-28 Leybold Ag INFRARED RADIATION SOURCE, IN PARTICULAR FOR A MULTI-CHANNEL GAS ANALYZER
US5341214A (en) * 1989-09-06 1994-08-23 Gaztech International Corporation NDIR gas analysis using spectral ratioing technique
US5332901A (en) * 1991-03-15 1994-07-26 Li-Cor, Inc. Gas analyzing apparatus and method for simultaneous measurement of carbon dioxide and water
IL98729A (en) * 1991-07-04 1996-08-04 Spectronix Ltd Method and apparatus for detecting hydrocarbon vapours in a monitored area
US5384640A (en) * 1993-01-19 1995-01-24 Gaztech International Corporation Gas sample chamber for use with a source of coherent radiation
DE4413670C2 (en) * 1993-04-21 1998-02-12 Palocz Andresen Michael Dr Ing Infrared gas analyzer
JPH07151684A (en) * 1993-11-29 1995-06-16 Shimadzu Corp Infrared ray type gas analyzer
AU7322594A (en) * 1994-07-05 1996-01-25 Telaire Systems, Inc. Ndir gas analysis using spectral ratioing technique
US5453620A (en) * 1994-08-12 1995-09-26 Texas Instruments Incorporated Nondispersive infrared gas analyzer and gas sample chamber used therein
DE9420231U1 (en) * 1994-12-21 1995-02-09 Hekatron Gmbh Device for detecting a gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398977A (en) * 1971-10-07 1975-06-25 Emi Ltd Gas detector
DE3446756C1 (en) * 1984-12-21 1985-10-31 Betz, Michael, Dr., 2300 Molfsee Photometer for analyzing liquid media
US5163332A (en) * 1990-04-02 1992-11-17 Gaztech International Corporation Gas sample chamber
DE9315508U1 (en) * 1993-10-13 1994-03-31 Palocz Andresen Michael Dr Ing Infrared absorption gas analyzer with separate optical cuvette
DE4438244C1 (en) * 1994-10-26 1996-03-07 Frobenius Wolf Dietrich Prof D Gas component concn. in mixture measuring appts. for esp. carbon dioxide in atmos.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1027592A1 (en) * 1997-10-28 2000-08-16 Engelhard Sensor Technologies, Inc. Diffusion-type ndir gas analyzer with convection flow
EP1027592A4 (en) * 1997-10-28 2002-07-17 Engelhard Sensor Technologies Diffusion-type ndir gas analyzer with convection flow
DE19922590A1 (en) * 1999-03-08 2000-09-28 Inst Chemo Biosensorik Gas sensor and method for operating a gas sensor
DE19922590C2 (en) * 1999-03-08 2001-10-18 Inst Chemo Biosensorik Infrared gas sensor and method for operating the infrared gas sensor
US6825471B1 (en) 1999-03-08 2004-11-30 Gasbeetle Gas detector and method of operating a gas detector
DE19926121C2 (en) * 1999-06-08 2001-10-18 Cs Halbleiter Solartech Analyzer
US6762410B1 (en) 1999-06-08 2004-07-13 Cs Clean Systems Ag Analysis apparatus
EP2677300A3 (en) * 2012-06-19 2014-01-29 General Electric Company Non-dispersive infrared gas sensor with a reflective diffuser
US8969808B2 (en) 2012-06-19 2015-03-03 Amphenol Thermometrics, Inc. Non-dispersive infrared sensor with a reflective diffuser
DE102016108267A1 (en) 2016-05-04 2017-11-09 Wi.Tec-Sensorik GmbH Apparatus and method for determining a concentration of at least one gas component of a gas mixture
DE102016108267B4 (en) 2016-05-04 2024-03-21 Wi.Tec-Sensorik GmbH Device and method for determining a concentration of at least one gas component of a gas mixture
DE202019101137U1 (en) 2019-02-28 2019-03-13 Wi.Tec - Sensorik GmbH Simultaneous measurement of SO2 concentration, NO2 concentration and NO concentration in a gas mixture

Also Published As

Publication number Publication date
DE19608604C2 (en) 1998-09-10
CA2199336A1 (en) 1997-09-06
DE19608604A1 (en) 1997-09-11
US5874737A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
DE19608604C2 (en) Gas analyzer and measuring cell for use in a gas analyzer
EP0758079A2 (en) Microstructured infrared absorption photometer
EP0163847B1 (en) Interferential refractometer
DE69333910T2 (en) Improved diffusion-type gas sampling chamber
EP0148497B1 (en) Device for guiding and collecting light in photometry or the like
DE2433980C2 (en) Fluorescence analyzer
EP0704691A2 (en) Infrared spectrometric gas sensor
EP3504535B1 (en) Measuring device for measuring absorption of gases
EP1183520A2 (en) Gas sensor configuration
DE4005670C2 (en) Photometer
DE19720007C2 (en) Gas sensor system for the detection of at least one gas or of particles or a combination thereof with two gas sensors, method for its operation and use of the gas sensor system
DE4443016A1 (en) Spectral analyser of gas concentration
DE19926121C2 (en) Analyzer
WO2006002740A1 (en) Non-dispersive infrared gas analyzer
EP2018535A2 (en) Gas detector having an acoustic measuring cell and selectively adsorbing surface
DE2616792A1 (en) MONITORING DEVICE FOR DETECTION OF CHEMOLUMINESCENCE REACTIONS
DE102014000210B3 (en) Modified cuvette
EP0550542B1 (en) Device for the qualitative and/or quantitative determination of the compositon of a sample to be analysed
WO2005121752A1 (en) Sensor unit for recording a fluid in particular for recording natural gas hydrocarbons carbon dioxide or similar in ambient air
EP0591758B1 (en) Multi-components analysing device
EP0509249B1 (en) Method and apparatus for analysing gases
WO2024074728A1 (en) Photo-acoustic gas sensor, particularly for detecting methane
EP0740146A2 (en) Device for detecting a gas or aerosol
DE10245822A1 (en) Method and gas measuring cell for the detection of different gases
DE4438244C1 (en) Gas component concn. in mixture measuring appts. for esp. carbon dioxide in atmos.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000830