EP1256763B1 - Method and device for long-term safe flame monitoring - Google Patents

Method and device for long-term safe flame monitoring Download PDF

Info

Publication number
EP1256763B1
EP1256763B1 EP02003787A EP02003787A EP1256763B1 EP 1256763 B1 EP1256763 B1 EP 1256763B1 EP 02003787 A EP02003787 A EP 02003787A EP 02003787 A EP02003787 A EP 02003787A EP 1256763 B1 EP1256763 B1 EP 1256763B1
Authority
EP
European Patent Office
Prior art keywords
signal
flame
unit
monitoring
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02003787A
Other languages
German (de)
French (fr)
Other versions
EP1256763A3 (en
EP1256763A2 (en
Inventor
Marco Techt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karl Dungs GmbH and Co KG
Original Assignee
Karl Dungs GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karl Dungs GmbH and Co KG filed Critical Karl Dungs GmbH and Co KG
Publication of EP1256763A2 publication Critical patent/EP1256763A2/en
Publication of EP1256763A3 publication Critical patent/EP1256763A3/en
Application granted granted Critical
Publication of EP1256763B1 publication Critical patent/EP1256763B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/08Flame sensors detecting flame flicker

Definitions

  • the invention relates to a method for flame monitoring on one or more burners, in particular blower burners, as well as a monitoring device for flame monitoring on such burners.
  • Such methods or monitors are e.g. from EP 0 953 805 and US Pat. No. 4,701,624.
  • the safety of the flame detection depends on whether the corresponding sensor element works correctly for the radiation to be detected.
  • the sensor element generates an electrical signal indicative of the strength or power of the received radiation. In this case, long-term (creeping) changes in the properties of the sensor element are dangerous, especially in the case of burner operation. If the sensor, which may for example be formed by a semiconductor, is affected by temperature, combustion gases or other wear influences, the switching thresholds and detection thresholds for the radiation intensity, which should be considered as a characteristic for burning a flame or extinguishing it, may be shifted ,
  • the electrical signal delivered by the radiation-sensitive detection device becomes parallel through two filter devices with different characteristics. Both filter output signals are checked to see if they are within an expected range. Only if this is the case for both filter output signals will the presence of a flame with a corresponding output signal be indicated.
  • the filters may be analog filters or computational blocks of a microcomputer program.
  • the filtering of the electrical signal of the detection device with two different filters makes it possible to determine creeping changes in the electrical properties of the detection device. This is due to the fact that the radiation emitted by the flame is not constant over time. Rather, there is usually a certain flickering of the flame. This is especially true for forced air burners, especially oil-fired burners. The flickering of the flame produces a proportion of radiation that fluctuates sporadically. The fluctuations are in a frequency range between 10 and 60 hertz - depending on the burner. On the other hand, when the flame is constantly burning, even if it flickers slightly, there is a fixed average radiation level.
  • the two-channel evaluation of the radiation signal according to the invention now makes it possible to separately detect and examine different frequency components of the radiation signal.
  • a time-weighted mean value of the radiation signal can be evaluated in the first channel. This is obtained, for example, by low-pass filtering or numerical averaging.
  • the signal thus filtered when the detector is operating properly, maps the received radiation power. Will be an optical sensor for visible light as detection device used, the signal corresponds to the detected mean flame brightness.
  • the alternating components of the radiation signal can be filtered out, which characterize the flickering of the flame.
  • This can be done, for example, with a high pass or with a bandpass.
  • the bandpass can also serve to drastically reduce the influence of stray light sources, which can also produce alternating light. This is especially true if the bandpass is sufficiently detuned against normal line frequencies (50 hertz), so that light fluctuations, such as occur in 50 or 100 hertz rhythm to fluorescent lamps, are irrelevant.
  • the bandpass is preferably tuned to a frequency below the line frequency.
  • a calculation block can also be used which determines the sum of the amounts of differences of a number of consecutive samples of the luminance signal. If the sum falls below a limit, the sporadic brightness fluctuation (flickering) is too low. Thus, either the sensor is defective or the flame extinguished; an error is displayed.
  • the radiation-sensitive detection device eg a photoresistor
  • the influence of combustion gases or other wear influences it gradually goes into the high-resistance or low-resistance state starting from a resistance value corresponding to the actual radiation effect (illuminance).
  • the current resistance of the photoresistor or other sensing element moves from its desired value to another value, with the influence the illuminance gradually decreases with increasing destruction of the detection element (eg, a semiconductor).
  • the resistance value due to destruction of the detection device is also in the event of flame failure in a valid range for the flame message, no flame failure can be detected solely by evaluating the mean value of the radiation signal.
  • the destruction of the detection device was accompanied by a reduction in its sensitivity, so that the flicker content in the radiation signal continued to decrease even with the flame still burning. This is registered in the channel provided for detecting the stochastic alternating component. If the detected flicker falls below a minimum value, the output signal of this channel is no longer within the expected range. Accordingly, an output signal for indicating the presence of a flame is no longer generated, and thus a trouble message occurs.
  • a corresponding evaluation device or monitoring device responds to the creeping destruction of the sensor element of the detection device even before a real error occurs by a corresponding failure message. In practical operation, this would cause the burner to stop, i. the system falls to the safe side. Dangers for humans and material are excluded thereby - the security is increased.
  • the presented concept is especially important for long-running oil burners.
  • a check of the functionality of the detection device of the monitoring device is not only at the start of operation when igniting the flame, but by the different signal processing in both parallel channels, during operation of the burner constantly taking place.
  • the gradual destruction of a sensor component can also lead to an electrical resistance being shifted to particularly low or particularly high values.
  • the average of the radiation signal indicative of the resistance of the sensor device is examined to determine whether the current resistance of the sensor device is below a minimum value.
  • This minimum value serving as limit value is preferably set to a value which corresponds to an excessively bright illumination (radiation intensity) which can not be applied by the flame.
  • This measure brings both security against short circuits on the sensor element or in the supply lines, as well as against a gradual resistance shift.
  • Another safety measure may be to evaluate the failure of a detector when the electrical signal before ignition of a flame is in an area where it is expected in the presence of a flame.
  • the monitoring device has two mutually parallel channels with different signal evaluation devices, one of which, for example, evaluates the signal average and the other the alternating component of the signal.
  • the evaluation can be done via filtering devices hardware or software.
  • thresholds or window discriminator circuits can be used to examine whether the signals are in the desired and expected range.
  • the threshold value switches, window discriminators, possibly required rectifiers for signal rectification and the like can be realized both by hardware or by software.
  • the monitoring device according to the invention is particularly suitable for flame monitoring by detecting the visible light with a photoresistor as a sensor element. This makes it possible to realize simple, cost-effective and, in the event of continuous operation of the burner, safe monitoring devices.
  • a monitoring device 1 for the flame 2 of a fan burner 3 is illustrated schematically.
  • the blower burner 3 is connected to a blower 4 and a fuel supply line 5.
  • the fuel is, for example, heating oil.
  • the flame 2 has a turbulent flame image. Their brightness changes around an average. Time variations of the brightness L around the mean value M correspond to the flickering of the flame, as illustrated in FIG.
  • the fluctuations are stochastic. They are often in the range of 10 - 60 hertz.
  • the monitoring device 1 monitors the visible light emitted by the flame 2 by means of a radiation-sensitive detection device. This is formed by a photoresistor 6, which is connected to a monitoring circuit 7. This is, for example, part of a higher-level control device and thus serves, as schematically indicated in Fig. 1, for controlling the fan burner 3 and in particular for direct and indirect shutdown of the fan 4, and the shut-off of the fuel supply by means of a corresponding controlled valve. 8
  • the photoresistor 6 is arranged to catch a part of the visible light emitted from the flame 2. At its output terminals, it thus generates a signal which reproduces the brightness curve illustrated in FIG.
  • the internal resistance of the photoresistor 6 is dependent on the illuminance. This relationship is illustrated in FIG. As the illuminance L increases, the resistance R decreases more and more. In darkness or low illuminance, the resistance takes its rest resistance R 0 . At very high illuminances, which are higher than any of the flame 2 can be generated, the resistance R approaches its minimum value R M.
  • FIG. 2 illustrates as curve I the dependence of the resistance R on the illuminance L for an intact photoresistor 6.
  • the characteristic of the photoresistor 6 may change over time. Any damage is usually accompanied by the fact that the steepness of the characteristic decreases in the range between the quiescent resistance R o and the minimum value R M.
  • the dashed line in Fig. 2 illustrated curve II illustrates such a case.
  • the resting resistance R 0 has decreased; the minimum value has increased and the slope of the characteristic is reduced.
  • the monitoring circuit 7 is illustrated separately in FIG. 4.
  • the monitoring circuit 7 has a first channel 11 for evaluating the DC component of the signal generated by the photoresistor 6 and a second channel 12 for evaluating the AC signal component.
  • Both channels 11, 12, receive the same input signal, which is output from an R / V converter 14, which outputs a voltage corresponding to the resistor R.
  • the R / U converter is the input side connected to the photoresistor 6 and is in the simplest case by a voltage divider (one with the photoresistor 6 in series ohmic resistance) is formed.
  • the first channel 11 contains for signal evaluation (as Signalauswert worn) a low-pass filter 15, which serves to determine the average value of the R / U converter output signal.
  • the low pass 15 forms the time-weighted average. Its corner frequency is, for example, at 20 hertz.
  • an analog / digital converter 16 is connected (A / D converter), which digitalizes the filter output signal to a microcontroller 17 passes.
  • a / D converter then passes to the microcontroller 17 samples of the current time signal.
  • the microcontroller can computationally form the mean value of the time signal by adding up in each case a defined number of the last measured values. The sum thus obtained corresponds to the mean value.
  • the channel contains, as a signal evaluation device 12, a bandpass filter 18 (or alternatively a high-pass filter).
  • the center frequency of the bandpass 18 is, for example, at 30 hertz, wherein the bandwidth can be sized relatively large. For example, the 3dB cutoff frequencies are 10 and 40 hertz. Network-correlated alternating light components of extraneous light sources can thus be excluded, the flickering of the signal (see FIG. 3) being recorded in broadband.
  • the filter output signal can be sent directly to the microcontroller 17 be transferred. If it samples the input signal periodically (optionally via an A / D converter 19), stochastic values are obtained here as long as a flicker signal is present. Thus, the individual samples are within a specified range of variation.
  • the alternating component is below a specified limit.
  • the microcontroller 17 can check this by continuously forming differences between successive signal values and only recognizing a flickering signal when the individual differences exceed a minimum value. If smaller differences occur several times in succession, it can be assumed that the alternating component of the signal according to FIG. 3 is below a predetermined limit. Alternatively, the sum over the amounts of several successive differences can be formed and compared to the limit.
  • the microcontroller 17 is programmed to emit a valid flame signal (indicating a burning flame) only when the DC signal detected across the channel 11 is within a predetermined range and at the same time the flicker signal detected in the channel 12 exceeds a minimum value.
  • the predetermined range for the DC signal corresponds to a resistance range B for the current resistance of the photoresistor 6 (FIG. 1).
  • the flicker signal provided by the channel 12 must be above a limit value G. This is illustrated in FIG. 3.
  • the monitoring device 1 described so far operates as follows:
  • the photovidiant 6 detects the light emitted by the flame 2.
  • the brightness varies according to the diagram of Fig. 3. Corresponding to the time course of the electrical signal at the output of the transducer 14.
  • the channel 11 determines the short-term average of this signal by low-pass filtering. If the flame 2 has such a brightness that the resistance value of the photoresistor 6 fluctuates around the value P illustrated in FIG. 2, which lies in the region B, this is recognized by the microcontroller 17. At the same time, the bandpass 18 in the channel 12 becomes the flicker component of the channel filtered out.
  • the microcontroller 17 checks whether the flicker proportion is greater than predetermined by the limit G (FIG. 3). If so, the microcontroller registers this. If both conditions (channel 11, average in area B, channel 12 flicker rate greater than limit G) are met, the microcontroller outputs a flame signal indicating the presence of a flame or internally generates a corresponding signal for further processing.
  • the microcontroller by determining that the signal of the channel 11 is in the validity range B, but the flickering signal of the channel 12 has failed, generates a signal which indicates the failure of the photoresistor 6.
  • the monitoring circuit 7 assumes here functions that have been taken over by the microcontroller 17 in the monitoring circuit 1 of FIG. 4.
  • the photoresistor 6 is connected with a connection to an operating voltage U b and with its other connection to the R / V converter 14, which generates a voltage output signal which corresponds to the current flowing through the photoresistor 6 current. As the resistance of the photoresistor 6 decreases, the output voltage of the transducer 14 increases. The output voltage is transmitted to the low-pass filter 15, which determines the time average of the converter output signal. The output signal of the low-pass filter 15 is passed to a window discriminator 21 which checks whether the low-pass output signal lies within a predetermined switching range which corresponds to the region B according to FIG. 2. The limits of the switching range are monitored by two trigger circuits 22, 23 which have setting inputs 24, 25 for determining the trigger thresholds. The trigger outputs are connected to an exclusive-OR gate 26, which only provides a valid output signal at its output when only one of the two trigger circuits 22, 23 detects border crossings.
  • the control inputs 24, 25 serve to adjust the switching thresholds of the trigger circuits 22, 23 as needed and to adapt them to the respective operating mode of the burner 3.
  • the lower switching threshold responsible for the low incidence of light during ignition operation can be set differently (lower) than after ignition during burner operation (this is called a negative switching differential).
  • the channel 12 may include a signal rectifier 27 following the bandpass 18, which converts the flicker signal into a DC signal.
  • a connected trigger circuit 28 serves to check whether the alternating signal (flickering signal) exceeds a predetermined limit G.
  • the two channels 11, 12 are the output side via a logic circuit 29, which is formed, for example, as an AND circuit, linked together to produce a flickering signal.
  • a continuous-duty monitoring device 1 which is provided in particular for flame monitoring on oil-operated blower burners, has a photoresistor 6, which is connected to a monitoring circuit 7. This evaluates the output from the photoresistor 6 signal from two channels.
  • a first channel 11 is used to detect the average brightness.
  • a second channel 12 is used to detect alternating parts resulting from the flickering of the flame.
  • the flame will only be considered proper burning recognized, if at both channel outputs of the channels 11, 12, a signal is present, or the signal is in each case in a predetermined range.
  • creeping changes in the characteristics of the photoresistor as they occur in the case of continuous combustion operation and are dangerous, can be detected in this way. It is ensured that the flame monitoring is not performed or attempted with a defective photoresistor.

Description

Die Erfindung betrifft ein Verfahren zur Flammenüberwachung an einem oder mehreren Brennern, insbesondere Gebläsebrennern, sowie eine Überwachungseinrichtung zur Flammenüberwachung an solchen Brennern. Solche Verfahren bzw. Überwachungseinrichtungen sind z.B. aus EP 0 953 805 und US 4 701 624 bekannt.The invention relates to a method for flame monitoring on one or more burners, in particular blower burners, as well as a monitoring device for flame monitoring on such burners. Such methods or monitors are e.g. from EP 0 953 805 and US Pat. No. 4,701,624.

Bei Brennern, die mit gasförmigen oder flüssigen Brennstoffen betrieben werden, muss während des Betriebs des Brenners aus Sicherheitsgründen überwacht werden, ob der eingesetzte Brennstoff tatsächlich verbrennt. Dazu sind unterschiedliche Überwachungseinrichtungen in Gebrauch. Für Brenner mit blauer Flamme werden häufig sogenannte Ionisationsfühler eingesetzt. Darüber hinaus sind Flammenfühler in Gebrauch, die die unsichtbare oder die sichtbare Strahlung der Flamme erfassen.For burners operated with gaseous or liquid fuels, it must be monitored during operation of the burner for safety reasons whether the fuel actually used burns. These are different monitoring devices in use. For burners with a blue flame so-called ionization probes are often used. In addition, flame detectors are in use that detect the invisible or visible radiation of the flame.

Die Sicherheit der Flammenerfassung hängt davon ab, ob das entsprechende Sensorelement für die zu erfassende Strahlung korrekt arbeitet. Das Sensorelement erzeugt ein elektrisches Signal, das die Stärke oder Leistung der aufgenommenen Strahlung kennzeichnet. Hier sind insbesondere bei Brennerdauerbetrieb langfristige (schleichende) Veränderungen der Eigenschaften des Sensorelements gefährlich. Wird der Sensor, der bspw. durch einen Halbleiter gebildet sein kann, durch Temperatur, Verbrennungsgase oder andere verschleißende Einflüsse beeinträchtigt, verschieben sich unter Umständen die Schaltschwellen und Erfassungsschwellen für die Strahlungsintensität, die als Kennzeichen für das Brennen einer Flamme oder ein Verlöschen derselben gelten soll.The safety of the flame detection depends on whether the corresponding sensor element works correctly for the radiation to be detected. The sensor element generates an electrical signal indicative of the strength or power of the received radiation. In this case, long-term (creeping) changes in the properties of the sensor element are dangerous, especially in the case of burner operation. If the sensor, which may for example be formed by a semiconductor, is affected by temperature, combustion gases or other wear influences, the switching thresholds and detection thresholds for the radiation intensity, which should be considered as a characteristic for burning a flame or extinguishing it, may be shifted ,

Davon ausgehend ist es Aufgabe der Erfindung, ein Verfahren sowie eine Überwachungseinrichtung zur Flammenüberwachung zu schaffen, die Fehlfunktionen infolge von Verschleiß des Sensorelements vermeidet.On this basis, it is an object of the invention to provide a method and a monitoring device for flame monitoring, which avoids malfunction due to wear of the sensor element.

Diese Aufgabe wird mit dem Überwachungsverfahren, gemäß Anspruch 1 sowie der Überwachungseinrichtung nach Anspruch 6 gelöst.This object is achieved by the monitoring method according to claim 1 and the monitoring device according to claim 6.

Gemäß dem erfindungsgemäßen Verfahren wird das von der strahlungsempfindlichen Erfassungseinrichtung gelieferte elektrische Signal parallel durch zwei Filtereinrichtungen mit unterschiedlicher Charakteristik geleitet. Beide Filterausgangssignale werden darauf überprüft, ob sie in einem Erwartungsbereich liegen. Nur dann, wenn dies für beide Filterausgangssignale der Fall ist, wird das Vorhandensein einer Flamme mit einem entsprechenden Ausgangssignal angezeigt. Die Filter können Analogfilter oder Rechenblöcke eines Mikrorechnerprogramms sein.According to the method of the invention, the electrical signal delivered by the radiation-sensitive detection device becomes parallel through two filter devices with different characteristics. Both filter output signals are checked to see if they are within an expected range. Only if this is the case for both filter output signals will the presence of a flame with a corresponding output signal be indicated. The filters may be analog filters or computational blocks of a microcomputer program.

Die Filterung des elektrischen Signals der Erfassungseinrichtung mit zwei unterschiedlichen Filtern ermöglicht, schleichende Veränderungen der elektrischen Eigenschaften der Erfassungseinrichtung zu bestimmen. Dies beruht darauf, dass die von der Flamme ausgesendete Strahlung zeitlich nicht konstant ist. Vielmehr ist in der Regel ein gewisses Flackern der Flamme zu verzeichnen. Dies gilt insbesondere für Gebläsebrenner, insbesondere Öl-Gebläsebrenner. Das Flackern der Flamme erzeugt einen Strahlungsanteil, der sporadisch schwankt. Die Schwankungen liegen dabei in einem Frequenzbereich zwischen 10 und 60 Hertz - je nach Brenner. Andererseits ist bei ständig brennender Flamme, auch wenn diese etwas flackert, ein festgelegter mittlerer Strahlungspegel vorhanden. Die erfindungsgemäße zweikanalige Auswertung des Strahlungssignals gestattet es nun, verschiedene Frequenzanteile des Strahlungssignals separat zu erfassen und zu untersuchen.The filtering of the electrical signal of the detection device with two different filters makes it possible to determine creeping changes in the electrical properties of the detection device. This is due to the fact that the radiation emitted by the flame is not constant over time. Rather, there is usually a certain flickering of the flame. This is especially true for forced air burners, especially oil-fired burners. The flickering of the flame produces a proportion of radiation that fluctuates sporadically. The fluctuations are in a frequency range between 10 and 60 hertz - depending on the burner. On the other hand, when the flame is constantly burning, even if it flickers slightly, there is a fixed average radiation level. The two-channel evaluation of the radiation signal according to the invention now makes it possible to separately detect and examine different frequency components of the radiation signal.

Beispielsweise kann in dem ersten Kanal ein zeitlich gewichteter Mittelwert des Strahlungssignals ausgewertet werden. Dieser wird, z.B. durch Tiefpassfilterung oder durch numerische Mittelwertbildung erhalten. Das so gefilterte Signal bildet, wenn die Erfassungseinrichtung ordnungsgemäß arbeitet, die empfangene Strahlungsleistung ab. Wird ein optischer Sensor für sichtbares Licht als Erfassungseinrichtung verwendet, entspricht das Signal der erfassten mittleren Flammenhelligkeit.For example, a time-weighted mean value of the radiation signal can be evaluated in the first channel. This is obtained, for example, by low-pass filtering or numerical averaging. The signal thus filtered, when the detector is operating properly, maps the received radiation power. Will be an optical sensor for visible light as detection device used, the signal corresponds to the detected mean flame brightness.

In dem anderen Kanal können bspw. die Wechselanteile des Strahlungssignals herausgefiltert werden, die das Flackern der Flamme kennzeichnen. Dies kann bspw. mit einem Hochpass oder mit einem Bandpass erfolgen. Der Bandpass kann zugleich dazu dienen, den Einfluss von Störlichtquellen, die ebenfalls Wechsellicht erzeugen können, drastisch zu reduzieren. Dies insbesondere, wenn der Bandpass ausreichend gegen übliche Netzfrequenzen (50 Hertz) verstimmt ist, so dass Lichtschwankungen, wie sie im 50 oder 100 Hertz-Rhythmus an Leuchtstofflampen auftreten, ohne Belang sind. Der Bandpass ist vorzugsweise auf eine Frequenz unterhalb der Netzfrequenz abgestimmt. Anstelle des Bandpasses kann auch ein Rechenblock Anwendung finden, der die Summe der Beträge von Differenzen einer Anzahl aufeinanderfolgender Abtastwerte des Helligkeitssignals bestimmt. Unterschreitet die Summe einen Grenzwert, ist die sporadische Helligkeitsschwankung (Flackern) zu gering. Somit ist entweder der Sensor defekt oder die Flamme erloschen; es wird ein Fehler angezeigt.In the other channel, for example, the alternating components of the radiation signal can be filtered out, which characterize the flickering of the flame. This can be done, for example, with a high pass or with a bandpass. The bandpass can also serve to drastically reduce the influence of stray light sources, which can also produce alternating light. This is especially true if the bandpass is sufficiently detuned against normal line frequencies (50 hertz), so that light fluctuations, such as occur in 50 or 100 hertz rhythm to fluorescent lamps, are irrelevant. The bandpass is preferably tuned to a frequency below the line frequency. Instead of the bandpass, a calculation block can also be used which determines the sum of the amounts of differences of a number of consecutive samples of the luminance signal. If the sum falls below a limit, the sporadic brightness fluctuation (flickering) is too low. Thus, either the sensor is defective or the flame extinguished; an error is displayed.

Wird die strahlungsempfindliche Erfassungseinrichtung (z.B. ein Fotowiderstand) durch Temperatureinwirkung, Einwirkung von Verbrennungsgasen oder sonstige Verschleißeinflüsse langsam zerstört, geht sie ausgehend von einem Widerstandswert, der der tatsächlichen Strahlungseinwirkung (Beleuchtungsstärke) entspricht, allmählich in den hochohmigen oder niederohmigen Zustand über. Mit anderen Worten, der aktuelle Widerstandswert des Fotowiderstands oder sonstigen Erfassungselements, bewegt sich von seinem gewünschten Wert zu einem anderen Wert hin, wobei der Einfluss der Beleuchtungsstärke mit zunehmender Zerstörung des Erfassungselements (z.B. eines Halbleiters) allmählich abnimmt. Liegt der Widerstandswert durch Zerstörung der Erfassungseinrichtung auch noch bei Flammenausfall in einem für die Flammenmeldung gültigen Bereich, kann allein durch Auswertung des Mittelwerts des Strahlungssignals kein Flammenausfall detektiert werden. Jedoch ging, wie erläutert, mit der Zerstörung der Erfassungseinrichtung auch eine Verringerung von deren Empfindlichkeit einher, so dass der Flackeranteil in dem Strahlungssignal auch bei noch brennender Flamme immer weiter zurückging. Dies wird in dem zur Erfassung des stochastischen Wechselanteils vorgesehenen Kanal registriert. Unterschreitet das erfasste Flackern einen Minimalwert, liegt das Ausgangssignal dieses Kanals nicht mehr in dem Erwartungsbereich. Entsprechend wird kein Ausgangssignal zur Anzeige des Vorhandenseins einer Flamme mehr erzeugt, und es erfolgt somit eine Störungsmeldung.If the radiation-sensitive detection device (eg a photoresistor) is slowly destroyed by the action of heat, the influence of combustion gases or other wear influences, it gradually goes into the high-resistance or low-resistance state starting from a resistance value corresponding to the actual radiation effect (illuminance). In other words, the current resistance of the photoresistor or other sensing element moves from its desired value to another value, with the influence the illuminance gradually decreases with increasing destruction of the detection element (eg, a semiconductor). If the resistance value due to destruction of the detection device is also in the event of flame failure in a valid range for the flame message, no flame failure can be detected solely by evaluating the mean value of the radiation signal. However, as explained above, the destruction of the detection device was accompanied by a reduction in its sensitivity, so that the flicker content in the radiation signal continued to decrease even with the flame still burning. This is registered in the channel provided for detecting the stochastic alternating component. If the detected flicker falls below a minimum value, the output signal of this channel is no longer within the expected range. Accordingly, an output signal for indicating the presence of a flame is no longer generated, and thus a trouble message occurs.

Mit dem vorgestellten Konzept reagiert eine entsprechende Auswerteeinrichtung oder Überwachungseinrichtung auf die schleichende Zerstörung des Sensorelements der Erfassungseinrichtung noch bevor ein wirklicher Fehler eintritt durch eine entsprechende Ausfallmeldung. Im praktischen Betrieb würde dies zum Stillsetzen des Brenners führen, d.h. die Anlage fällt zur sicheren Seite hin aus. Gefahren für Mensch und Material werden dadurch ausgeschlossen - die Sicherheit ist erhöht.With the presented concept, a corresponding evaluation device or monitoring device responds to the creeping destruction of the sensor element of the detection device even before a real error occurs by a corresponding failure message. In practical operation, this would cause the burner to stop, i. the system falls to the safe side. Dangers for humans and material are excluded thereby - the security is increased.

Das vorgestellte Konzept ist insbesondere für Dauerlauffähige Ölbrenner von Bedeutung. Eine Überprüfung der Funktionsfähigkeit der Erfassungseinrichtung der Überwachungseinrichtung findet nicht nur zu Betriebsbeginn beim Zünden der Flamme, sondern durch die unterschiedliche Signalverarbeitung in beiden zueinander parallelen Kanälen, während des Betriebs des Brenners ständig statt.The presented concept is especially important for long-running oil burners. A check of the functionality of the detection device of the monitoring device is not only at the start of operation when igniting the flame, but by the different signal processing in both parallel channels, during operation of the burner constantly taking place.

Die schleichende Zerstörung eines Sensorbauelements (Erfassungseinrichtung) kann außerdem dazu führen, dass ein elektrischer Widerstand zu besonders niedrigen oder zu besonders hohen Werten hin verschoben wird. Bei einer bevorzugten Ausführungsform der Erfindung, wird der Mittelwert des Strahlungssignals, das den Widerstand des Sensorbauelements kennzeichnet daraufhin untersucht, ob der aktuelle Widerstandswert des Sensorbauelements einen Minimalwert unterschreitet. Dieser als Grenzwert dienende Minimalwert ist dabei vorzugsweise auf einen Wert festgelegt, der einer überhellen Beleuchtung (Strahlungsintensität) entspricht, die von der Flamme nicht aufgebracht werden kann. Diese Maßnahme bringt sowohl Sicherheit gegen Kurzschlüsse an dem Sensorelement oder in den Zuleitungen, als auch gegen eine schleichende Widerstandsverschiebung. Eine weitere Sicherheitsmaßnahme kann darin liegen, als Kennzeichen für den Ausfall einer Erfassungseinrichtung zu werten, wenn das elektrische Signal vor Zündung einer Flamme in einem Bereich liegt, in dem es bei Vorhandensein einer Flamme erwartet wird.The gradual destruction of a sensor component (detection device) can also lead to an electrical resistance being shifted to particularly low or particularly high values. In a preferred embodiment of the invention, the average of the radiation signal indicative of the resistance of the sensor device is examined to determine whether the current resistance of the sensor device is below a minimum value. This minimum value serving as limit value is preferably set to a value which corresponds to an excessively bright illumination (radiation intensity) which can not be applied by the flame. This measure brings both security against short circuits on the sensor element or in the supply lines, as well as against a gradual resistance shift. Another safety measure may be to evaluate the failure of a detector when the electrical signal before ignition of a flame is in an area where it is expected in the presence of a flame.

Tritt bei einer Flammenüberwachung nach dem vorgestellten Verfahren ein Zerstören des Sensorelements (Fotowiderstands) auf, das dazu führt, dass der Widerstand auf einen Wert hin driftet der noch im gültigen Bereich für eine Flammenmeldung liegt, wobei der Widerstand aber nur noch ungenügend oder überhaupt nicht mehr von dem Flammenbild, d.h. dem Flackern der Flamme beeinflusst wird, wird dies über die Wechselsignalerfassung erkannt (zweiter Kanal). Die Erfassungseinrichtung kann aufgrund der Zerstörung ihres Halbleiters kein oder ein nur ungenügendes Flackersignal aus der Flamme erfassen. Durch dieses Verfahren ist es demnach möglich, Übergangszustände des Sensorelements (Fotowiderstands), die aus einer langsamen und stetigen Zerstörung des Sensorelements entstehen, zu erkennen und unschädlich zu machen.If a flame monitoring according to the presented method, destruction of the sensor element (photoresistor) occurs, which causes the resistance to drift to a value that is still in the valid range for a flame message, but the resistance is insufficient or not at all is affected by the flame image, ie the flickering of the flame, this is detected via the alternating signal detection (second channel). The detection device may be due to destruction of their semiconductor detect no or only insufficient flicker signal from the flame. By this method, it is thus possible to detect transition states of the sensor element (photoresistor), which arise from a slow and steady destruction of the sensor element, and render harmless.

Die erfindungsgemäße Überwachungseinrichtung weist zwei zueinander parallele Kanäle mit unterschiedlichen Signalauswerteinrichtungen auf, deren eine bspw. den Signalmittelwert und deren andere den Wechselanteil des Signals auswertet. Die Auswertung kann über Filtereinrichtungen hard- oder softwaremäßig erfolgen. Im Anschluss daran kann mittels Schwellwertschalter oder Fensterdiskriminatorschaltungen untersucht werden, ob die Signale in dem gewünschten und erwarteten Bereich liegen. Die Schwellwertschalter, Fensterdiskriminatoren, evtl. erforderliche Gleichrichter zur Signalgleichrichtung und ähnliches, können sowohl durch Hardware oder auch durch Software realisiert sein.The monitoring device according to the invention has two mutually parallel channels with different signal evaluation devices, one of which, for example, evaluates the signal average and the other the alternating component of the signal. The evaluation can be done via filtering devices hardware or software. Following this, thresholds or window discriminator circuits can be used to examine whether the signals are in the desired and expected range. The threshold value switches, window discriminators, possibly required rectifiers for signal rectification and the like can be realized both by hardware or by software.

Die erfindungsgemäße Überwachungseinrichtung eignet sich insbesondere zu Flammenüberwachung durch Erfassung des sichtbaren Lichts mit einem Fotowiderstand als Sensorelement. Damit lassen sich einfache, kostengünstige und dabei auch bei Dauerbetrieb des Brenners sichere Überwachungseinrichtungen realisieren.The monitoring device according to the invention is particularly suitable for flame monitoring by detecting the visible light with a photoresistor as a sensor element. This makes it possible to realize simple, cost-effective and, in the event of continuous operation of the burner, safe monitoring devices.

Vorteilhafte Einzelheiten von Ausführungsformen der Erfindung gehen aus der Zeichnung, der nachfolgenden Beschreibung oder Unteransprüchen hervor.Advantageous details of embodiments of the invention will be apparent from the drawings, the following description or the subclaims.

In der Zeichnung sind Ausführungsbeispiele der Erfindung veranschaulicht. Es zeigen:

Fig. 1
einen Gebläsebrenner mit optischer Flammenüberwachung in schematischer Darstellung,
Fig. 2
die Helligkeit-Widerstands-Kennlinie eines Fotowiderstands, in intaktem Zustand und in verschiedenen Verschleißzuständen,
Fig. 3
einen beispielhaften Zeitverlauf für ein von dem Fotowiderstand erzeugtes Signal,
Fig. 4
ein Ausführungsbeispiel einer Überwachungseinrichtung für einen Gebläsebrenner, als Blockschaltbild, und
Fig. 5
eine alternative Ausführungsform einer Überwachungseinrichtung als schematisiertes Schaltbild.
In the drawings, embodiments of the invention are illustrated. Show it:
Fig. 1
a fan burner with optical flame monitoring in a schematic representation,
Fig. 2
the brightness-resistance characteristic of a photoresistor, in intact condition and in different states of wear,
Fig. 3
an exemplary time profile for a signal generated by the photoresistor,
Fig. 4
an embodiment of a monitoring device for a fan burner, as a block diagram, and
Fig. 5
an alternative embodiment of a monitoring device as a schematic diagram.

In Fig. 1 ist eine Überwachungseinrichtung 1 für die Flamme 2 eines Gebläsebrenners 3 schematisch veranschaulicht. Der Gebläsebrenner 3 ist an ein Gebläse 4 und eine Brennstoffzuführungsleitung 5 angeschlossen. Der Brennstoff ist bspw. Heizöl. Die Flamme 2 weist ein turbulentes Flammenbild auf. Ihre Helligkeit ändert sich um einen Mittelwert. Zeitliche Schwankungen der Helligkeit L um den Mittelwert M entsprechen dem Flackern der Flamme, wie Fig. 3 veranschaulicht. Die Schwankungen sind stochastischer Natur. Sie liegen häufig im Bereich von 10 - 60 Hertz.In Fig. 1, a monitoring device 1 for the flame 2 of a fan burner 3 is illustrated schematically. The blower burner 3 is connected to a blower 4 and a fuel supply line 5. The fuel is, for example, heating oil. The flame 2 has a turbulent flame image. Their brightness changes around an average. Time variations of the brightness L around the mean value M correspond to the flickering of the flame, as illustrated in FIG. The fluctuations are stochastic. They are often in the range of 10 - 60 hertz.

Die Überwachungseinrichtung 1 überwacht das von der Flamme 2 ausgesandte sichtbare Licht mittels einer strahlungsempfindlichen Erfassungseinrichtung. Diese wird durch einen Fotowiderstand 6 gebildet, der an eine Überwachungsschaltung 7 angeschlossen ist. Diese ist bspw. Teil einer übergeordneten Steuereinrichtung und dient somit, wie in Fig. 1 schematisch angedeutet, zum Steuern des Gebläsebrenners 3 und insbesondere zum direkten und indirekten Stillsetzen des Gebläses 4, sowie der Absperrung der Brennstoffzufuhr mittels eines entsprechenden gesteuerten Ventils 8.The monitoring device 1 monitors the visible light emitted by the flame 2 by means of a radiation-sensitive detection device. This is formed by a photoresistor 6, which is connected to a monitoring circuit 7. This is, for example, part of a higher-level control device and thus serves, as schematically indicated in Fig. 1, for controlling the fan burner 3 and in particular for direct and indirect shutdown of the fan 4, and the shut-off of the fuel supply by means of a corresponding controlled valve. 8

Der Fotowiderstand 6 ist so angeordnet, dass er einen Teil des von der Flamme 2 ausgesendeten sichtbaren Lichts auffängt. An seinen Ausgangsklemmen erzeugt er somit ein Signal, das den in Fig. 3 veranschaulichten Helligkeitsverlauf wiedergibt. Der Innenwiderstand des Fotowiderstands 6 ist von der Beleuchtungsstärke abhängig. Dieser Zusammenhang ist in Fig. 2 veranschaulicht. Mit zunehmender Beleuchtungsstärke L nimmt der Widerstand R mehr und mehr ab. Bei Dunkelheit oder geringen Beleuchtungsstärken nimmt der Widerstand seinen Ruhewiderstand R0 ein. Bei sehr hohen Beleuchtungsstärken, die höher sind als jede von der Flamme 2 erzeugbare Beleuchtung, nähert sich der Widerstand R seinem Minimalwert RM an. In Fig. 2 ist als Kurve I die Abhängigkeit des Widerstands R von der Beleuchtungsstärke L für einen intakten Fotowiderstands 6 veranschaulicht. Durch Temperatureinflüsse, Alterung und Einwirkung von Verbrennungsgasen, kann sich die Kennlinie des Fotowiderstands 6 mit der Zeit ändern. Jede Schädigung geht in der Regel damit einher, dass die Steilheit der Kennlinie in dem Bereich zwischen dem Ruhewiderstand Ro und dem Minimalwert RM abnimmt. Die in Fig. 2 gestrichelt veranschaulichte Kurve II veranschaulicht einen solchen Fall. Der Ruhewiderstand R0 hat abgenommen; der Minimalwert hat zugenommen und die Steigung der Kennlinie ist vermindert.The photoresistor 6 is arranged to catch a part of the visible light emitted from the flame 2. At its output terminals, it thus generates a signal which reproduces the brightness curve illustrated in FIG. The internal resistance of the photoresistor 6 is dependent on the illuminance. This relationship is illustrated in FIG. As the illuminance L increases, the resistance R decreases more and more. In darkness or low illuminance, the resistance takes its rest resistance R 0 . At very high illuminances, which are higher than any of the flame 2 can be generated, the resistance R approaches its minimum value R M. FIG. 2 illustrates as curve I the dependence of the resistance R on the illuminance L for an intact photoresistor 6. Due to temperature influences, aging and the action of combustion gases, the characteristic of the photoresistor 6 may change over time. Any damage is usually accompanied by the fact that the steepness of the characteristic decreases in the range between the quiescent resistance R o and the minimum value R M. The dashed line in Fig. 2 illustrated curve II illustrates such a case. The resting resistance R 0 has decreased; the minimum value has increased and the slope of the characteristic is reduced.

In noch stärkerem Maße ist dies für einen noch weiter geschädigten Fotowiderstand 6 der Fall, wie in Fig. 2 durch eine dritte Kurve III veranschaulicht ist. Diese kann dabei auch insgesamt zu höheren Widerstandswerten oder zu niedrigeren Widerstandswerten hin verschoben sein. Wie die Kurven jedoch auch immer verschoben sind - ihnen ist gemeinsam, dass die Fotoempfindlichkeit des Fotowiderstands 6 abnimmt.To an even greater extent, this is the case for a still further damaged photoresistor 6, as illustrated in FIG. 2 by a third curve III. This can also be shifted overall to higher resistance values or to lower resistance values. However, as the curves are always shifted - they have in common that the photosensitivity of the photoresistor 6 decreases.

Die Überwachungsschaltung 7 ist in Fig. 4 gesondert veranschaulicht. Die Überwachungsschaltung 7 weist einen ersten Kanal 11 zur Auswertung des Gleichanteils des von dem Fotowiderstand 6 erzeugten Signals und einen zweiten Kanal 12 zur Auswertung des Wechselsignalanteils auf. Beide Kanäle 11, 12, erhalten das gleiche Eingangssignal, das von einem R/U-Wandler 14 abgegeben wird, der eine dem Widerstand R entsprechende Spannung abgibt. Der R/U-Wandler ist eingangsseitig mit dem Fotowiderstand 6 verbunden und wird im einfachsten Fall durch einen Spannungsteiler (einen mit dem Fotowiderstand 6 in Reihe geschalteten ohmschen Widerstand) gebildet.The monitoring circuit 7 is illustrated separately in FIG. 4. The monitoring circuit 7 has a first channel 11 for evaluating the DC component of the signal generated by the photoresistor 6 and a second channel 12 for evaluating the AC signal component. Both channels 11, 12, receive the same input signal, which is output from an R / V converter 14, which outputs a voltage corresponding to the resistor R. The R / U converter is the input side connected to the photoresistor 6 and is in the simplest case by a voltage divider (one with the photoresistor 6 in series ohmic resistance) is formed.

Der erste Kanal 11 enthält zur Signalauswertung (als Signalauswerteeinrichtung) einen Tiefpass 15, der dazu dient, den Mittelwert von dem R/U-Wandler abgegebenen Signals zu bestimmen. Dazu bildet der Tiefpass 15 das zeitlich gewichtete Mittel. Seine Eckfrequenz liegt bspw. bei 20 Hertz. Durch diese Dimensionierung wird erreicht, dass ein Wegfall der Flamme, d.h. eine Änderung des Mittelwerts des Signals, sehr schnell erfasst und der Brenner 3 somit sehr schnell stillgesetzt werden kann.The first channel 11 contains for signal evaluation (as Signalauswerteinrichtung) a low-pass filter 15, which serves to determine the average value of the R / U converter output signal. For this purpose, the low pass 15 forms the time-weighted average. Its corner frequency is, for example, at 20 hertz. By this dimensioning is achieved that an omission of the flame, i. a change in the average value of the signal detected very quickly and the burner 3 can thus be stopped very quickly.

An den Ausgang des Tiefpasses 15 ist ein Analog/Digital-Wandler 16 angeschlossen (A/D-Wandler), der das Filterausgangssignal digitalisiert an einen Mikrocontroller 17 übergibt. Alternativ kann auf den Tiefpass 15 verzichtet werden. Der A/D-Wandler übergibt dann an den Mikrocontroller 17 Abtastwerte des aktuellen Zeitsignals. Der Mikrocontroller kann den Mittelwert des Zeitsignals rechnerisch bilden, indem er jeweils eine festgelegte Anzahl der letzten Messwerte aufaddiert. Die so erhaltene Summe entspricht dem Mittelwert.At the output of the low-pass filter 15, an analog / digital converter 16 is connected (A / D converter), which digitalizes the filter output signal to a microcontroller 17 passes. Alternatively, the low pass 15 can be dispensed with. The A / D converter then passes to the microcontroller 17 samples of the current time signal. The microcontroller can computationally form the mean value of the time signal by adding up in each case a defined number of the last measured values. The sum thus obtained corresponds to the mean value.

Der Kanal enthält als Signalauswerteeinrichtung 12 einen Bandpassfilter 18 (oder alternativ einen Hochpassfilter). Die Mittelfrequenz des Bandpasses 18 liegt bspw. bei 30 Hertz, wobei die Bandbreite relativ groß bemessen sein kann. Beispielsweise liegen die 3dB-Eckfrequenzen bei 10 und 40 Hertz. Netzkorrelierte Wechsellichtanteile von Fremdlichtquellen können somit ausgeschlossen werden, wobei das Flackern des Signals (siehe Fig. 3) breitbandig erfasst wird. Das Filterausgangssignal kann direkt an den Mikrocontroller 17 übertragen werden. Tastet dieser das Eingangssignal (gegebenenfalls über einen A/D-Wandler 19) periodisch ab, werden hier, so lang ein Flackersignal vorhanden ist, stochastische Werte erhalten. Somit liegen die einzelnen Abtastwerte in einem festgelegten Schwankungsbereich. Wird dieser unterschritten, ist der Wechselanteil unterhalb einer festgelegten Grenze. Der Mikrocontroller 17 kann diese überprüfen, indem er ständig Differenzen zwischen aufeinander folgenden Signalwerten bildet und nur dann ein Flackersignal erkennt, wenn die einzelnen Differenzen einen Mindestwert überschreiten. Treten mehrmals hintereinander geringere Differenzen auf, ist davon auszugehen, dass der Wechselanteil des Signals nach Fig. 3 unter einer vorgegebenen Grenze liegt. Alternativ kann die Summe über die Beträge mehrerer aufeinander folgender Differenzen gebildet und mit der Grenze verglichen werden.The channel contains, as a signal evaluation device 12, a bandpass filter 18 (or alternatively a high-pass filter). The center frequency of the bandpass 18 is, for example, at 30 hertz, wherein the bandwidth can be sized relatively large. For example, the 3dB cutoff frequencies are 10 and 40 hertz. Network-correlated alternating light components of extraneous light sources can thus be excluded, the flickering of the signal (see FIG. 3) being recorded in broadband. The filter output signal can be sent directly to the microcontroller 17 be transferred. If it samples the input signal periodically (optionally via an A / D converter 19), stochastic values are obtained here as long as a flicker signal is present. Thus, the individual samples are within a specified range of variation. If this value is undercut, the alternating component is below a specified limit. The microcontroller 17 can check this by continuously forming differences between successive signal values and only recognizing a flickering signal when the individual differences exceed a minimum value. If smaller differences occur several times in succession, it can be assumed that the alternating component of the signal according to FIG. 3 is below a predetermined limit. Alternatively, the sum over the amounts of several successive differences can be formed and compared to the limit.

Der Mikrocontroller 17 ist so programmiert, dass er ein gültiges Flammensignal (das eine brennende Flamme anzeigt) nur dann abgibt, wenn das über den Kanal 11 erfasste Gleichsignal in einem vorgegebenen Bereich liegt und zugleich das in dem Kanal 12 erfasste Flackersignal einen Mindestwert übersteigt. Der vorgegebene Bereich für das Gleichsignal entspricht einem Widerstandsbereich B für den aktuellen Widerstandswert des Fotowiderstands 6 (Fig. 1). Das von dem Kanal 12 bereitgestellte Flackersignal muss über einem Grenzwert G liegen. Dieser ist in Fig. 3 veranschaulicht.The microcontroller 17 is programmed to emit a valid flame signal (indicating a burning flame) only when the DC signal detected across the channel 11 is within a predetermined range and at the same time the flicker signal detected in the channel 12 exceeds a minimum value. The predetermined range for the DC signal corresponds to a resistance range B for the current resistance of the photoresistor 6 (FIG. 1). The flicker signal provided by the channel 12 must be above a limit value G. This is illustrated in FIG. 3.

Die insoweit beschriebene Überwachungseinrichtung 1 arbeitet wie folgt:The monitoring device 1 described so far operates as follows:

Bei ordnungsgemäßem Betrieb erfasst der Fotowidertand 6 das von der Flamme 2 ausgesandte Licht. Die Helligkeit schwankt gemäß Diagramm nach Fig. 3. Entsprechend ist der Zeitverlauf des elektrischen Signals an dem Ausgang des Wandlers 14. Der Kanal 11 bestimmt den kurzfristigen Mittelwert dieses Signals durch Tiefpassfilterung. Hat die Flamme 2 eine solche Helligkeit, dass der Widerstandswert des Fotowiderstands 6 um den in Fig. 2 veranschaulichten Wert P schwankt, der in dem Bereich B liegt, erkennt dies der Mikrocontroller 17. Zugleich wird mit dem Bandpass 18 in dem Kanal 12 der Flackeranteil des Kanals ausgefiltert. Der Mikrocontroller 17 überprüft ob der Flackeranteil größer ist als durch die Grenze G (Fig. 3) vorgegeben. Falls ja registriert der Mikrocontroller dies. Falls beide Bedingungen (Kanal 11, Mittelwert im Bereich B; Kanal 12 Flackeranteil größer als Grenze G) erfüllt sind, gibt der Mikrocontroller ein Flammensignal aus, das das Vorhandensein einer Flamme kennzeichnet oder er erzeugt intern ein entsprechendes Signal zur weiteren Verarbeitung.When operated properly, the photovidiant 6 detects the light emitted by the flame 2. The brightness varies according to the diagram of Fig. 3. Corresponding to the time course of the electrical signal at the output of the transducer 14. The channel 11 determines the short-term average of this signal by low-pass filtering. If the flame 2 has such a brightness that the resistance value of the photoresistor 6 fluctuates around the value P illustrated in FIG. 2, which lies in the region B, this is recognized by the microcontroller 17. At the same time, the bandpass 18 in the channel 12 becomes the flicker component of the channel filtered out. The microcontroller 17 checks whether the flicker proportion is greater than predetermined by the limit G (FIG. 3). If so, the microcontroller registers this. If both conditions (channel 11, average in area B, channel 12 flicker rate greater than limit G) are met, the microcontroller outputs a flame signal indicating the presence of a flame or internally generates a corresponding signal for further processing.

Altert der Fotowiderstand 6 oder ändern sich die elektrischen Eigenschaften mit der Zeit derart, dass er z.B. eine Kennlinie gemäß Kurve II oder III erhält, driftet sein Widerstandswert nicht aus dem Bereich heraus. Jedoch nimmt die Höhe des von dem Bandpass 18 des ausgesiebten Flackersignals mit abnehmender Kennliniensteilheit (Kurve II oder Kurve III) ab. Deshalb fällt das Flackersignal alsbald unter seine Grenze G, womit der Mikrocontroller 17 nicht mehr beide Signale als gültig anerkennt. Somit meldet er Flammenausfall und ermöglicht somit ein Abschalten des Brenners 3.If the photoresistor 6 or the electrical properties change over time such that, for example, it obtains a characteristic according to curve II or III, its resistance value does not drift out of the range. However, the height of the bandpass 18 of the extracted flicker signal decreases with decreasing slope (curve II or curve III). Therefore, the flicker signal falls immediately below its limit G, whereby the microcontroller 17 no longer recognizes both signals as valid. Thus, it reports flame failure and thus enables shutdown of the burner. 3

Zusätzlich kann vorgesehen sein, dass der Mikrocontroller anhand der Feststellung, dass das Signal des Kanals 11 in dem Gültigkeitsbereich B liegt, das Flackersignal des Kanals 12 jedoch ausgefallen ist, ein Signal erzeugt, das den Ausfall des Fotowiderstands 6 kennzeichnet.In addition, it can be provided that the microcontroller, by determining that the signal of the channel 11 is in the validity range B, but the flickering signal of the channel 12 has failed, generates a signal which indicates the failure of the photoresistor 6.

In Fig. 5 ist eine abgewandelte Ausführungsform der Überwachungseinrichtung 1 veranschaulicht. Die Überwachungsschaltung 7 übernimmt hier Funktionen, die bei der Überwachungsschaltung 1 nach Fig. 4 von dem Mikrocontroller 17 übernommen worden sind.5, a modified embodiment of the monitoring device 1 is illustrated. The monitoring circuit 7 assumes here functions that have been taken over by the microcontroller 17 in the monitoring circuit 1 of FIG. 4.

Soweit Funktionsgleichheit besteht, wird bei der nachfolgenden Beschreibung auf gleiche Bezugszeichen zurückgegriffen, wie im Zusammenhang mit der vorstehenden Beschreibung, und generell auf die vorstehende Beschreibung verwiesen.As far as functional equality, reference is made in the following description to the same reference numerals, as in connection with the above description, and generally made to the above description.

Der Fotowiderstand 6 ist mit einem Anschluss an einen Betriebsspannung Ub und mit seinem anderen Anschluss an den R/U-Wandler 14 angeschlossen, der ein Spannungsausgangssignal erzeugt, das dem durch den Fotowiderstand 6 fließenden Strom entspricht. Mit abnehmendem Widerstandswert des Fotowiderstands 6 nimmt die Ausgangsspannung des Wandlers 14 zu. Die Ausgangsspannung wird an dem Tiefpass 15 übertragen, der den zeitlichen Mittelwert des Wandlerausgangssignals bestimmt. Das Ausgangssignal des Tiefpasses 15 ist zu einem Fensterdiskriminator 21 geleitet, der prüft, ob das Tiefpassausgangssignal in einem vorgegebenen Schaltbereich liegt, der dem Bereich B gemäß Fig. 2 entspricht. Die Grenzen des Schaltbereichs werden von zwei Triggerschaltungen 22, 23 überwacht, die Stelleingänge 24, 25 zur Festlegung der Triggerschwellen aufweisen. Die Triggerausgänge sind an ein Exklusiv-ODER-Gatter 26 angeschlossen, das an seinem Ausgang nur dann ein gültiges Ausgangssignal liefert, wenn nur eine der beiden Triggerschaltungen 22, 23 Grenzüberschreitungen feststellt.The photoresistor 6 is connected with a connection to an operating voltage U b and with its other connection to the R / V converter 14, which generates a voltage output signal which corresponds to the current flowing through the photoresistor 6 current. As the resistance of the photoresistor 6 decreases, the output voltage of the transducer 14 increases. The output voltage is transmitted to the low-pass filter 15, which determines the time average of the converter output signal. The output signal of the low-pass filter 15 is passed to a window discriminator 21 which checks whether the low-pass output signal lies within a predetermined switching range which corresponds to the region B according to FIG. 2. The limits of the switching range are monitored by two trigger circuits 22, 23 which have setting inputs 24, 25 for determining the trigger thresholds. The trigger outputs are connected to an exclusive-OR gate 26, which only provides a valid output signal at its output when only one of the two trigger circuits 22, 23 detects border crossings.

Die Stelleingänge 24, 25 dienen dazu, die Schaltschwellen der Triggerschaltungen 22, 23 bedarfsgerecht einzustellen und an die jeweilige Betriebsart des Brenners 3 anzupassen. Beispielsweise kann insbesondere die für den geringen Lichteinfall zuständige untere Schaltschwelle bei Zündbetrieb anders (niedriger) festgelegt werden als nach erfolgter Zündung bei Brennerbetrieb (dies wird negative Schaltdifferenz genannt).The control inputs 24, 25 serve to adjust the switching thresholds of the trigger circuits 22, 23 as needed and to adapt them to the respective operating mode of the burner 3. For example, in particular the lower switching threshold responsible for the low incidence of light during ignition operation can be set differently (lower) than after ignition during burner operation (this is called a negative switching differential).

Der Kanal 12 kann im Anschluss an den Bandpass 18 einen Signalgleichrichter 27 enthalten, der das Flackersignal in ein Gleichsignal wandelt. Eine angeschlossene Triggerschaltung 28 dient dazu, zu überprüfen, ob das Wechselsignal (Flackersignal) eine vorgegebene Grenze G überschreitet. Die beiden Kanäle 11, 12 sind ausgangsseitig über eine Logikschaltung 29, die bspw. als UND-Schaltung ausgebildet ist, miteinander verknüpft, um ein Flackersignal zu erzeugen.The channel 12 may include a signal rectifier 27 following the bandpass 18, which converts the flicker signal into a DC signal. A connected trigger circuit 28 serves to check whether the alternating signal (flickering signal) exceeds a predetermined limit G. The two channels 11, 12 are the output side via a logic circuit 29, which is formed, for example, as an AND circuit, linked together to produce a flickering signal.

Eine dauerbetriebsichere Überwachungseinrichtung 1, die insbesondere zur Flammenüberwachung an ölbetriebenen Gebläsebrennern vorgesehen ist, weist einen Fotowiderstand 6 auf, der an einer Überwachungsschaltung 7 angeschlossen ist. Diese wertet das von dem Fotowiderstand 6 abgegebene Signal zweikanalig aus. Ein erster Kanal 11 dient zur Erfassung der mittleren Helligkeit. Ein zweiter Kanal 12 dient zur Erfassung von Wechselanteilen, die vom Flackern der Flamme herrühren. Die Flamme wird nur dann als ordnungsgemäß brennend anerkannt, wenn an beiden Kanalausgängen der Kanäle 11, 12 ein Signal vorhanden ist, bzw. das Signal jeweils in einem vorgegebenen Bereich liegt. Auf diese Weise lassen sich insbesondere schleichende Änderungen der Charakteristik des Fotowiderstands, wie sie bei Brennerdauerbetrieb auftreten und gefährlich sind, erkennen. Es wird sichergestellt, dass die Flammenüberwachung nicht mit einem defekten Fotowiderstand vorgenommen oder versucht wird.A continuous-duty monitoring device 1, which is provided in particular for flame monitoring on oil-operated blower burners, has a photoresistor 6, which is connected to a monitoring circuit 7. This evaluates the output from the photoresistor 6 signal from two channels. A first channel 11 is used to detect the average brightness. A second channel 12 is used to detect alternating parts resulting from the flickering of the flame. The flame will only be considered proper burning recognized, if at both channel outputs of the channels 11, 12, a signal is present, or the signal is in each case in a predetermined range. In particular, creeping changes in the characteristics of the photoresistor, as they occur in the case of continuous combustion operation and are dangerous, can be detected in this way. It is ensured that the flame monitoring is not performed or attempted with a defective photoresistor.

Claims (15)

  1. Process for flame monitoring on one or more burners, in particular blower burners,
    by means of a radiation-sensitive detection unit (6), which emits an electric signal identifying the radiation output,
    wherein during the process the electric signal is directed parallel through at least two filter units (15, 18) with different characteristics, and
    the two filter output signals are checked to determine whether they lie in an expected range (B, G),
    wherein an output signal identifying the presence of a flame is only generated when both filter output signals lie in their respective expected ranges (B, G).
  2. Process according to Claim 1, characterised in that signal fluctuations of the electric signal are detected by means of one filter unit and a signal mean value is detected with the other filter unit.
  3. Process according to Claim 1, characterised in that the signal fluctuations of the electric signal are applied as identification for the operability of the radiation-sensitive detection unit (6).
  4. Process according Claim 1, characterised in that it is evaluated as identification for an outage of the detection unit (6) when the signal value thereof lies below a predetermined limit (Rk).
  5. Process according to Claim 1, characterised in that it is evaluated as identification for the outage of the detection unit (6) when prior to ignition of a flame the electric signal lies in a range, in which it is expected to be in the presence of a flame.
  6. Monitoring unit (1) for flame monitoring at one or more burners (3), in particular blower burners,
    by means of a radiation-sensitive detection unit (6), which emits an electric signal identifying the recorded radiation output,
    with a first channel (11), which is connected to the detection unit (6) and includes a signal evaluation unit (15), to which the electric signal of the detection means (6) is directed, and which emits a flame signal at its output when the electric signal corresponds to a first criterion,
    with a second channel (12), which is connected to the detection unit (6) and includes a signal evaluation unit (15), to which the electric signal of the detection means (6) is directed, and which emits a flame signal at its output when the electric signal corresponds to a second criterion,
    wherein the signal evaluation units (15, 18) of the two channels (11, 12) are arranged for monitoring different criteria, and
    with a logic evaluation unit (17, 21, 29), which has two inputs, which are connected to the channels (11, 12), and which only emits a flame recognition signal when both channels (11, 12) respectively emit a flame signal.
  7. Monitoring unit according to Claim 6, characterised in that the signal evaluation units (15, 18) are filter units.
  8. Monitoring unit according to Claim 6, characterised in that one channel (11) as signal evaluation unit (15) is a means (15) for forming a time mean value and the other channel (12) as signal processing unit (18) is a means for detecting signal changes.
  9. Monitoring unit according to Claim 6, characterised in that one channel (11) as signal evaluation unit (15) includes a low-pass filter (15) for detecting the radiation output.
  10. Monitoring unit according to Claim 9, characterised in that the channel (11) has a window discriminator (21) adjoining the low-pass filter (15).
  11. Monitoring unit according to Claim 10, characterised in that the window discriminator (21) has at least one control input (25) for defining its switching limits.
  12. Monitoring unit according to Claim 6, characterised in that one of the signal evaluation units (15, 18) is arranged for selection of flashing signals.
  13. Monitoring unit according to Claim 12, characterised in that the signal evaluation unit (18) is a filter unit with high-pass capability.
  14. Monitoring unit according to Claim 12, characterised in that the signal evaluation unit (18) is a filter unit (18) with low-pass capability.
  15. Monitoring unit according to Claim 6, characterised in that the detection unit (6) is a photo-resistance.
EP02003787A 2001-05-12 2002-02-20 Method and device for long-term safe flame monitoring Expired - Lifetime EP1256763B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10123214A DE10123214A1 (en) 2001-05-12 2001-05-12 Long-term safe flame monitoring method and monitoring device
DE10123214 2001-05-12

Publications (3)

Publication Number Publication Date
EP1256763A2 EP1256763A2 (en) 2002-11-13
EP1256763A3 EP1256763A3 (en) 2003-07-30
EP1256763B1 true EP1256763B1 (en) 2006-11-08

Family

ID=7684600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02003787A Expired - Lifetime EP1256763B1 (en) 2001-05-12 2002-02-20 Method and device for long-term safe flame monitoring

Country Status (2)

Country Link
EP (1) EP1256763B1 (en)
DE (2) DE10123214A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US10203049B2 (en) 2014-09-17 2019-02-12 Honeywell International Inc. Gas valve with electronic health monitoring
US10215291B2 (en) 2013-10-29 2019-02-26 Honeywell International Inc. Regulating device
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
US10851993B2 (en) 2011-12-15 2020-12-01 Honeywell International Inc. Gas valve with overpressure diagnostics
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1719947B1 (en) 2005-05-06 2010-04-14 Siemens Building Technologies HVAC Products GmbH Method and device for flame monitoring
DK2105669T3 (en) 2008-03-26 2016-04-11 Bfi Automation Mindermann Gmbh Flame monitoring and assessment device
DE102009057121A1 (en) 2009-12-08 2011-06-09 Scheer Heizsysteme & Produktionstechnik Gmbh Method for qualitative monitoring of combustion status of boiler system in e.g. industrial combustion, involves determining exhaust gas value of combustion of fuel-air-mixture by boiler-isothermal current and/or voltage characteristic curve
DE102011077437A1 (en) * 2011-06-10 2012-12-13 Webasto Ag A vehicle heater and method of operating a vehicle heater
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701624A (en) * 1985-10-31 1987-10-20 Santa Barbara Research Center Fire sensor system utilizing optical fibers for remote sensing
GB2261944A (en) * 1991-11-12 1993-06-02 Nat Power Plc Flame monitoring apparatus and method
DE4305645C2 (en) * 1993-02-24 1996-10-02 Rwe Entsorgung Ag Method for determining characteristic properties of processes forming free radicals, use of the method and device for carrying out the method
DE19809653C1 (en) * 1998-03-06 1999-09-16 Giersch Gmbh Flame monitor for blue flame for e.g. safe operation of burner
DK0953805T3 (en) * 1998-04-24 2003-03-10 Siemens Building Tech Ag flame Detector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697632B2 (en) 2011-12-15 2020-06-30 Honeywell International Inc. Gas valve with communication link
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US10851993B2 (en) 2011-12-15 2020-12-01 Honeywell International Inc. Gas valve with overpressure diagnostics
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US10215291B2 (en) 2013-10-29 2019-02-26 Honeywell International Inc. Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US10203049B2 (en) 2014-09-17 2019-02-12 Honeywell International Inc. Gas valve with electronic health monitoring
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module

Also Published As

Publication number Publication date
EP1256763A3 (en) 2003-07-30
DE10123214A1 (en) 2002-11-28
EP1256763A2 (en) 2002-11-13
DE50208634D1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
EP1256763B1 (en) Method and device for long-term safe flame monitoring
EP1719947B1 (en) Method and device for flame monitoring
EP2603907B1 (en) Evaluating scattered-light signals in an optical hazard detector and outputting a dust/steam warning or a fire alarm
EP0985881B1 (en) Flame monitoring system
DE19707986B4 (en) Circuit arrangement for operating a discharge lamp
EP3189571B1 (en) Method for distinguishing an arc from a luminous gas containing at least metal vapor
DE2210354A1 (en) Flame detector
WO2013000921A1 (en) Method for checking the leakproofness of safety valves
EP2439451B1 (en) Device for recognising the presence of a flame
EP1196722A1 (en) Device for controlling oil burners
DE102007054297A1 (en) Fuse load circuit breaker for e.g. protecting consumer, has integrated resistance measuring instrument with current generator for producing test current, where instrument measures resistance of fuse
EP1844634A1 (en) Method for operating a high-pressure discharge lamp, operating appliance for a high-pressure discharge lamp, and illumination device
EP2408272A2 (en) Switching system and method for operating at least one discharge lamp
EP1901591B1 (en) Ignition of gas discharge lamps in variable ambient conditions
EP1479984A1 (en) Method and apparatus for preventive failure detection by electronic controlled device
EP3245694B1 (en) Method for categorising an electric arc or detection of an arcing fault
EP1843645B1 (en) Switching assembly for high pressure gas discharge lamps
EP0687965B1 (en) Gas-fired apparatus
DE10209620A1 (en) EOL detection with integrated helix interrogation
DE10058086A1 (en) Process for monitoring filter systems
DE602004007351T2 (en) RISK DETECTOR
DE102011084590A1 (en) lamp
DE10205198B4 (en) Two-pole flame detector
DE4038925C2 (en)
DE10209619A1 (en) Operating circuit for discharge lamp with EOL early detection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031014

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50208634

Country of ref document: DE

Date of ref document: 20061221

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100226

Year of fee payment: 9

Ref country code: IT

Payment date: 20100223

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100228

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208634

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901