EP1374356A2 - Halbleiter-laser mit vertikalem resonator - Google Patents

Halbleiter-laser mit vertikalem resonator

Info

Publication number
EP1374356A2
EP1374356A2 EP02714002A EP02714002A EP1374356A2 EP 1374356 A2 EP1374356 A2 EP 1374356A2 EP 02714002 A EP02714002 A EP 02714002A EP 02714002 A EP02714002 A EP 02714002A EP 1374356 A2 EP1374356 A2 EP 1374356A2
Authority
EP
European Patent Office
Prior art keywords
semiconductor laser
current
laser according
mode
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02714002A
Other languages
English (en)
French (fr)
Inventor
Jürgen Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1374356A2 publication Critical patent/EP1374356A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/1833Position of the structure with more than one structure
    • H01S5/18333Position of the structure with more than one structure only above the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Definitions

  • the invention relates to a semiconductor laser with a vertical resonator formed by reflectors, with an active layer arranged between the reflectors, and emitting photons, and with a current diaphragm for lateral limitation of the current flowing through the active layer.
  • Such semiconductor lasers are known as so-called VCSELs (Vertical Cavity Surface-emitting Lasers). These semiconductor lasers have a layer sequence which comprises an active layer enclosed between two DBR mirrors (distributed Bragg reflector). In order to limit the current injected into the active layer in the lateral direction, at least one current diaphragm made of an oxide is provided in one of the DBR mirrors. With their inner edge, the flow diaphragms define a flow aperture and limit the lateral expansion of the pump spot diameter in the active layer.
  • the known semiconductor lasers with current diaphragms made of oxide have low optical output powers, high ohmic resistances and high thermal resistances due to the small current aperture.
  • the object of the invention is to create a mono-mode semiconductor laser that is easy to manufacture and has a high optical output power and low ohmic and thermal resistance.
  • the additional mode-selective area along the axis of the vertical resonator effectively suppresses higher modes, since these suffer higher losses in the mode-selective areas than the basic mode. Therefore, only the basic mode can reach the laser threshold. At the same time, it is possible to increase the current aperture, which in comparison with the prior art results in a higher output power and a lower ohmic and thermal resistance.
  • the mode-selective areas are implantation areas with reduced conductivity.
  • Such implantation areas can also be formed in a large volume with sufficient precision.
  • the conductivity can be reduced by implantations, so that the higher order lateral modes are damped in the implantation areas.
  • FIG. 1 shows a cross section through a semiconductor laser according to the invention.
  • the semiconductor laser 1 shown in cross section in FIG. 1 has a lower Bragg reflector 3 applied to a substrate, on which a cavity 4 with a photon-emitting active zone is formed. Above the cavity 4 there is an upper Bragg reflector 5 in which current diaphragms 6 are formed. The inner edge of the flow diaphragms 6 defines current apertures 7, by means of which the lateral expansion of the currents injected into the cavity 4 is limited. This creates a photon-emitting pump leak 8 in the cavity 4, through which the radiation reflected between the lower Bragg reflector 3 and the upper Bragg reflector 5 is optically amplified. Part of this radiation is transmitted through the upper Bragg reflector 5 and can exit the semiconductor laser 1 through an outlet opening 9 in an annular front contact 10. In addition, a rear-side contact 11 is present on the rear of the substrate 2.
  • the upper Bragg reflector 5 is designed as a mesa 12. In edge areas of the mesa 12 there are implantation areas as mode-selective areas 13, which also extend into the substrate 2. The mode-selective regions 13 have an inner opening 14. The cross-sectional area of the inner opening 14 is always larger than the area of the current apertures 7.
  • the conductivity of the material is lower than the conductivity in the inner opening 14 of the mode-selective areas 13. Therefore, higher-order modes that extend into the mode-selective areas 13 are weakened.
  • Optical amplification only takes place in the area of the inner opening 14, that is to say in the area of the basic mode.
  • the diameter of the current apertures 7 can therefore be chosen to be larger than in the prior art.
  • the larger opening of the current apertures 7 compared to the prior art leads to a lower series resistance of the semiconductor laser 1, as well as a lower thermal resistance, which results in weaker aging effects.
  • the large current apertures 7 lead to a large pump leak and thus to higher optical output powers.
  • the inside diameter of the current apertures 7 in the semiconductor laser 1 is more than 3 ⁇ m, preferably more than 4 ⁇ m.
  • the invention described here is not restricted to certain materials.
  • the known materials that can be used for the described type of semiconductor lasers 1 come into question.
  • the usual methods known to those skilled in the art are suitable for the production.

Abstract

Ein Wechsel weist neben Stromblenden (6) im Randbereich einer Mesa (12) Implantationsgebiete auf, die als modenselektive Gebiete (13) wirksam sind. Dadurch kann die Innenöffnung der Stromblenden (6) grösser als beim Stand der Technik gewählt werden. Dies führt zu einem kleinohmschen und thermischen Widerstand und ermöglicht eine hohe Ausgangsleistung.

Description

Beschreibung
Halbleiter-Laser
Die Erfindung betrifft einen Halbleiter-Laser mit einem von Reflektoren gebildeten Vertikalresonator, mit einer zwischen den Reflektoren angeordneten, Photonen emittierenden aktiven Schicht und mit einer Stromblende zur seitlichen Eingrenzung des durch die aktive Schicht hindurchfließenden Stromes.
Derartige Halbleiter-Laser sind als sogenannte VCSELs (Verti- cal Cavity Surface-emitting Laser) bekannt. Diese Halbleiter- Laser weisen eine Schichtfolge auf, die eine zwischen zwei DBR-Spiegeln (distributed Bragg reflector) eingeschlossene aktive Schicht umfaßt. Um den in die aktive Schicht injizierten Strom in seitlicher Richtung zu begrenzen, ist mindestens eine Stromblende aus einem Oxid in einem der DBR-Spiegel vorgesehen. Die Stromblenden definieren mit ihrem inneren Rand eine Stromapertur und beschränken die seitliche Ausdehnung des Pumpfleckdurchmessers in der aktiven Schicht.
Grundsätzlich ist mit derartigen Halbleiter-Lasern auch Mono- modenbetrieb möglich. Dafür ist jedoch ein verhältnismäßig kleiner Pumpfleckdurchmesser von weniger als 4μm nötig, was eine entsprechend kleine Stromapertur bedingt. Derartige kleine Durchmesser der Stromapertur sind jedoch nur mit großen Schwierigkeiten präzise herstellbar. Üblicherweise erfolgt die Oxidation seitlich von den Rändern der Schichtenfolge her, nachdem die Schichtenfolge vollständig abgeschie- den wurden ist. Dieses Vorgehensweise erfordert jedoch eine genaue Kenntnis und Steuerung der Prozeßparameter.
Außerdem weisen die bekannten Halbleiter-Laser mit Stromblenden aus Oxid aufgrund der kleinen Stromapertur niedrige opti- sehe Ausgangsleistungen, hohe ohmsche Widerstände und hohe thermische Widerstände auf. Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen einfach herstellbaren, monomodi- gen Halbleiter-Laser mit hoher optischer Ausgangsleistung sowie niedrigem ohmschen und thermischen Widerstand zu schaf- fen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß neben der Stromblende weitere, sich in vertikaler Richtung einstreckende, den Vertikalresonator seitlich begrenzende, mo- denselektive Gebiete vorhanden sind.
Durch die zusätzlich modenselektiven Gebiet entlang der Achse des Vertikalresonators werden höhere Moden wirksam unterdrückt, da diese in den modenselektiven Bereichen höhere Ver- luste erleiden als die Grundmode. Daher kann nur die Grundmode die Laserschwelle erreichen. Gleichzeitig ist es möglich, die Stromapertur zu vergrößern, was im Vergleich zum Stand der Technik eine höhere Ausgangsleistung sowie einen geringeren ohmschen und thermischen Widerstand zur Folge hat.
Bei einer bevorzugten Ausführungsform der Erfindung sind die modenselektiven Gebiete Implantationsgebiet mit verringerter Leitfähigkeit .
Derartige Implantationsgebiete können auch in einem großen Volumen mit ausreichender Präzision ausgebildet werden. Außerdem läßt sich durch Implantationen die Leitfähigkeit senken, so daß die Lateralmoden höherer Ordnung in den Implantationsgebieten gedämpft werden.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Nachfolgend wird die Erfindung im einzeln anhand der beige- fügten Zeichnung erläutert. Es zeigt:
Figur 1 einen Querschnitt durch einen Halbleiter-Laser gemäß der Erfindung. Der im Figur 1 im Querschnitt dargestellte Halbleiter-Laser 1 weist einen auf ein Substrat aufgebrachten unteren Bragg- Reflektor 3 auf, auf dem eine Kavität 4 mit einer Photonen emittierenden, aktiven Zone ausgebildet ist. Oberhalb der Kavität 4 befindet sich ein oberer Bragg-Reflektor 5, in dem Stromblenden 6 ausgebildet sind. Der innere Rand der Stromblenden 6 definiert Stromaperturen 7, durch die die seitliche Ausdehnung der in die Kavität 4 injizierten Ströme begrenzt wird. Dadurch entsteht in der Kavität 4 ein Photonen emittierender Pumpfleck 8 durch den die zwischen dem unteren Bragg- Reflektor 3 und dem oberen Bragg-Reflektor 5 reflektierte Strahlung optisch verstärkt wird. Ein Teil dieser Strahlung wird vom oberen Bragg-Reflektor 5 hindurchgelassen und kann durch eine Austrittsöffnung 9 in einem ringförmigen Vorderseitenkontakt 10 den Halbleiter-Laser 1 verlassen. Außerdem ist auf der Rückseite des Substrats 2 ein Rückseitenkontakt 11 vorhanden.
Im allgemeinen ist der obere Bragg-Reflektor 5 als Mesa 12 ausgebildet. In Randbereichen der Mesa 12 befinden sich Implantationsgebiete als modenselektive Gebiete 13, die sich auch in das Substrat 2 erstrecken. Die modenselektiven Gebiete 13 weisen eine Innenöffnung 14 auf. Die Querschnittsfläche der Innenöffnung 14 ist stets größer als die Fläche der Stromaperturen 7.
Durch Implantation ist in den modenselektiven Gebiete 13 die Leitfähigkeit des Materials geringer als die Leitfähigkeit in der Innenöffnung 14 der modenselektiven Gebiete 13. Daher werden Moden höherer Ordnung, die sich in die modenselektiven Gebiete 13 erstrecken, geschwächt. Eine optische Verstärkung findet nur im Bereich der Innenöffnung 14, also im Bereich der Grundmode statt. Daher kann der Durchmesser der Stroma- perturen 7 größer als beim Stand der Technik gewählt werden.
Die im Vergleich zum Stand der Technik größere Öffnung der Stromaperturen 7 führt zu einem geringeren Serienwiderstand des Halbleiter-Lasers 1, sowie zu einem geringeren thermischen Widerstand, was schwächere Alterungseffekte zur Folge hat . Außerdem führen die großen Stromaperturen 7 zu einem großen Pumpfleck und damit zu höheren optischen Ausgangslei - stungen. Der Innendurchmesser der Stromaperturen 7 beträgt beim Halbleiter-Laser 1 mehr als 3 μm, vorzugsweise mehr als 4 μm.
Von besonderem Vorteil ist auch, daß die Herstellung der Stromblenden 6 im Vergleich zum Stand der Technik besser be- herschbar ist, da die herstellungsbedingten Abweichungen bei der Fertigung der Stromblenden 6 relativ gesehen kleiner sind.
Durch die doppelte Ausführung der Stromblenden 6 können ferner Randüberhöhungen der Strominjektion in die Kavität 4 vermieden werden, die an sich auch die Monomodigkeit gefährden.
Die hier beschriebene Erfindung ist nicht auf bestimmte Mate- rialien beschränkt. In Frage kommen die bekannten, für die beschriebene Art von Halbleiter-Lasern 1 verwendbaren Materialien. Für die Herstellung eignen sich die üblichen, dem Fachmann bekannten Verfahren.

Claims

Patentansprüche
1. Halbleiter-Laser mit einem von Reflektoren (3,5) gebildeten Vertikalresonator, mit einer zwischen den Reflektoren (3,5) angeordneten, Photonen emittierenden aktiven Schicht (8) und mit mindestens einer Stromblende (6) zur seitlichen Eingrenzung des durch die aktive Schicht (8) hindurchfließenden Stromes, d a d u r c h g e k e n n z e i c h n e t, daß neben der Stromblende (6) weitere, sich in vertikaler Richtung erstreckende, den Vertikalresonator seitlich begrenzende, modenselektive Gebiete (13) vorhanden sind.
2. Halbleiter-Laser nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der Reflektor in einer Mesa (12) ausgebildet ist.
3. Halbleiter-Laser nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die Mesa (12) einen Durchmesser >10μm aufweist.
4. Halbleiter-Laser nach einem der Ansprüche 1 bis 2, d a d u r c h g e k e n n z e i c h n e t, daß die Stromblende (6) aus Oxid gefertigt ist.
5. Halbleiter-Laser nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß die von der Stromblende (6) gebildete Stromapertur (7) einen Durchmesser > 3μm aufweist.
6. Halbleiter-Laser nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Stromblende (6) einen Durchmesser > 4μm aufweist.
7. Halbleiter-Laser nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß eine Innenöffnung (14) der modenselektiven Gebiete (13) größer als die Stromapertur (7) ist.
8. Halbleiter-Laser nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, daß die modenselektiven Gebiete (13) eine Leitfähigkeit auf- weisen, die kleiner ist als eine Leitfähigkeit des Vertikal- Resonators entlang der Resonatorachse.
9. Halbleiter-Laser nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß das modenselektive Gebiet (13) ein Implantationsgebiet ist .
10. Halbleiter-Laser nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß sich das modenselektive Gebiet (13) im Rand- und Umgebungsbereich des Vertikalresonators erstreckt.
11. Halbleiter-Laser nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t, daß der Halbleiterlaser zwei oder mehr Stromblenden (6) umfaßt.
12. Halbleiter-Laser nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t, daß der Halbleiter-Laser eine Mehrschichtstruktur aufweist und die modenselektiven Gebiete (13) in dieser Mehrschichtstruktur gebildet sind.
1/1
EP02714002A 2001-02-08 2002-02-08 Halbleiter-laser mit vertikalem resonator Withdrawn EP1374356A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10105722A DE10105722B4 (de) 2001-02-08 2001-02-08 Halbleiter-Laser mit Vertikalresonator und modenselektiven Gebieten
DE10105722 2001-02-08
PCT/DE2002/000471 WO2002063733A2 (de) 2001-02-08 2002-02-08 Halbleiter-laser mit vertikalem resonator

Publications (1)

Publication Number Publication Date
EP1374356A2 true EP1374356A2 (de) 2004-01-02

Family

ID=7673278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02714002A Withdrawn EP1374356A2 (de) 2001-02-08 2002-02-08 Halbleiter-laser mit vertikalem resonator

Country Status (5)

Country Link
US (1) US7177339B2 (de)
EP (1) EP1374356A2 (de)
JP (1) JP2004518304A (de)
DE (1) DE10105722B4 (de)
WO (1) WO2002063733A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855661A1 (fr) * 2003-05-26 2004-12-03 Optogone Sa Laser a cavite verticale et a emission surfacique, systeme de telecommunication et procede correspondant
EP1496583B1 (de) * 2003-07-07 2016-05-18 II-VI Laser Enterprise GmbH Oberflächenemittierender Laser mit vertikalem Resonator mit verbesserter Kontrolle der transversalen Moden und Herstellungsverfahren desselben
KR100624433B1 (ko) * 2004-08-13 2006-09-19 삼성전자주식회사 P형 반도체 탄소 나노튜브 및 그 제조 방법
KR100982421B1 (ko) * 2004-10-14 2010-09-15 삼성전자주식회사 깔대기 형태의 전류주입영역을 구비하는 면발광 고출력레이저 소자
JP4855038B2 (ja) * 2004-10-14 2012-01-18 三星電子株式会社 ファンネル構造のvecsel
US20070019696A1 (en) * 2005-07-22 2007-01-25 Li-Hung Lai Vertical cavity surface emitting laser and method for fabricating the same
DE102006046297A1 (de) * 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Halbleiterlaser
DE102017108104A1 (de) 2017-04-13 2018-10-18 Osram Opto Semiconductors Gmbh Oberflächenemittierender Halbleiterlaser und Verfahren zu dessen Herstellung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258316A (en) * 1992-03-26 1993-11-02 Motorola, Inc. Patterened mirror vertical cavity surface emitting laser
US5256596A (en) * 1992-03-26 1993-10-26 Motorola, Inc. Top emitting VCSEL with implant
US5245622A (en) * 1992-05-07 1993-09-14 Bandgap Technology Corporation Vertical-cavity surface-emitting lasers with intra-cavity structures
US5446752A (en) * 1993-09-21 1995-08-29 Motorola VCSEL with current blocking layer offset
GB2295270A (en) * 1994-11-14 1996-05-22 Sharp Kk Surface-emitting laser with profiled active region
US5493577A (en) * 1994-12-21 1996-02-20 Sandia Corporation Efficient semiconductor light-emitting device and method
US5557627A (en) * 1995-05-19 1996-09-17 Sandia Corporation Visible-wavelength semiconductor lasers and arrays
US5719891A (en) * 1995-12-18 1998-02-17 Picolight Incorporated Conductive element with lateral oxidation barrier
US5881085A (en) * 1996-07-25 1999-03-09 Picolight, Incorporated Lens comprising at least one oxidized layer and method for forming same
US5977604A (en) * 1996-03-08 1999-11-02 The Regents Of The University Of California Buried layer in a semiconductor formed by bonding
US5903590A (en) * 1996-05-20 1999-05-11 Sandia Corporation Vertical-cavity surface-emitting laser device
US5729566A (en) * 1996-06-07 1998-03-17 Picolight Incorporated Light emitting device having an electrical contact through a layer containing oxidized material
US5764674A (en) * 1996-06-28 1998-06-09 Honeywell Inc. Current confinement for a vertical cavity surface emitting laser
US5822356A (en) * 1997-02-06 1998-10-13 Picolight Incorporated Intra-cavity lens structures for semiconductor lasers
US6064683A (en) * 1997-12-12 2000-05-16 Honeywell Inc. Bandgap isolated light emitter
US6542527B1 (en) * 1998-08-27 2003-04-01 Regents Of The University Of Minnesota Vertical cavity surface emitting laser
US6185241B1 (en) * 1998-10-29 2001-02-06 Xerox Corporation Metal spatial filter to enhance model reflectivity in a vertical cavity surface emitting laser
US6144682A (en) * 1998-10-29 2000-11-07 Xerox Corporation Spatial absorptive and phase shift filter layer to reduce modal reflectivity for higher order modes in a vertical cavity surface emitting laser
US6751245B1 (en) * 1999-06-02 2004-06-15 Optical Communication Products, Inc. Single mode vertical cavity surface emitting laser
US6882673B1 (en) * 2001-01-15 2005-04-19 Optical Communication Products, Inc. Mirror structure for reducing the effect of feedback on a VCSEL
US6534331B2 (en) * 2001-07-24 2003-03-18 Luxnet Corporation Method for making a vertical-cavity surface emitting laser with improved current confinement
US6680963B2 (en) * 2001-07-24 2004-01-20 Lux Net Corporation Vertical-cavity surface emitting laser utilizing a reversed biased diode for improved current confinement
US6904072B2 (en) * 2001-12-28 2005-06-07 Finisar Corporation Vertical cavity surface emitting laser having a gain guide aperture interior to an oxide confinement layer
US6618414B1 (en) * 2002-03-25 2003-09-09 Optical Communication Products, Inc. Hybrid vertical cavity laser with buried interface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02063733A2 *

Also Published As

Publication number Publication date
US20040032892A1 (en) 2004-02-19
DE10105722A1 (de) 2002-09-05
WO2002063733A2 (de) 2002-08-15
DE10105722B4 (de) 2006-12-14
WO2002063733A3 (de) 2003-10-16
JP2004518304A (ja) 2004-06-17
US7177339B2 (en) 2007-02-13

Similar Documents

Publication Publication Date Title
DE69814379T2 (de) Laser mit selektiv veränderter strombegrenzungsschicht
DE60002478T2 (de) Oberflächenemittierender laser mit vertikalem hauptresonator (vcsel) und gekoppeltem nichtlichtleitenden nebenresonator
DE69909214T2 (de) Halbleitervorrichtung mit ausgerichteten Oxidöffnungen und Kontaktierung einer Zwischenschicht
EP2467909B1 (de) Diodenlaser und laserresonator für einen diodenlaser mit verbesserter lateraler strahlqualität
EP1906498A1 (de) Halbleiterlaser mit Absorberzone zur Dämpfung höherer Moden
WO1997037406A1 (de) Gütegesteuerter halbleiterlaser
DE10234152A1 (de) Oberflächenemittierende Lasereinrichtung
DE19955599B4 (de) Laser mit Wellenlängenumwandlung und Bearbeitungsvorrichtung mit einem solchen Laser
EP0985256A1 (de) Vertikalresonator-laserdiode und verfahren zu deren herstellung
DE3220214A1 (de) Lichtemittierende vorrichtung
EP1366548B1 (de) Oberflächenemittierender halbleiterlaser
EP1374356A2 (de) Halbleiter-laser mit vertikalem resonator
DE60206633T2 (de) Herstellungsverfahren eines vcsel mit dielektrischem spiegel und selbsteinrichtender verstärkungsführung
EP1683244B1 (de) Optisch gepumpte halbleiterlaservorrichtung
DE10122063B4 (de) Oberflächenemittierende Halbleiterlaservorrichtung
DE3406838A1 (de) Gekoppelter kurzhohlraumlaser
WO2012168437A1 (de) Kantenemittierender halbleiterlaser
DE10313609A1 (de) Halbleiterlaser mit reduzierter Rückwirkungsempfindlichkeit
DE19517380A1 (de) Verfahren und Vorrichtung zum Erzeugen von blauem und grünem Laserlicht
EP1468476A1 (de) Laserdiode mit vertikalresonator und verfahren zu siener herstellung
EP2866315A2 (de) Halbleiterlaserdiode mit einstellbarer Emissionswellenlänge
DE10048443B4 (de) Oberflächenemittierender Halbleiter-Laser (VCSEL) mit erhöhter Strahlungsausbeute
DE102008017268A1 (de) Oberflächenemittierender Halbleiterlaser mit monolithisch integriertem Pumplaser
DE4338606C2 (de) Gewinngekoppelte Laserdiode
EP1630914B1 (de) Vertikal emittierender Halbleiterlaser mit externem Resonator und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030722

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

17Q First examination report despatched

Effective date: 20090324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090804