EP1324645A1 - Optical device and optical method for displacing particles - Google Patents

Optical device and optical method for displacing particles Download PDF

Info

Publication number
EP1324645A1
EP1324645A1 EP02293061A EP02293061A EP1324645A1 EP 1324645 A1 EP1324645 A1 EP 1324645A1 EP 02293061 A EP02293061 A EP 02293061A EP 02293061 A EP02293061 A EP 02293061A EP 1324645 A1 EP1324645 A1 EP 1324645A1
Authority
EP
European Patent Office
Prior art keywords
particle
strip
optical
particles
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02293061A
Other languages
German (de)
French (fr)
Inventor
Stéphane Getin
Patrick Chaton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1324645A1 publication Critical patent/EP1324645A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/006Manipulation of neutral particles by using radiation pressure, e.g. optical levitation

Definitions

  • the invention relates to an optical device for particle displacement as well as a device switch, a sorting device and a device particle analysis system comprising a device optical for moving particles according to the invention.
  • the invention also relates to a method optics for moving particles as well as switching method, sorting method and method particle analysis system comprising an optical method for the displacement of particles according to the invention.
  • the invention applies to sorting and / or analysis small particles.
  • the particles can be, by for example, cells, macromolecules or microbeads.
  • fields of application are inter alia, chemical or biomedical analysis, or quality control (calibration of microparticles).
  • FIG. 1 A particle P placed on a support 1 is confined in the neck, commonly called “waist”, of a continuous laser beam 2. The confinement is made possible by balancing the radiation pressures on the surface of the support 1. Once the confinement is achieved, the particle is displaced by displacement of the beam.
  • This device has mainly a disadvantage. On the one hand, the movement of the particles is based on the use of a dedicated mechanical system that can be difficult and expensive to implement.
  • a second means of moving particles is described in the document entitled "Movement of micrometer-sized particles in the evanescent field of a laser beam” (Satoshi Kawata and Tadao Sugiura, Optics Letters / Vol.17, No. 11, June 1, 1992).
  • Figure 2 illustrates this second means.
  • a light beam 4 is injected into a ribbon guide 3.
  • the particle P is then confined to the surface of the guide by the set of radiation pressures that are exerted on it. It is an evanescent wave present at the interfaces of the guide which allows the displacement of the particle along the axis of the ribbon.
  • This device is not suitable for switching particles because it is not easy to perform multiplexing / demultiplexing functions in the field of waveguides. These functions are in fact carried out using shutters or optomechanical switches of delicate manufacture.
  • the invention does not have these disadvantages.
  • the invention relates to a device optical for moving particles.
  • the device comprises a substrate on which is deposited at least one strip of at least one thin layer, the band having an optical thickness gradient according to an axis so that the displacement of a particle along this axis when a wave electromagnetic illuminates the device.
  • optical thickness the path traveled by the light. The optical thickness is equal to the product n x e where n is the optical index of the material and the thickness material material.
  • the invention also relates to a device particle switching system, characterized in that comprises at least one optical device for particle displacement according to the invention.
  • the invention further relates to a device for sorting of particles, characterized in that it comprises at minus a particle referral device according to the invention.
  • the invention further relates to a device particle analysis system, characterized in that comprises at least one particle sorting device according to the invention.
  • the invention further relates to an optical method displacement of particles along an axis.
  • the process includes the formation of a wave intensity gradient stationary at the level of a particle to be displaced, by illumination, using an electromagnetic wave, of a substrate on which at least one strip is deposited at least one thin layer having a gradient of optical thickness along the axis.
  • the invention further relates to a method switching of particles from a first pathway to a second way, characterized in that the displacement of a particle on a lane is made according to the method of moving the invention and that the referral of the particle is carried out by modification of the wavelength of the wave that illuminates the substrate from a first value to a second value, the first value being a value on which is centered the first path that is consisting of a first strip deposited on the substrate and the second value being a value on which is centered the second way which consists of a second band deposited on the substrate.
  • the invention also relates to a method of sorting of particles, characterized in that it implements a switching method according to the invention.
  • the invention further relates to a method of particle analysis, characterized in that it sets performs a sorting method according to the invention.
  • Particle size can be moved can go from a few tens of nanometers to a few tens of microns. Distances on which particles can be moved can vary from a few microns to a few centimeters.
  • Figures 3A and 3B show, respectively, a cross-sectional view and a longitudinal sectional view of an optical device for the displacement of particles according to the invention.
  • the device comprises a substrate 6 and a strip 5 formed by at least one thin layer deposited on the substrate 6.
  • the strip 5 has a width D and its thickness e varies along the axis perpendicular to its width. The variation of the thickness may be continuous, as shown in FIG. 3B. It can also be obtained by jumps.
  • the substrate 6 may be, for example, a glass or silicon substrate.
  • the layers constituting the strip 5 may be composed alternately of a high index material (Si, HfO 2 , TiO 2 , Si 3 N 4 , Al 2 O 3 , Ta 2 O 5 , SiO 2 , MgF 2 , ITO, In 2 O 3 , InP) and a low index material (SiO 2 , MgF 2 , LiF). They can be produced by physical vapor deposition, commonly known as PVD (Physical Vapor Deposition), by chemical vapor deposition commonly known as CVD (CVD for "Chemical Vapor Deposition”), or by sol-gel
  • a particle P that needs to be moved is placed on the strip 5.
  • the substrate 6 is illuminated on its totality by a light L whose wavelength can vary, for example, from the field of infrared to ultraviolet field. Interference between the incident light L and the light reflected by the device (substrate + tape) then lead to the formation of a standing wave on the surface of device.
  • the band 5 is made in one (of) material (x) of refractive index (s) given (s).
  • the thickness variation of the strip 5 along its axis longitudinal produces an optical thickness gradient according to this axis.
  • This optical thickness gradient creates a intensity gradient of the standing wave in which is the particle P.
  • the particle P is then moved under the effect of pressure variation of radiation applied to it.
  • the particle P is moves longitudinally along the axis of strip 5, from the lowest thicknesses to the thicknesses the higher (direction of movement S in Figure 3B).
  • the direction of movement of the particle (to the left or to the right) is conditioned by the structure of stacking (indices and thicknesses of the layers).
  • the optical thickness gradient is obtained by varying the thickness of the strip 5.
  • the invention also relates to other modes of production. So, for example, does the invention concern also a structure in which the thickness of band 5 is constant. That's the variation index of the material (s) itself (themselves) which realizes the optical thickness gradient. It is also possible to advantageously combine the two solutions (index variation and thickness variation) to obtain variations in optical thickness desired.
  • Figure 4 shows an improvement of optical device for moving particles according to the invention.
  • a structure 7 composed of at least one layer thin is placed above the 5 band so that the band 5 and the structure 7 constitute a cavity of Fabry-Perot.
  • the composition of the layers of the structure 7 can be, for example, identical to those of layers of the band 5. Choosing as distance average between band 5 and structure 7 a distance equal to an integer multiple of half the length used, it is possible to increase, by resonance, the intensity of the wave inside the cavity. The reflectivities of band 5 and the structure 7 are then chosen so that a peak of the resonance is positioned at the level of the particle P.
  • Figures 5A and 5B represent, respectively, the intensity of the field electric E and the velocity V of the particle in function of the angle of incidence ⁇ of the illuminating wave the device. It appears that the intensity of the field electrical and velocity of the particle vary from the same way. For a wave of zero incidence, the intensity of the field and the speed of the particle are maximum and, when the incidence increases, the intensity of the field and velocity of the particle decrease.
  • FIGS 6 and 7 illustrate these different devices as non-limiting examples.
  • FIG. 6 represents a view from above of a example of an optical switching device particles according to the invention.
  • Four strips of layers 8, 9, 10, 11 are deposited on a substrate 1.
  • band 8 is divided into the three bands 9, 10 and 11.
  • the strips 8, 9, 10 and 11 are respectively centered by example, on the wavelengths ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 3, where ⁇ 1, ⁇ 2 and ⁇ 3 are three different wavelengths such that ⁇ 3> ⁇ 2> ⁇ 1.
  • the bands are centered on the different wavelengths in a manner known in by choosing the reflectivity of materials and optimizing the thickness and the number of layers.
  • the direction of movement of particles on the bands 8, 9, 10, 11 goes from the left from the figure to the right of the figure.
  • the routing can be done by changing the incidence of the wave compared to normal.
  • the effect of incidence of the wave makes it possible to shift the function spectral wavelength ⁇ 3 to length wave ⁇ 1.
  • An embodiment advantageous may be to use the polarization of the wave that illuminates the device. We then choose a polarization parallel to the plane of incidence that allows better spectral separation of the channels 9, 10 and 11.
  • Figure 7 shows an example of a device particle analysis according to the invention.
  • the device includes a dispenser 12, an analysis block 13 and a reading device 14.
  • the analysis block 13 comprises a substrate 1, a first device switching from an input channel 15 to three channels 16, 17, 18, three analysis circuits 19, 20, 21, one second device for switching the three lanes 16, 17, 18 to an output path 22 and a laser 23.
  • the analysis circuits 19, 20, 21 are circuits of reading, for example fluorescence enhancement. Each switching device works as indicated above.
  • Dispenser 12 supplies the particles to analyze. A first series of measures can then be deduced from the analyzes carried out by the circuits 19, 20, 21.
  • the laser 23 which illuminates the exit path 22 allows, if necessary, to break the particles.
  • the pieces of particles thus obtained are transferred to the reading device 14 which then performs a series of measurements on the pieces of particles.

Abstract

The particle displacement device has a silicon substrate (6) on which a thin strip (5) is deposited. A particle (P) that is to be displaced is placed on the strip. The strip has an optical thickness gradient along its longitudinal axis, such that the particle is moved along the longitudinal axis of the strip, when an electromagnetic wave (L) illuminates the device. <??>Independent claims are also included for the following: <??>(1) particle switching device; <??>(2) particle sorting device; <??>(3) particle analysis device; <??>(4) optical particle displacement process; <??>(5) particle switching process; <??>(6) particle sorting process; and <??>(7) particle analysis process.

Description

Domaine technique et art antérieurTechnical field and prior art

L'invention concerne un dispositif optique pour le déplacement de particules ainsi qu'un dispositif d'aiguillage, un dispositif de tri et un dispositif d'analyse de particules comprenant un dispositif optique pour le déplacement de particules selon l'invention.The invention relates to an optical device for particle displacement as well as a device switch, a sorting device and a device particle analysis system comprising a device optical for moving particles according to the invention.

L'invention concerne également un procédé optique pour le déplacement de particules ainsi qu'un procédé d'aiguillage, un procédé de tri et un procédé d'analyse de particules comprenant un procédé optique pour le déplacement de particules selon l'invention.The invention also relates to a method optics for moving particles as well as switching method, sorting method and method particle analysis system comprising an optical method for the displacement of particles according to the invention.

L'invention s'applique au tri et/ou à l'analyse de petites particules. Les particules peuvent être, par exemple, des cellules, des macromolécules ou des microbilles. Parmi les domaines d'application figurent, entre autres, l'analyse chimique ou biomédicale, ou encore le contrôle de qualité (calibration de microparticules).The invention applies to sorting and / or analysis small particles. The particles can be, by for example, cells, macromolecules or microbeads. Among the fields of application are inter alia, chemical or biomedical analysis, or quality control (calibration of microparticles).

Différents moyens sont connus pour le déplacement de petites particules. Un premier moyen est décrit dans le document intitulé « Observation of Radiation-Pressure Trapping of particles by Alternating Light Beams » (A.Ashkin and J.M. Dziedzic ; Physical Review Letters, vol.54, N°12, 25 March 1985). Ce premier moyen, communément appelé « pince optique », est représenté en figure 1. Une particule P placée sur un support 1 est confinée dans le col, communément appelé "waist", d'un faisceau laser continu 2. Le confinement est rendu possible par équilibrage des pressions de radiation à la surface du support 1. Une fois le confinement réalisé, la particule est déplacée par déplacement du faisceau. Ce dispositif présente principalement un inconvénient. D'une part, le déplacement des particules repose sur l'emploi d'un système mécanique dédié qui peut s'avérer délicat et coûteux à mettre en oeuvre.Various means are known for moving small particles. A first means is described in the document entitled " Observation of Radiation-Pressure Trapping of Bands by Alternating Light Beams" (A. Ashkin and JM Dziedzic, Physical Review Letters, vol.54, No. 12, March 25, 1985). This first means, commonly called "optical clamp", is shown in FIG. 1. A particle P placed on a support 1 is confined in the neck, commonly called "waist", of a continuous laser beam 2. The confinement is made possible by balancing the radiation pressures on the surface of the support 1. Once the confinement is achieved, the particle is displaced by displacement of the beam. This device has mainly a disadvantage. On the one hand, the movement of the particles is based on the use of a dedicated mechanical system that can be difficult and expensive to implement.

Un deuxième moyen de déplacement de particules selon l'art connu est décrit dans le document intitulé « Movement of micrometer-sized particles in the evanescent field of a laser beam » (Satoshi Kawata and Tadao Sugiura ; Optics Letters/Vol.17, N°11, June 1, 1992). La figure 2 illustre ce deuxième moyen. Un faisceau de lumière 4 est injecté dans un guide à ruban 3. La particule P se trouve alors confinée en surface du guide par le jeu des pressions de radiation qui sont exercées sur elle. C'est une onde évanescente présente aux interfaces du guide qui permet le déplacement de la particule le long de l'axe du ruban. Ce dispositif n'est pas adapté à l'aiguillage de particules car il n'est pas facile de réaliser des fonctions de multiplexage/démultiplexage dans le domaine des guides d'onde. Ces fonctions sont en effet réalisées à l'aide d'obturateurs ou de switchs optomécaniques de fabrication délicate.A second means of moving particles according to the known art is described in the document entitled "Movement of micrometer-sized particles in the evanescent field of a laser beam" (Satoshi Kawata and Tadao Sugiura, Optics Letters / Vol.17, No. 11, June 1, 1992). Figure 2 illustrates this second means. A light beam 4 is injected into a ribbon guide 3. The particle P is then confined to the surface of the guide by the set of radiation pressures that are exerted on it. It is an evanescent wave present at the interfaces of the guide which allows the displacement of the particle along the axis of the ribbon. This device is not suitable for switching particles because it is not easy to perform multiplexing / demultiplexing functions in the field of waveguides. These functions are in fact carried out using shutters or optomechanical switches of delicate manufacture.

L'invention ne présente pas ces inconvénients. The invention does not have these disadvantages.

Exposé de l'inventionPresentation of the invention

En effet, l'invention concerne un dispositif optique pour le déplacement de particules. Le dispositif comprend un substrat sur lequel est déposée au moins une bande d'au moins une couche mince, la bande présentant un gradient d'épaisseur optique selon un axe de sorte que le déplacement d'une particule s'effectue selon cet axe lorsqu'une onde électromagnétique éclaire le dispositif. On appelle épaisseur optique, le chemin parcouru par la lumière. L'épaisseur optique est égale au produit n x e où n est l'indice optique du matériau et e l'épaisseur matérielle du matériau.Indeed, the invention relates to a device optical for moving particles. The device comprises a substrate on which is deposited at least one strip of at least one thin layer, the band having an optical thickness gradient according to an axis so that the displacement of a particle along this axis when a wave electromagnetic illuminates the device. We call optical thickness, the path traveled by the light. The optical thickness is equal to the product n x e where n is the optical index of the material and the thickness material material.

L'invention concerne également un dispositif d'aiguillage de particules, caractérisé en ce qu'il comprend au moins un dispositif optique pour le déplacement de particules selon l'invention.The invention also relates to a device particle switching system, characterized in that comprises at least one optical device for particle displacement according to the invention.

L'invention concerne encore un dispositif de tri de particules, caractérisé en ce qu'il comprend au moins un dispositif d'aiguillage de particules selon l'invention.The invention further relates to a device for sorting of particles, characterized in that it comprises at minus a particle referral device according to the invention.

L'invention concerne encore un dispositif d'analyse de particules, caractérisé en ce qu'il comprend au moins un dispositif de tri de particules selon l'invention.The invention further relates to a device particle analysis system, characterized in that comprises at least one particle sorting device according to the invention.

L'invention concerne encore un procédé optique de déplacement de particules selon un axe. Le procédé comprend la formation d'un gradient d'intensité d'onde stationnaire au niveau d'une particule à déplacer, par illumination, à l'aide d'une onde électromagnétique, d'un substrat sur lequel est déposée au moins une bande d'au moins une couche mince présentant un gradient d'épaisseur optique selon l'axe.The invention further relates to an optical method displacement of particles along an axis. The process includes the formation of a wave intensity gradient stationary at the level of a particle to be displaced, by illumination, using an electromagnetic wave, of a substrate on which at least one strip is deposited at least one thin layer having a gradient of optical thickness along the axis.

L'invention concerne encore un procédé d'aiguillage de particules d'une première voie vers une deuxième voie, caractérisé en ce que le déplacement d'une particule sur une voie est effectué selon le procédé de déplacement de l'invention et en ce que l'aiguillage de la particule est réalisé par modification de la longueur d'onde de l'onde qui illumine le substrat d'une première valeur vers une deuxième valeur, la première valeur étant une valeur sur laquelle est centrée la première voie qui est constituée d'une première bande déposée sur le substrat et la deuxième valeur étant une valeur sur laquelle est centrée la deuxième voie qui est constituée d'une deuxième bande déposée sur le substrat.The invention further relates to a method switching of particles from a first pathway to a second way, characterized in that the displacement of a particle on a lane is made according to the method of moving the invention and that the referral of the particle is carried out by modification of the wavelength of the wave that illuminates the substrate from a first value to a second value, the first value being a value on which is centered the first path that is consisting of a first strip deposited on the substrate and the second value being a value on which is centered the second way which consists of a second band deposited on the substrate.

L'invention concerne encore un procédé de tri de particules, caractérisé en ce qu'il met en oeuvre un procédé d'aiguillage selon l'invention.The invention also relates to a method of sorting of particles, characterized in that it implements a switching method according to the invention.

L'invention concerne encore un procédé d'analyse de particules, caractérisé en ce qu'il met en oeuvre un procédé de tri selon l'invention.The invention further relates to a method of particle analysis, characterized in that it sets performs a sorting method according to the invention.

La taille des particules pouvant être déplacées peut aller de quelques dizaines de nanomètres à quelques dizaines de microns. Les distances sur lesquelles les particules peuvent être déplacées peuvent varier de quelques microns à quelques centimètres. Particle size can be moved can go from a few tens of nanometers to a few tens of microns. Distances on which particles can be moved can vary from a few microns to a few centimeters.

Brève description des figuresBrief description of the figures

D'autres caractéristiques et avantages de l'invention apparaítront à la lecture d'un mode de réalisation préférentiel de l'invention décrit à l'aide des figures jointes parmi lesquelles :

  • la figure 1 représente un moyen de déplacement de particule de type « pince optique » selon l'art antérieur ;
  • la figure 2 représente un moyen de déplacement de particule par onde évanescente selon l'art antérieur ;
  • les figure 3A et 3B représentent un dispositif optique pour le déplacement de particules selon l'invention ;
  • la figure 4 représente un perfectionnement du dispositif optique de déplacement de particules selon l'invention ;
  • les figures 5A-5B représentent des courbes illustrant la corrélation entre la variation du champ électrique en surface du dispositif optique selon l'invention et la vitesse de déplacement des particules ;
  • la figure 6 représente un exemple de dispositif d'aiguillage optique de particules selon l'invention ;
  • la figure 7 représente un exemple de dispositif d'analyse de particules selon l'invention.
Other features and advantages of the invention will appear on reading a preferred embodiment of the invention described with the aid of the accompanying figures among which:
  • FIG. 1 represents a "optical clamp" type particle displacement means according to the prior art;
  • FIG. 2 represents an evanescent wave particle displacement means according to the prior art;
  • FIGS. 3A and 3B show an optical device for moving particles according to the invention;
  • FIG. 4 represents an improvement of the optical device for moving particles according to the invention;
  • FIGS. 5A-5B show curves illustrating the correlation between the variation of the electric field at the surface of the optical device according to the invention and the speed of displacement of the particles;
  • FIG. 6 represents an example of a device for optical switching of particles according to the invention;
  • FIG. 7 represents an example of a device for analyzing particles according to the invention.

Sur toutes les figures les mêmes références désignent les mêmes éléments. In all figures the same references designate the same elements.

Description détaillée de modes de mise en oeuvre de l'inventionDetailed description of modes of implementation of the invention

Les figures 3A et 3B représentent, respectivement, une vue en coupe transversale et une vue en coupe longitudinale d'un dispositif optique pour le déplacement de particules selon l'invention.Figures 3A and 3B show, respectively, a cross-sectional view and a longitudinal sectional view of an optical device for the displacement of particles according to the invention.

Le dispositif comprend un substrat 6 et une bande 5 formée par au moins une couche mince déposée sur le substrat 6. La bande 5 a une largeur D et son épaisseur e varie le long de l'axe perpendiculaire à sa largeur. La variation de l'épaisseur peut être continue, comme représenté sur la figure 3B. Elle peut également être obtenue par sauts. Le substrat 6 peut être, par exemple, un substrat de verre ou de silicium. Les couches qui constituent la bande 5 peuvent être composées en alternant un matériau haut indice (Si, HfO2, TiO2, Si3N4, Al2O3, Ta2O5, SiO2, MgF2, ITO, In2O3, InP) et un matériau bas indice (SiO2, MgF2, LiF). Elles peuvent être réalisées par dépôt physique en phase vapeur communément appelé dépôt PVD (PVD pour «Physical Vapor Déposition»), par dépôt chimique en phase vapeur communément appelé dépôt CVD (CVD pour «Chemical Vapor Déposition»), ou par voie sol-gel.The device comprises a substrate 6 and a strip 5 formed by at least one thin layer deposited on the substrate 6. The strip 5 has a width D and its thickness e varies along the axis perpendicular to its width. The variation of the thickness may be continuous, as shown in FIG. 3B. It can also be obtained by jumps. The substrate 6 may be, for example, a glass or silicon substrate. The layers constituting the strip 5 may be composed alternately of a high index material (Si, HfO 2 , TiO 2 , Si 3 N 4 , Al 2 O 3 , Ta 2 O 5 , SiO 2 , MgF 2 , ITO, In 2 O 3 , InP) and a low index material (SiO 2 , MgF 2 , LiF). They can be produced by physical vapor deposition, commonly known as PVD (Physical Vapor Deposition), by chemical vapor deposition commonly known as CVD (CVD for "Chemical Vapor Deposition"), or by sol-gel .

Une particule P qui doit être déplacée est posée sur la bande 5. Le substrat 6 est éclairé sur sa totalité par une lumière L dont la longueur d'onde peut varier, par exemple, du domaine de l'infrarouge au domaine de l'ultraviolet. Des interférences entre la lumière incidente L et la lumière réfléchie par le dispositif (substrat + bande) conduisent alors à la formation d'une onde stationnaire en surface du dispositif.A particle P that needs to be moved is placed on the strip 5. The substrate 6 is illuminated on its totality by a light L whose wavelength can vary, for example, from the field of infrared to ultraviolet field. Interference between the incident light L and the light reflected by the device (substrate + tape) then lead to the formation of a standing wave on the surface of device.

La bande 5 est réalisée dans un (des) matériau(x) d'indice(s) de réfraction donné(s). La variation d'épaisseur de la bande 5 selon son axe longitudinal produit un gradient d'épaisseur optique selon cet axe. Ce gradient d'épaisseur optique crée un gradient d'intensité de l'onde stationnaire dans laquelle se trouve la particule P. La particule P est alors déplacée sous l'effet de la variation de pression de radiation qui lui est appliquée. La particule P se déplace longitudinalement, selon l'axe de la bande 5, des épaisseurs les plus faibles vers les épaisseurs les plus élevées (sens de déplacement S sur la figure 3B). Le sens du déplacement de la particule (vers la gauche ou vers la droite) est conditionné par la structure de l'empilement (indices et épaisseurs des couches).The band 5 is made in one (of) material (x) of refractive index (s) given (s). The thickness variation of the strip 5 along its axis longitudinal produces an optical thickness gradient according to this axis. This optical thickness gradient creates a intensity gradient of the standing wave in which is the particle P. The particle P is then moved under the effect of pressure variation of radiation applied to it. The particle P is moves longitudinally along the axis of strip 5, from the lowest thicknesses to the thicknesses the higher (direction of movement S in Figure 3B). The direction of movement of the particle (to the left or to the right) is conditioned by the structure of stacking (indices and thicknesses of the layers).

Selon le mode de réalisation de l'invention décrit ci-dessus, le gradient d'épaisseur optique est obtenu par variation d'épaisseur de la bande 5. L'invention concerne également d'autres modes de réalisation. Ainsi, par exemple, l'invention concernet-elle aussi une structure dans laquelle l'épaisseur de la bande 5 est constante. C'est alors la variation d'indice du (des) matériau(x) lui-même (eux-mêmes) qui réalise le gradient d'épaisseur optique. Il est également possible de combiner avantageusement les deux solutions (variation d'indice et variation d'épaisseur) pour obtenir les variations d'épaisseur optique souhaitées. According to the embodiment of the invention described above, the optical thickness gradient is obtained by varying the thickness of the strip 5. The invention also relates to other modes of production. So, for example, does the invention concern also a structure in which the thickness of band 5 is constant. That's the variation index of the material (s) itself (themselves) which realizes the optical thickness gradient. It is also possible to advantageously combine the two solutions (index variation and thickness variation) to obtain variations in optical thickness desired.

La figure 4 représente un perfectionnement du dispositif optique de déplacement de particules selon l'invention.Figure 4 shows an improvement of optical device for moving particles according to the invention.

Une structure 7 composée d'au moins une couche mince est placée au-dessus de la bande 5 de sorte que la bande 5 et la structure 7 constituent une cavité de Fabry-Pérot. La composition des couches de la structure 7 peut être, par exemple, identique à celles des couches de la bande 5. En choisissant comme distance moyenne entre la bande 5 et la structure 7 une distance égale à un multiple entier de la moitié de la longueur d'onde utilisée, il est possible d'accroítre, par résonance, l'intensité de l'onde à l'intérieur de la cavité. Les réflectivités de la bande 5 et de la structure 7 sont alors choisies pour qu'un pic de la résonance soit positionné au niveau de la particule P.A structure 7 composed of at least one layer thin is placed above the 5 band so that the band 5 and the structure 7 constitute a cavity of Fabry-Perot. The composition of the layers of the structure 7 can be, for example, identical to those of layers of the band 5. Choosing as distance average between band 5 and structure 7 a distance equal to an integer multiple of half the length used, it is possible to increase, by resonance, the intensity of the wave inside the cavity. The reflectivities of band 5 and the structure 7 are then chosen so that a peak of the resonance is positioned at the level of the particle P.

C'est la valeur de l'intensité lumineuse au niveau de la particule P qui conditionne la vitesse de déplacement de celle-ci. Le dispositif selon l'invention permet avantageusement de contrôler la vitesse de la particule. Les figures 5A et 5B représentent, respectivement, l'intensité du champ électrique E et la vitesse V de la particule en fonction de l'angle d'incidence  de l'onde qui éclaire le dispositif. Il apparaít que l'intensité du champ électrique et la vitesse de la particule varient de la même manière. Pour une onde d'incidence nulle, l'intensité du champ et la vitesse de la particule sont maximales et, lorsque l'incidence croít, l'intensité du champ et la vitesse de la particule diminuent. This is the value of the light intensity at level of the particle P which conditions the speed of displacement of it. The device according to the invention advantageously makes it possible to control the velocity of the particle. Figures 5A and 5B represent, respectively, the intensity of the field electric E and the velocity V of the particle in function of the angle of incidence  of the illuminating wave the device. It appears that the intensity of the field electrical and velocity of the particle vary from the same way. For a wave of zero incidence, the intensity of the field and the speed of the particle are maximum and, when the incidence increases, the intensity of the field and velocity of the particle decrease.

Comme cela a été mentionné précédemment, outre un dispositif optique pour le déplacement de particules, l'invention concerne également :

  • un dispositif d'aiguillage optique comprenant au moins un dispositif optique pour le déplacement de particules selon l'invention ;
  • un dispositif de tri de particules comprenant au moins un dispositif d'aiguillage optique selon l'invention ; et
  • un dispositif d'analyse de particules comprenant au moins un dispositif de tri de particules selon l'invention.
As mentioned above, in addition to an optical device for moving particles, the invention also relates to:
  • an optical switching device comprising at least one optical device for moving particles according to the invention;
  • a particle sorting device comprising at least one optical switching device according to the invention; and
  • a particle analysis device comprising at least one particle sorting device according to the invention.

Les figures 6 et 7 illustrent ces différents dispositifs à titre d'exemples non limitatifs.Figures 6 and 7 illustrate these different devices as non-limiting examples.

La figure 6 représente une vue de dessus d'un exemple de dispositif d'aiguillage optique de particules selon l'invention. Quatre bandes de couches minces 8, 9, 10, 11 sont déposées sur un substrat 1. La bande 8 se divise en les trois bandes 9, 10 et 11. Les bandes 8, 9, 10 et 11 sont respectivement centrées, par exemple, sur les longueurs d'onde λ1, λ2, λ1, λ3, où λ1, λ2 et λ3 sont trois longueurs d'onde différentes telles que λ3 > λ2 > λ1. Les bandes sont centrées sur les différentes longueurs d'onde de façon connue en soi, en choisissant la réflectivité des matériaux et en optimisant l'épaisseur et le nombre de couches. En référence à la figure 6, le sens de déplacement des particules sur les bandes 8, 9, 10, 11 va de la gauche de la figure vers la droite de la figure.FIG. 6 represents a view from above of a example of an optical switching device particles according to the invention. Four strips of layers 8, 9, 10, 11 are deposited on a substrate 1. band 8 is divided into the three bands 9, 10 and 11. The strips 8, 9, 10 and 11 are respectively centered by example, on the wavelengths λ1, λ2, λ1, λ3, where λ1, λ2 and λ3 are three different wavelengths such that λ3> λ2> λ1. The bands are centered on the different wavelengths in a manner known in by choosing the reflectivity of materials and optimizing the thickness and the number of layers. In reference to Figure 6, the direction of movement of particles on the bands 8, 9, 10, 11 goes from the left from the figure to the right of the figure.

Quand on éclaire le dispositif avec une onde de longueur d'onde λ1, une particule P se déplace alors successivement sur les bandes 8 et 9. Quand on éclaire le dispositif avec une onde de longueur d'onde λ1 puis une onde de longueur d'onde λ2, une particule P se déplace successivement sur les bandes 8 et 10. Enfin, quand on éclaire le dispositif avec une onde de longueur d'onde λ1 puis λ3, une particule P se déplace successivement sur les bandes 8 et 11.When we illuminate the device with a wave of wavelength λ1, a particle P then moves successively on strips 8 and 9. When we illuminate the device with a wavelength wave λ1 then a wave of wavelength λ2, a particle P is move successively on bands 8 and 10. Finally, when we illuminate the device with a wave of wavelength λ1 then λ3, a particle P moves successively on strips 8 and 11.

Dans le cas d'une source polychromatique, le routage peut s'effectuer en modifiant l'incidence de l'onde par rapport à la normale. L'effet de l'incidence de l'onde permet en effet de décaler la fonction spectrale de la longueur d'onde λ3 vers la longueur d'onde λ1. Ainsi, au fur et à mesure que l'incidence augmente, les particules prennent alors successivement les voies 11, 9 et 10. Un mode de réalisation avantageux peut consister à utiliser la polarisation de l'onde qui éclaire le dispositif. On choisit alors une polarisation parallèle au plan d'incidence qui permet une meilleure séparation spectrale des voies 9, 10 et 11.In the case of a polychromatic source, the routing can be done by changing the incidence of the wave compared to normal. The effect of incidence of the wave makes it possible to shift the function spectral wavelength λ3 to length wave λ1. Thus, as the incidence increases, the particles then take successively lanes 11, 9 and 10. An embodiment advantageous may be to use the polarization of the wave that illuminates the device. We then choose a polarization parallel to the plane of incidence that allows better spectral separation of the channels 9, 10 and 11.

Le dispositif d'aiguillage représenté en figure 6 constitue une jonction entre une voie et n voies (n=3). Symétriquement, l'invention concerne également un dispositif d'aiguillage de type jonction entre n voies et une voie, comme cela va apparaítre ci-dessous.The switching device represented in FIG. 6 is a junction between a lane and n lanes (N = 3). Symmetrically, the invention also relates to a junction-type switching device between n ways and a way, as will appear below.

La figure 7 représente un exemple de dispositif d'analyse de particules selon l'invention. Le dispositif comprend un dispenseur 12, un bloc d'analyse 13 et un dispositif de lecture 14. Le bloc d'analyse 13 comprend un substrat 1, un premier dispositif d'aiguillage d'une voie d'entrée 15 vers trois voies 16, 17, 18, trois circuits d'analyse 19, 20, 21, un deuxième dispositif d'aiguillage des trois voies 16, 17, 18 vers une voie de sortie 22 et un laser 23. Les circuits d'analyse 19, 20, 21 sont des circuits de lecture, par exemple à renforcement de fluorescence. Chaque dispositif d'aiguillage fonctionne comme indiqué ci-dessus. Le dispenseur 12 fournit les particules à analyser. Une première série de mesures peut alors être déduite des analyses effectuées par les circuits 19, 20, 21.Figure 7 shows an example of a device particle analysis according to the invention. The device includes a dispenser 12, an analysis block 13 and a reading device 14. The analysis block 13 comprises a substrate 1, a first device switching from an input channel 15 to three channels 16, 17, 18, three analysis circuits 19, 20, 21, one second device for switching the three lanes 16, 17, 18 to an output path 22 and a laser 23. The analysis circuits 19, 20, 21 are circuits of reading, for example fluorescence enhancement. Each switching device works as indicated above. Dispenser 12 supplies the particles to analyze. A first series of measures can then be deduced from the analyzes carried out by the circuits 19, 20, 21.

Le laser 23 qui illumine la voie de sortie 22 permet, si nécessaire, de casser les particules. Les morceaux de particules ainsi obtenus sont transférés jusqu'au dispositif de lecture 14 qui effectue alors une série de mesures sur les morceaux de particules.The laser 23 which illuminates the exit path 22 allows, if necessary, to break the particles. The pieces of particles thus obtained are transferred to the reading device 14 which then performs a series of measurements on the pieces of particles.

Claims (22)

Dispositif optique pour le déplacement de particules (P), caractérisé en ce qu'il comprend un substrat (6) sur lequel est déposée au moins une bande (5) d'au moins une couche mince, la bande (5) présentant un gradient d'épaisseur optique selon un axe de sorte que le déplacement d'une particule (P) s'effectue selon cet axe lorsqu'une onde électromagnétique (L) éclaire le dispositif.Optical device for the displacement of particles (P), characterized in that it comprises a substrate (6) on which is deposited at least one strip (5) of at least one thin layer, the strip (5) having a gradient of optical thickness along an axis so that the displacement of a particle (P) is effected along this axis when an electromagnetic wave (L) illuminates the device. Dispositif selon la revendication 1, caractérisé en ce que la bande (5) a une épaisseur (e) qui varie selon la direction de l'axe.Device according to claim 1, characterized in that the strip (5) has a thickness (e) which varies in the direction of the axis. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la bande (5) est composée de matériaux dont l'indice varie selon la direction de l'axe.Device according to claim 1 or 2, characterized in that the strip (5) is composed of materials whose index varies in the direction of the axis. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend une structure (7) constituée d'au moins une couche mince, placée en face de la bande (5) de sorte que la bande (5) et la structure (7) constituent une cavité de Fabry-Pérot.Device according to any one of claims 1 to 3, characterized in that it comprises a structure (7) consisting of at least one thin layer, placed opposite the strip (5) so that the strip (5) and the structure (7) constitutes a Fabry-Perot cavity. Dispositif selon la revendication 4, caractérisé en ce que la distance entre la bande (5) et la structure (7) est égale à un multiple entier de la moitié de la longueur d'onde qui éclaire le dispositif de façon à accroítre par résonance l'intensité de l'onde à l'intérieur de la cavité.Device according to claim 4, characterized in that the distance between the strip (5) and the structure (7) is equal to an integer multiple of half the wavelength which illuminates the device so as to increase by resonance intensity of the wave inside the cavity. Dispositif selon la revendication 5, caractérisé en ce que la bande (5) et la structure (7) ont des réflectivités choisies pour qu'un pic de résonance soit positionné au niveau d'une particule.Device according to Claim 5, characterized in that the strip (5) and the structure (7) have reflectivities chosen so that a resonance peak is positioned at the level of a particle. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la bande (5) est constituée d'une alternance de couches de haut indice et de bas indice.Device according to any one of the preceding claims, characterized in that the strip (5) consists of alternating layers of high index and low index. Dispositif selon l'une quelconque des revendications 4 à 7, caractérisé en ce que la structure (7) est constituée d'une alternance de couches de haut indice et de bas indice.Device according to any one of claims 4 to 7, characterized in that the structure (7) consists of alternating layers of high index and low index. Dispositif selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que les couches de haut indice sont réalisées dans un matériau choisi parmi Si, HfO2, TiO2, Si3N4, Al2O3, Ta2O5, ITO, In2O3, SiO2, MgF2 ou InP.Device according to any one of claims 7 or 8, characterized in that the high index layers are made of a material selected from Si, HfO 2 , TiO 2 , Si 3 N 4 , Al 2 O 3 , Ta 2 O 5 , ITO, In 2 O 3 , SiO 2 , MgF 2 or InP. Dispositif selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les couches de bas indice sont réalisées dans un matériau choisi parmi SiO2, MgF2, ou LiF.Device according to any one of claims 7 to 9, characterized in that the low index layers are made of a material selected from SiO 2 , MgF 2 , or LiF. Dispositif d'aiguillage de particules d'une première voie vers une deuxième voie, caractérisé en ce qu'il comprend au moins deux dispositifs optiques pour le déplacement de particules selon l'une quelconque des revendications 1 à 10, chaque dispositif optique constituant une voie.Device for switching particles from a first path to a second path, characterized in that it comprises at least two optical devices for moving particles according to any one of claims 1 to 10, each optical device constituting a path . Dispositif d'aiguillage de particules selon la revendication 11, caractérisé en ce que chaque dispositif optique constituant une voie comprend une bande (8, 9, 10, 11)) d'au moins une couche mince, chaque bande étant centrée à une longueur d'onde donnée (λ1, λ2, λ3) et présentant un gradient d'épaisseur optique selon un axe de sorte que le déplacement d'une particule s'effectue selon cet axe lorsqu'une onde optique ayant comme longueur d'onde la longueur d'onde sur laquelle la bande est centrée éclaire le dispositif.Particle switching device according to claim 11, characterized in that each optical device constituting a channel comprises a strip (8, 9, 10, 11) of at least one thin layer, each strip being centered at a length of given wave (λ1, λ2, λ3) and having an optical thickness gradient along an axis so that the displacement of a particle takes place along this axis when an optical wave having as wavelength the length of wave on which the band is centered illuminates the device. Dispositif de tri de particules, caractérisé en ce qu'il comprend au moins un dispositif d'aiguillage selon l'une des revendications 11 ou 12.Particle sorting device, characterized in that it comprises at least one switching device according to one of claims 11 or 12. Dispositif d'analyse de particules, caractérisé en ce qu'il comprend au moins un dispositif de tri de particules selon la revendication 13.Device for particle analysis, characterized in that it comprises at least one particle sorting device according to claim 13. Dispositif d'analyse de particules selon la revendication 14, caractérisé en ce qu'il comprend un dispositif d'aiguillage de particules réalisant une jonction entre une voie d'entrée (15) et n voies intermédiaires (16, 17, 18) et un dispositif d'aiguillage réalisant une jonction entre lesdites n voies intermédiaires (16, 17, 18) et une voie de sortie (22), un dispositif d'analyse (19, 20, 21) étant placé sur au moins une voie intermédiaire parmi les n voies (16, 17, 18).Particle analysis device according to Claim 14, characterized in that it comprises a particle switching device which forms a junction between an input channel (15) and n intermediate channels (16, 17, 18) and a switching device providing a junction between said n intermediate channels (16, 17, 18) and an output channel (22), an analysis device (19, 20, 21) being placed on at least one intermediate channel among the n channels (16, 17, 18). Dispositif selon la revendication 15, caractérisé en ce que le dispositif d'analyse est un dispositif d'analyse par fluorescence.Device according to Claim 15, characterized in that the analysis device is a fluorescence analysis device. Dispositif d'analyse selon la revendication 15 ou 16, caractérisé en ce qu'il comprend un laser (23) pour illuminer la voie de sortie (22) et casser les particules qui s'y déplacent et un dispositif de lecture (14) pour analyser les morceaux de particules cassées.Analysis device according to claim 15 or 16, characterized in that it comprises a laser (23) for illuminating the exit path (22) and breaking the particles moving thereon and a reading device (14) for analyze the pieces of broken particles. Procédé optique de déplacement de particules selon un axe, caractérisé en ce qu'il comprend la formation d'un gradient d'intensité d'onde stationnaire au niveau d'une particule à déplacer, par illumination, à l'aide d'une onde électromagnétique, d'un substrat (1) sur lequel est déposée au moins une bande (5) d'au moins une couche mince présentant un gradient d'épaisseur optique selon l'axe.Optical method for moving particles along an axis, characterized in that it comprises forming a steady-state wave intensity gradient at a particle to be displaced, by illumination, using a wave electromagnetic, of a substrate (1) on which is deposited at least one strip (5) of at least one thin layer having an optical thickness gradient along the axis. Procédé selon la revendication 18, caractérisé en ce que la vitesse de déplacement de la particule est modifiée en faisant varier l'incidence de l'onde électromagnétique sur le substrat. Method according to claim 18, characterized in that the speed of movement of the particle is varied by varying the incidence of the electromagnetic wave on the substrate. Procédé d'aiguillage de particules d'une première voie vers une deuxième voie, caractérisé en ce que le déplacement d'une particule sur une voie est effectué selon le procédé de la revendication 18 et en ce que l'aiguillage d'une particule est réalisé par modification de la longueur d'onde de l'onde qui illumine le substrat (1) d'une première valeur (λ1) vers une deuxième valeur (λ2), la première valeur étant une valeur sur laquelle est centrée la première voie qui est constituée d'une première bande (8) d'au moins une couche mince déposée sur le substrat (1) et la deuxième valeur étant une valeur sur laquelle est centrée la deuxième voie qui est constituée d'une deuxième bande (9) d'au moins une couche mince déposée sur le substrat.A method of switching particles from a first path to a second path, characterized in that the movement of a particle on a path is carried out according to the method of claim 18 and in that the switching of a particle is made by changing the wavelength of the wave which illuminates the substrate (1) from a first value (λ1) to a second value (λ2), the first value being a value on which is centered the first channel which consists of a first strip (8) of at least one thin layer deposited on the substrate (1) and the second value being a value on which is centered the second channel which consists of a second strip (9) of at least one thin layer deposited on the substrate. Procédé de tri de particules, caractérisé en ce qu'il met en euvre un procédé d'aiguillage selon la revendication 20.A method of sorting particles, characterized in that it implements a switching method according to claim 20. Procédé d'analyse de particules, caractérisé en ce qu'il met en oeuvre un procédé de tri selon la revendication 21.Particle analysis method, characterized in that it uses a sorting method according to claim 21.
EP02293061A 2001-12-13 2002-12-11 Optical device and optical method for displacing particles Withdrawn EP1324645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0116117 2001-12-13
FR0116117A FR2833716B1 (en) 2001-12-13 2001-12-13 OPTICAL DEVICE AND OPTICAL METHOD FOR MOVING PARTICLES

Publications (1)

Publication Number Publication Date
EP1324645A1 true EP1324645A1 (en) 2003-07-02

Family

ID=8870437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02293061A Withdrawn EP1324645A1 (en) 2001-12-13 2002-12-11 Optical device and optical method for displacing particles

Country Status (4)

Country Link
US (1) US20030111594A1 (en)
EP (1) EP1324645A1 (en)
JP (1) JP2003262589A (en)
FR (1) FR2833716B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863360A1 (en) * 2003-12-04 2005-06-10 Commissariat Energie Atomique DEVICE FOR SEPARATING OBJECTS OPTICALLY.
FR2863181A1 (en) * 2003-12-04 2005-06-10 Commissariat Energie Atomique METHOD OF SORTING PARTICLES
FR2863182A1 (en) * 2003-12-04 2005-06-10 Commissariat Energie Atomique METHOD FOR CONCENTRATING PARTICLES

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1620862B1 (en) * 2003-05-08 2015-07-08 The University Court of the University of St. Andrews Fractionation of particles
FR2860886B1 (en) 2003-10-14 2005-12-23 Commissariat Energie Atomique DEVICE FOR DISPLACING PARTICLES
GB0618605D0 (en) * 2006-09-21 2006-11-01 Univ St Andrews Optical sorting
GB0618606D0 (en) * 2006-09-21 2006-11-01 Univ St Andrews Optical sorting
EP1905755A1 (en) * 2006-09-26 2008-04-02 Lonza Ag Process for the synthesis of 2,2 ,6-tribromobiphenyl
US9841367B2 (en) 2011-09-16 2017-12-12 The University Of North Carolina At Charlotte Methods and devices for optical sorting of microspheres based on their resonant optical properties
US9242248B2 (en) * 2011-09-16 2016-01-26 The University Of North Carolina At Charlotte Methods and devices for optical sorting of microspheres based on their resonant optical properties
US10919268B1 (en) * 2019-09-26 2021-02-16 United States Of America As Represented By The Administrator Of Nasa Coatings for multilayer insulation materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196604A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Optical waveguide and its manufacture
US4887721A (en) * 1987-11-30 1989-12-19 The United States Of America As Represented By The United States Department Of Energy Laser particle sorter
US5079169A (en) * 1990-05-22 1992-01-07 The Regents Of The Stanford Leland Junior University Method for optically manipulating polymer filaments
US5100627A (en) * 1989-11-30 1992-03-31 The Regents Of The University Of California Chamber for the optical manipulation of microscopic particles
US5227648A (en) * 1991-12-03 1993-07-13 Woo Jong Chun Resonance cavity photodiode array resolving wavelength and spectrum
EP0569181A1 (en) * 1992-05-08 1993-11-10 AT&T Corp. An integrated optical package for coupling optical fibers to devices with asymmetric light beams
US5793485A (en) * 1995-03-20 1998-08-11 Sandia Corporation Resonant-cavity apparatus for cytometry or particle analysis

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744038B2 (en) * 2000-11-13 2004-06-01 Genoptix, Inc. Methods of separating particles using an optical gradient
US20020123112A1 (en) * 2000-11-13 2002-09-05 Genoptix Methods for increasing detection sensitivity in optical dielectric sorting systems
US20020108859A1 (en) * 2000-11-13 2002-08-15 Genoptix Methods for modifying interaction between dielectric particles and surfaces
US20020160470A1 (en) * 2000-11-13 2002-10-31 Genoptix Methods and apparatus for generating and utilizing linear moving optical gradients
US6833542B2 (en) * 2000-11-13 2004-12-21 Genoptix, Inc. Method for sorting particles
US20020113204A1 (en) * 2000-11-13 2002-08-22 Genoptix Apparatus for collection of sorted particles
US6784420B2 (en) * 2000-11-13 2004-08-31 Genoptix, Inc. Method of separating particles using an optical gradient
US20030007894A1 (en) * 2001-04-27 2003-01-09 Genoptix Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US20020115163A1 (en) * 2000-11-13 2002-08-22 Genoptix Methods for sorting particles by size and elasticity
US20030124516A1 (en) * 2001-04-27 2003-07-03 Genoptix, Inc. Method of using optical interrogation to determine a biological property of a cell or population of cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196604A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Optical waveguide and its manufacture
US4887721A (en) * 1987-11-30 1989-12-19 The United States Of America As Represented By The United States Department Of Energy Laser particle sorter
US5100627A (en) * 1989-11-30 1992-03-31 The Regents Of The University Of California Chamber for the optical manipulation of microscopic particles
US5079169A (en) * 1990-05-22 1992-01-07 The Regents Of The Stanford Leland Junior University Method for optically manipulating polymer filaments
US5227648A (en) * 1991-12-03 1993-07-13 Woo Jong Chun Resonance cavity photodiode array resolving wavelength and spectrum
EP0569181A1 (en) * 1992-05-08 1993-11-10 AT&T Corp. An integrated optical package for coupling optical fibers to devices with asymmetric light beams
US5793485A (en) * 1995-03-20 1998-08-11 Sandia Corporation Resonant-cavity apparatus for cytometry or particle analysis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 332 (P - 905) 26 July 1989 (1989-07-26) *
SATOSHI KAWATA ET AL: "MOVEMENT OF MICROMETER-SIZED PARTICLES IN THE EVANESCENT FIELD OF A LASER BEAM", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 17, no. 11, 1 June 1992 (1992-06-01), pages 772 - 774, XP000274845, ISSN: 0146-9592 *
TANAKA T ET AL: "OPTICALLY INDUCED PROPULSION OF SMALL PARTICLES IN AN EVENESCENT FIELD OF HIGHER PROPAGATION MODE IN A MULTIMODE, CHANNELED WAVEGUIDE", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 77, no. 20, 13 November 2000 (2000-11-13), pages 3131 - 3133, XP000970277, ISSN: 0003-6951 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863360A1 (en) * 2003-12-04 2005-06-10 Commissariat Energie Atomique DEVICE FOR SEPARATING OBJECTS OPTICALLY.
FR2863181A1 (en) * 2003-12-04 2005-06-10 Commissariat Energie Atomique METHOD OF SORTING PARTICLES
FR2863182A1 (en) * 2003-12-04 2005-06-10 Commissariat Energie Atomique METHOD FOR CONCENTRATING PARTICLES
WO2005054819A1 (en) * 2003-12-04 2005-06-16 Commissariat A L'energie Atomique Particle concentration method
WO2005054832A1 (en) * 2003-12-04 2005-06-16 Commissariat A L'energie Atomique Particle sorting method
WO2005054818A1 (en) * 2003-12-04 2005-06-16 Commissariat A L'energie Atomique Object separation device using optical method
US7366377B2 (en) 2003-12-04 2008-04-29 Commissariat A L'energie Atomique Particle concentration method
US7402795B2 (en) 2003-12-04 2008-07-22 Commissariat A L'energie Atomique Particle sorting method
US7511263B2 (en) 2003-12-04 2009-03-31 Commissariat A L'energie Atomique Object separation device using optical method

Also Published As

Publication number Publication date
FR2833716B1 (en) 2004-01-30
FR2833716A1 (en) 2003-06-20
US20030111594A1 (en) 2003-06-19
JP2003262589A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
EP0033048B1 (en) Interferometer with tunable optical cavity comprising a monomodal optical fibre, and its application to filtration and spectrography
EP1324645A1 (en) Optical device and optical method for displacing particles
FR2555324A1 (en) IMPROVEMENTS IN OPTICAL DEVICES, IN PARTICULAR DEMULTIPLEXING AND MULTIPLEXING, AND IN OPTICAL FILTERS USED IN SUCH DEVICES
FR2965067A1 (en) SPECTRAL FILTER PASSE BAND WITH HIGH SELECTIVITY AND CONTROLLED POLARIZATION
FR2570839A1 (en) DEVICE FOR COUPLING BETWEEN WAVEGUIDES, MONOLITHICALLY INTEGRATED WITH THESE ON SEMICONDUCTOR SUBSTRATE
EP3425344A1 (en) Movement sensor with segmented ring micro-resonator
EP0742453A1 (en) Wideband high reflectivity mirror and its manufacturing process
FR2837935A1 (en) UNIDIMENSIONAL PHOTONIC CRYSTAL OPTICAL ELEMENT AND OPTICAL DEVICES COMPRISING THE SAME
CN111579067B (en) Integrated narrow-band light splitting device with ultra-wide band external cutoff
EP1000328B1 (en) Micromonochromator and method for producing same
EP3855068A1 (en) Device for distributed projection of light
WO2011012833A2 (en) Electro-optical devices based on the variation in the index or absorption in the isb transitions
FR3006758A1 (en) INTEGRATED OPTICAL DEVICE FOR NON-CONTACT MEASUREMENT OF ALTITUDES AND THICKNESSES
FR3052923A1 (en) OPTICAL REFLECTOR RESONANT TO MULTIPLE THIN LAYERS OF DIELECTRIC MATERIALS, OPTICAL SENSOR AND LASER AMPLIFICATION DEVICE COMPRISING SUCH A REFLECTOR
EP3339924A1 (en) Optimised integrated photonic circuit
EP1058138A1 (en) Multiplexer/demultiplexer having three waveguides
EP4016054A1 (en) Optical component for an atr imaging device
US7440654B2 (en) Wavelength multiplexer/demultiplexer comprising an optically dispersive stratified body
CA2102593A1 (en) Interferometric device for determining the characteristics of an integrated optics object
EP4034922B1 (en) Bragg mirror and method for producing a bragg mirror
EP0876594B1 (en) Tunable fabry-perot filter for determining gas concentration
EP1546770B1 (en) Flat top optical filtering component
FR2732478A1 (en) STRUCTURE WITH TWO POLARIZATION-INSENSITIVE OPTICAL GUIDES AND METHOD FOR PRODUCING THE SAME
CN117666151A (en) Spectrum and polarization composite beam splitter
FR3052913A1 (en) OPTICAL SENSOR COMPRISING AN OPTICAL REFLECTOR RESONANT TO MULTIPLE THIN LAYERS OF DIELECTRIC MATERIALS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20031217

AKX Designation fees paid

Designated state(s): DE GB IT

17Q First examination report despatched

Effective date: 20040301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: OPTICAL METHOD FOR DISPLACING PARTICLES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050826