EP0949317B1 - Procédé f d'isomérisation d'essences à teneur élevée en benzène - Google Patents

Procédé f d'isomérisation d'essences à teneur élevée en benzène Download PDF

Info

Publication number
EP0949317B1
EP0949317B1 EP99400568A EP99400568A EP0949317B1 EP 0949317 B1 EP0949317 B1 EP 0949317B1 EP 99400568 A EP99400568 A EP 99400568A EP 99400568 A EP99400568 A EP 99400568A EP 0949317 B1 EP0949317 B1 EP 0949317B1
Authority
EP
European Patent Office
Prior art keywords
fluid
reactor
make
process according
isomerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400568A
Other languages
German (de)
English (en)
Other versions
EP0949317A1 (fr
Inventor
Marc Fersing
Pedro Nascimento
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Marketing Services SA
Original Assignee
TotalFinaElf France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TotalFinaElf France SA filed Critical TotalFinaElf France SA
Publication of EP0949317A1 publication Critical patent/EP0949317A1/fr
Application granted granted Critical
Publication of EP0949317B1 publication Critical patent/EP0949317B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to an improved method for the isomerization of gasoline with a high benzene content.
  • gasoline isomerization processes which aim to increase the octane number of these species by transformation of linear paraffins which contain branched paraffins (or isoparaffins).
  • the load to be treated is mainly composed of saturated hydrocarbons with five or six carbon atoms, as well as lower proportions of hydrocarbons to four or seven carbon atoms, and benzene which like everyone knows is relatively difficult to separate from other hydrocarbons with six carbon atoms.
  • the charge to be treated is most often mixed with hydrogen and to a possible recycle, then directed to at least one reactor containing a suitable catalyst in a fixed bed.
  • the temperature prevailing in this reactor is usually between 120 and 190 ° C.
  • effluents are routed to one or more separation columns. Often times isoparaffins are then separated from non-paraffins isomerized: the first are sent in principle to the essences pool, to serve as bases for the formulation of fuels, while the seconds are eventually recycled to the reactor, to be transformed there.
  • the first reactor in which product, in addition to the isomerization of paraffins, the hydrogenation of traces of benzene present in the load, operates at slightly higher temperature than the second, where the isomerization reaction ends proper. Indeed, from a kinetic point of view, the paraffin isomerization reaction is slower than the benzene hydrogenation reaction. In addition, the lower temperature prevailing in the second reactor is thermodynamically favorable for product formation branched trees sought.
  • the benzene content of the fillers isomerization remains relatively limited. Indeed, a commonly accepted rule considers that an increase in the benzene content of 1% in the feed to be treated a 10 ° C rise in temperature within the first isomerization reactor. Knowing that other reactions that the hydrogenation of benzene already produce to them only a temperature rise of around 15 ° C, the benzene content of the feedstock entering this reactor must then be limited to 4%. Beyond this content, the temperature in the reactor is too high, which ultimately damages not only the catalyst but also the unit, designed to operate at room temperature limited. Furthermore, at high temperature, reactions unwanted side effects occur, such as, by example, hydrocracking reactions of the charge.
  • An ingenious solution then consists in admitting in the isomerization unit, in addition to the conventional charges, cuts of benzene-rich gasolines, such as some fuel cuts from reforming units or catalytic cracking: the benzene present in these cuts is thus hydrogenated in the isomerization unit, and this ultimately reduces the content of benzene of the said cuts before sending them to the "pool essences ", term by which we designate all the bases used to make petroleum products.
  • the patent US N ° 5,003,118 proposes to introduce, upstream of the isomerization reactors themselves, a charge pretreatment, specifically intended for perform the hydrogenation of the benzene present in this charge. In this way, the unit is able to deal with fillers with higher benzene content.
  • This solution has the disadvantage of being of high cost, linked to the necessary construction of additional equipment. Besides, it is absolutely not flexible, insofar as the hydrogenation reactor is of no useful in the case of a load with a low benzene content.
  • the present invention therefore aims to propose a method isomerization of gasoline with a high benzene content, allowing a simple and inexpensive remedy to problems encountered in the prior art.
  • the present invention also aims to provide a particularly flexible isomerization process, allowing to adapt quickly to different charges intended for him.
  • the subject of the present invention is a process for the isomerization of a hydrocarbon feed containing a substantial amount of paraffinic hydrocarbons with 5 or 6 carbon atoms and of benzene at a content greater than or equal to 2% by weight, in which the charge to be treated passes, in the presence of hydrogen, to a total pressure greater than or equal to 10 ⁇ 10 5 Pa (10 bars) and to an average temperature between 100 and 200 ° C., in at least one reactor containing a catalyst of isomerization of paraffinic hydrocarbons, this process being characterized in that one introduces, in the upstream part of the reaction zone, a make-up fluid which, at 40 ° C and under atmospheric pressure (1.0134.10 5 Pa ), is in the gaseous state and has a density less than or equal to that of normal-pentane considered under the same conditions, this make-up fluid comprising at least 98% by weight of hydrocarbons comprising from one to four ato carbon.
  • density of a gaseous fluid is meant the ratio between the density of this fluid and the density dry air with normal carbon dioxide content, these two densities being measured in the same temperature and pressure conditions.
  • the density of the make-up fluid will be measured, at 40 ° C and under a pressure of 1.0134.10 5 Pa (1 atmosphere), by applying to any of the fluids any of the standardized measurement methods described in standard ASTM D1070-85 (R94). The same is true for normal-pentane.
  • the densities of said makeup fluid and of pentane will be considered by reference to the same measurement method.
  • the makeup fluid is in the gaseous state at 40 ° C under a pressure of 1.0134.10 5 Pa (1 atmosphere).
  • it is introduced into the upstream part of the reaction zone under conditions of temperature and pressure directly dependent on the operating conditions of the process. Depending on its composition, it can then be in the liquid or gaseous state or in an intermediate state.
  • the preferred hydrocarbons in the make-up fluid are methane and ethane.
  • This fluid can thus, for example, be made of natural gas.
  • This fluid can also comprise, in quantity minority, hydrocarbons with six or seven atoms of carbon, and / or inert gases such as nitrogen, or any other suitable light fluid.
  • said makeup fluid contains a substantial amount of light compounds from a fractionation column located downstream of the isomerization unit.
  • This drop in temperature therefore depends only on the following parameters: flow rates and load compositions and make-up fluid, pressure, temperature, fraction vaporized charge at the reactor inlet and report mass between hydrogen and charge in the mixture reaction allowed in the unit. So it can be perfectly controlled and optimized according to the benzene content of the feed to be isomerized.
  • the process according to the invention is precise and extremely flexible, since the flow of the makeup fluid can be adjusted to compensate exactly the temperature rise due to the content of benzene higher than the generally accepted maximum level.
  • the method according to the invention proves to be very advantageous for units which do not have, downstream of the isomerization unit, a deisohexanizer (column of separation of the branched paraffins sought and the linear paraffins), with recycle of a cut rich in linear paraffins upstream of the isomerization unit.
  • One of the goals of this recycling is to dilute the fresh load allowed in the unit, in order to lower the benzene content. Thanks to the invention, since it is it is possible to admit more content to the unit high in benzene, this dilution is no longer necessary.
  • the method according to the invention therefore represents a very valid alternative to the costly installation of a deisohexanizer and a system of recycle.
  • the process according to the invention has been found to provide increased recovery light hydrocarbons containing not more than four atoms of carbon, and in particular propane and butane.
  • LPG Petroleum Gas Liquefied
  • the isomerization unit can be so operated with a view to increased production of these LPGs.
  • the make-up fluid is injected into the upstream part of the reaction zone. This means that said fluid can be injected into the part upstream of the first reactor proper, and / or immediately upstream of the latter.
  • make-up fluid is injected in the upstream part of the first isomerization reactor, at know in the area extending from the level of introduction into the reaction mixture reactor (feed and hydrogen) halfway up the catalytic bed.
  • Make-up fluid can then be injected into the reactor area included between the introduction of the reaction mixture and the start of the dense bed of catalyst.
  • fluid can also be injected directly into the dense bed of catalyst, in the first half of this latest.
  • make-up fluid When make-up fluid is injected immediately in upstream of the first reactor, it is introduced immediately before the introduction of the reaction mixture (charge and hydrogen) in the first reactor, i.e. after complete preheating of this mixture and before injection of this in the first reactor.
  • This injection of makeup fluid has a purely thermal and therefore has nothing to do with the injection, in large quantities, of the hydrogen necessary for the actual isomerization reaction, which takes place, in a manner known per se, upstream of the unit isomerization, i.e. upstream of the heat exchangers heat in which the reaction mixture (charge and hydrogen) is heated before being introduced into the reactor.
  • make-up fluid is therefore carried out, moreover, compared to the usual injection of hydrogen in upstream of the unit, in a completely different location, and with a much lower volume flow.
  • this make-up fluid which has a purely thermal effect, can consist of any gas light compatible with the process, while hydrogen introduced upstream of the isomerization unit has an effect chemical at the level of the actual reaction.
  • This make-up fluid is advantageously injected at a rate of 5 to 150 Nm 3 per m 3 of charge to be isomerized and, preferably, from 5 to 60 Nm 3 per m 3 of charge.
  • the starting charge is considered here, before mixing with hydrogen and heating of the reaction mixture thus obtained.
  • the make-up fluid either injected at a temperature below or above that of the reaction medium. That said, it is better inject said fluid at a lower temperature or equal to that of the reaction medium and, preferably, between 20 and 180 ° C.
  • a particularly variant advantageous of the invention consists in recycling, immediately downstream of the first reactor, a rich section into slightly branched paraffins with 5 or 6 carbon atoms and which usually contains naphthenes. This cut comes, in a manner known per se, from a fractionation existing in advanced isomerization units, which is located downstream of the reactors, and which separates the isoparaffins sought from other compounds.
  • this recycle cut which does not contains no benzene, is traditionally introduced upstream of the first reactor, in order not only to perform an additional passage in the isomerization unit, but also to dilute the fresh charge allowed in the unit, to so as to lower the benzene content of the charge combined thus obtained.
  • a make-up fluid supply line can open in the finish line at the first reactor of the mixture reaction (charge and hydrogen), between the warming up the most downstream reaction mixture and injection point of said mixture in the first reactor.
  • the make-up fluid When the make-up fluid is introduced into the breast of the first reactor, at least one means of introducing make-up fluid flows into this reactor, upstream of the bed dense catalyst and / or within the first half of this last.
  • the one or more means can then be constituted by any known means allowing, downstream of the injection of the charge itself, the introduction of a light fluid in a reactor.
  • a cane or even a single tube with side slits or more orifices, to allow better distribution of the make-up fluid.
  • a diffuser is used allowing to introduce the make-up fluid so homogeneous over the entire section of the reactor.
  • said means for introducing make-up fluid can lead into the reactor in multiple ways.
  • said means open out transversely in the reactor, substantially perpendicular to the axis of the latter.
  • At least one means of introduction of make-up fluid opens into the reactor substantially parallel to the axis of the latter.
  • said means then enters the reactor by the orifice allowing the introduction of the reaction mixture.
  • the invention does not relate to catalysts capable of to intervene in its implementation.
  • We can, in fact, employ any known catalyst exhibiting activity for isomerization of linear paraffins into paraffins branched.
  • many catalysts are known to those skilled in the art. They usually have a or more acidic functions, as well as a function hydrogenating (hydrogenating transition metal).
  • FIG. 1 represents a unit for the isomerization of sections containing linear paraffins with 5 or 6 atoms of carbon.
  • This charge arrives via line 1, in which hydrogen and possibly recycle gases are introduced by line 2.
  • the reaction mixture thus obtained is routed by line 33 to two heat exchangers heat 3 and 4, against the effluent from both unit isomerization reactors.
  • the reaction mixture thus reheated is then introduced into a first reactor 5, or upstream reactor.
  • the latter contains a isomerization catalyst distributed in a catalytic bed 6, which occupies most of the height of the reactor 5.
  • the effluent from the latter, after passing through the exchanger 4 is then introduced via line 7 into the second reactor 8, or downstream reactor, which is also loaded with an isomerization catalyst distributed in a catalytic bed 9.
  • the load to be treated flows from high down in reactors 5 and 8, but it could naturally circulate there from bottom to top.
  • the device further includes valve systems, not represented, allowing to interrupt independently feeding reactors 5 and 8 and / or reversing the direction circulation of the reaction mixture.
  • a make-up fluid is injected into the upstream reactor 5, via a rod 11 substantially perpendicular to the axis of the reactor and which leads directly into the catalytic bed, into the first half of it.
  • This rod is provided with side slits, not shown, allowing better distribution.
  • the catalytic bed 6 of the upstream reactor 5 can be separated into an upstream section 12 and a downstream section 13, which contain the same isomerization catalyst.
  • the rod 11 a for introducing make-up fluid then enters the reactor between the two catalytic sections 12 and 13.
  • a stepped injection system 11b allows the introduction of make-up fluid at several levels in the first half of the catalytic bed 6 of the reactor 5.
  • an injection system 11 c of make-up fluid opens into the reactor 5 in a manner substantially parallel to the axis of the latter, at the orifice allowing the introduction of the reaction mixture (feed and hydrogen) supplied to the reactor via line 33.
  • a line 11 d for supplying make-up fluid opens into the inlet line 33 of the reaction mixture (feed and hydrogen), immediately upstream of the first reactor. isomerization 5.
  • FIG. 6 shows how the invention can allow improve the relationships between the unit isomerization and other petroleum units.
  • the fraction rich in isopentane which is a compound with high octane number therefore requiring no treatment isomerization, is evacuated via line 19.
  • Light petrol depleted in isopentane then crosses the two reactors isomerization 5 and 8 as described above, and the load enriched in isoparaffins is extracted therefrom by line 10.
  • This charge is then separated, within the stabilizer 20, in a head section 21, consisting of compounds with up to four carbon atoms, and a cut background 22 of heavier compounds .: The latter is then directed to the deisohexanizer 23, where it found divided into an isomerate 26, consisting of isoparaffins with 5 or 6 carbon atoms, and a heavy cut 25, essentially consisting of naphthenes and paraffins at 7 carbon atoms or more.
  • the essence heavy discharged from separator 15 via line 17 is directed towards the reforming unit 27, within which it undergoes among others aromatization reactions, which contribute to increase its content of aromatic products, including benzene.
  • the reformate thus produced is then separated at level of fractionation 28 into a heavy reformate 29, the boiling point is above about 90 ° C, which is routed to the gasoline pool, and a light reformate 31, whose boiling point is between about 30 ° C and 90 ° C.
  • a means 11 for injecting a make-up fluid enters the catalytic bed of the upstream reactor 5.
  • the make-up fluid consists of compounds comprising at most 4 carbon atoms derived from the line 35 of the head cup, discharged at 21, from stabilizer 20.
  • the isomerization unit is likely to deal with charges with content higher in benzene than in the prior art. So the Doubling the amount of benzene present in the charge can be thermally compensated by adding fluid light (density less than or equal to that of normal-pentane), the flow rate of which will be adjusted according to the benzene content of the feed to be isomerized.
  • the purpose of this example is to illustrate the limits of conventional gasoline isomerization processes, in the case treatment of loads with high benzene content.
  • This charge is combined with a gaseous mixture rich in hydrogen (20% by weight of hydrogen), introduced at a flow rate of 2 t / h.
  • This reaction mixture is then warmed up to 133 ° C., then treated in a conventional gasoline isomerization unit comprising two reactors in series, operating at a pressure of 31 ⁇ 10 5 Pa.
  • the temperature recorded at the outlet of the first reactor is 180 ° C.
  • this charge No. 2 has a content of benzene of 7.66% by weight and a density at 15 ° C of 0.687. The other properties remain globally unchanged by in relation to charge # 1.
  • This charge n ° 2 is treated under the same conditions than those mentioned above for the treatment of charge # 1, except gas flow rich in hydrogen, which is brought to 3.5 t / h (so known per se, the isomerization of charges rich in benzene requires an increased amount of hydrogen in the medium reactive, taking into account the additional consumption hydrogen induced by the hydrogenation of benzene).
  • the temperature recorded at the outlet of the first reactor is then 193 ° C. So there was an increase in temperature of 13 ° C in this reactor, due to the high quantity of heat given off by the hydrogenation of the supplement benzene present in charge # 2. Ultimately, this temperature increase in the first reactor risk not only damage the catalyst and the unit, but also to decrease the reaction yields isomerization (better at low temperature).
  • charge rich in benzene described above (charge n ° 2) is treated this time according to the isomerization process according to the invention.
  • a fluid make-up is therefore introduced into the catalytic bed of the first reactor, at the level of the first third of the bed catalytic (exactly 2/7 of this bed), and with a flow of 30Nm3 per m3 of load.
  • Two introduction temperatures make-up fluid have been tested: 30 ° C (temperature lower than that of the reaction medium) and 145 ° C. (temperature of the order of that of the reaction medium).
  • Fluid Composition (in% by weight) Density (40 ° C, 1.0134 Pa) F1 2% H 2 + 12% CH 4 + 18% C 2 H 6 + 25% C 3 H 8 + 43% C 4 H 10 1.04.10 -3 F2 2% H 2 + 80% CH 4 + 16% C 2 H 6 + 2% C 3 H 3 0.59.10 -3 F4 100% CH 4 0.62.10 -3 F5 100% C 2 H 6 1.16.10 -3 F6 100% C 3 H 8 1.72.10 -3 F7 100% nC 4 H 10 2.28.10 -3
  • the fluid F1 corresponds to a gaseous mixture of the type of those that can recover at the head of a column of fractionation located downstream of the isomerization unit (so-called stabilization column).
  • the operating conditions are identical to those described in Example 1 for the treatment of the charge n ° 2, and the inlet temperature of the reaction mixture in the first isomerization reactor is notably maintained at 133 ° C.
  • Test 1 corresponds to a zero makeup fluid flow rate (prior art).
  • Trial Fluid flow extra (Nm 3 per m 3 of charge)
  • Temperature release of the first reactor (° C) 1 0 193 2 10 188 3 30 181 4 60 173
  • This example illustrates the excellent thermal control to which the invention gives access.
  • This control is extremely precise and flexible, since the fluid flow can be optimized according to the characteristics the load to be treated and, in particular, its content benzene.
  • This example specifies the conditions in which the process according to the invention must be implemented work, and in particular the nature of the make-up fluids likely to be employed.
  • thermodynamic effect described is not produces more and the injection of make-up fluid does not allow more to lower the temperature of the first reactor.
  • the thermodynamic effect described is not produces more and the injection of make-up fluid does not allow more to lower the temperature of the first reactor.

Description

La présente invention concerne un procédé amélioré pour l'isomérisation d'essences à teneur élevée en benzène.
De manière connue en soi, l'industrie pétrolière a recours à des procédés dits d'isomérisation des essences, qui visent à augmenter l'indice d'octane de ces essences par transformation des paraffines linéaires quelles contiennent en paraffines ramifiées (ou isoparaffines). En général, la charge à traiter est majoritairement, composée d'hydrocarbures saturés à cinq ou six atomes de carbone, ainsi que de plus faibles proportions d'hydrocarbures à quatre ou sept atomes de carbone, et de benzène qui, comme chacun sait, est relativement difficile à séparer des autres hydrocarbures à six atomes de carbone.
Pour effectuer la réaction d'isomérisation, la charge à traiter est le plus souvent mélangée à de l'hydrogène et à un éventuel recycle, puis dirigée vers au moins un réacteur contenant un catalyseur approprié en lit fixe. La température régnant dans ce réacteur est usuellement comprise entre 120 et 190°C. A la sortie du (ou des) réacteur(s) d'isomérisation, les effluents sont acheminés vers une ou plusieurs colonnes de séparation. Souvent, les isoparaffines sont alors séparées des paraffines non isomérisées : les premières sont envoyées en principe au pool essences, pour servir de bases pour la formulation des carburants, tandis que les secondes sont éventuellement recyclées au réacteur, afin d'y être transformées.
On sait également que, dans les conditions de la réaction d'isomérisation, le benzène présent dans la charge est hydrogéné, du fait de la présence de l'hydrogène et des métaux de transition hydrogénants entrant dans la composition des catalyseurs d'isomérisation. Il en résulte, dans la partie amont du réacteur d'isomérisation, un dégagement de chaleur important dû à l'exothermicité de cette réaction, ce qui nuit à l'efficacité de la réaction d'isomérisation.
C'est pourquoi on opère usuellement avec deux réacteurs d'isomérisation: le premier réacteur, dans lequel se produit, en plus de l'isomérisation des paraffines, l'hydrogénation des traces de benzène présentes dans la charge, fonctionne à température légèrement plus élevée que le second, où se termine la réaction d'isomérisation proprement dite. En effet, d'un point de vue cinétique, la réaction d'isomérisation des paraffines est plus lente que la réaction d'hydrogénation du benzène. De plus, la température plus basse régnant dans le second réacteur est thermodynamiquement favorable à la formation des produits ramifiés recherchés.
Cependant, la teneur en benzène des charges d'isomérisation reste relativement limitée. En effet, une règle communément admise considère qu'une augmentation de la teneur en benzène de 1% dans la charge à traiter entraíne une élévation de température de 10°C au sein du premier réacteur d'isomérisation. Sachant que les réactions autres que l'hydrogénation du benzène produisent déjà à elles seules une élévation de température de l'ordre de 15°C, la teneur en benzène de la charge pénétrant dans ce réacteur doit être alors limitée à 4%. Au delà de cette teneur, la température régnant dans le réacteur est trop élevée, ce qui, à terme, endommage non seulement le catalyseur mais également l'unité, conçue pour fonctionner à température limitée. Par ailleurs, à température élevée, des réactions secondaires indésirables se produisent, telles que, par exemple, des réactions d'hydrocraquage de la charge.
Toutefois, il apparaít désirable de pouvoir traiter dans l'unité d'isomérisation des charges à teneur en benzène beaucoup plus élevée que les 4% généralement admis.
En effet, compte tenu du caractère cancérigène du benzène, les normes actuelles tendent à imposer des limitations de plus en plus draconiennes de la teneur de ce composé dans les carburants.
Une solution ingénieuse consiste alors à admettre dans l'unité d'isomérisation, en plus des charges classiques, des coupes d'essences riches en benzène, telles que certaines coupes d'essences issues des unités de réformage ou de craquage catalytique : le benzène présent dans ces coupes est ainsi hydrogéné dans l'unité d'isomérisation, et cette opération permet in fine de réduire nettement la teneur en benzène desdites coupes avant de les acheminer au "pool essences", terme par lequel on désigne l'ensemble des bases utilisées pour fabriquer des produits pétroliers.
Ce besoin de traiter plus de benzène à l'isomérisation se heurte cependant à la contrainte liée à la température régnant dans le premier réacteur. Il demeure en effet indispensable de maintenir cette température à une valeur moyenne de l'ordre de 180°C, température au-delà de laquelle commencent les réactions d'hydrocraquage, qui sont très exothermiques.
Afin de s'affranchir de cette limitation, le brevet US N° 5 003 118 propose d'introduire, en amont du ou des réacteurs d'isomérisation proprement dits, un réacteur de prétraitement de la charge, spécifiquement destiné à réaliser l'hydrogénation du benzène présent dans cette charge. De la sorte, l'unité est à même de traiter des charges à teneur en benzène plus élevée. Cette solution présente cependant le désavantage d'être d'un coût élevé, lié à la nécessaire construction d'équipements supplémentaires. En outre, elle n'est absolument pas flexible, dans la mesure où le réacteur d'hydrogénation n'est d'aucune utilité dans le cas d'une charge à faible teneur en benzène.
La présente invention vise donc à proposer un procédé d'isomérisation d'essences à teneur élevée en benzène, permettant de remédier de façon simple et peu coûteuse aux problèmes rencontrés dans l'art antérieur.
La présente invention vise également à proposer un procédé d'isomérisation particulièrement flexible, permettant de s'adapter de manière rapide aux différentes charges qui lui sont destinées.
A cet effet, la présente invention a pour objet un procédé d'isomérisation d'une charge hydrocarbonée contenant une quantité substantielle d'hydrocarbures paraffiniques à 5 ou 6 atomes de carbone et du benzène à une teneur supérieure ou égale à 2% en poids, dans lequel la charge à traiter passe, en présence d'hydrogène, à une pression totale supérieure ou égale à 10.105 Pa (10 bars) et à une température moyenne comprise entre 100 et 200°C, dans au moins un réacteur contenant un catalyseur d'isomérisation d'hydrocarbures paraffiniques, ce procédé étant caractérisé en ce que l'on introduit, dans la partie amont de la zone réactionnelle, un fluide d'appoint qui, à 40°C et sous pression atmosphérique (1,0134.105 Pa), se trouve à l'état gazeux et possède une densité inférieure ou égale à celle du normal-pentane considéré dans les mêmes conditions, ce fluide d'appoint comprenant au moins 98 % en poids d'hydrocarbures comportant de un à quatre atomes de carbone.
Par densité d'un fluide gazeux, on entend le rapport entre la masse volumique de ce fluide et la masse volumique de l'air sec et à teneur normale en dioxide de carbone, ces deux masses volumiques étant mesurées dans les mêmes conditions de température et de pression.
La densité du fluide d'appoint sera mesurée, a 40°C et sous une pression de 1,0134.105 Pa (1 atmosphère), en appliquant audit fluide l'une quelconque des méthodes de mesure normalisées décrites dans la norme ASTM D1070-85 (R94). Il en est de même pour le normal-pentane. Les densités dudit fluide d'appoint et du pentane seront considérées par référence à la même méthode de mesure.
Selon l'invention, le fluide d'appoint se trouve à l'état gazeux à 40°C sous une pression de 1,0134.105 Pa (1 atmosphère). Par contre, il est introduit dans la partie amont de la zone réactionnelle dans des conditions de température et de pression dépendant directement des conditions opératoires du procédé. Selon sa composition, il peut alors se trouver à l'état liquide ou gazeux ou dans un état intermédiaire.
Les hydrocarbures préférés du fluide d'appoint sont le méthane et l'éthane. Ce fluide peut ainsi, par exemple, être constitué de gaz naturel.
Ce fluide peut également comprendre, en quantité minoritaire, des hydrocarbures à six ou sept atomes de carbone, et/ou des gaz inertes tels que de l'azote, ou tout autre fluide léger approprié.
De manière avantageuse, ledit fluide d'appoint contient une quantité substantielle de composés légers issus d'une colonne de fractionnement située en aval de l'unité d'isomérisation.
L'introduction de fluide d'appoint léger a pour effet de créer, dans la partie amont de la zone réactionnelle, une vaporisation d'une partie de la fraction liquide de la charge hydrocarbonée. Ce phénomène est endothermique et contribue à rétablir le bilan thermique au sein du réacteur. on peut ainsi compenser l'excès de chaleur qui se dégage dans la partie amont du premier réacteur, à la suite de l'hydrogénation du benzène présent en quantité plus élevée dans la charge.
En outre, la baisse de température au sein du réacteur, résultant de l'injection dudit fluide, peut être parfaitement déterminée. En effet, cette injection a pour conséquence une modification des équilibres entre les fractions liquide et vapeur des hydrocarbures constitutifs de la charge, équilibres qui sont régis par les lois de la thermodynamique.
Cette baisse de température dépend donc uniquement des paramètres suivants: débits et compositions de la charge et du fluide d'appoint, pression, température, fraction vaporisée de la charge à l'entrée du réacteur et rapport massique entre l'hydrogène et la charge dans le mélange réactionnel admis dans l'unité. Elle peut donc être parfaitement contrôlée et optimisée en fonction de la teneur en benzène de la charge à isomériser.
De ce fait, le procédé conforme à l'invention est précis et extrêmement flexible, dans la mesure où le débit du fluide d'appoint peut être ajusté de manière à compenser exactement l'élévation de température due à la teneur en benzène supérieure à la teneur maximale généralement admise.
Grâce au procédé selon l'invention, il devient donc possible d'introduire, en charge de l'unité d'isomérisation, une fraction plus importante d'essences riches en benzène, telles que les essences légères issues du réformage ("réformat léger") et/ou du craquage catalytique, seules ou en mélange avec d'autres charges. Le benzène présent en quantité importante dans ces coupes sera hydrogéné et donc intégralement transformé en composés moins toxiques, au sein de l'unité d'isomérisation. De la sorte, la teneur en benzène de la "coupe essence réduite", constituée de l'isomérat, du réformat léger et du réformat lourd, peut être sensiblement diminuée. L'impact en terme de diminution de la toxicité des carburants est loin d'être négligeable.
Par ailleurs, le procédé selon l'invention s'avère très avantageux pour les unités ne disposant pas, en aval de l'unité d'isomérisation, d'un déisohexaniseur (colonne de séparation des paraffines ramifiées recherchées et des paraffines linéaires), avec recycle d'une coupe riche en paraffines linéaires en amont de l'unité d'isomérisation.
En effet, un des buts de ce recycle est de diluer la charge fraíche admise dans l'unité, afin d'en abaisser la teneur en benzène. Grâce à l'invention, puisqu'il est possible d'admettre dans l'unité des charges à teneur plus élevée en benzène, cette dilution n'est plus nécessaire.
Pour de telles unités, le procédé selon l'invention représente donc une alternative très valable à l'installation coûteuse d'un déisohexaniseur et d'un système de recycle.
Enfin, de manière inattendue, le procédé conforme à l'invention s'est avéré permettre une récupération accrue d'hydrocarbures légers comportant au plus quatre atomes de carbone, et en particulier de propane et de butane. Ces composés sont particulièrement intéressants, d'autant plus qu'ils sont valorisables comme GPL (Gaz de Pétrole Liquéfié), qui est usuellement employé comme carburant ou comme combustible. L'unité d'isomérisation peut être ainsi exploitée dans une optique de production accrue de ces GPL.
Conformément à l'invention, le fluide d'appoint est injecté dans la partie amont de la zone réactionnelle. Ceci signifie que ledit fluide peut être injecté dans la partie amont du premier réacteur proprement dit, et/ou immédiatement en amont de ce dernier.
De manière préférée, du fluide d'appoint est injecté dans la partie amont du premier réacteur d'isomérisation, à savoir dans la zone s'étendant du niveau d'introduction dans le réacteur du mélange réactionnel (charge et hydrogène) jusqu'à mi-hauteur du lit catalytique. Du fluide d'appoint peut alors être injecté dans la zone du réacteur comprise entre l'introduction du mélange réactionnel et le début du lit dense de catalyseur. De manière avantageuse, du fluide d'appoint peut également être injecté directement au sein du lit dense de catalyseur, dans la première moitié de ce dernier.
Lorsque du fluide d'appoint est injecté immédiatement en amont du premier réacteur, on l'introduit immédiatement avant l'introduction du mélange réactionnel (charge et hydrogène) dans le premier réacteur, c'est-à-dire apres préchauffage complet de ce mélange et avant injection de celui-ci dans le premier réacteur.
Cette injection de fluide d'appoint a un effet purement thermique et n'a par conséquent rien à voir avec l'injection, en grande quantité, de l'hydrogène nécessaire à la réaction d'isomérisation proprement dite, laquelle s'effectue, de manière connue en soi, en amont de l'unité d'isomérisation, c'est à dire en amont des échangeurs de chaleur dans lesquels le mélange réactionnel (charge et hydrogène) est réchauffé avant d'être introduit dans le réacteur.
Cette injection de fluide d'appoint s'effectue donc, en outre, par rapport à l'injection usuelle d'hydrogène en amont de l'unité, à un endroit totalement différent, et avec un débit volumique beaucoup plus faible. De plus, son rôle est entièrement différent : ce fluide d'appoint, qui a un effet purement thermique, peut être constitué par tout gaz léger compatible avec le procédé, tandis que l'hydrogène introduit en amont de l'unité d'isomérisation a un effet chimique au niveau de la réaction proprement dite.
Ce fluide d'appoint est avantageusement injecté à un débit de 5 à 150 Nm3 par m3 de charge à isomériser et, de préférence, de 5 à 60 Nm3 par m3 de charge. On considère ici la charge de départ, avant mélange avec de l'hydrogène et réchauffement du mélange réactionnel ainsi obtenu.
L'effet recherché est obtenu, que le fluide d'appoint soit injecté à une température inférieure ou supérieure à celle du milieu réactionnel. Cela dit, il est préférable d'injecter ledit fluide à une température inférieure ou égale à celle du milieu réactionnel et, de préférence, comprise entre 20 et 180°C.
Lorsque l'unité d'isomérisation comprend plusieurs réacteurs en série, une variante particulièrement avantageuse de l'invention consiste à recycler, immédiatement en aval du premier réacteur, une coupe riche en paraffines peu ramifiées à 5 ou 6 atomes de carbone et qui contient généralement des naphtènes. Cette coupe provient, de manière connue en soi, d'un fractionnement existant dans les unités d'isomérisation perfectionnées, qui est situé en aval des réacteurs, et qui sépare les isoparaffines recherchées des autres composés.
Dans l'art antérieur, cette coupe de recycle, qui ne contient pas de benzène, est traditionnellement introduite en amont du premier réacteur, afin non seulement d'effectuer un passage supplémentaire dans l'unité d'isomérisation, mais aussi de diluer la charge fraíche admise dans l'unité, de manière à abaisser la teneur en benzène de la charge combinée ainsi obtenue.
Grâce à l'invention, puisqu'il est possible d'admettre dans le premier réacteur des charges à teneur plus élevée en benzène, cette dilution n'est plus nécessaire, de sorte que seule de la charge fraíche est traitée dans le premier réacteur.
Il en résulte une bien meilleure valorisation de ce premier réacteur, et une amélioration sensible des réactions d'isomérisation qui s'y produisent. En effet, le débit de charge y est plus faible, ce qui se traduit par une diminution de la vitesse volumique horaire, et donc un temps de contact plus élevé entre la charge et le catalyseur. En outre, recycler cette coupe en aval du premier réacteur permet de ne pas faire circuler dans ce dernier les composés naphténiques, qui sont connus pour être des inhibiteurs des réactions d'isomérisation.
Lorsque le fluide d'appoint est introduit immédiatement en amont du premier réacteur d'isomérisation, une ligne d'alimentation en fluide d'appoint peut déboucher dans la ligne d'arrivée au premier réacteur du mélange réactionnel (charge et hydrogène), entre le dispositif de réchauffement du mélange réactionnel le plus en aval et le point d'injection dudit mélange dans le premier réacteur.
Lorsque le fluide d'appoint est introduit au sein même du premier réacteur, au moins un moyen d'introduction de fluide d'appoint débouche dans ce réacteur, en amont du lit dense de catalyseur et/ou au sein de la première moitié de ce dernier. Le ou lesdits moyens peuvent alors être constitués par tout moyen connu permettant, en aval de l'injection de la charge proprement dite, l'introduction d'un fluide léger dans un réacteur.
Il peut s'agir par exemple d'une canne (ou même d'un simple tube) pourvue de fentes latérales ou de plusieurs orifices, afin de permettre une meilleure distribution du fluide d'appoint. De préférence, on emploie un diffuseur permettant d'introduire le fluide d'appoint de manière homogène sur toute la section du réacteur.
Ces moyens d'introduction de fluide d'appoint peuvent déboucher dans le réacteur de multiples manières. Selon un mode de réalisation préféré, lesdits moyens débouchent de manière transversale dans le réacteur, sensiblement perpendiculairement à l'axe de ce dernier.
Selon une autre variante, au moins un moyen d'introduction de fluide d'appoint débouche dans le réacteur de manière sensiblement parallèle à l'axe de ce dernier. De préférence, ledit moyen pénètre alors dans le réacteur par l'orifice permettant l'introduction du mélange réactionnel. Cette solution est particulièrement avantageuse dans le cadre de la modernisation d'unités existantes, puisqu'elle évite d'avoir à percer la paroi du réacteur.
L'invention ne concerne pas les catalyseurs susceptibles d'intervenir dans sa mise en oeuvre. L'on peut, en effet, employer tout catalyseur connu présentant une activité pour l'isomérisation des paraffines linéaires en paraffines ramifiées. Dans ce domaine, de nombreux catalyseurs sont connus de l'homme du métier. Ils comportent généralement une ou plusieurs fonctions de type acide, ainsi qu'une fonction hydrogénante (métal de transition hydrogénant). On citera, à titre d'exemple non limitatif, les catalyseurs à base de chlorure d'aluminium (ou ayant d'autres sites halogénés) et comprenant un ou plusieurs métaux du groupe VIII de la Classification Périodique des Eléments.
D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description qui va suivre de différents modes de mise en oeuvre de celle-ci. Dans cette description, on se réfèrera aux dessins annexés, dans lesquels:
  • la figure 1 est une vue schématique d'une unité d'isomérisation incluant une injection d'un fluide d'appoint, conformément à l'invention; .
  • les figures 2, 3, 4, 5 sont des variantes de réalisation de la figure 1;
  • la figure 6 est une vue synoptique illustrant les relations d'une unité d'isomérisation avec d'autres unités pétrolières, telles qu'elles existent dans l'art antérieur, d'une part, et telles que modifiées conformément à l'invention, d'autre part.
La figure 1 représente une unité pour l'isomérisation de coupes contenant des paraffines linéaires à 5 ou 6 atomes de carbone. Cette charge arrive par la ligne 1, dans laquelle de l'hydrogène et éventuellement des gaz de recycle sont introduits par la ligne 2. Le mélange réactionnel ainsi obtenu est acheminé par la ligne 33 vers deux échangeurs de chaleur 3 et 4, à contre-courant des effluents des deux réacteurs d'isomérisation de l'unité. Le mélange réactionnel ainsi réchauffé est ensuite introduit dans un premier réacteur 5, ou réacteur amont. Ce dernier renferme un catalyseur d'isomérisation réparti dans un lit catalytique 6, qui occupe une majeure partie de la hauteur du réacteur 5. L'effluent de ce dernier, après être passé dans l'échangeur 4, est ensuite introduit par la ligne 7 dans le second réacteur 8, ou réacteur aval, qui est lui aussi chargé avec un catalyseur d'isomérisation réparti dans un lit catalytique 9.
Dans le cas présent, la charge à traiter circule de haut en bas dans les réacteurs 5 et 8, mais elle pourrait naturellement y circuler de bas en haut.
L'effluent du réacteur aval 8, qui contient une charge enrichie en isoparaffines, est évacué par la ligne 10 et, après avoir traversé l'échangeur 3, est dirigé vers un ensemble de séparation des produits (non représenté). Le dispositif comprend en outre des systèmes de vannes, non représentés, permettant d'interrompre indépendamment l'alimentation des réacteurs 5 et 8 et/ou d'inverser le sens de circulation du mélange réactionnel.
Conformément à l'invention, un fluide d'appoint est injecté dans le réacteur amont 5, par l'intermédiaire d'une canne 11 sensiblement perpendiculaire à l'axe du réacteur et qui débouche directement dans le lit catalytique, dans la première moitié de celui-ci. Cette canne est pourvue de fentes latérales, non représentées, permettant une meilleure distribution.
Selon une variante de réalisation représentée à la figure 2, le lit catalytique 6 du réacteur amont 5 peut être séparé en une section amont 12 et une section aval 13, qui renferment le même catalyseur d'isomérisation. La canne 11a d'introduction de fluide d'appoint pénètre alors au sein du réacteur entre les deux sections catalytiques 12 et 13.
Selon une autre variante de réalisation représentée à la figure 3, un système d'injection étagé 11b permet l'introduction de fluide d'appoint à plusieurs niveaux dans la première moitié du lit catalytique 6 du réacteur 5.
Selon une autre variante de réalisation représentée à la figure 4, un système d'injection 11c de fluide d'appoint débouche dans le réacteur 5 de manière sensiblement parallèle à l'axe de ce dernier, au niveau de l'orifice permettant l'introduction du mélange réactionnel (charge et hydrogène) acheminé au réacteur par la ligne 33.
Selon encore une autre variante de réalisation représentée à la figure 5, une ligne 11d d'alimentation en fluide d'appoint débouche dans la ligne d'arrivée 33 du mélange réactionnel (charge et hydrogène), immédiatement en amont du premier réacteur d'isomérisation 5.
Il est à noter que, dans le cas où l'unité d'isomérisation comporte au moins deux réacteurs en série, l'injection de fluide d'appoint a toujours lieu au niveau du réacteur amont, dans la mesure où l'hydrogénation du benzène est beaucoup plus rapide que l'isomérisation des paraffines elle-même et se déroule uniquement au sein du réacteur amont.
Par ailleurs, dans ces unités comportant deux réacteurs ou plus, il est usuel d'inverser le sens de circulation du mélange réactionnel, notamment à la suite du remplacement du lit catalytique de l'un des réacteurs.. Le réacteur amont devient alors réacteur aval et inversement. Il faut alors déplacer en conséquence le(s) point(s) d'introduction du fluide d'appoint, de manière à ce que cette introduction ait toujours lieu au niveau du réacteur amont.
C'est pourquoi il peut être judicieux de prévoir un système d'injection de fluide d'appoint sur chacun des deux réacteurs placés à l'extrémité de la série. Bien entendu, un seul de ces systèmes fonctionnera à la fois, selon le sens de circulation du mélange réactionnel.
Enfin, dans le cas d'une unité ne comprenant qu'un seul réacteur, l'injection du fluide d'appoint est similaire à celle représentée aux figures 1 à 5.
La figure 6 montre comment l'invention peut permettre d'améliorer les relations existant entre l'unité d'isomérisation et d'autres unités pétrolières.
Comme il est représenté sur cette figure, l'essence de distillation directe (ou "straight-run"), qui correspond à une coupe distillant entre environ 20 et 180°C, sort par la ligne 14 d'une unité de fractionnement principale, non représentée.
Cette essence de distillation directe est alors divisée, au sein du séparateur 15, en une essence légère, évacuée par la ligne 16, et une essence lourde, évacuée par la ligne 17, le point de coupe entre ces deux fractions se situant de manière usuelle entre 70 et 90°C. Puis l'essence légère est débarrassée, dans le déisopentaniseur 18, de son isopentane, et se trouve dirigée par la ligne 1 vers l'unité d'isomérisation.
La fraction riche en isopentane, qui est un composé à haut indice d'octane ne nécessitant donc pas de traitement d'isomération, est évacuée par la ligne 19. L'essence légère appauvrie en isopentane traverse alors les deux réacteurs d'isomérisation 5 et 8 tels que décrits précédemment, et la charge enrichie en isoparaffines en est extraite par la ligne 10.
Cette charge est ensuite séparée, au sein du stabilisateur 20, en une coupe de tête 21, constituée de composés à quatre atomes de carbone au maximum, et une coupe de fond 22 de composés plus lourds.: Cette dernière est ensuite dirigée vers le déisohexaniseur 23, où elle se trouve divisée en un isomérat 26, constitué d'isoparaffines à 5 ou 6 atomes de carbone, et une coupe lourde 25, constituée essentiellement de naphtènes et de paraffines à 7 atomes de carbone ou plus.
En outre, une coupe riche en naphtènes et en paraffines non isomérisées à 5 ou 6 atomes de carbone, est traditionnellement recyclée en amont du premier réacteur par l'intermédiaire de la ligne 24. Ainsi, cette coupe, qui ne contient pas de benzène, effectue non seulement un passage supplémentaire dans l'unité d'isomérisation, mais permet aussi de diluer la charge fraíche admise dans l'unité, de manière à abaisser la teneur en benzène de la charge combinée ainsi obtenue.
En faisant toujours référence à la figure 6, l'essence lourde évacuée du séparateur 15 par la ligne 17 est dirigée vers l'unité de reformage 27, au sein de laquelle elle subit entre autres des réactions d'aromatisation, qui contribuent à augmenter sa teneur en produits aromatiques, dont du benzène. Le réformat ainsi produit est ensuite séparé au niveau du fractionnement 28 en un réformat lourd 29, dont le point d'ébullition est supérieur à environ 90°C, qui est acheminé vers le pool essences, et un réformat léger 31, dont le point d'ébullition est compris entre environ 30°C et 90°C.
L'essentiel du benzène produit dans le reformage est présent dans le réformat léger 31. Afin de réduire la teneur en benzène de la coupe essence finale, il est donc judicieux d'envoyer le réformat léger 31 vers les réacteurs 5, 8, de l'unité d'isomérisation. Cependant, cette dernière ne peut traiter des charges à teneur très élevée en benzène, de sorte qu'il est nécessaire soit de soutirer du fractionnement par la ligne 32 une coupe benzène qui est difficilement valorisable, car trop impure, soit d'augmenter le débit de recycle de la ligne 24, afin d'abaisser la teneur en benzène de la charge combinée entrant dans le réacteur 5, au détriment de la qualité des réactions d'isomérisation proprement dites.
La suite de la description va mettre en exergue les modifications que l'invention permet d'apporter, en particulier en ce qui concerne l'utilisation du réformat léger 31 et de la fraction 24 recyclée à l'isomérisation.
Conformément à l'invention, un moyen 11 d'injection d'un fluide d'appoint, pénètre dans le lit catalytique du réacteur amont 5. Le fluide d'appoint est constitué de composés comprenant au plus 4 atomes de carbone issus par la ligne 35 de la coupe de tête, évacuée en 21, du stabilisateur 20. De la sorte, l'unité d'isomérisation est susceptible de traiter le cas échéant des charges à teneur en benzène plus élevée que dans l'art antérieur. Ainsi, le doublement de la quantité de benzène présent dans la charge peut être compensé thermiquement par un appoint de fluide léger (densité inférieure ou égale à celle du normal-pentane), dont le débit sera ajusté en fonction de la teneur en benzène de la charge à isomériser.
Cette augmentation de la teneur en benzène admissible permet une plus grande flexibilité au niveau de l'isomérisation et des unités environnantes. Ainsi, il est possible d'envoyer en charge de l'isomérisation un débit plus élevé de réformat léger 31, sans augmenter le débit du recycle 24, qui nuit à la qualité des réactions d'isomérisation. Le soutirage de la coupe benzène 32 mal valorisable sera quant à lui moins conséquent.
Il devient également possible de remplacer le recycle 24 par un recycle 34, immédiatement en aval du premier réacteur 5 d'isomérisation. Il en résulte une bien meilleure valorisation de ce premier réacteur 5, et une amélioration sensible des réactions d'isomérisation qui s'y produisent : d'une part, le débit de charge y est plus faible ; d'autre part, on évite ainsi de faire circuler dans le premier réacteur un recycle 24, et donc les composés naphténiques présents dans ce recycle, qui inhibent les réactions d'isomérisation.
Les exemples ci-après, qui n'ont pas de caractère limitatif, sont destinés à illustrer la mise en oeuvre de l'invention et les avantages de celle-ci.
Exemple 1
Cet exemple a pour but d'illustrer les limites des procédés d'isomérisation d'essences classiques, dans le cas du traitement de charges à teneur élevée en benzène.
Une coupe pétrolière de type essence légère de distillation directe (charge n°1) possède les propriétés suivantes:
  • point 5% (en volume) de distillation A.S.T.M.: 31°C,
  • point 95% (en volume) de distillation A.S.T.M : 86°C,
  • teneur en soufre: 1 ppm en poids,
  • teneur en azote: 1 ppm en poids,
  • teneur en benzène: 3,5% en poids,
  • densité à 15°C: 0,680.
Cette charge, dont le débit est de 91,7 t/h, est combinée avec un mélange gazeux riche en hydrogène (20% en poids d'hydrogène), introduit à un débit de 2 t/h. Ce mélange réactionnel est alors réchauffé jusqu'à 133°C, puis traité dans une unité d'isomérisation d'essences classique comportant deux réacteurs en série, fonctionnant à une pression de 31.105 Pa. La température relevée en sortie du premier réacteur est de 180°C.
On refait le test, avec une charge conforme à celle décrite ci-avant, mais à laquelle on incorpore une forte teneur en benzène: cette charge n°2 possède une teneur en benzène de 7,66 % en poids et une densité à 15°C de 0,687. Les autres propriétés demeurent globalement inchangées par rapport à la charge n°1.
Cette charge n°2 est traitée dans les mêmes conditions opératoires que celles mentionnées ci-avant pour le traitement de la charge n°1, à l'exception du débit de gaz riche en hydrogène, qui est porté à 3,5 t/h (de manière connue en soi, l'isomérisation de charges riches en benzène nécessite une quantité accrue d'hydrogène dans le milieu réactionnel, compte tenu de la consommation supplémentaire d'hydrogène induite par l'hydrogénation du benzène).
La température relevée en sortie du premier réacteur est alors de 193°C. Il y a donc eu une augmentation de température de 13°C dans ce réacteur, due à la forte quantité de chaleur dégagée par l'hydrogénation du supplément de benzène présent dans la charge n°2. A terme, cette augmentation de température dans le premier réacteur risque non seulement d'endommager le catalyseur et l'unité, mais également de diminuer les rendements de la réaction d'isomérisation (meilleurs à basse température).
Cet exemple montre donc combien les procédés de l'art antérieur s'avèrent peu adaptés à l'isomérisation de charges à forte teneur en benzène.
Exemple 2
Dans cet exemple, la charge riche en benzène décrite ci-avant (charge n°2) est traitée cette fois-ci selon le procédé d'isomérisation conforme à l'invention. Un fluide d'appoint est donc introduit dans le lit catalytique du premier réacteur, au niveau du premier tiers du lit catalytique (aux 2/7 de ce lit, exactement), et avec un débit de 30Nm3 par m3 de charge. Deux températures d'introduction du fluide d'appoint ont été testées: 30°C (température inférieure à celle du milieu réactionnel) et 145°C (température de l'ordre de celle du milieu réactionnel).
Différentes compositions de fluide d'appoint, mentionnées dans le Tableau I ci-après, ont été testées successivement.
Fluide Composition (en % en poids) Densité (40°C, 1,0134 Pa)
F1 2 % H2 + 12 % CH4 + 18 % C2H6 + 25 % C3H8 + 43 % C4H10 1,04.10-3
F2 2 % H2 + 80 % CH4 + 16 % C2H6 +2 % C3H3 0,59.10-3
F4 100 % CH4 0,62.10-3
F5 100 % C2H6 1,16.10-3
F6 100 % C3H8 1,72.10-3
F7 100 % nC4H10 2,28.10-3
Le fluide F1 correspond à un mélange gazeux dU type de ceux que peut récupérer en tête d'une colonne de fractionnement située en aval de l'unité d'isomérisation (colonne dite de stabilisation).
A 40°C, sous une pression de 1,0134.105 Pa (1 atmosphère), tous les fluides considérés se trouvent à l'été gazeux et ont une densité inférieure à celle du pentane considéré dans les mêmes conditions.
Pour le test d'isomérisation, les conditions opératoires sont identiques à celles décrites dans l'Exemple 1 pour le traitement de la charge n°2, et la température d'entrée du mélange réactionnel dans le premier réacteur d'isomérisation est notamment maintenue à 133°C.
Le Tableau II ci-après rassemble les résultats obtenus en terme de température de sortie du premier réacteur.
Fluide d'appoint Température de sortie du premier réacteur
F1 180 °C 183 °C
F2 180 °C 181 °C
F4 179 °C 180 °C
F5 180 °C 182°C
F6 179 °C 184 °C
F7 181 °C 187 °C
Des résultats identiques à ceux exposés ci-avant ont été obtenus en introduisant le fluide d'appoint immédiatement en amont du premier réacteur d'isomérisation, entre le dispositif de réchauffement du mélange réactionnel le plus en aval et le point d'injection dudit mélange dans le premier réacteur.
Comme le montre le Tableau II ci-dessus, l'introduction d'un fluide d'appoint léger permet de compenser l'excès de chaleur qui se dégage dans le premier réacteur en présence d'une charge riche en benzène. On parvient ainsi à abaisser la température régnant dans ce réacteur et, notamment, à ramener sa température de sortie à une valeur identique à, ou proche de, la température observée en isomérisation de charges à teneur limitée en benzène (charge n°1).
Par ailleurs, des résultats différents sont obtenus selon le fluide d'appoint utilisé. En particulier, lorsque le fluide d'appoint est introduit à une température élevée, l'abaissement de la température du premier réacteur est plus important avec des fluides légers. Il est donc possible d'adapter la composition du fluide introduit à la teneur en benzène de la charge à isomériser, avec pour conséquence, une excellente flexibilité du procédé selon l'invention.
Exemple 3
Dans cet exemple, dans les essais 2 à 4, la charge riche en benzène (charge n°2 de l'Exemple 1) est isomérisée, en appliquant le procédé conforme à l'invention et dans des conditions opératoires identiques à celles de l'Exemple n°2, mais en faisant varier le débit du fluide d'appoint. Les trois essais mentionnés dans le Tableau III ci-dessous ont été effectués avec le même fluide F2, introduit dans le lit catalytique du premier réacteur à une température de 145°C.
L'essai 1 correspond à un débit de fluide d'appoint nul (art antérieur).
Essai Débit du fluide
d'appoint
(Nm3 par m3 de
charge)
Température de
sortie du premier
réacteur (°C)
1 0 193
2 10 188
3 30 181
4 60 173
Cet exemple illustre l'excellent contrôle thermique auquel permet d'accéder l'invention. Ce contrôle est extrêmement précis et flexible, puisque le débit du fluide d'appoint peut être optimisé en fonction des caractéristiques de la charge à traiter et, notamment, de sa teneur en benzène.
Exemple 4
Cet exemple permet de préciser les conditions dans lesquelles le procédé conforme à l'invention doit être mis en oeuvre, et notamment la nature des fluides d'appoint susceptibles d'être employés.
Les conditions opératoires sont identiques à celles de l'Exemple 2.
Différents fluides d'appoint ont été testés successivement :
  • F1 et F5 sont les fluides déjà mentionnés dans l'Exemple 2 et correspondent aux conditions de l'invention : fluides gazeux à 40°C, sous une pression de 1,0134.105 Pa (1 atmosphère) et de densité inférieure à celle du pentane considéré dans les mêmes conditions.
  • F9 et F10 sont des fluides plus lourds que le pentane.
Ces fluides sont tous injectés dans le lit catalytique du premier réacteur à une température de 145°C, et un débit de 30Nm3 par m3 de charge.
Le Tableau IV ci-après expose les natures des fluides testés ainsi que les résultats obtenus lors des essais d'isomérisation de la charge N°2 riche en benzène.
Fluide Composition Etat physique
(densité) à
40°C,
1,0134.105Pa
Température
sortie
1er réacteur (°C)
F1 Mélange (H2, C1 à C4) gazeux (1,04.10-3) 183
F5 100% C2H3 gazeux (1,16.10-3) 182
F9 100% nC6H14 liquide 192
F10 100% nC9H20 liquide 196
Ces résultats soulignent la validité des critères retenus pour sélectionner les fluides d'appoint susceptibles d'être employés dans l'invention.
Pour des fluides trop lourds, et en particulier plus lourds que le pentane, l'effet thermodynamique décrit ne se produit plus et l'injection de fluide d'appoint ne permet plus d'abaisser la température du premier réacteur. On constate même que, lorsqu'un tel fluide est introduit à une température supérieure ou égale à la température d'entrée dans le réacteur, comme c'est le cas dans le présent exemple, l'on risque d'aboutir à une élévation supplémentaire de la température de ce réacteur (voir cas du fluide F10).

Claims (16)

  1. Procédé d'isomérisation d'une charge hydrocarbonée contenant une quantité substantielle d'hydrocarbures paraffiniques à 5 ou 6 atomes de carbone et du benzène à une teneur supérieure ou égale à 2 % en pois, dans lequel la charge à traiter passe, en présence d'hydrogène, à une pression totale supérieure ou égale à 10.105 Pa (10 bars) et à une température moyenne comprise entre 100 et 200°C, dans au moins un réacteur (5) contenant un catalyseur d'isomérisation d'hydrocarbures paraffiniques, ce procédé étant caractérisé en ce que l'on introduit, dans la partie amont de la zone réactionnelle, un fluide d'appoint qui, à 40°C et sous pression atmosphérique (1, 0134.105 Pa), se trouve à l'état gazeux et possède une densité inférieure ou égale à celle du normal-pentane considéré dans les même conditions, ce fluide d'appoint contenant au moins 98 % en poids d'hydrocarbures comportant de un à quatre atomes de carbone.
  2. Procédé selon la revendication 1, caractérisé en ce que les hydrocarbures comportant de un à quatre atomes de carbone sont issus d'une colonne de fractionnement (20) des effluents de l'unité d'isomérisation.
  3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que ledit fluide d'appoint comprend également des hydrocarbures à six ou sept atomes de carbone, et/ou des gaz inertes tels que de l'azote, ou tout autre fluide léger approprié.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que du fluide d'appoint est injecté dans la partie amont du premier réacteur d'isomérisation (5), à savoir dans la zone s'étendant du niveau d'introduction dans ce réacteur du mélange réactionnel (charge et hydrogène) jusqu'à mi-hauteur du lit catalytique (6).
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que du fluide d'appoint est injecté immédiatement en amont du premier réacteur, c'est-à-dire après préchauffage complet du mélange réactionnel (charge et hydrogène) et avant injection dudit mélange dans le premier réacteur (5).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit fluide d'appoint est injecté à un débit de 5 à 150 Nm3 par m3 de charge.
  7. Procédé selon la revendication 6, caractérisé en ce que ledit fluide d'appoint est injecté à un débit de 5 à 60 Nm3 par m3 de charge.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit fluide d'appoint est injecté à une température inférieure ou égale à celle du milieu réactionnel et, de préférence, comprise entre 20 et 180°C.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'unité d'isomérisation comprend plusieurs réacteurs en série (5, 8), caractérisé en ce qu'une coupe riche en paraffines non isomérisées à 5 ou 6 atomes de carbone et qui contient généralement des naphtènes, provenant de la séparation et du traitement des effluents de l'unité d'isomérisation, est recyclée immédiatement en aval du premier réacteur (5).
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que du fluide d'appui est introduit dans la ligne d'alimentation de la zone réactionnelle en mélange réactionnel (charge et hydrogène), entre un moyen de réchauffement (4) de ce mélange et le point d'injection de celui-ci dans la zone réactionnelle (5).
  11. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que du fluide d'appoint est introduit dans la zone réactionnelle (5) en amont d'un lit dense de catalyseur (6) et/ou au sein de la première moitié de ce lit.
  12. Procédé selon la revendication 11, caractérisé en ce que, en vue d'assurer une meilleure distribution du fluide d'appoint, celui-ci est introduit au moyen d'une canne ou d'un tube pourvu(e) de fentes latérales ou d'une pluralité d'orifices.
  13. Procédé selon l'une des revendications 11 et 12, caractérisé en ce que en vue de répartir le fluide d'appoint de façon homogène suivant toute la section de la zone réactionnelle (5), ce fluide est introduit à l'aide d'un diffuseur.
  14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que du fluide d'appoint est introduit dans la zone réactionnelle transversalement à l'axe du réacteur (5) sensiblement perpendiculairement à l'axe de ce réacteur.
  15. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que le fluide d'appoint est introduit dans la zone réactionnelle par l'orifice d'introduction du mélange réactionnel de façon sensiblement parallèle à l'axe du réacteur (5).
  16. Procédé selon l'une des revendications 1 à 15, dans lequel la zone réactionnelle (5) comprend un lit comportant une section amont (12) et une section aval (13) distinctes, caractérisé en ce que le fluide d'appoint est introduit dans la zone réactionnelle entre les deux sections catalytiques (12) et (13).
EP99400568A 1998-03-31 1999-03-09 Procédé f d'isomérisation d'essences à teneur élevée en benzène Expired - Lifetime EP0949317B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9803958 1998-03-31
FR9803958A FR2776667B1 (fr) 1998-03-31 1998-03-31 Procede et dispositif d'isomerisation d'essences a teneur elevee en benzene

Publications (2)

Publication Number Publication Date
EP0949317A1 EP0949317A1 (fr) 1999-10-13
EP0949317B1 true EP0949317B1 (fr) 2004-05-19

Family

ID=9524679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400568A Expired - Lifetime EP0949317B1 (fr) 1998-03-31 1999-03-09 Procédé f d'isomérisation d'essences à teneur élevée en benzène

Country Status (8)

Country Link
US (2) US6416657B1 (fr)
EP (1) EP0949317B1 (fr)
JP (1) JP4112114B2 (fr)
AT (1) ATE267239T1 (fr)
DE (1) DE69917363T2 (fr)
ES (1) ES2221327T3 (fr)
FR (1) FR2776667B1 (fr)
ZA (1) ZA992450B (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573417B1 (en) * 2001-11-05 2003-06-03 Uop Llc Fractionation of paraffin isomerization process effluent
US8517185B2 (en) * 2008-10-08 2013-08-27 Cummins Filtration Ip, Inc. Two stage fuel water separator and particulate filter utilizing pleated nanofiber filter material
US8590712B2 (en) * 2008-10-08 2013-11-26 Cummins Filtration Ip Inc. Modular filter elements for use in a filter-in-filter cartridge
FR2943070B1 (fr) 2009-03-12 2012-12-21 Total Raffinage Marketing Fluide hydrocarbone hydrodeparaffine utilise dans la fabrication de fluides industriels, agricoles ou a usage domestique
FR2943064B1 (fr) 2009-03-12 2013-12-06 Total Raffinage Marketing Diluant hydrocarbone a bas taux de cov pour materiaux de construction
CN102596862B (zh) * 2009-05-15 2015-09-30 康明斯过滤Ip公司 表面聚结器
US8692046B2 (en) 2011-01-13 2014-04-08 Uop Llc Process for isomerizing a feed stream including one or more C4-C6 hydrocarbons
US8716544B2 (en) 2011-01-13 2014-05-06 Uop Llc Process for isomerizing a feed stream including one or more C4-C6 hydrocarbons
US10058808B2 (en) 2012-10-22 2018-08-28 Cummins Filtration Ip, Inc. Composite filter media utilizing bicomponent fibers
FR3015514B1 (fr) 2013-12-23 2016-10-28 Total Marketing Services Procede ameliore de desaromatisation de coupes petrolieres
CN109475790A (zh) 2016-07-19 2019-03-15 康明斯滤清系统知识产权公司 穿孔层聚结器
CN110320307A (zh) * 2019-08-02 2019-10-11 中国科学院新疆理化技术研究所 一种可控制安石榴苷异构体比例的低温进样方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2393041A (en) * 1944-05-08 1946-01-15 Shell Dev Process for the isomerization of paraffin hydrocarbons
US2920033A (en) * 1955-05-02 1960-01-05 Texaco Inc Hydrocarbon conversion process with the recycling of an enriched hydrogen stream
US3359198A (en) * 1965-07-09 1967-12-19 Universal Oil Prod Co Gas purification method
US3674681A (en) * 1970-05-25 1972-07-04 Exxon Research Engineering Co Process for isomerizing hydrocarbons by use of high pressures
US3755144A (en) * 1971-10-13 1973-08-28 Universal Oil Prod Co Hydrocarbon isomerization and separation process
US3864240A (en) * 1973-03-09 1975-02-04 Universal Oil Prod Co Integration of a reaction system having gravity-flowing catalyst particles with a fixed-bed system
US4058452A (en) * 1976-07-19 1977-11-15 Uop Inc. Alkylaromatic hydrocarbon dealkylation process
US4333818A (en) * 1981-01-26 1982-06-08 Uop Inc. Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen
US4432862A (en) * 1982-01-18 1984-02-21 Exxon Research And Engineering Co. Reforming and isomerization process
US4747933A (en) * 1987-03-27 1988-05-31 Uop Inc. Isomerization unit with integrated feed and product separation facilities
FR2623203B1 (fr) * 1987-11-17 1990-03-16 Inst Francais Du Petrole Amelioration de l'echange thermique charge/effluent d'une unite de traitement d'hydrocarbures sous hydrogene par recyclage partiel de produit
US5648590A (en) * 1989-07-10 1997-07-15 Sun Company, Inc. (R&M) Liquid phase isomerization of alkanes
US5003118A (en) * 1989-12-29 1991-03-26 Uop Isomerization of benzene-containing feedstocks
GB2242910A (en) * 1990-04-11 1991-10-16 Shell Int Research Process for the isomerization of a hydrocarbon feed
GB9013565D0 (en) * 1990-06-18 1990-08-08 Shell Int Research Process for producing gasoline components
US5245102A (en) * 1990-11-29 1993-09-14 Uop Isomerization with distillation and psa recycle streams
US5146037A (en) * 1990-11-29 1992-09-08 Uop Isomerization with distillation and psa recycle streams
US5227554A (en) * 1991-11-29 1993-07-13 Mobil Oil Corporation Isomerization process
DE69326030T2 (de) * 1992-01-15 2000-01-05 Inst Francais Du Petrole Erniedrigung des Benzolgehaltes von Benzinen
US5360534A (en) * 1993-05-24 1994-11-01 Uop Isomerization of split-feed benzene-containing paraffinic feedstocks
FR2714388B1 (fr) * 1993-12-29 1996-02-02 Inst Francais Du Petrole Procédé de réduction de la teneur en benzène dans les essences.
US5516964A (en) * 1994-01-21 1996-05-14 Sun Company, Inc. (R&M) Hydrocarbon isomerization using solid superacid catalysts comprising platinum metal
FR2715931B1 (fr) * 1994-02-08 1996-04-26 Total Raffinage Distribution Procédé d'isomérisation de n-paraffines en isoparaffines.
US5830345A (en) * 1996-02-28 1998-11-03 Chinese Petroleum Corporation Process of producing a debenzenated and isomerized gasoline blending stock by using a dual functional catalyst

Also Published As

Publication number Publication date
JP4112114B2 (ja) 2008-07-02
ATE267239T1 (de) 2004-06-15
US6881385B2 (en) 2005-04-19
DE69917363T2 (de) 2005-05-12
US6416657B1 (en) 2002-07-09
ES2221327T3 (es) 2004-12-16
JPH11323356A (ja) 1999-11-26
DE69917363D1 (de) 2004-06-24
ZA992450B (en) 1999-10-01
FR2776667B1 (fr) 2000-06-16
EP0949317A1 (fr) 1999-10-13
US20020139712A1 (en) 2002-10-03
FR2776667A1 (fr) 1999-10-01

Similar Documents

Publication Publication Date Title
EP0949317B1 (fr) Procédé f d'isomérisation d'essences à teneur élevée en benzène
EP0922750B1 (fr) Essences à haut indice d'octane et leur production par un procédé associant hydro-isomérisation et séparation
EP2333031B1 (fr) Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d'hydrogène à partir de coupes saturées légères
EP0922748B1 (fr) Procédé de séparation d'une charge C5-C8 ou d'une charge intermédiaire, en trois effluents respectivement riches en paraffines linéaires, monobranchées et multibranchées
WO2003057802A2 (fr) Vapocraquage de naphta modifie
EP1167491A1 (fr) Procédé pour l'hydrogénation de coupes contenant des hydrocarbures
CA2730515C (fr) Procede d'hydrogenation du benzene
JP6100785B2 (ja) 燃料および燃料ブレンドを製造するためのシステムおよびプロセス
EP1640436B1 (fr) Procédé d'isomérisation d'une coupe C7 avec coproduction d'une coupe cycliques riche en méthylcyclohexane
WO2016102302A1 (fr) Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
EP1088879A1 (fr) Procédé de production d'essences à indice d'octane amélioré
CA2665197A1 (fr) Traitement pour enlever au moins du benzene des courants d'hydrocarbure
EP1281669A1 (fr) Procédé de récuperation d'hydrogène dans un effluent hydrocarboné gazeux, avec mise en oeuvre d'un réacteur membranaire
FR2852323A1 (fr) Nouveau procede de reformage regeneratif
EP3087160B1 (fr) Procede ameliore de desaromatisation de coupes petrolieres
EP0934996A1 (fr) Procédé de séparation chromatographique d'une charge C5-C8 ou d'une charge intermédiaire en trois effluents, respectivement riches en paraffines linéaires, monobranchées et multibranchées
EP0949316A1 (fr) Procédé de conversion d'hydrocarbures par traitement dans une zone de distillation associée à une zone réactionnelle et son utilisation en hydrogénation du benzène
FR3081166A1 (fr) Procédé de séparation des n paraffines et des isoparaffines d’une huile d’hydrocarbures
FR2787117A1 (fr) Procede de conversion d'hydrocarbures par traitement dans une zone de distillation associee a une zone reactionnelle comprenant le recontactage du distillat vapeur avec la charge, et son utilisation en hydrogenation du benzene
EP1508609B1 (fr) Procédé de traitement d'une fraction intermédiaire issue d'effluents de vapocraquage
EP1496099A1 (fr) Procédé amélioré d'isomérisation d'une coupe C7 avec ouverture des cycles naphténiques
FR2474524A1 (fr) Procede de conversion des hydrocarbures
WO2017009109A1 (fr) Procede permettant de realiser le bouclage du bilan thermique sur une unite de craquage catalytique de naphta dite ncc
Klimov et al. Manufacture of motor fuels on IK-30-BIMT catalyst
FR2820754A1 (fr) Dispositif comprenant un recyclage vers un separateur, et en melange avec une charge, de l'effluent liquide issu d'un absorbeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991001

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20030311

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PROCESS FOR THE ISOMERISATION OF GASOLINES WITH HIGH BENZENE CONTENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTALFINAELF FRANCE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69917363

Country of ref document: DE

Date of ref document: 20040624

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040826

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2221327

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

26N No opposition filed

Effective date: 20050222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070328

Year of fee payment: 9

Ref country code: ES

Payment date: 20080328

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080318

Year of fee payment: 10

Ref country code: IT

Payment date: 20080326

Year of fee payment: 10

Ref country code: GB

Payment date: 20080320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080430

Year of fee payment: 10

BERE Be: lapsed

Owner name: *TOTALFINAELF FRANCE

Effective date: 20090331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090309

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090309

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331