EP0860894B1 - Miniature resonant antenna in the form of annular microstrips - Google Patents

Miniature resonant antenna in the form of annular microstrips Download PDF

Info

Publication number
EP0860894B1
EP0860894B1 EP98400437A EP98400437A EP0860894B1 EP 0860894 B1 EP0860894 B1 EP 0860894B1 EP 98400437 A EP98400437 A EP 98400437A EP 98400437 A EP98400437 A EP 98400437A EP 0860894 B1 EP0860894 B1 EP 0860894B1
Authority
EP
European Patent Office
Prior art keywords
ring
antenna according
antenna
sections
meanders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98400437A
Other languages
German (de)
French (fr)
Other versions
EP0860894A1 (en
Inventor
Hervé Legay
Thierry Rostan
Frédéric Croq
Michel Gomez-Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP0860894A1 publication Critical patent/EP0860894A1/en
Application granted granted Critical
Publication of EP0860894B1 publication Critical patent/EP0860894B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0464Annular ring patch

Definitions

  • the invention relates to a transmitting or receiving antenna of the microwave domain. It relates more particularly to a flat antenna made of microstrip technology, which has the general shape of a ring, and is resonant type.
  • Antennas of this type have a small footprint and a low mass. They are therefore used for embedded applications, especially for space vehicles and satellites.
  • omnidirectional antennas are often needed, that is, capable of transmitting or receiving in a solid angle of great value.
  • the aim of the invention is to provide a ring-shaped resonant antenna which is of minimal size and which has a maximum angular coverage with a purity of polarization preserved in this angular coverage.
  • the flat antenna of resonant type, has the general shape of a ring with meanders or crenellations.
  • This form of meandering ring or crenellations makes it possible to maximize the length of the periphery in a predetermined size, that is to say to minimize the space requirement for a given wavelength.
  • the wavelength guided in the antenna is proportional to the length of the periphery, for the same wavelength, the size (that is to say the occupied area) of an antenna according to the invention is weaker than the size of an antenna of the same type with a circular ring.
  • the decrease in the size of the antenna is favorable to the increase of its omnidirectionality.
  • two successive radial portions must have an orientation and dimensions such that they generate spurious fields. who compensate each other. It is preferable that the distance between these successive radial portions is small.
  • the radial portions are, as a whole, shaped in such a way that they do not produce a disturbing field of the polarization of the signal to be emitted.
  • the excitation of the antenna is performed on the outer section of the ring.
  • the ratio of the largest diameter to the smallest diameter is at most equal to two.
  • the ring has eight or sixteen sections in total.
  • the meandering ring or crenellations is either a metal deposit on a substrate, or a slot provided in a metal deposit.
  • the dielectric permittivity of the substrate because the guided wavelength in the antenna is substantially proportional to the square root of this dielectric permittivity.
  • the increase of this permittivity is not, either, favorable to the maintenance of the purity of polarization.
  • a suitable degree of polarization purity could be maintained if the dielectric permittivity was of the order of 1.5. But we do not have a material with this permittivity.
  • a permittivity material 2.5 approximately a good degree of purity can be maintained provided that the annular antenna is deposited on a substrate which also comprises a housing with metal walls substantially perpendicular to the plane of the substrate, for example cylindrical shape of circular section.
  • the width of these meanders or crenellations is of the order of 0.2 times the diameter.
  • the antenna shown in FIG. 1 is intended to receive or transmit microwave signals in two bands, namely, on the one hand, the S band at 2 GHz and, on the other hand, the UHF band at 400 MHz.
  • This antenna is mainly intended to be implanted on small satellites, such as satellites assigned to the location of objects or for missions measuring or remote control with conventional satellites. Because of this application, it must have a small footprint, a wide angular coverage for the two frequency bands and a circular polarization with a suitable ellipticity rate over this wide angular coverage, especially for the orientations furthest from axis.
  • the antenna 10 shown in FIG. 1 is of the combined type. It is formed by the combination of two concentric planar antennas, respectively 14 and 16. Each of the antennas 14 and 16 and the assembly 10 have an axis 12 of rotational symmetry.
  • the central antenna 14, of smaller dimensions, is intended for the S-band at 2 GHz and the outer antenna 16, of larger dimensions, is intended for the UHF band at 400 MHz.
  • Each of the individual antennas 14, 16 comprises a dielectric substrate, respectively 18 and 20, on which is deposited a conductive ring, respectively 22 and 24.
  • the two rings 22 and 24 are centered on the axis 12.
  • Each of the substrates is enclosed in a cylindrical metal housing of axis 12.
  • the housing for the antenna 14 has the reference 25 and the housing for the antenna 16 has the reference 26.
  • This housing is limited, a on the one hand, by a cylindrical outer wall 26 1 and, on the other hand, by an inner cylindrical wall 26 2 at a short distance from the wall of the housing 25.
  • the space 28 formed between the wall of the housing 25 and the wall 26 2 has a length (in the direction of the axis 12) equal to one quarter of the length of the S-band waves, that is to say 35 mm about. It is open, at 29, on the side where the emission occurs. It constitutes a trap intended to prevent the propagation of the leakage currents of the ring 22 towards the ring 24.
  • a metal filler ring 36 can be arranged at the bottom of the space 28 to adjust the length (parallel to the axis 12) of this space 28 so that it is equal to a quarter of the wavelength of the band S .
  • the walls 25 and 26 2 may be formed from the same sheet of metal.
  • a ring or metal ring 30 Around the housing 26, substantially in the plane of the ring 24, and therefore perpendicular to the axis 12, is a ring or metal ring 30.
  • the inner rim 32 of the crown 30 is connected to a skirt 34 moving away, on the one hand, from the ring 30 towards the bottom of the housing 26 and, on the other hand, from the axis 12.
  • the angle formed in the plane of Figure 1 by the plane of the ring 30 and the skirt 34 is of the order of 45 °.
  • the ring 22 radiates in a cone of axis 12 half-angle at the vertex ⁇ equal to about 60 °. There is however a radiation outside this cone.
  • the purpose of the ring 30 is to diffract the waves deflected outwards in order to increase the omnidirectionality of the antenna 14.
  • the ring 30 tends to degrade the circular polarization of the radiation, i.e., to degrade the ellipticity rate.
  • the skirt 34 made it possible to maintain an ellipticity rate of circularly polarized waves close to 1, especially for the directions forming a wide angle with the axis 12.
  • the ellipticity rate can be adjusted empirically by varying the orientation of the skirt 34, i.e. the angle it forms with the plane of the ring 30 as well as by varying its dimensions.
  • the outer edge 34 1 of the skirt 34 is further from the axis 12 than the outer edge 30 1 of the ring 30.
  • the inner diameter of the ring 30 is 256 mm, its outer diameter 300 mm, while the outer diameter of the skirt 34 - which has a generally frustoconical shape - is 348 mm.
  • skirt 34 creates an S-band wave diffraction which opposes the negative effect of the diffracting ring 30 on the ellipticity rate of the S-band waves.
  • housings or cavities 25 and 26 contribute to symmetrize the radiation pattern around the axis 12 and to improve the ellipticity rate.
  • the dielectric substrates 18 and 20 have a relative dielectric permittivity ⁇ r of the order of 2.5. As indicated above, the higher the dielectric permittivity, the smaller the antenna dimensions can be. However, increasing the dielectric constant is unfavorable to maintaining circular polarization. Therefore, in the example, the constant ⁇ r does not exceed the value 2.5.
  • FIGS. 1a, 1b and 1c are diagrams making it possible to highlight the advantages, on the one hand, of the quarter-wave trap constituted by the annular space 28 and, on the other hand, diffractive elements 30 and 34.
  • the abscissa the elevation ⁇ (in degrees), that is to say the half-angle of the emission cone axis 12, and the ordinate the amplitudes in decibels normal polarization and cross polarization.
  • FIG. 1a is a diagram for an antenna similar to that of FIG. 1 but devoid of, on the one hand, the quarter-wave trap 28 and, on the other hand, diffractive elements 30 and 34.
  • Curve 40 corresponds to normal polarization and curves 41 correspond to cross polarization.
  • the purity of the circular polarization is all the greater the greater the difference between the curves 40 and 41. It is thus seen that for an angle ⁇ of 0 °, that is to say along the axis 12 , the emission is in a circular polarization. By cons, when one moves away from the axis 12, the circular polarization degrades significantly.
  • the emission weakens substantially as one moves away from the axis 12.
  • FIG. 1b corresponds to an antenna similar to that of FIG. 1, with a quarter-wave trap 28, but without the diffracting elements 30 and 34.
  • FIG. 1c corresponds to the antenna represented in FIG. 1, with a quarter-wave trap 28, the crown 30 and the skirt 34. It can be seen, with respect to FIG. 1b, that the omnidirectionality is all quite satisfactory up to an angle ⁇ of 60 °. In addition, the circular polarization purity is significantly improved between the angles 30 ° and 60 °, the distance between the curves 40 2 and 41 2 being substantially larger.
  • the compactness of the antenna is increased by imparting a crenellated or meandering shape to the rings 22 and 24.
  • the ring 22 comprises, regularly distributed around the axis 12, eight internal segments 46 1 to 46 8 alternated with eight external segments 48 1 to 48 8 . These segments 46 and 48 in the form of arcs of circles are connected at their ends by rectilinear segments 50, of radial directions. Thus, in this example, the radial segments are sixteen in number.
  • the ring 24 is homothetic of the ring 22.
  • the guided wavelength of the radiation to be transmitted is directly proportional to the electrical length of the ring of the resonant antenna 14 (14 ') or 16 (16'). This length electric is equal to the sum of the lengths of all segments 46, 48 and 50.
  • an antenna according to the invention has a smaller footprint than an antenna having a simply circular shape. Indeed, it is found that, with respect to a circular ring having the same diameter as the circle on which the segments 48 are arranged, the electrical length is increased by about the sum of the lengths of the segments 50.
  • the antenna's antenna impedance decreases because the metal ribbon further obscures the aperture; thus, the proportion of energy dissipated in the conductor or the dielectric is larger. It is therefore preferable that the ratio between the outside diameter and the inside diameter is at most of the order of two.
  • FIG. 4 shows, in exploded perspective, the various constituent elements of the antenna combined with rings 22 'and 24' of the type of those of FIG.
  • the crown 30 and the skirt 34 inclined at 45 ° constitute a single piece 50.
  • the rings 24 'and 22' are made by etching on dielectric substrates, respectively 18 and 20, made of a material referred to as "polypenco".
  • the rings 22 'and 24' separated from the substrates 18 and 20 are shown; but it goes without saying that these rings are deposited on the respective substrates 18 and 20.
  • a coaxial cable 60 passes through the bottom 52 of the housing 25 to bring the excitation signal to the splitter 54.
  • the role of the latter is to distribute, with appropriate phase shifts, the excitation signal between the four outer segments 48 'of the 'ring 14'.
  • a distributor 58 is arranged between the bottom 56 of the housing 26 and the dielectric 20 .
  • a coaxial cable 62 passes through the bottom 56 to bring the UHF excitation signal to the splitter 58 which distributes, with appropriate phase shifts, this excitation signal between the four outer segments of the ring 24 '.
  • FIGS 5, 6 and 7 show the splitter 54.
  • the circuits 64 make it possible, from the excitation signal supplied by the coaxial 60, to obtain a circular polarization. For this purpose, they feed the four outer segments 48 'with successive phase shifts of 90 °.
  • the signal supplied through the coaxial 60 is applied to an input 66 which, as shown in Figure 5, is connected to the input of a phase shifter 70 to 180 ° via a transformer 68.
  • the output 70 1 without phase shift of the phase-shifter 70 is connected to a port 74 which is itself connected to a 90 ° phase-shifter 78 via a transformer 76.
  • the phase-shifted output 70 2 of 180 of the phase-shifter 70 is connected to a another port 80, which is connected to a second phase-shifter 84 of 90 ° via a transformer 82.
  • the output 78 1 without phase shift of the phase shifter 78 is connected to a first output 90 1 of the circuit 64 via a Transformer 86 and an adapter 88.
  • Output 90 1 is connected to a first outer segment of ring 22 '.
  • phase shifter output 78 2 of the phase shifter 78 is connected to a second output 90 2 via another transformer and another adapter.
  • the output 90 2 is connected to a second outer segment of the ring 22 '.
  • the output without phase shift 84 1 of the phase shifter 84 is connected to the third output 90 3 via a transformer and an adapter.
  • This output 90 3 is connected to a third outer segment of the ring 22 '.
  • the output 84 2 of 90 ° phase shift of the phase shifter 84 is connected to the fourth output 90 4 of the circuit 64 through a transformer and an adapter.
  • This output 90 4 is connected to a fourth outer segment of the ring 22 '.
  • the signal on the output 90 1 is in phase with the input signal on the first port 66, while the signals on the outputs 90 2 , 90 3 and 90 4 are out of phase by 90 °, 180 ° and 270 °, respectively. report to the input signal.
  • the outputs 90 1 to 90 4 are at the periphery of the cutouts and regularly distributed; these outputs are in line with the outer segments of the ring 22 'to which they are connected.
  • the metal blanks are sandwiched between distributing dielectrics, respectively 102 and 104.
  • each output 90 of the circuit 64 is effected via a probe 92.
  • Four probes are therefore provided.
  • the probe 92 1 is shown .
  • the splitter 64, 102, 104 is enclosed in a metal housing 106 forming a trap preventing the excitation of surface waves on the splitter.
  • the circuit 64 is made using metal etchings on a substrate.
  • three concentric antennas are provided, 110 for the central antenna, 112 for the intermediate antenna and 114 for the outermost antenna, respectively.
  • a diffraction ring 30 surrounds the outermost antenna and this ring 30 is integral with a skirt 34 oriented substantially at 45 ° to the plane of the ring 30.
  • a quarter-wave trap 28 prevents propagation of leakage current from the excited cavity to the surrounding cavities.
  • a quarter-wave trap 116 prevents the propagation of a leakage current to the antenna 114.
  • the trap 116 is of length (along the axis) larger than the trap 28 because it is intended to eliminate longer wavelengths, those of the signals emitted by the antenna 112.
  • FIG. 9 represents a resonant annular cavity which applies more particularly to a slot antenna.
  • this example could also apply to a resonant ring antenna formed by a metal conductor.
  • the ring 130 is constituted by a slot 132 in a metal conductor 134.
  • This ring 130 forms meanders each having substantially the shape of a petal.
  • the number of petals is, in this embodiment, equal to 8.
  • the excitation is carried out on the outer segments by means of a coaxial cable

Description

L'invention est relative à une antenne d'émission ou de réception du domaine des hyperfréquences. Elle concerne plus particulièrement une antenne plate réalisée en technologie microruban, qui a la forme générale d'un anneau, et est de type résonnante.The invention relates to a transmitting or receiving antenna of the microwave domain. It relates more particularly to a flat antenna made of microstrip technology, which has the general shape of a ring, and is resonant type.

Les antennes de ce type présentent un faible encombrement et une faible masse. Elles sont donc utilisées pour les applications embarquées, notamment pour les véhicules spatiaux et les satellites.Antennas of this type have a small footprint and a low mass. They are therefore used for embedded applications, especially for space vehicles and satellites.

On a souvent besoin, en particulier pour les applications spatiales, d'antennes omnidirectionnelles, c'est-à-dire pouvant émettre ou recevoir dans un angle solide de grande valeur.Especially for space applications, omnidirectional antennas are often needed, that is, capable of transmitting or receiving in a solid angle of great value.

Mais on a constaté que l'exigence d'omnidirectionnalité est difficile à concilier avec l'exigence de conservation de la pureté de la polarisation des ondes électromagnétiques à émettre ou recevoir.But it has been found that the requirement of omnidirectionality is difficult to reconcile with the requirement of preserving the purity of the polarization of the electromagnetic waves to be emitted or received.

En particulier, quand l'onde à émettre (ou recevoir) doit présenter une polarisation circulaire, il faut conserver un taux d'ellipticité proche de 1 dans toutes les directions d'émission (ou de réception). Cette contrainte n'est pas aisée à respecter pour les antennes planes. Document JP-A-05152829 décrit une antenne résonnante pour des ondes hyperfréquences comprenant un résonateur microruban annulaire à deux créneaux, qui permettent de régler deux fréquences de résonance en deux polarisations orthogonales. En outre, documents US-A-3 716 861 et US-A-4 804 965 décrivent des antennes filaires comprenant des méandres ou créneaux du type à ondes progressives.In particular, when the wave to be transmitted (or receive) must have a circular polarization, it is necessary to maintain an ellipticity rate close to 1 in all directions of emission (or reception). This constraint is not easy to respect for flat antennas. Document JP-A-05152829 discloses a resonant antenna for microwave waves comprising a two-slot annular microstrip resonator, which makes it possible to set two resonance frequencies in two orthogonal polarizations. In addition, documents US-A-3,716,861 and US-A-4,804,965 describe wired antennas comprising meanders or crenels of the traveling wave type.

L'invention vise à fournir une antenne résonnante de forme annulaire qui soit d'un encombrement minimal et qui présente une couverture angulaire maximale avec une pureté de polarisation préservée dans cette couverture angulaire.The aim of the invention is to provide a ring-shaped resonant antenna which is of minimal size and which has a maximum angular coverage with a purity of polarization preserved in this angular coverage.

Elle est caractérisée en ce que l'antenne plate, de type résonnante, a la forme générale d'un anneau avec méandres ou créneaux.It is characterized in that the flat antenna, of resonant type, has the general shape of a ring with meanders or crenellations.

Cette forme d'anneau à méandres ou créneaux permet de maximiser la longueur de la périphérie dans un encombrement prédéterminé, c'est-à-dire de minimiser l'encombrement pour une longueur d'onde déterminée. En effet, la longueur d'onde guidée dans l'antenne étant proportionnelle à la longueur de la périphérie, pour une même longueur d'onde, l'encombrement (c'est-à-dire la surface occupée) d'une antenne selon l'invention est plus faible que l'encombrement d'une antenne du même type à anneau circulaire.This form of meandering ring or crenellations makes it possible to maximize the length of the periphery in a predetermined size, that is to say to minimize the space requirement for a given wavelength. Indeed, the wavelength guided in the antenna is proportional to the length of the periphery, for the same wavelength, the size (that is to say the occupied area) of an antenna according to the invention is weaker than the size of an antenna of the same type with a circular ring.

La diminution de la taille de l'antenne est favorable à l'augmentation de son omnidirectionnalité.The decrease in the size of the antenna is favorable to the increase of its omnidirectionality.

Par ailleurs, on a constaté que, malgré la présence de parties sensiblement radiales, par rapport à une antenne en forme d'anneau circulaire (sans créneaux ou méandres), la pureté de la polarisation, en particulier de la polarisation circulaire, n'était pas altérée. Ce résultat est surprenant car chaque portion radiale engendre un champ électrique perpendiculaire, parasite pour la polarisation. On pense que le maintien de la pureté de polarisation a pour origine le fait qu'à chaque portion ou brin radial, est associé une autre portion ou brin radial créant un champ en sens contraire qui compense le champ parasite de la première portion.Moreover, it has been found that, despite the presence of substantially radial portions, with respect to a ring-shaped antenna (without slots or meanders), the purity of the polarization, in particular of the circular polarization, was not not altered. This result is surprising because each radial portion generates a perpendicular electric field, parasite for the polarization. It is believed that the maintenance of the polarization purity is due to the fact that at each radial portion or strand is associated another radial portion or strand creating a field in the opposite direction which compensates for the parasitic field of the first portion.

Ainsi, selon une autre disposition de l'invention, deux portions radiales successives doivent présenter une orientation et des dimensions telles qu'elles engendrent des champs parasites qui se compensent. Il est préférable que la distance entre ces portions radiales successives soit faible.Thus, according to another embodiment of the invention, two successive radial portions must have an orientation and dimensions such that they generate spurious fields. who compensate each other. It is preferable that the distance between these successive radial portions is small.

De façon plus générale, les portions radiales sont, dans leur ensemble, conformées de façon telle qu'elles ne produisent pas de champ perturbateur de la polarisation du signal à émettre.More generally, the radial portions are, as a whole, shaped in such a way that they do not produce a disturbing field of the polarization of the signal to be emitted.

Dans un mode de réalisation de l'invention, l'excitation de l'antenne est effectuée sur la section extérieure de l'anneau.In one embodiment of the invention, the excitation of the antenna is performed on the outer section of the ring.

De préférence, le rapport du plus grand diamètre au plus petit diamètre est au plus égal à deux.Preferably, the ratio of the largest diameter to the smallest diameter is at most equal to two.

Dans un exemple, l'anneau comporte huit ou seize sections au total.In one example, the ring has eight or sixteen sections in total.

L'anneau à méandres ou créneaux est soit un dépôt métallique sur un substrat, soit une fente prévue dans un dépôt métallique.The meandering ring or crenellations is either a metal deposit on a substrate, or a slot provided in a metal deposit.

Pour minimiser les dimensions de l'antenne, on sait aussi qu'on a intérêt à augmenter la permittivité diélectrique du substrat car la longueur d'onde guidée dans l'antenne est sensiblement proportionnelle à la racine carrée de cette permittivité diélectrique. Toutefois, l'augmentation de cette permittivité n'est pas, non plus, favorable au maintien de la pureté de polarisation. Un degré convenable de pureté de polarisation pourrait être maintenu si la permittivité diélectrique était de l'ordre de 1,5. Mais on ne dispose pas d'un matériau ayant cette permittivité. Toutefois, avec un matériau de permittivité 2,5 environ, on peut conserver un bon degré de pureté à condition que l'antenne annulaire soit déposée sur un substrat qui comporte également un logement à parois métalliques sensiblement perpendiculaires au plan du substrat, par exemple de forme cylindrique de section circulaire. Ainsi, on obtient une miniaturisation accrue de l'élément rayonnant, avec conservation de la pureté de polarisation sur un angle important, en combinant cette dernière disposition - qui consiste en un chargement diélectrique - avec le crénelage de l'anneau.To minimize the dimensions of the antenna, it is also known that it is advantageous to increase the dielectric permittivity of the substrate because the guided wavelength in the antenna is substantially proportional to the square root of this dielectric permittivity. However, the increase of this permittivity is not, either, favorable to the maintenance of the purity of polarization. A suitable degree of polarization purity could be maintained if the dielectric permittivity was of the order of 1.5. But we do not have a material with this permittivity. However, with a permittivity material 2.5 approximately, a good degree of purity can be maintained provided that the annular antenna is deposited on a substrate which also comprises a housing with metal walls substantially perpendicular to the plane of the substrate, for example cylindrical shape of circular section. Thus, we obtain an increased miniaturization of the radiating element, with preservation of the polarization purity on a large angle, by combining this last arrangement - which consists of a dielectric loading - with the aliasing of the ring.

Dans un mode de réalisation, pour lequel le nombre de méandres ou créneaux est égal à quatre, la largeur de ces méandres ou créneaux est de l'ordre de 0,2 fois le diamètre.In one embodiment, for which the number of meanders or crenellations is equal to four, the width of these meanders or crenellations is of the order of 0.2 times the diameter.

D'autres caractéristiques et avantages de l'invention apparaîtront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :

  • la figure 1 est un schéma en coupe d'une antenne selon l'invention, utilisable pour deux bandes de fréquences,
  • les figures 1a, 1b et 1c sont des diagrammes mettant en évidence des avantages de l'antenne de la figure 1,
  • la figure 2 est un schéma en plan d'un anneau d'une antenne conforme à l'invention,
  • la figure 3 est un schéma en plan des deux anneaux d'une antenne selon l'invention, mais pour un autre mode de réalisation,
  • la figure 4 est un schéma en perspective éclatée d'une antenne du type de celle de la figure 1,
  • la figure 5 est un schéma électrique d'alimentation d'un anneau de l'antenne de la figure 4,
  • la figure 6 est un schéma correspondant à un mode de réalisation de la figure 5,
  • la figure 7 est un schéma correspondant aussi à un mode de réalisation de la figure 5,
  • la figure 8 est un schéma simplifié correspondant à celui de la figure 1, mais pour une variante, et
  • la figure 9 est un schéma en plan d'un anneau pour une variante.
Other characteristics and advantages of the invention will become apparent with the description of some of its embodiments, this being done with reference to the attached drawings in which:
  • FIG. 1 is a sectional diagram of an antenna according to the invention, usable for two frequency bands,
  • FIGS. 1a, 1b and 1c are diagrams highlighting advantages of the antenna of FIG. 1,
  • FIG. 2 is a plan diagram of a ring of an antenna according to the invention,
  • FIG. 3 is a plan diagram of the two rings of an antenna according to the invention, but for another embodiment,
  • FIG. 4 is an exploded perspective diagram of an antenna of the type of that of FIG. 1,
  • FIG. 5 is an electrical diagram for feeding a ring of the antenna of FIG. 4,
  • FIG. 6 is a diagram corresponding to an embodiment of FIG. 5,
  • FIG. 7 is a diagram also corresponding to an embodiment of FIG. 5,
  • FIG. 8 is a simplified diagram corresponding to that of FIG. 1, but for a variant, and
  • Figure 9 is a schematic plan of a ring for a variation.

L'antenne représentée sur la figure 1 est destinée à recevoir ou émettre des signaux hyperfréquences selon deux bandes, à savoir, d'une part, la bande S à 2 GHz et, d'autre part, la bande UHF à 400 MHz.The antenna shown in FIG. 1 is intended to receive or transmit microwave signals in two bands, namely, on the one hand, the S band at 2 GHz and, on the other hand, the UHF band at 400 MHz.

Cette antenne est principalement destinée à être implantée sur des satellites de petite taille, tels que des satellites affectés à la localisation d'objets ou pour des missions de mesure ou de télécommande avec des satellites conventionnels. Du fait de cette application, elle doit présenter un encombrement réduit, une large couverture angulaire pour les deux bandes de fréquences ainsi qu'une polarisation circulaire avec un taux d'ellipticité convenable sur cette large couverture angulaire, notamment pour les orientations les plus éloignées de l'axe.This antenna is mainly intended to be implanted on small satellites, such as satellites assigned to the location of objects or for missions measuring or remote control with conventional satellites. Because of this application, it must have a small footprint, a wide angular coverage for the two frequency bands and a circular polarization with a suitable ellipticity rate over this wide angular coverage, especially for the orientations furthest from axis.

L'antenne 10 représentée sur la figure 1 est du type combiné. Elle est formée par l'association de deux antennes planaires concentriques, respectivement 14 et 16. Chacune des antennes 14 et 16 et l'ensemble 10 présentent un axe 12 de symétrie de rotation. L'antenne centrale 14, de plus petites dimensions, est destinée à la bande S à 2 GHz et l'antenne extérieure 16, de plus grandes dimensions, est destinée à la bande UHF à 400 MHz.The antenna 10 shown in FIG. 1 is of the combined type. It is formed by the combination of two concentric planar antennas, respectively 14 and 16. Each of the antennas 14 and 16 and the assembly 10 have an axis 12 of rotational symmetry. The central antenna 14, of smaller dimensions, is intended for the S-band at 2 GHz and the outer antenna 16, of larger dimensions, is intended for the UHF band at 400 MHz.

Chacune des antennes individuelles 14, 16 comporte un substrat diélectrique, respectivement 18 et 20, sur lequel est déposé un anneau conducteur, respectivement 22 et 24. Les deux anneaux 22 et 24 sont centrés sur l'axe 12.Each of the individual antennas 14, 16 comprises a dielectric substrate, respectively 18 and 20, on which is deposited a conductive ring, respectively 22 and 24. The two rings 22 and 24 are centered on the axis 12.

Des exemples de réalisation des anneaux conducteurs 22 et 24 seront décrits ci-après en relation avec les figures 2 et 3.Exemplary embodiments of the conductive rings 22 and 24 will be described hereinafter with reference to FIGS. 2 and 3.

Chacun des substrats est enfermé dans un logement métallique de forme cylindrique d'axe 12. Le logement pour l'antenne 14 a la référence 25 et le logement pour l'antenne 16 a la référence 26. Ce dernier logement est limité, d'une part, par une paroi extérieure cylindrique 261 et, d'autre part, par une paroi cylindrique intérieure 262 à faible distance de la paroi du logement 25.Each of the substrates is enclosed in a cylindrical metal housing of axis 12. The housing for the antenna 14 has the reference 25 and the housing for the antenna 16 has the reference 26. This housing is limited, a on the one hand, by a cylindrical outer wall 26 1 and, on the other hand, by an inner cylindrical wall 26 2 at a short distance from the wall of the housing 25.

L'espace 28 ménagé entre la paroi du logement 25 et la paroi 262 a une longueur (dans la direction de l'axe 12) égale au quart de la longueur des ondes en bande S, c'est-à-dire 35 mm environ. Il est ouvert, en 29, du côté où se produit l'émission. Il constitue un piège destiné à empêcher la propagation des courants de fuite de l'anneau 22 vers l'anneau 24.The space 28 formed between the wall of the housing 25 and the wall 26 2 has a length (in the direction of the axis 12) equal to one quarter of the length of the S-band waves, that is to say 35 mm about. It is open, at 29, on the side where the emission occurs. It constitutes a trap intended to prevent the propagation of the leakage currents of the ring 22 towards the ring 24.

Un anneau métallique de remplissage 36 peut être disposé au fond de l'espace 28 pour ajuster la longueur (parallèlement à l'axe 12) de cet espace 28 afin qu'elle soit égale au quart de la longueur d'onde de la bande S.A metal filler ring 36 can be arranged at the bottom of the space 28 to adjust the length (parallel to the axis 12) of this space 28 so that it is equal to a quarter of the wavelength of the band S .

Les parois 25 et 262 peuvent être formées à partir de la même feuille de métal.The walls 25 and 26 2 may be formed from the same sheet of metal.

Autour du logement 26, sensiblement dans le plan de l'anneau 24, et donc perpendiculaire à l'axe 12, se trouve un anneau ou couronne métallique 30.Around the housing 26, substantially in the plane of the ring 24, and therefore perpendicular to the axis 12, is a ring or metal ring 30.

Le rebord intérieur 32 de la couronne 30 se raccorde à une jupe 34 s'éloignant, d'une part, de la couronne 30 en direction du fond du logement 26 et, d'autre part, de l'axe 12. Dans un exemple l'angle formé, dans le plan de la figure 1, par le plan de la couronne 30 et la jupe 34 est de l'ordre de 45°.The inner rim 32 of the crown 30 is connected to a skirt 34 moving away, on the one hand, from the ring 30 towards the bottom of the housing 26 and, on the other hand, from the axis 12. In one example the angle formed in the plane of Figure 1 by the plane of the ring 30 and the skirt 34 is of the order of 45 °.

L'anneau 22 rayonne dans un cône d'axe 12 de demi-angle au sommet θ égal à environ 60°. Il subsiste cependant un rayonnement extérieur à ce cône. La couronne 30 a pour but de diffracter les ondes déviées vers l'extérieur afin d'augmenter l'omnidirectionnalité de l'antenne 14.The ring 22 radiates in a cone of axis 12 half-angle at the vertex θ equal to about 60 °. There is however a radiation outside this cone. The purpose of the ring 30 is to diffract the waves deflected outwards in order to increase the omnidirectionality of the antenna 14.

Cependant, on a constaté que la couronne 30 avait tendance à dégrader la polarisation circulaire du rayonnement, c'est-à-dire à dégrader le taux d'ellipticité. L'expérience a montré que la jupe 34 permettait de conserver un taux d'ellipticité des ondes à polarisation circulaire proche de 1, surtout pour les directions formant un grand angle avec l'axe 12.However, it has been found that the ring 30 tends to degrade the circular polarization of the radiation, i.e., to degrade the ellipticity rate. Experience has shown that the skirt 34 made it possible to maintain an ellipticity rate of circularly polarized waves close to 1, especially for the directions forming a wide angle with the axis 12.

Le taux d'ellipticité peut être réglé empiriquement en faisant varier l'orientation de la jupe 34, c'est-à-dire l'angle qu'elle forme avec le plan de la couronne 30 ainsi qu'en faisant varier ses dimensions.The ellipticity rate can be adjusted empirically by varying the orientation of the skirt 34, i.e. the angle it forms with the plane of the ring 30 as well as by varying its dimensions.

L'arête extérieure 341 de la jupe 34 est plus éloignée de l'axe 12 que l'arête extérieure 301 de la couronne 30.The outer edge 34 1 of the skirt 34 is further from the axis 12 than the outer edge 30 1 of the ring 30.

Dans un exemple, le diamètre intérieur de la couronne 30 est de 256 mm, son diamètre extérieur de 300 mm, tandis que le diamètre extérieur de la jupe 34 - qui a une forme générale tronconique - est de 348 mm.In one example, the inner diameter of the ring 30 is 256 mm, its outer diameter 300 mm, while the outer diameter of the skirt 34 - which has a generally frustoconical shape - is 348 mm.

On pense que la jupe 34 crée une diffraction des ondes en bande S qui s'oppose à l'effet négatif de la couronne diffractante 30 sur le taux d'ellipticité des ondes en bande S.It is believed that the skirt 34 creates an S-band wave diffraction which opposes the negative effect of the diffracting ring 30 on the ellipticity rate of the S-band waves.

Il est à noter que les logements ou cavités 25 et 26 contribuent à symétriser le diagramme de rayonnement autour de l'axe 12 et à améliorer le taux d'ellipticité.It should be noted that the housings or cavities 25 and 26 contribute to symmetrize the radiation pattern around the axis 12 and to improve the ellipticity rate.

Dans l'exemple, les substrats diélectriques 18 et 20 présentent une permittivité diélectrique relative εr de l'ordre de 2,5. Comme indiqué ci-dessus, plus cette permittivité diélectrique est élevée, plus les dimensions des antennes peuvent être réduites. Cependant, l'augmentation de la constante diélectrique est défavorable au maintien de la polarisation circulaire. C'est pourquoi, dans l'exemple, la constante εr ne dépasse pas la valeur 2,5.In the example, the dielectric substrates 18 and 20 have a relative dielectric permittivity ε r of the order of 2.5. As indicated above, the higher the dielectric permittivity, the smaller the antenna dimensions can be. However, increasing the dielectric constant is unfavorable to maintaining circular polarization. Therefore, in the example, the constant ε r does not exceed the value 2.5.

Les figures 1a, 1b et 1c sont des diagrammes permettant de mettre en évidence les avantages, d'une part, du piège quart d'onde constitué par l'espace annulaire 28 et, d'autre part, des éléments diffractants 30 et 34.FIGS. 1a, 1b and 1c are diagrams making it possible to highlight the advantages, on the one hand, of the quarter-wave trap constituted by the annular space 28 and, on the other hand, diffractive elements 30 and 34.

Sur chacun de ces diagrammes, on a porté en abscisses, l'élévation θ (en degrés), c'est-à-dire le demi-angle du cône d'émission d'axe 12, et en ordonnées, les amplitudes en décibels des rayonnements en polarisation normale et en polarisation croisée.On each of these diagrams, the abscissa, the elevation θ (in degrees), that is to say the half-angle of the emission cone axis 12, and the ordinate the amplitudes in decibels normal polarization and cross polarization.

La figure la est un diagramme pour une antenne analogue à celle de la figure 1 mais dépourvue, d'une part, du piège quart d'onde 28 et, d'autre part, des éléments diffractants 30 et 34.FIG. 1a is a diagram for an antenna similar to that of FIG. 1 but devoid of, on the one hand, the quarter-wave trap 28 and, on the other hand, diffractive elements 30 and 34.

La courbe 40 correspond à la polarisation normale et les courbes 41 correspondent à la polarisation croisée. La pureté de la polarisation circulaire est d'autant plus grande qu'est grand l'écart entre les courbes 40 et 41. On voit ainsi que pour un angle θ de 0°, c'est-à-dire selon l'axe 12, l'émission est selon une polarisation circulaire. Par contre, quand on s'éloigne de l'axe 12, la polarisation circulaire se dégrade notablement.Curve 40 corresponds to normal polarization and curves 41 correspond to cross polarization. The purity of the circular polarization is all the greater the greater the difference between the curves 40 and 41. It is thus seen that for an angle θ of 0 °, that is to say along the axis 12 , the emission is in a circular polarization. By cons, when one moves away from the axis 12, the circular polarization degrades significantly.

En outre, l'émission s'affaiblit sensiblement dès qu'on s'éloigne de l'axe 12.In addition, the emission weakens substantially as one moves away from the axis 12.

La figure 1b correspond à une antenne analogue à celle de la figure 1, avec un piège 28 quart d'onde, cependant dépourvue des éléments diffractants 30 et 34.FIG. 1b corresponds to an antenna similar to that of FIG. 1, with a quarter-wave trap 28, but without the diffracting elements 30 and 34.

On constate que l'omnidirectionnalité ainsi que la pureté de polarisation circulaire sont améliorés par rapport au cas de la figure 1a. Toutefois, la pureté de polarisation circulaire n'est pas entièrement satisfaisante entre 30° et 60°, la distance entre les courbes 411 et 401 restant relativement faible.It can be seen that the omnidirectionality as well as the circular polarization purity are improved compared with the case of FIG. 1a. However, the circular polarization purity is not entirely satisfactory between 30 ° and 60 °, the distance between the curves 41 1 and 40 1 remaining relatively small.

Le diagramme de la figure 1c correspond à l'antenne représentée sur la figure 1, avec un piège quart d'onde 28, la couronne 30 et la jupe 34. On constate, par rapport à la figure 1b, que l'omnidirectionnalité est tout à fait satisfaisante jusqu'à un angle θ de 60°. En outre, la pureté de polarisation circulaire est nettement améliorée entre les angles 30° et 60°, la distance entre les courbes 402 et 412 étant sensiblement plus importante.The diagram of FIG. 1c corresponds to the antenna represented in FIG. 1, with a quarter-wave trap 28, the crown 30 and the skirt 34. It can be seen, with respect to FIG. 1b, that the omnidirectionality is all quite satisfactory up to an angle θ of 60 °. In addition, the circular polarization purity is significantly improved between the angles 30 ° and 60 °, the distance between the curves 40 2 and 41 2 being substantially larger.

Selon une disposition de l'invention, la compacité de l'antenne est augmentée en conférant une forme crénelée ou en méandres aux anneaux 22 et 24.According to one embodiment of the invention, the compactness of the antenna is increased by imparting a crenellated or meandering shape to the rings 22 and 24.

Dans l'exemple de la figure 2, l'anneau 22 comporte, régulièrement répartis autour de l'axe 12, huit segments internes 461 à 468 alternés avec huit segments externes 481 à 488. Ces segments 46 et 48 en forme d'arcs de cercles se raccordent à leurs extrémités par des segments rectilignes 50, de directions radiales. Ainsi, les segments radiaux sont, dans cet exemple, au nombre de seize. Bien que non représenté sur la figure 2, l'anneau 24 est homothétique de l'anneau 22.In the example of FIG. 2, the ring 22 comprises, regularly distributed around the axis 12, eight internal segments 46 1 to 46 8 alternated with eight external segments 48 1 to 48 8 . These segments 46 and 48 in the form of arcs of circles are connected at their ends by rectilinear segments 50, of radial directions. Thus, in this example, the radial segments are sixteen in number. Although not shown in FIG. 2, the ring 24 is homothetic of the ring 22.

Dans l'exemple de la figure 3, on prévoit, pour les antennes S 22' et UHF 24', quatre segments internes et quatre segments externes.In the example of FIG. 3, for the antennas S 22 'and UHF 24', four internal segments and four external segments are provided.

La longueur d'onde guidée du rayonnement à transmettre est directement proportionnelle à la longueur électrique de l'anneau de l'antenne résonnante 14 (14') ou 16 (16'). Cette longueur électrique est égale à la somme des longueurs de tous les segments 46, 48 et 50.The guided wavelength of the radiation to be transmitted is directly proportional to the electrical length of the ring of the resonant antenna 14 (14 ') or 16 (16'). This length electric is equal to the sum of the lengths of all segments 46, 48 and 50.

Ainsi, pour une même longueur d'onde guidée, c'est-à-dire pour une même fréquence, une antenne selon l'invention présente un encombrement plus réduit qu'une antenne ayant une forme simplement circulaire. En effet, on constate que, par rapport à un anneau circulaire ayant le même diamètre que le cercle sur lequel sont disposés les segments 48, la longueur électrique est augmentée d'environ la somme des longueurs des segments 50.Thus, for the same guided wavelength, that is to say for the same frequency, an antenna according to the invention has a smaller footprint than an antenna having a simply circular shape. Indeed, it is found that, with respect to a circular ring having the same diameter as the circle on which the segments 48 are arranged, the electrical length is increased by about the sum of the lengths of the segments 50.

Cependant, on a constaté que plus la longueur des segments 50 est grande et plus le rendement de l'antenne diminue. L'impédance de rayonnement de l'antenne diminue car le ruban métallique masque davantage l'ouverture ; ainsi, la proportion d'énergie dissipée dans le conducteur ou le diélectrique est plus importante. Il est donc préférable que le rapport entre le diamètre extérieur et le diamètre intérieur soit au plus de l'ordre de deux.However, it has been found that the longer the length of the segments 50 is, the lower the efficiency of the antenna. The antenna's antenna impedance decreases because the metal ribbon further obscures the aperture; thus, the proportion of energy dissipated in the conductor or the dielectric is larger. It is therefore preferable that the ratio between the outside diameter and the inside diameter is at most of the order of two.

Par ailleurs, on a observé que la présence des segments 50 de directions radiales n'altérait pratiquement pas le taux d'ellipticité de la polarisation du rayonnement. En effet, un segment de direction radiale a aussi pour inconvénient de perturber le taux d'ellipticité. Toutefois, on pense que c'est la succession de segments parcourus par des courants en sens contraires qui compense l'effet négatif sur le taux d'ellipticité.Moreover, it has been observed that the presence of the radial direction segments 50 practically does not alter the ellipticity level of the polarization of the radiation. Indeed, a radial direction segment also has the disadvantage of disturbing the ellipticity rate. However, it is thought that the succession of segments traversed by currents in opposite directions compensates for the negative effect on the ellipticity rate.

Il faut donc prendre garde à disposer ces segments de façon telle que l'on obtienne cette compensation.We must therefore be careful to arrange these segments in such a way that we obtain this compensation.

La figure 4 montre, en perspective éclatée, les divers éléments constitutifs de l'antenne combinée avec des anneaux 22' et 24' du type de ceux de la figure 3.FIG. 4 shows, in exploded perspective, the various constituent elements of the antenna combined with rings 22 'and 24' of the type of those of FIG.

Comme on peut le voir sur cette figure, la couronne 30 et la jupe 34 inclinée à 45° constituent une pièce d'un seul tenant 50.As can be seen in this figure, the crown 30 and the skirt 34 inclined at 45 ° constitute a single piece 50.

Les anneaux 24' et 22' sont réalisés par gravure sur des substrats diélectriques, respectivement 18 et 20, en un matériau dénommé "polypenco". Sur la figure 4, on a représenté les anneaux 22' et 24' séparés des substrats 18 et 20 ; mais il va de soi que ces anneaux sont déposés sur les substrats respectifs 18 et 20.The rings 24 'and 22' are made by etching on dielectric substrates, respectively 18 and 20, made of a material referred to as "polypenco". In FIG. 4, the rings 22 'and 24' separated from the substrates 18 and 20 are shown; but it goes without saying that these rings are deposited on the respective substrates 18 and 20.

Entre le fond 52 du logement 25 et le substrat 18 est disposé un répartiteur 54 qui sera décrit plus loin en relation avec les figures 5 à 7.Between the bottom 52 of the housing 25 and the substrate 18 is disposed a distributor 54 which will be described later in connection with Figures 5 to 7.

Un câble coaxial 60 traverse le fond 52 du logement 25 pour amener le signal d'excitation au répartiteur 54. Le rôle de ce dernier est de répartir, avec des déphasages appropriés, le signal d'excitation entre les quatre segments extérieurs 48' de l'anneau 14'.A coaxial cable 60 passes through the bottom 52 of the housing 25 to bring the excitation signal to the splitter 54. The role of the latter is to distribute, with appropriate phase shifts, the excitation signal between the four outer segments 48 'of the 'ring 14'.

De même, entre le fond 56 du logement 26 et le diélectrique 20, est disposé un répartiteur 58.Similarly, between the bottom 56 of the housing 26 and the dielectric 20, a distributor 58 is arranged.

Un câble coaxial 62 traverse le fond 56 pour amener le signal d'excitation UHF vers le répartiteur 58 qui distribue, avec des déphasages appropriés, ce signal d'excitation entre les quatre segments extérieurs de l'anneau 24'.A coaxial cable 62 passes through the bottom 56 to bring the UHF excitation signal to the splitter 58 which distributes, with appropriate phase shifts, this excitation signal between the four outer segments of the ring 24 '.

Les figures 5, 6 et 7 représentent le répartiteur 54.Figures 5, 6 and 7 show the splitter 54.

Les circuits 64, représentés sur les figures 5 et 6, permettent, à partir du signal d'excitation fourni par le coaxial 60, d'obtenir une polarisation circulaire. A cet effet, ils alimentent les quatre segments extérieurs 48' avec des déphasages successifs de 90°.The circuits 64, shown in FIGS. 5 and 6, make it possible, from the excitation signal supplied by the coaxial 60, to obtain a circular polarization. For this purpose, they feed the four outer segments 48 'with successive phase shifts of 90 °.

Le signal amené par le coaxial 60 est appliqué sur une entrée 66 qui, comme montré sur la figure 5, est connectée à l'entrée d'un déphaseur 70 de 180° par l'intermédiaire d'un transformateur 68. La sortie 701 sans déphasage du déphaseur 70 est reliée à un port 74 qui est connecté lui-même à un déphaseur 78 de 90° par l'intermédiaire d'un transformateur 76. La sortie 702 à déphasage de 180° du déphaseur 70 est reliée à un autre port 80, lequel est connecté à un second déphaseur 84 de 90° par l'intermédiaire d'un transformateur 82.The signal supplied through the coaxial 60 is applied to an input 66 which, as shown in Figure 5, is connected to the input of a phase shifter 70 to 180 ° via a transformer 68. The output 70 1 without phase shift of the phase-shifter 70 is connected to a port 74 which is itself connected to a 90 ° phase-shifter 78 via a transformer 76. The phase-shifted output 70 2 of 180 of the phase-shifter 70 is connected to a another port 80, which is connected to a second phase-shifter 84 of 90 ° via a transformer 82.

La sortie 781 sans déphasage du déphaseur 78 est reliée à une première sortie 901 du circuit 64 par l'intermédiaire d'un transformateur 86 et d'un adaptateur 88. La sortie 901 est connectée à un premier segment extérieur de l'anneau 22'.The output 78 1 without phase shift of the phase shifter 78 is connected to a first output 90 1 of the circuit 64 via a Transformer 86 and an adapter 88. Output 90 1 is connected to a first outer segment of ring 22 '.

De même, la sortie 782 de déphasage 90° du déphaseur 78 est reliée à une seconde sortie 902, par l'intermédiaire d'un autre transformateur et d'un autre adaptateur. La sortie 902 est reliée à un second segment extérieur de l'anneau 22'.Likewise, the phase shifter output 78 2 of the phase shifter 78 is connected to a second output 90 2 via another transformer and another adapter. The output 90 2 is connected to a second outer segment of the ring 22 '.

La sortie sans déphasage 841 du déphaseur 84 est reliée à la troisième sortie 903 par l'intermédiaire d'un transformateur et d'un adaptateur. Cette sortie 903 est reliée à un troisième segment extérieur de l'anneau 22'.The output without phase shift 84 1 of the phase shifter 84 is connected to the third output 90 3 via a transformer and an adapter. This output 90 3 is connected to a third outer segment of the ring 22 '.

Enfin, la sortie 842 de déphasage de 90° du déphaseur 84 est reliée à la quatrième sortie 904 du circuit 64 par l' intermédiaire d'un transformateur et d'un adaptateur. Cette sortie 904 est reliée à un quatrième segment extérieur de l'anneau 22'.Finally, the output 84 2 of 90 ° phase shift of the phase shifter 84 is connected to the fourth output 90 4 of the circuit 64 through a transformer and an adapter. This output 90 4 is connected to a fourth outer segment of the ring 22 '.

Le signal sur la sortie 901 est en phase avec le signal d'entrée sur le premier port 66, tandis que les signaux sur les sorties 902, 903 et 904 sont déphasés respectivement de 90°, 180° et 270° par rapport au signal d'entrée.The signal on the output 90 1 is in phase with the input signal on the first port 66, while the signals on the outputs 90 2 , 90 3 and 90 4 are out of phase by 90 °, 180 ° and 270 °, respectively. report to the input signal.

Les divers éléments du circuit de la figure 5 sont réalisés à l'aide de découpes métalliques représentées sur la figure 6. Sur cette dernière, on a indiqué les mêmes éléments que ceux de la figure 5, avec les mêmes chiffres de références.The various elements of the circuit of FIG. 5 are made using metal cutouts shown in FIG. 6. On the latter, the same elements as those of FIG. 5, with the same reference numerals, have been indicated.

Les sorties 901 à 904 se trouvent à la périphérie des découpes et régulièrement réparties; ces sorties sont au droit des segments extérieurs de l'anneau 22' auxquels elles sont raccordées.The outputs 90 1 to 90 4 are at the periphery of the cutouts and regularly distributed; these outputs are in line with the outer segments of the ring 22 'to which they are connected.

Comme on peut le voir sur la figure 7, les découpes métalliques sont en sandwich entre des diélectriques répartiteurs, respectivement 102 et 104.As can be seen in FIG. 7, the metal blanks are sandwiched between distributing dielectrics, respectively 102 and 104.

La connexion de chaque sortie 90 du circuit 64 au segment extérieur correspondant de l'anneau s'effectue par l'intermédiaire d'une sonde 92. On prévoit donc quatre sondes. Sur la figure 7, on a représenté la sonde 921.The connection of each output 90 of the circuit 64 to the corresponding outer segment of the ring is effected via a probe 92. Four probes are therefore provided. In FIG. 7, the probe 92 1 is shown .

Le répartiteur 64, 102, 104 est enfermé dans un logement métallique 106 constituant un piège empêchant l'excitation d'ondes de surface sur le répartiteur.The splitter 64, 102, 104 is enclosed in a metal housing 106 forming a trap preventing the excitation of surface waves on the splitter.

En variante, à la place de rubans, ou découpes métalliques, le circuit 64 est réalisé à l'aide de gravures métalliques sur un substrat.Alternatively, in place of ribbons, or metal cutouts, the circuit 64 is made using metal etchings on a substrate.

Dans l'exemple représenté sur la figure 8, on prévoit trois antennes concentriques, respectivement 110, pour l'antenne centrale, 112 pour l'antenne intermédiaire et 114 pour l'antenne la plus extérieure.In the example shown in FIG. 8, three concentric antennas are provided, 110 for the central antenna, 112 for the intermediate antenna and 114 for the outermost antenna, respectively.

Comme dans la réalisation représentée sur la figure 1, une couronne 30 de diffraction entoure l'antenne la plus extérieure et cette couronne 30 est solidaire d'une jupe 34 orientée sensiblement à 45° par rapport au plan de la couronne 30. Également comme dans la réalisation de la figure 1, un piège quart d'onde 28 empêche la propagation d'un courant de fuite de la cavité excitée vers les cavités environnantes. De façon analogue, un piège quart d'onde 116 empêche la propagation d'un courant de fuite vers l'antenne 114.As in the embodiment shown in Figure 1, a diffraction ring 30 surrounds the outermost antenna and this ring 30 is integral with a skirt 34 oriented substantially at 45 ° to the plane of the ring 30. Also as in In the embodiment of FIG. 1, a quarter-wave trap 28 prevents propagation of leakage current from the excited cavity to the surrounding cavities. Similarly, a quarter-wave trap 116 prevents the propagation of a leakage current to the antenna 114.

Le piège 116 est de longueur (selon l'axe) plus grande que le piège 28 car il est destiné à éliminer des longueurs d'onde plus grandes, celles des signaux émis par l'antenne 112.The trap 116 is of length (along the axis) larger than the trap 28 because it is intended to eliminate longer wavelengths, those of the signals emitted by the antenna 112.

Bien entendu, on peut prévoir un nombre d'antennes concentriques supérieur à trois.Of course, it is possible to provide a number of concentric antennas greater than three.

Bien que les exemples décrits ci-dessus concernent des antennes à anneaux résonnants formés par un conducteur métallique, on comprend aisément que l'invention s'applique aussi à une antenne réalisée par une fente dans un conducteur. Pour certaines applications, notamment celles pour lesquelles l'échauffement doit être minimisé, cette réalisation à fente sera préférée.Although the examples described above relate to resonant ring antennas formed by a metal conductor, it is easy to understand that the invention also applies to an antenna made by a slot in a conductor. For certain applications, especially those for which the heating must be minimized, this slit embodiment will be preferred.

La variante représentée sur la figure 9 représente une cavité annulaire résonnante qui s'applique plus particulièrement à une antenne à fente. Toutefois, cet exemple pourrait s'appliquer aussi à une antenne à anneau résonnant formé par un conducteur métallique.The variant shown in FIG. 9 represents a resonant annular cavity which applies more particularly to a slot antenna. However, this example could also apply to a resonant ring antenna formed by a metal conductor.

L'anneau 130 est constitué par une fente 132 dans un conducteur métallique 134. Cet anneau 130 forme des méandres ayant chacun sensiblement la forme d'un pétale. Le nombre de pétales est, dans cette réalisation, égal à 8.The ring 130 is constituted by a slot 132 in a metal conductor 134. This ring 130 forms meanders each having substantially the shape of a petal. The number of petals is, in this embodiment, equal to 8.

Bien que dans les exemples décrits ci-dessus, l'excitation soit réalisée sur les segments extérieurs à l'aide d'un câble coaxial, on peut également prévoir une excitation par couplage de proximité avec une ligne microruban ou avec une fente dans le plan de masse, c'est-à-dire dans un fond de cavité.Although in the examples described above, the excitation is carried out on the outer segments by means of a coaxial cable, it is also possible to provide excitation by proximity coupling with a microstrip line or with a slot in the plane. mass, that is to say in a cavity bottom.

Claims (15)

  1. Resonant antenna intended to operate at a predetermined frequency, including a plane conductive ring (22, 24) disposed on a dielectric substrate (18, 20) enclosed in a metal housing (25, 26) having walls (25, 261, 262) extending parallel to the axis (12) of revolution of the ring, the feeder circuit of the antenna being intended to be connected to the ring via a probe (921), the peripheral electrical length of the ring determining the wavelength guided in the antenna, characterised in that the ring (22, 24; 22', 24'; 130) has meanders or crenellations (46, 48; 132) having portions (50) oriented in a substantially radial direction, said meanders or crenellations being created to increase the peripheral electrical length of the ring.
  2. Antenna according to claim 1, characterised in that the meanders or crenellations have substantially radial parts (50) such that overall they do not produce any field interfering with the polarisation of a signal to be transmitted.
  3. Antenna according to claim 2, characterised in that two successive radial parts create fields interfering with the polarisation that compensate each other.
  4. Antenna according to claim 1, characterised in that the meanders or crenellations have rectilinear substantially radial parts (50).
  5. Antenna according to any of claims 1 to 4, characterised in that the ring has alternating sections (46, 48) such that the distances from the centre of two successive sections are different and in that the sections at the greatest distance from the centre are all on a common circle.
  6. Antenna according to any preceding claim, characterised in that the ring has alternating sections (46, 48) such that the distances from the centre of two successive sections are different and in that the sections nearest the centre are all on a common circle.
  7. Antenna according to claim 5 or claim 6, characterised in that the ratio between the diameters of the sections is not greater than 2:1.
  8. Antenna according to any preceding claim, characterised in that the meanders or crenellations are equi-angularly distributed about an axis (12).
  9. Antenna according to any preceding claim, characterised in that the number of meanders or crenellations is equal to eight or sixteen.
  10. Antenna according to any preceding claim, characterised in that, for transmission, it is excited in sections (48) at the greatest distance from the centre.
  11. Antenna according to any preceding claim, characterised in that it is adapted to transmit circular polarisation waves, wherein sections of the ring are adapted to be excited with successive phase-shifts of the wave to be transmitted to produce said circular polarisation.
  12. Antenna according to claim 11. characterised in that the phase-shift generator circuit (64) is produced by metallic cut-outs or etchings with peripheral outputs (901, 902, 903, 904).
  13. Antenna according to any preceding claim, characterised in that the ring is a conductive strip.
  14. Antenna according to any of claims 1 to 12, characterised in that the ring is a slot (132) in a conductor (134).
  15. Antenna according to any preceding claim, characterised in that it is adapted to transmit waves in the UHF band or in the S band.
EP98400437A 1997-02-24 1998-02-23 Miniature resonant antenna in the form of annular microstrips Expired - Lifetime EP0860894B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9702168A FR2760134B1 (en) 1997-02-24 1997-02-24 RESONANT MINIATURE ANTENNA, MICRO-TAPE, ANNULAR SHAPE
FR9702168 1997-02-24

Publications (2)

Publication Number Publication Date
EP0860894A1 EP0860894A1 (en) 1998-08-26
EP0860894B1 true EP0860894B1 (en) 2007-08-22

Family

ID=9504096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98400437A Expired - Lifetime EP0860894B1 (en) 1997-02-24 1998-02-23 Miniature resonant antenna in the form of annular microstrips

Country Status (5)

Country Link
US (1) US6034645A (en)
EP (1) EP0860894B1 (en)
CA (1) CA2228631C (en)
DE (1) DE69838270T2 (en)
FR (1) FR2760134B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012733B2 (en) * 1999-09-20 2007-11-21 フラクトゥス・ソシエダッド・アノニマ Multi-level antenna
EP1170704A1 (en) * 2000-07-04 2002-01-09 acter AG Portable access authorization device, GPS receiver and antenna
CN1489804A (en) * 2001-02-07 2004-04-14 弗拉克托斯股份有限公司 Minature broadband ring-like microstrip patch antenna
EP1434300B1 (en) * 2002-12-23 2007-04-18 HUBER & SUHNER AG Broadband antenna with a 3-dimensional casting part
US9184504B2 (en) * 2011-04-25 2015-11-10 Topcon Positioning Systems, Inc. Compact dual-frequency patch antenna
US9601824B2 (en) * 2014-07-01 2017-03-21 Microsoft Technology Licensing, Llc Slot antenna integrated into a resonant cavity of an electronic device case
US9985341B2 (en) 2015-08-31 2018-05-29 Microsoft Technology Licensing, Llc Device antenna for multiband communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716861A (en) * 1971-03-22 1973-02-13 J Root Serpentine antenna mounted on a rotatable capacitive coupler
US4804965A (en) * 1985-07-09 1989-02-14 Agence Spatiale Europeenne Flat wide-band antenna
JPH05152829A (en) * 1991-11-28 1993-06-18 Sony Corp Torus microstrip antenna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701161A (en) * 1970-05-11 1972-10-24 Trak Microwave Corp Four band slot antenna
US4320402A (en) * 1980-07-07 1982-03-16 General Dynamics Corp./Electronics Division Multiple ring microstrip antenna
US5194876A (en) * 1989-07-24 1993-03-16 Ball Corporation Dual polarization slotted antenna
AU1346592A (en) * 1991-01-24 1992-08-27 Rdi Electronics, Inc. Broadband antenna
AT396532B (en) * 1991-12-11 1993-10-25 Siemens Ag Oesterreich ANTENNA ARRANGEMENT, ESPECIALLY FOR COMMUNICATION TERMINALS
JP2840493B2 (en) * 1991-12-27 1998-12-24 株式会社日立製作所 Integrated microwave circuit
DE9312559U1 (en) * 1993-08-21 1994-02-10 Schneider Till Skylight stairs
US5754143A (en) * 1996-10-29 1998-05-19 Southwest Research Institute Switch-tuned meandered-slot antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716861A (en) * 1971-03-22 1973-02-13 J Root Serpentine antenna mounted on a rotatable capacitive coupler
US4804965A (en) * 1985-07-09 1989-02-14 Agence Spatiale Europeenne Flat wide-band antenna
JPH05152829A (en) * 1991-11-28 1993-06-18 Sony Corp Torus microstrip antenna

Also Published As

Publication number Publication date
EP0860894A1 (en) 1998-08-26
CA2228631A1 (en) 1998-08-24
CA2228631C (en) 2003-10-14
DE69838270D1 (en) 2007-10-04
FR2760134A1 (en) 1998-08-28
FR2760134B1 (en) 1999-03-26
US6034645A (en) 2000-03-07
DE69838270T2 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
EP0899814B1 (en) Radiating structure
EP2564466B1 (en) Compact radiating element having resonant cavities
FR2652453A1 (en) COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE.
EP0012055B1 (en) Microstrip monopulse primary feed and antenna using same
EP1416586B1 (en) Antenna with an assembly of filtering material
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
WO2011113650A2 (en) Reflector array antenna with crossed polarization compensation and method for producing such an antenna
FR2692404A1 (en) Basic pattern of broadband antenna and antenna-network with it.
EP0598656A1 (en) Radiating element for an antenna array and sub-set with such elements
EP1979987B1 (en) Circularly or linearly polarized antenna
EP0860894B1 (en) Miniature resonant antenna in the form of annular microstrips
EP0860893A1 (en) Concentric set of microwave antennas
WO2003061062A1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
EP0860895A1 (en) Resonant antenna for emitting or receiving polarized waves
EP1346442A1 (en) Printed patch antenna
EP0020196B1 (en) Ringplate-type microwave array antenna with feeding system and its application in radars
EP0585250B1 (en) Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas
FR2552273A1 (en) Omnidirectional microwave antenna
CA2327371C (en) Radiating source for transmitting and receiving antenna designed for installation on board a satellite
WO2019069033A1 (en) Antenna with partially saturated dispersive ferromagnetic substrate
EP3902059B1 (en) Directional broadband antenna with longitudinal transmission
EP0762534A1 (en) Method for enlarging the radiation diagram of an antenna array with elements distributed in a volume
FR2634598A1 (en) OMNIDIRECTIONAL ANTENNA, IN PARTICULAR FOR THE TRANSMISSION OF BROADCAST OR TELEVISION SIGNALS IN THE DECIMETRIC WAVE BAND, AND RADIANT SYSTEM FORMED IN A GROUP OF THESE ANTENNAS
WO2023031543A1 (en) Multiband antenna
FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

17P Request for examination filed

Effective date: 19990226

AKX Designation fees paid

Free format text: DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20031119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69838270

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20131018

REG Reference to a national code

Ref country code: FR

Ref legal event code: RG

Effective date: 20141016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160218

Year of fee payment: 19

Ref country code: GB

Payment date: 20160217

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69838270

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170223