US20010044832A1 - System and method for distributing data over a communications network for dsplay during start-up - Google Patents

System and method for distributing data over a communications network for dsplay during start-up Download PDF

Info

Publication number
US20010044832A1
US20010044832A1 US09/149,405 US14940598A US2001044832A1 US 20010044832 A1 US20010044832 A1 US 20010044832A1 US 14940598 A US14940598 A US 14940598A US 2001044832 A1 US2001044832 A1 US 2001044832A1
Authority
US
United States
Prior art keywords
browsing device
data
host server
communications network
browsing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/149,405
Other versions
US6317791B1 (en
Inventor
Alan Cohn
Timo Bruck
Stephen G. Perlman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/107,651 external-priority patent/US6237039B1/en
Application filed by Individual filed Critical Individual
Priority to US09/149,405 priority Critical patent/US6317791B1/en
Assigned to WEBTV NETWORKS, INC. reassignment WEBTV NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRUCK, TIMO, COHN, ALAN, PERLMAN, STEPHEN G.
Priority to US09/457,882 priority patent/US6338094B1/en
Application granted granted Critical
Publication of US6317791B1 publication Critical patent/US6317791B1/en
Publication of US20010044832A1 publication Critical patent/US20010044832A1/en
Assigned to MICROSOFT CORPORATION reassignment MICROSOFT CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: WEBTV NETWORKS, INC.
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/957Browsing optimisation, e.g. caching or content distillation
    • G06F16/9574Browsing optimisation, e.g. caching or content distillation of access to content, e.g. by caching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/19Flow control; Congestion control at layers above the network layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • H04L49/9057Arrangements for supporting packet reassembly or resequencing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • H04L49/9063Intermediate storage in different physical parts of a node or terminal
    • H04L49/9068Intermediate storage in different physical parts of a node or terminal in the network interface card
    • H04L49/9073Early interruption upon arrival of a fraction of a packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/53Network services using third party service providers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/535Tracking the activity of the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols

Definitions

  • the present invention relates generally to distributing data to users of a communications network, and more particularly, to distributing data from a host server to a browsing device via a communications network such as the Internet.
  • the WEBTV Internet access network includes a large number of browsing devices, referred to as client terminals, and at least one host server.
  • the client terminals are connected to the Internet via conventional modem pools, either by Integrated Services Digital Network (ISDN) connection, a telephone line, or another data link, and can directly access web pages established by Internet publishers.
  • ISDN Integrated Services Digital Network
  • the host server communicates with the client terminals to provide a convenient standardized interface for accessing the Internet.
  • the host server also offers supplemental services, such as email, news reports, television program guides, and enhanced access to certain web pages for subscribers of the service.
  • the publisher of an Internet site is able to advertise by several presently known methods.
  • a publisher may include advertisements in graphical banners or audio jingles on an Internet site.
  • a publisher also may include a text or graphical link to another web page containing information about an advertiser or advertised product.
  • Interstitial advertising methods are also known in which advertising information embedded in a web page or in the home page of the browser, or cached in the client browsing device itself, is presented in response to selection of a hypertext link on a web page (see Judson, U.S. Pat. No. 5,572,643, the disclosure of which is herein incorporated by reference). These advertising methods also delay the user during download of the advertising information.
  • pull technology is not an effective means of distributing advertising for Internet access services.
  • an Internet access service merely offers the user a dial-up connection to the Internet.
  • the Internet access service is largely invisible to the user.
  • the user typically uses a modem to dial a phone number and establishes a connection to the Internet, and uses an off-the-shelf browser program to access web pages through the Internet.
  • Pull technology cannot be used to distribute advertising to a user of such an Internet access service because the user is not accessing any web pages published by the Internet access service.
  • Internet access services such as the WEBTV Internet access network
  • WEBTV Internet access network offer Internet access via a proprietary interface allowing access to subscriber services, such as a web directory and search engine, as well as to the Internet.
  • Pull technology may be used to advertise directly to users of such an Internet access service, but only when the users are accessing the web pages published by the Internet access service.
  • pull technology is ineffective to distribute advertising.
  • a server pushes information to a browsing device without request from the user, or based on a predetermined request from the user.
  • Current push technology causes the user two types of delay. First, the user experiences delay as the browsing device takes time to download the pushed information. Second, the user is delayed when interrupted by an unrequested display of pushed information. Such delay may be annoying to the user, and may decrease the effectiveness of the advertising due to the intrusive nature of the advertisement.
  • a method and system are provided for delivering data from a host server to a browsing device through a communications network for display during start-up of the browsing device.
  • the method typically includes detecting an extended period of nonuse of the browsing device, establishing contact between the browsing device and the host server, preloading the data from the host server to the browsing device, and storing the data in the browsing device.
  • the browsing device detects a start-up operation and presents the data during the start-up operation.
  • the system typically includes a host server connectable to a browsing device through a communications network.
  • the host server and browsing device are configured to establish contact upon detection of an extended period of nonuse in the browsing device, and preload data from the host server to the browsing device.
  • the browsing device is configured to detect a start-up operation and present the data during the start-up operation.
  • FIG. 1 is a somewhat schematic view of a browsing device in the form of a set-top box configured for use in accordance with the present invention.
  • FIG. 2 is a schematic view illustrating the architecture of the browsing device of FIG. 1.
  • FIG. 3 is a schematic view of a browsing device in the form of a personal computer configured for use as part of the present invention.
  • FIG. 4 is a schematic view of the structure of a communications network for use by browsing devices as shown in FIGS. 1 and 3.
  • FIG. 5 is a flowchart illustrating a method for distributing data through a communications network.
  • FIG. 6 is a flowchart illustrating a method for distributing data through a communications network to be presented on start-up of a browsing device.
  • FIG. 7 is a schematic view of the transitions available to a user when switching between web pages.
  • FIGS. 1 - 7 and the following discussion are intended to provide a brief, general description of a suitable networked computing environment in which the invention may be implemented.
  • the invention may be practiced with other networked computer devices, including hand-held devices, multiprocessor systems, minicomputers, mainframe computers, and the like.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • FIG. 1 depicts a browsing device 10 in the form of a WEBTV client terminal.
  • the client terminal includes an electronics unit 12 , an ordinary television 14 , and a remote control 16 .
  • Electronics unit 12 typically is referred to as a set-top box (STB), because of its usual placement on top of television 14 .
  • Set-top box 12 may be built into television 14 , forming an integral unit.
  • the client terminal uses television 14 as a display device for displaying both video data and a graphical user interface, and as a loudspeaker device for emitting audio data.
  • the set-top box is coupled to the television by a communications link 18 .
  • the link is an RF (radio frequency), S-video, composite video, or other equivalent form of communications link.
  • the set-top box includes hardware and/or software for receiving and decoding a broadcast video signal 20 , such as an NTSC, PAL, SECAM or other TV system video signal, and providing video data to the television via link 20 .
  • Set-top box 12 also includes a browser program, which may be implemented in hardware and/or software, to cause a graphical user interface 22 to be displayed on television 14 .
  • the browser program enables a user to access various WEBTV network services, browse the World Wide Web, send email, or otherwise access the Internet.
  • Client terminal 10 may include both a standard modem and an ISDN modem, such that the communication link between set-top box 12 and the Internet can be either a telephone (POTS) connection 24 or an ISDN connection 26 .
  • POTS telephone
  • the set-top box receives power through a power line 28 .
  • Remote control 16 is operated by the user to control television viewing, and to control the client terminal while browsing the World Wide Web, sending email, or performing other Internet-related functions.
  • the set-top box receives commands from remote control 16 via an infrared (IR) communication link.
  • IR infrared
  • the link between the remote control and the set-top box may be an RF communication link or any equivalent communication link (e.g., wires, etc.).
  • FIG. 2 is a block diagram illustrating internal features of set-top box 12 .
  • operation of the client terminal is controlled by a processing unit, such as central processing unit (CPU) 30 , which is coupled to an Application-Specific Integrated Circuit (ASIC) 32 .
  • the CPU executes software designed to implement various features of the present invention.
  • ASIC 32 contains circuitry which may be used to implement these features.
  • ASIC 32 is coupled to an audio digital-to-analog converter (DAC) 34 which provides audio output to television 14 .
  • DAC digital-to-analog converter
  • ASIC 32 is coupled to a video encoder 36 which provides video output to television 14 .
  • An IR interface 38 detects IR signals transmitted by remote control 16 and, in response, provides corresponding electrical signals to ASIC 32 .
  • a standard telephone modem 40 and an ISDN modem 42 are coupled to ASIC 32 to provide for connection(s) to the Internet.
  • the set-top box also may include a cable television or radio frequency modem (not shown).
  • a TV interface 44 is coupled to ASIC 32 to receive broadcast video signals, such as an NTSC video signal, and to provide corresponding electrical signals to ASIC 32 .
  • broadcast video signals such as an NTSC video signal
  • TV interface 44 is configured to digitize the incoming video signal, which is stored in RAM 48 , so that ASIC 32 and CPU 30 can process the video signal before displaying it on the television.
  • This configuration enables the set-top box to generate shared screen viewing where the video signal only occupies a portion of the screen. The remaining screen area then can be used to display various user interface controls or data, such as video programming information.
  • RAM 48 Also coupled to ASIC 32 is memory, including random access memory (RAM) 48 and read-only memory (ROM) 46 , which provides for storage of program code for implementing application software to be executed by the set-top box.
  • ROM 46 may be a programmable ROM (PROM), or any form of erasable PROM (EPROM), or flash memory.
  • a mass storage device 50 optionally may be provided and coupled to ASIC 42 . The mass storage device may be used to input software or data to the client terminal or to store downloaded software or data. Mass storage device 50 can be any suitable device for storing machine-executable instructions, such as a magnetic drive, optical drive, and the like.
  • FIG. 3 depicts an alternate browsing device in the form of a conventional personal computer 11 , including a central processing unit (CPU) 52 , a memory 54 , and a bus 56 that couples various components (including the memory) to the CPU.
  • the bus 56 may be any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, or a local bus using any of a variety of bus architectures.
  • the memory includes read only memory (ROM) 58 and random access memory (RAM) 60 .
  • ROM read only memory
  • RAM random access memory
  • BIOS basic input/output system
  • the personal computer further includes a hard disk drive 66 for reading from and writing to a hard disk, a magnetic disk drive 68 for reading from or writing to a removable magnetic disk, and an optical disk drive 70 for reading from or writing to a removable optical disk such as a CD ROM or other optical media.
  • Hard disk drive 66 , magnetic disk drive 68 , and optical disk drive 70 are connected to bus 56 by a hard disk drive interface 72 , a magnetic disk drive interface 74 , and an optical drive interface 76 , respectively.
  • the drives and their associated computer-readable media provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the personal computer.
  • FIG. 3 Although the exemplary environment shown in FIG. 3 employs a hard disk, a removable magnetic disk, and a removable optical disk, it should be appreciated by those skilled in the art that other types of computer readable media which can store data which is accessible by a computer (e.g. magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROMs), etc.) also may be used.
  • a computer e.g. magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROMs), etc.
  • RAMs random access memories
  • ROMs read only memories
  • a number of program modules may be stored on the hard disk, magnetic disk, optical disk, ROM 58 , or RAM 60 , including an operating system, one or more application programs, other program modules, and program data.
  • a user may enter commands and information into the personal computer 11 through input devices such as a keyboard 78 and/or a pointing device (mouse) 80 .
  • Other input devices may include a microphone, joystick, game pad, satellite dish, scanner, or the like.
  • serial port interface 82 which is coupled to the bus.
  • the input devices may be connected by other interfaces, such as a parallel port, game port or a universal serial bus (USB).
  • a monitor 84 or other type of display device is also connected to the bus 56 via an interface, such as a video adapter 86 .
  • personal computers typically include other peripheral output devices (not shown) such as speakers and printers.
  • personal computer 11 includes a browser program, which may be implemented in hardware and/or software, to cause a graphical user interface to be displayed on monitor 84 .
  • the user employs the graphical user interface to browse the World Wide Web, send email, and otherwise access the Internet.
  • the personal computer also typically includes a modem 88 , such as an ISDN modem or telephone line modem, connected to the serial bus for communication with remote computers through a communications network.
  • FIG. 4 illustrates a basic configuration of a networked computing environment in which a browsing device, such as a client terminal or personal computer, typically operates.
  • a number of browsing devices 10 are coupled to a modem pool 90 via bidirectional data connections 92 , which may be a telephone connection, ISDN connection, or any other similar type of connection, such as cable and satellite forward channels.
  • Modem pool 90 typically is coupled through a router, such as that conventionally known in the art, to a number of remote servers 94 via a conventional communications network 96 , such as the Internet.
  • the communications network also includes a host server 98 , which specifically supports and communicates with browsing devices 10 .
  • the browsing devices each have a connection to host server 98 through modem pool 90 and the Internet.
  • modem pool 90 is a conventional modem pool, such as is found today throughout the world providing access to the Internet and private networks.
  • the present invention preferably is implemented on a communications network navigable by hypertext links, such as the World Wide Web.
  • the World Wide Web encompasses a vast collection of web pages residing as data files on remote servers connected to the Internet. Each web page is downloadable and viewable by a browsing device, and often contains hypertext links, which, if selected, cause the browsing device to point to, or download and display, a new web page.
  • a collection of related web pages forms a web site.
  • Individuals or organizations that provide content to the World Wide Web are known as publishers.
  • a single publisher on the Internet may establish a single page, an entire web site, or multiple web sites.
  • Web pages are stored as data files on remote servers, and transmitted to browsing devices upon request from each browsing device.
  • Each remote server has a unique domain name or Internet protocol (IP) address which marks its location on the Internet.
  • IP Internet protocol
  • Each data file which contains web page data has a unique file path to indicate its location within the remote server.
  • browsing device 10 contacts a remote server 94 through communications network 96 using a network address such as a universal resource locator (URL).
  • URL a network address such as a universal resource locator (URL).
  • the URL contains the protocol by which the data is to be transferred, as well as the domain name or IP address at which the remote server is located, and the file path of the specific file to be transferred.
  • the remote server then transmits the requested data to the browser program, which in turn displays the data according to predefined conventions.
  • HTML HyperText Transfer Protocol
  • HTML HyperText Markup Language
  • a method for preloading and presenting certain data, such as advertising data, during periods when browsing device 10 would otherwise experience idle time may be practiced as follows.
  • the browsing device detects a first period of idle time in browsing device operation.
  • This first period of idle time may be an extended period of nonuse of the browsing device, such as when the main functional components of the browsing device are turned off during late night or early morning hours.
  • an extended period of nonuse is identified by the user, the user specifying a time of day when the browsing device is not likely to be in use.
  • this first period of idle time may be a period of temporary inactivity in browsing device operation, such as a period of network communications inactivity, a connect waiting period during which the browsing device is attempting to connect to a remote server through the communications network, or a stalled download period during which the browsing device is connected to, but not receiving information from, a remote server.
  • a period of network communications inactivity occurs when the browsing device, or alternatively the browser program, is not engaged in any communication over the communications network.
  • the browser may establish contact with the host server through the communications network upon detecting the first period of idle time. Alternately, the browsing device and host server may maintain constant contact.
  • a selection program module at the host server selects data, typically advertising data, to download to the browsing device from the host server. While the selection program typically resides at the host server, those skilled in the art will appreciate that it could alternately reside on any device connected to communications network 96 , and communicate selected data to the host server over the communications network.
  • the selection program examines outstanding orders from advertisers, and selects data containing an advertisement, a group of advertisements, or other data, to preload into the memory of the browsing device over the communications network upon detection of the first period of idle time.
  • Internet advertising typically is sold by a unit of presentation time known as an impression.
  • Advertisers may purchase a number of impressions for a particular advertisement to be presented within a given time period. For example, an advertiser may purchase 6000 impressions of an advertisement to be presented to users in July.
  • the selection program balances outstanding orders for impressions of advertisements and chooses the most appropriate advertisement for presentation.
  • For alternative methods of selection of data see the copending U.S. Pat. application entitled “System for Targeting Information to Specific Users on a Computer Network” filed Sep. 8, 1998, by inventors John Adelus, Dean Blackketter, Alan Cohn, and Thomas Scott, the disclosure of which is herein incorporated by reference.
  • the data is preloaded from the host server to the memory of the browsing device over the communications network.
  • the browsing device attempts to detect a determined browsing device event during preloading.
  • the determined browsing device event may be an initiation of other network communications activity by the browser program and/or browsing device, such as downloading a new web page.
  • the determined browsing device event may be a user interaction with the graphical user interface of the browser program. If a determined browsing device event is detected, the browsing device will interrupt the preloading of information to resume or restart at a later time, as shown at step 150 .
  • the data is then stored, at step 160 , in the browsing device.
  • the data may be stored in memory such as RAM, a mass storage device such as a hard drive, or other memory device.
  • browsing device 10 may communicate to the selection program the identity of data which the browsing device has currently cached in memory and/or on a mass storage device.
  • the selection program typically does not instruct the host server to download data already stored in the browsing device.
  • the selection program thus has the capability to remember which data has been preloaded to a given browsing device, and refrain from unnecessarily downloading the same data twice.
  • the browsing device detects a second period of idle time in browsing device operation.
  • This second period of idle time may occur at various points of inactivity in the graphical user interface of the browsing device.
  • the second period of idle time may be a download waiting period during which the browsing device has attempted to begin, but has not completed, downloading information from a remote server on the communications network.
  • the second period of idle time may be a connect waiting period during which the browsing device attempts to, but is temporarily unable to, connect with a remote computer on the network.
  • the second period of idle time may be a start-up waiting period during a start-up operation of the browsing device, after which certain components of the browsing device are functional such that the data may be displayed. Data is only presented during time in which the browsing device would otherwise be idle. Therefore, user operation of the browsing device is not delayed or encumbered.
  • the browsing device can independently evaluate three conditions before proceeding to present the data to the user through the browser.
  • the browsing device detects whether the destination URL is an address to a web page published by a different publisher than the publisher of the currently viewed URL.
  • Publisher shifts may be detected by applying a predetermined process to compare the domain names of a current URL and a destination URL for commonalities typically associated with a common publisher, such as identical top and mid level domains within each domain name.
  • a predetermined process to compare the domain names of a current URL and a destination URL for commonalities typically associated with a common publisher, such as identical top and mid level domains within each domain name.
  • the browsing device determines the “weight” of the transition between URLs, as shown at step 190 .
  • a transition designated as “heavy” is eligible for a display of data.
  • a transition designated as “light” is ineligible.
  • all publisher shift transitions are predetermined to be heavy, such that data may be displayed at each publisher shift. All other transitions are light.
  • the frequency of data presentation according to the present invention may be throttled by communicating a frequency value from the host server to the browsing device, and determining whether a minimum period of time corresponding to the frequency value has elapsed since a previous presentation of data. If the minimum period of time has not yet elapsed, the data will not be presented. Once the minimum period of time has elapsed, the browsing device will allow the presentation of data, and thereafter, will start the time period anew to measure the next interval between data presentations.
  • the browsing device displays a transition page at step 210 , which provides the format for the display of the data.
  • the transition page typically is encoded in HTML format and saved in a mass storage device of the browsing device.
  • the browsing device can download a new transition page with a new format from the host server, or from some other remote server connected to the communications network.
  • a new transition page may be downloaded multiple times during a single use session of the browsing device by a user, such that the format for display of the data changes during the session.
  • the transition page is hard-coded into the browser software in the browsing device.
  • the transition page may appear to be opaque, such that no other web page can be seen through the transition page. Alternately, the transition page may appear partially translucent, such that either the currently viewed page or the destination page is visible through part of the transition page.
  • the transition page may be formatted to contain data that is text data, graphical data, audio data, or video data.
  • the browsing device After displaying the transition page, the browsing device commences to display the preloaded data according to the format prescribed by the transition page, as shown at step 220 .
  • the data may be of virtually any type interpretable by the browsing device, including but not limited to moving images encoded in MACROMEDIA flash, mpeg video, avi, or animated gif formats, pictures encoded in gif, jpeg, or pict formats, or audio encoded in wav, aiff, or snd formats.
  • the browsing device attempts to detect a determined browsing device event, such as user interaction with the graphical user interface of the browsing device or completion of a download of a web page.
  • a determined browsing device event such as user interaction with the graphical user interface of the browsing device or completion of a download of a web page.
  • the determined browsing device event may be a successful connection to a remote server.
  • the browsing device When the browsing device detects the determined browsing device event, the browsing device interrupts the display of the transition page and data, as shown at step 240 . Thereafter, the browsing device displays the web page the browsing device was preparing to display, or waiting to connect to, at the commencement of the second period of idle time. Where the data contains more than one advertisement, presentation of a first advertisement may be immediately followed by the presentation of a second advertisement. Alternatively, the browsing device may wait until detection of a third period of idle time to present the second advertisement. The browsing device also may resume presentation of data that is interrupted by the determined browsing device event upon detection of a third period of idle time by the browsing device.
  • the browsing device records the length of presentation time of the data, as shown at step 250 .
  • the browsing device may report to the host server that a completed impression of the data has been achieved.
  • the browsing device may report the actual length of the presentation time of the data to the host server.
  • the host server may reprogram the browsing device through the communications network to adjust the predetermined amount of time required for an impression.
  • the browsing device records an impression even where the presentation of the data is interrupted. This is accomplished by adding a period of preinterruption presentation time to a period of post-interruption presentation time to satisfy the predetermined amount of time required for an impression.
  • the host server also can instruct the browsing device to report completion of an impression to the host server only if the data is displayed for the predetermined amount of time without interruption.
  • the browsing device typically records the length of time the data is presented in discrete time intervals.
  • the browsing device may record the length of time the data is presented in real time.
  • the present invention typically is practiced by preloading data upon detection of an extended period of nonuse of the browsing device (e.g., when the browsing device would otherwise be turned off), and displaying the video data during the start-up operation of the browsing device.
  • an extended period of nonuse as occurs in the early morning hours when users are asleep, typically is identified by the user, the user specifying a time of day when the browsing device is not in use.
  • the extended period of nonuse may be detected by a sensor in the browsing device.
  • the extended period of nonuse is detected by the browsing device, typically at a user identified time, and the browsing device wakes from nonuse and contacts the host server, as indicated at 320 .
  • the host server selects a video advertisement according to a predetermined advertising management process.
  • the host server preloads the selected video advertisement to the browsing device during the period of nonuse, as shown at 340 , and the browsing device stores the video advertisement 350 on a mass storage device such as a hard drive.
  • the browsing device typically shuts down after successfully preloading the video advertisement and returns to a state of nonuse, as shown at step 360 .
  • the browsing device detects the start-up operation.
  • the browsing device while waiting for the browsing device to complete the start-up operation and make a connection with the host server, a period also referred to as the start-up waiting period, the browsing device presents the video advertisement on the display device.
  • a video advertisement is 15 or 30 seconds in length, depending on the amount of memory available on the browsing device.
  • a video advertisement is typically shown in its entirety before the start-up operation is complete.
  • presentation of a video advertisement may be interrupted by the browsing device upon detection of the completion of the start-up operation and start-up waiting period.
  • the browsing device records the successful presentation of the video advertisement, and reports completion of the presentation (also referred to as an impression) to the host server through the communications network.
  • the graphical user interface 400 displays a current web page 410 located at a current URL 420 .
  • the browsing device receives a user command to download a destination web page, for example, when a user selects a hypertext link 430 or inputs a destination URL 440 .
  • the browsing device Upon receiving such a command, the browsing device preferably displays an advertisement 450 within a transition page 460 while the browsing device is transitioning from displaying the current web page to displaying the destination web page.
  • the browsing device may trigger the display of a progress bar 480 over the current web page 410 , or blank transition page 470 during the download waiting period. After completion of the download waiting period, the browsing device displays a destination web page 490 , located at the destination URL 440 .

Abstract

A system and method for distributing and presenting data such as video advertisements from a host server to a browsing device through a communications network. The method involves detecting an extended period of nonuse of the browsing device, establishing contact between the browsing device and the host server, preloading data from the host server to the browsing device, storing the data in the browsing device, detecting a start-up operation of the browsing device, and presenting the data through the browsing device.

Description

    TECHNICAL FIELD
  • The present invention relates generally to distributing data to users of a communications network, and more particularly, to distributing data from a host server to a browsing device via a communications network such as the Internet. [0001]
  • BACKGROUND OF THE INVENTION
  • In modern society, communications networks such as the Internet enable vast numbers of persons to communicate a virtually limitless variety of information across great distances. The development of the World Wide Web has enabled persons with relatively little technical training to find and display information in a multimedia format using a browsing device, such as a personal computer or television set-top box (STB), running a browser program, such as MICROSOFT® Internet Explorer or Netscape Navigator. As a result, the number of sites and the number of users on the Internet have concomitantly experienced meteoric growth. [0002]
  • For aid in accessing the Internet, many users subscribe to Internet access services, such as the WEBTV® Internet access network. (WEBTV is a registered trademark of WebTV Networks, Inc. of Mountain View, Calif.) The WEBTV Internet access network includes a large number of browsing devices, referred to as client terminals, and at least one host server. The client terminals are connected to the Internet via conventional modem pools, either by Integrated Services Digital Network (ISDN) connection, a telephone line, or another data link, and can directly access web pages established by Internet publishers. The host server communicates with the client terminals to provide a convenient standardized interface for accessing the Internet. The host server also offers supplemental services, such as email, news reports, television program guides, and enhanced access to certain web pages for subscribers of the service. [0003]
  • As the audience of users of these Internet access services has grown, so too has the potential of such services to deliver advertising content through the Internet. Unfortunately, while a healthy variety of advertising methods exists for publishers of Internet sites, vendors of Internet access services face a lack of methods by which they may effectively deliver advertising content to their subscribers. [0004]
  • The publisher of an Internet site is able to advertise by several presently known methods. For example, a publisher may include advertisements in graphical banners or audio jingles on an Internet site. A publisher also may include a text or graphical link to another web page containing information about an advertiser or advertised product. It is also known to embed hidden advertisement links within a standard hypertext link to a destination Internet site. When a user selects the link, intending to go to the destination page, the user also unwittingly triggers the embedded link, and is briefly shown an advertisement before the browsing device continues to download the destination page. This type of interstitial advertising requires the user to wait while the browsing device downloads and displays the advertisement. Interstitial advertising methods are also known in which advertising information embedded in a web page or in the home page of the browser, or cached in the client browsing device itself, is presented in response to selection of a hypertext link on a web page (see Judson, U.S. Pat. No. 5,572,643, the disclosure of which is herein incorporated by reference). These advertising methods also delay the user during download of the advertising information. [0005]
  • Publishers of Internet sites typically advertise using “pull technology”. Pull technology is so-named because a user must request information, or pull it, from a server before the information will be sent to the user's browsing device. For each of the abovementioned forms of advertising, the user must direct the browsing device to download the information. [0006]
  • Despite the availability of advertising methods for publishers, Internet access services face several problems when advertising. First, pull technology is not an effective means of distributing advertising for Internet access services. Often an Internet access service merely offers the user a dial-up connection to the Internet. In such a case, the Internet access service is largely invisible to the user. The user typically uses a modem to dial a phone number and establishes a connection to the Internet, and uses an off-the-shelf browser program to access web pages through the Internet. Pull technology cannot be used to distribute advertising to a user of such an Internet access service because the user is not accessing any web pages published by the Internet access service. [0007]
  • Other Internet access services, such as the WEBTV Internet access network, offer Internet access via a proprietary interface allowing access to subscriber services, such as a web directory and search engine, as well as to the Internet. Pull technology may be used to advertise directly to users of such an Internet access service, but only when the users are accessing the web pages published by the Internet access service. When users simply use the Internet access service to view external web pages on the Internet, not published by the Internet access provider, pull technology is ineffective to distribute advertising. [0008]
  • When a user's browsing device is pointed elsewhere, Internet access services must resort to “push technology” for advertising. According to push technology, a server pushes information to a browsing device without request from the user, or based on a predetermined request from the user. Current push technology causes the user two types of delay. First, the user experiences delay as the browsing device takes time to download the pushed information. Second, the user is delayed when interrupted by an unrequested display of pushed information. Such delay may be annoying to the user, and may decrease the effectiveness of the advertising due to the intrusive nature of the advertisement. [0009]
  • Current browsing devices also cause the user delay. Users typically experience delay during start-up and shutdown of the device. In addition, a browsing device may appear to stall while performing internal operations, such as erasing cached files. Finally, the browsing device may experience delay when connecting to external devices and remote computers via a communications network. These inherent delays in using the browsing device further aggravate the user and decrease the enjoyability of using a browsing device to navigate a communications network. [0010]
  • It would be desirable to provide a method for distributing data wherein data is downloaded from a host server across a communications network and displayed by a browsing device without causing delay to the user of the browsing device. It would also be desirable to utilize inherent delays in browsing device operation, such as wasted startup time and downloading time between web pages, to display advertising. [0011]
  • SUMMARY OF THE INVENTION
  • A method and system are provided for delivering data from a host server to a browsing device through a communications network for display during start-up of the browsing device. The method typically includes detecting an extended period of nonuse of the browsing device, establishing contact between the browsing device and the host server, preloading the data from the host server to the browsing device, and storing the data in the browsing device. To display the data, the browsing device detects a start-up operation and presents the data during the start-up operation. [0012]
  • The system typically includes a host server connectable to a browsing device through a communications network. The host server and browsing device are configured to establish contact upon detection of an extended period of nonuse in the browsing device, and preload data from the host server to the browsing device. The browsing device is configured to detect a start-up operation and present the data during the start-up operation. [0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a somewhat schematic view of a browsing device in the form of a set-top box configured for use in accordance with the present invention. [0014]
  • FIG. 2 is a schematic view illustrating the architecture of the browsing device of FIG. 1. [0015]
  • FIG. 3 is a schematic view of a browsing device in the form of a personal computer configured for use as part of the present invention. [0016]
  • FIG. 4 is a schematic view of the structure of a communications network for use by browsing devices as shown in FIGS. 1 and 3. [0017]
  • FIG. 5 is a flowchart illustrating a method for distributing data through a communications network. [0018]
  • FIG. 6 is a flowchart illustrating a method for distributing data through a communications network to be presented on start-up of a browsing device. [0019]
  • FIG. 7 is a schematic view of the transitions available to a user when switching between web pages.[0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. [0021] 1-7 and the following discussion are intended to provide a brief, general description of a suitable networked computing environment in which the invention may be implemented. Those skilled in the art will appreciate that the invention may be practiced with other networked computer devices, including hand-held devices, multiprocessor systems, minicomputers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • FIG. 1 depicts a [0022] browsing device 10 in the form of a WEBTV client terminal. As indicated, the client terminal includes an electronics unit 12, an ordinary television 14, and a remote control 16. Electronics unit 12 typically is referred to as a set-top box (STB), because of its usual placement on top of television 14. Set-top box 12, however, may be built into television 14, forming an integral unit. The client terminal uses television 14 as a display device for displaying both video data and a graphical user interface, and as a loudspeaker device for emitting audio data. The set-top box is coupled to the television by a communications link 18. The link is an RF (radio frequency), S-video, composite video, or other equivalent form of communications link.
  • The set-top box includes hardware and/or software for receiving and decoding a [0023] broadcast video signal 20, such as an NTSC, PAL, SECAM or other TV system video signal, and providing video data to the television via link 20. Set-top box 12 also includes a browser program, which may be implemented in hardware and/or software, to cause a graphical user interface 22 to be displayed on television 14. The browser program enables a user to access various WEBTV network services, browse the World Wide Web, send email, or otherwise access the Internet.
  • [0024] Client terminal 10 may include both a standard modem and an ISDN modem, such that the communication link between set-top box 12 and the Internet can be either a telephone (POTS) connection 24 or an ISDN connection 26. The set-top box receives power through a power line 28.
  • [0025] Remote control 16 is operated by the user to control television viewing, and to control the client terminal while browsing the World Wide Web, sending email, or performing other Internet-related functions. The set-top box receives commands from remote control 16 via an infrared (IR) communication link. Alternately, the link between the remote control and the set-top box may be an RF communication link or any equivalent communication link (e.g., wires, etc.).
  • FIG. 2 is a block diagram illustrating internal features of set-[0026] top box 12. In this illustration, operation of the client terminal is controlled by a processing unit, such as central processing unit (CPU) 30, which is coupled to an Application-Specific Integrated Circuit (ASIC) 32. The CPU executes software designed to implement various features of the present invention. ASIC 32 contains circuitry which may be used to implement these features. ASIC 32 is coupled to an audio digital-to-analog converter (DAC) 34 which provides audio output to television 14. In addition, ASIC 32 is coupled to a video encoder 36 which provides video output to television 14. An IR interface 38 detects IR signals transmitted by remote control 16 and, in response, provides corresponding electrical signals to ASIC 32. A standard telephone modem 40 and an ISDN modem 42 are coupled to ASIC 32 to provide for connection(s) to the Internet. Those skilled in the art will appreciate that the set-top box also may include a cable television or radio frequency modem (not shown).
  • A [0027] TV interface 44 is coupled to ASIC 32 to receive broadcast video signals, such as an NTSC video signal, and to provide corresponding electrical signals to ASIC 32. This allows video data carried in broadcast video signal 20 to be presented to the viewer on television 14. More specifically, TV interface 44 is configured to digitize the incoming video signal, which is stored in RAM 48, so that ASIC 32 and CPU 30 can process the video signal before displaying it on the television. This configuration enables the set-top box to generate shared screen viewing where the video signal only occupies a portion of the screen. The remaining screen area then can be used to display various user interface controls or data, such as video programming information.
  • Also coupled to [0028] ASIC 32 is memory, including random access memory (RAM) 48 and read-only memory (ROM) 46, which provides for storage of program code for implementing application software to be executed by the set-top box. Note that ROM 46 may be a programmable ROM (PROM), or any form of erasable PROM (EPROM), or flash memory. A mass storage device 50 optionally may be provided and coupled to ASIC 42. The mass storage device may be used to input software or data to the client terminal or to store downloaded software or data. Mass storage device 50 can be any suitable device for storing machine-executable instructions, such as a magnetic drive, optical drive, and the like.
  • FIG. 3 depicts an alternate browsing device in the form of a conventional [0029] personal computer 11, including a central processing unit (CPU) 52, a memory 54, and a bus 56 that couples various components (including the memory) to the CPU. The bus 56 may be any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, or a local bus using any of a variety of bus architectures. The memory includes read only memory (ROM) 58 and random access memory (RAM) 60. A basic input/output system 62 (BIOS), containing basic routines which help to transfer information between elements within the personal computer (such as during start-up), is stored in ROM 58.
  • The personal computer further includes a [0030] hard disk drive 66 for reading from and writing to a hard disk, a magnetic disk drive 68 for reading from or writing to a removable magnetic disk, and an optical disk drive 70 for reading from or writing to a removable optical disk such as a CD ROM or other optical media. Hard disk drive 66, magnetic disk drive 68, and optical disk drive 70 are connected to bus 56 by a hard disk drive interface 72, a magnetic disk drive interface 74, and an optical drive interface 76, respectively. The drives and their associated computer-readable media provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the personal computer.
  • Although the exemplary environment shown in FIG. 3 employs a hard disk, a removable magnetic disk, and a removable optical disk, it should be appreciated by those skilled in the art that other types of computer readable media which can store data which is accessible by a computer (e.g. magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROMs), etc.) also may be used. [0031]
  • A number of program modules may be stored on the hard disk, magnetic disk, optical disk, [0032] ROM 58, or RAM 60, including an operating system, one or more application programs, other program modules, and program data. A user may enter commands and information into the personal computer 11 through input devices such as a keyboard 78 and/or a pointing device (mouse) 80. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices often are connected to the processing unit 52 through a serial port interface 82 which is coupled to the bus. However, the input devices may be connected by other interfaces, such as a parallel port, game port or a universal serial bus (USB).
  • A [0033] monitor 84 or other type of display device is also connected to the bus 56 via an interface, such as a video adapter 86. In addition to the monitor, personal computers typically include other peripheral output devices (not shown) such as speakers and printers. Finally, personal computer 11 includes a browser program, which may be implemented in hardware and/or software, to cause a graphical user interface to be displayed on monitor 84. The user employs the graphical user interface to browse the World Wide Web, send email, and otherwise access the Internet. The personal computer also typically includes a modem 88, such as an ISDN modem or telephone line modem, connected to the serial bus for communication with remote computers through a communications network.
  • FIG. 4 illustrates a basic configuration of a networked computing environment in which a browsing device, such as a client terminal or personal computer, typically operates. A number of [0034] browsing devices 10 are coupled to a modem pool 90 via bidirectional data connections 92, which may be a telephone connection, ISDN connection, or any other similar type of connection, such as cable and satellite forward channels. Modem pool 90 typically is coupled through a router, such as that conventionally known in the art, to a number of remote servers 94 via a conventional communications network 96, such as the Internet. The communications network also includes a host server 98, which specifically supports and communicates with browsing devices 10. The browsing devices each have a connection to host server 98 through modem pool 90 and the Internet. Note that modem pool 90 is a conventional modem pool, such as is found today throughout the world providing access to the Internet and private networks.
  • The present invention preferably is implemented on a communications network navigable by hypertext links, such as the World Wide Web. The World Wide Web encompasses a vast collection of web pages residing as data files on remote servers connected to the Internet. Each web page is downloadable and viewable by a browsing device, and often contains hypertext links, which, if selected, cause the browsing device to point to, or download and display, a new web page. [0035]
  • Within the World Wide Web, a collection of related web pages forms a web site. Individuals or organizations that provide content to the World Wide Web are known as publishers. A single publisher on the Internet may establish a single page, an entire web site, or multiple web sites. Web pages are stored as data files on remote servers, and transmitted to browsing devices upon request from each browsing device. Each remote server has a unique domain name or Internet protocol (IP) address which marks its location on the Internet. Each data file which contains web page data has a unique file path to indicate its location within the remote server. [0036]
  • To download and present data from a remote server over the communications network, [0037] browsing device 10 contacts a remote server 94 through communications network 96 using a network address such as a universal resource locator (URL). The URL, it will be appreciated, contains the protocol by which the data is to be transferred, as well as the domain name or IP address at which the remote server is located, and the file path of the specific file to be transferred. The remote server then transmits the requested data to the browser program, which in turn displays the data according to predefined conventions.
  • Data files containing web pages typically are transmitted using the HyperText Transfer Protocol (HTTP), and encoded using the HyperText Markup Language (HTML). The HTML language provides a standard for interpretation of text data, formatting instructions, and other behavioral attributes of a web page, including links to other web pages or resource files containing image, video, and audio data. [0038]
  • In the above-described environments, a method for preloading and presenting certain data, such as advertising data, during periods when browsing [0039] device 10 would otherwise experience idle time, may be practiced as follows. As shown in FIG. 5 at 110, the browsing device detects a first period of idle time in browsing device operation. This first period of idle time may be an extended period of nonuse of the browsing device, such as when the main functional components of the browsing device are turned off during late night or early morning hours. Typically, such an extended period of nonuse is identified by the user, the user specifying a time of day when the browsing device is not likely to be in use. Alternatively, a sensor, implemented in hardware and/or software, may be employed to record the length of time the main functional components of the browsing device have been turned off, and wake the browsing device after a predetermined period of time. In another alternative, this first period of idle time may be a period of temporary inactivity in browsing device operation, such as a period of network communications inactivity, a connect waiting period during which the browsing device is attempting to connect to a remote server through the communications network, or a stalled download period during which the browsing device is connected to, but not receiving information from, a remote server. A period of network communications inactivity occurs when the browsing device, or alternatively the browser program, is not engaged in any communication over the communications network. The browser may establish contact with the host server through the communications network upon detecting the first period of idle time. Alternately, the browsing device and host server may maintain constant contact.
  • As shown at [0040] 120, either after or prior to establishing contact, a selection program module at the host server selects data, typically advertising data, to download to the browsing device from the host server. While the selection program typically resides at the host server, those skilled in the art will appreciate that it could alternately reside on any device connected to communications network 96, and communicate selected data to the host server over the communications network.
  • The selection program examines outstanding orders from advertisers, and selects data containing an advertisement, a group of advertisements, or other data, to preload into the memory of the browsing device over the communications network upon detection of the first period of idle time. Internet advertising typically is sold by a unit of presentation time known as an impression. Advertisers may purchase a number of impressions for a particular advertisement to be presented within a given time period. For example, an advertiser may purchase 6000 impressions of an advertisement to be presented to users in July. The selection program balances outstanding orders for impressions of advertisements and chooses the most appropriate advertisement for presentation. For alternative methods of selection of data, see the copending U.S. Pat. application entitled “System for Targeting Information to Specific Users on a Computer Network” filed Sep. 8, 1998, by inventors John Adelus, Dean Blackketter, Alan Cohn, and Thomas Scott, the disclosure of which is herein incorporated by reference. [0041]
  • As indicated at [0042] 130, the data is preloaded from the host server to the memory of the browsing device over the communications network. At step 140, the browsing device attempts to detect a determined browsing device event during preloading. The determined browsing device event, for example, may be an initiation of other network communications activity by the browser program and/or browsing device, such as downloading a new web page. Alternatively, the determined browsing device event may be a user interaction with the graphical user interface of the browser program. If a determined browsing device event is detected, the browsing device will interrupt the preloading of information to resume or restart at a later time, as shown at step 150.
  • After establishing contact and preloading, the data is then stored, at [0043] step 160, in the browsing device. The data may be stored in memory such as RAM, a mass storage device such as a hard drive, or other memory device.
  • To avoid unnecessary downloading of data, [0044] browsing device 10 may communicate to the selection program the identity of data which the browsing device has currently cached in memory and/or on a mass storage device. The selection program typically does not instruct the host server to download data already stored in the browsing device. The selection program thus has the capability to remember which data has been preloaded to a given browsing device, and refrain from unnecessarily downloading the same data twice.
  • As shown at [0045] 170, at some point after the data is preloaded and stored, either during the same session of use or at some later time, the browsing device detects a second period of idle time in browsing device operation. This second period of idle time may occur at various points of inactivity in the graphical user interface of the browsing device. The second period of idle time, for example, may be a download waiting period during which the browsing device has attempted to begin, but has not completed, downloading information from a remote server on the communications network. Alternately, the second period of idle time may be a connect waiting period during which the browsing device attempts to, but is temporarily unable to, connect with a remote computer on the network. Furthermore, the second period of idle time may be a start-up waiting period during a start-up operation of the browsing device, after which certain components of the browsing device are functional such that the data may be displayed. Data is only presented during time in which the browsing device would otherwise be idle. Therefore, user operation of the browsing device is not delayed or encumbered.
  • To control the flow of advertising, the browsing device can independently evaluate three conditions before proceeding to present the data to the user through the browser. First, as shown at [0046] 180, when the user inputs a destination URL into the GUI of the browsing device, the browsing device detects whether a publisher shift has occurred. Alternatively stated, the browsing device detects whether the destination URL is an address to a web page published by a different publisher than the publisher of the currently viewed URL. Publisher shifts may be detected by applying a predetermined process to compare the domain names of a current URL and a destination URL for commonalities typically associated with a common publisher, such as identical top and mid level domains within each domain name. For an example of such a process, see the copending U.S. Pat. application entitled “System And Method For Controlling Delivery Of Content Over A Communications Network” filed Sep. 8, 1998 by Timo Bruck and Alan Cohn, the disclosure of which is herein incorporated by reference. Advertising data typically will be presented only if a publisher shift has occurred.
  • Second, if a publisher shift has occurred, the browsing device determines the “weight” of the transition between URLs, as shown at [0047] step 190. A transition designated as “heavy” is eligible for a display of data. A transition designated as “light” is ineligible. Preferably, all publisher shift transitions are predetermined to be heavy, such that data may be displayed at each publisher shift. All other transitions are light.
  • Third, as shown at [0048] step 200, the frequency of data presentation according to the present invention may be throttled by communicating a frequency value from the host server to the browsing device, and determining whether a minimum period of time corresponding to the frequency value has elapsed since a previous presentation of data. If the minimum period of time has not yet elapsed, the data will not be presented. Once the minimum period of time has elapsed, the browsing device will allow the presentation of data, and thereafter, will start the time period anew to measure the next interval between data presentations.
  • Once the browsing device determines that data will be presented, the browsing device displays a transition page at [0049] step 210, which provides the format for the display of the data. The transition page typically is encoded in HTML format and saved in a mass storage device of the browsing device. Upon command from the host server the browsing device can download a new transition page with a new format from the host server, or from some other remote server connected to the communications network. A new transition page may be downloaded multiple times during a single use session of the browsing device by a user, such that the format for display of the data changes during the session. Alternately, the transition page is hard-coded into the browser software in the browsing device. The transition page may appear to be opaque, such that no other web page can be seen through the transition page. Alternately, the transition page may appear partially translucent, such that either the currently viewed page or the destination page is visible through part of the transition page. The transition page may be formatted to contain data that is text data, graphical data, audio data, or video data.
  • After displaying the transition page, the browsing device commences to display the preloaded data according to the format prescribed by the transition page, as shown at [0050] step 220. The data may be of virtually any type interpretable by the browsing device, including but not limited to moving images encoded in MACROMEDIA flash, mpeg video, avi, or animated gif formats, pictures encoded in gif, jpeg, or pict formats, or audio encoded in wav, aiff, or snd formats.
  • Once the data is displayed, the browsing device, at [0051] step 230, attempts to detect a determined browsing device event, such as user interaction with the graphical user interface of the browsing device or completion of a download of a web page. Where the second period of idle time is a connect waiting period, the determined browsing device event may be a successful connection to a remote server.
  • When the browsing device detects the determined browsing device event, the browsing device interrupts the display of the transition page and data, as shown at [0052] step 240. Thereafter, the browsing device displays the web page the browsing device was preparing to display, or waiting to connect to, at the commencement of the second period of idle time. Where the data contains more than one advertisement, presentation of a first advertisement may be immediately followed by the presentation of a second advertisement. Alternatively, the browsing device may wait until detection of a third period of idle time to present the second advertisement. The browsing device also may resume presentation of data that is interrupted by the determined browsing device event upon detection of a third period of idle time by the browsing device.
  • Preferably, the browsing device records the length of presentation time of the data, as shown at [0053] step 250. Once the data has been presented for a predetermined amount of time, the browsing device may report to the host server that a completed impression of the data has been achieved. Alternatively, the browsing device may report the actual length of the presentation time of the data to the host server. The host server may reprogram the browsing device through the communications network to adjust the predetermined amount of time required for an impression.
  • Typically, the browsing device records an impression even where the presentation of the data is interrupted. This is accomplished by adding a period of preinterruption presentation time to a period of post-interruption presentation time to satisfy the predetermined amount of time required for an impression. The host server also can instruct the browsing device to report completion of an impression to the host server only if the data is displayed for the predetermined amount of time without interruption. The browsing device typically records the length of time the data is presented in discrete time intervals. The browsing device may record the length of time the data is presented in real time. [0054]
  • For large advertisements such as lengthy video presentations, which require great amounts of time to download, the present invention typically is practiced by preloading data upon detection of an extended period of nonuse of the browsing device (e.g., when the browsing device would otherwise be turned off), and displaying the video data during the start-up operation of the browsing device. Such an extended period of nonuse, as occurs in the early morning hours when users are asleep, typically is identified by the user, the user specifying a time of day when the browsing device is not in use. Alternatively, the extended period of nonuse may be detected by a sensor in the browsing device. [0055]
  • As shown at [0056] step 310 in FIG. 6, the extended period of nonuse is detected by the browsing device, typically at a user identified time, and the browsing device wakes from nonuse and contacts the host server, as indicated at 320. At step 330, the host server selects a video advertisement according to a predetermined advertising management process. The host server preloads the selected video advertisement to the browsing device during the period of nonuse, as shown at 340, and the browsing device stores the video advertisement 350 on a mass storage device such as a hard drive. The browsing device typically shuts down after successfully preloading the video advertisement and returns to a state of nonuse, as shown at step 360.
  • At [0057] step 370, the browsing device detects the start-up operation. At step 380, while waiting for the browsing device to complete the start-up operation and make a connection with the host server, a period also referred to as the start-up waiting period, the browsing device presents the video advertisement on the display device. Typically, a video advertisement is 15 or 30 seconds in length, depending on the amount of memory available on the browsing device. A video advertisement is typically shown in its entirety before the start-up operation is complete. However, presentation of a video advertisement may be interrupted by the browsing device upon detection of the completion of the start-up operation and start-up waiting period. As shown at 390, when the video advertisement is shown to completion the browsing device records the successful presentation of the video advertisement, and reports completion of the presentation (also referred to as an impression) to the host server through the communications network.
  • For smaller quantities of data, such as graphical banners or MACROMEDIA flash presentations, data may be preloaded during periods of temporary inactivity in the network communications of the browsing device and/or browser program, and presented during download waiting periods. As shown in FIG. 7, the [0058] graphical user interface 400 displays a current web page 410 located at a current URL 420. The browsing device receives a user command to download a destination web page, for example, when a user selects a hypertext link 430 or inputs a destination URL 440. Upon receiving such a command, the browsing device preferably displays an advertisement 450 within a transition page 460 while the browsing device is transitioning from displaying the current web page to displaying the destination web page. Where display of an advertisement is not desirable, the browsing device also may trigger the display of a progress bar 480 over the current web page 410, or blank transition page 470 during the download waiting period. After completion of the download waiting period, the browsing device displays a destination web page 490, located at the destination URL 440.
  • While the invention has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. Applicant regards the subject matter of the invention to include all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential. The following claims define certain combinations and subcombinations which are regarded as novel and non-obvious. Other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such claims are also regarded as included within the subject matter of applicant's invention irrespective of whether they are broader, narrower, or equal in scope to the original claims. [0059]

Claims (19)

1. A method of delivering data from a host server to a browsing device through a communications network, the method comprising steps of:
detecting an extended period of nonuse of the browsing device;
establishing contact between the browsing device and the host server during the extended period of nonuse;
preloading the data from the host server to the browsing device though the communications network;
storing the data in the browsing device;
detecting a start-up operation of the browsing device; and
presenting the data through the browsing device during the start-up operation.
2. The method of
claim 1
, further comprising the steps of:
detecting a determined browsing device event during preloading; and
interrupting preloading of the data upon detecting the determined browsing device event.
3. The method of
claim 2
, wherein the determined browsing device event is an initiation of network communications by the browsing device.
4. The method of
claim 1
, further comprising the steps of:
interrupting the presenting of the data upon detecting a completion of the start-up operation.
5. The method of
claim 4
, further including the step of:
resuming presentation of the data upon detecting a download waiting period during which the browsing device has attempted to begin, but has not completed, downloading information from a remote server on the communications network.
6. The method of
claim 1
, further including the step of:
sending a report from the browsing device to the host server through the communications network to confirm completion of presenting the data.
7. The method of
claim 1
, wherein the data is text data.
8. The method of
claim 1
, wherein the data is graphical data.
9. The method of
claim 1
, wherein the data is audio data.
10. The method of
claim 1
, wherein the data is video data.
11. The method of
claim 1
, wherein the data is advertising data.
12. The method of
claim 1
, further comprising the steps of:
displaying a transition page on the browsing device; and
presenting the data within the transition page.
13. The method of
claim 12
, further comprising the step of downloading a format for the transition page from the host server to the browsing device during a first period of idle time in browsing device operation.
14. The method of
claim 13
, wherein the downloading is achieved by transmitting a URL from the host server to the browsing device and downloading HTML code containing the format for the transition page from an Internet site located at the URL to the browsing device.
15. The method of
claim 14
, wherein downloading HTML code containing the format occurs multiple times during a single use session of the browsing device, such that the format for the data changes during the session.
16. A system for distributing data to a user of a communications network, the system comprising:
a host server;
a browsing device including a display device, the browsing device being connectable to the host server through the communications network;
wherein the host server and the browsing device are collectively configured to establish a connection between the browsing device and the host server upon detection of an extended period of nonuse of the browsing device and to preload data from the host server to the browsing device through the communications network; and
wherein the browsing device is configured to present the data upon detection of a start-up operation of the browsing device and cease to present the data upon detection of a completion of the start-up operation.
17. A method for distributing video data from a host server to a browsing device through a communications network, the method comprising the steps of:
detecting an extended period of nonuse of the browsing device;
waking the browsing device from the extended period of nonuse;
establishing contact through the communications network between the host server and the browsing device;
preloading the video data from the host server to the browsing device through the communications network;
storing the video data on a mass storage device of the browsing device;
shutting down the browsing device and returning the browsing device to the state of nonuse;
detecting a start-up operation of the browsing device;
presenting the video data through the browsing device during the start-up operation.
18. The method of
claim 17
, further comprising the step of:
reporting a completed impression for the video data from the browsing device to the host server through the communications network.
19. A system for distributing video data, the system comprising:
a host server connectable to a communications network;
a browsing device including a display device and a memory, the browsing device being connectable to the communications network and configured to communicate through the communications network with the host server;
a sensor configured to detect an extended period of nonuse of the browsing device and wake the browsing device upon detection of the extended period of nonuse;
wherein the browsing device is configured to preload video data from the host server to the browsing device through the communications network upon waking from the extended period of nonuse, and to shut down and return to a state of nonuse after preloading; and
wherein the browsing device is configured to present the video data upon detection of a start-up operation of the browsing device.
US09/149,405 1998-06-30 1998-09-08 System and method for distributing data over a communications network for display during start-up Expired - Fee Related US6317791B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/149,405 US6317791B1 (en) 1998-06-30 1998-09-08 System and method for distributing data over a communications network for display during start-up
US09/457,882 US6338094B1 (en) 1998-09-08 1999-12-09 Method, device and system for playing a video file in response to selecting a web page link

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/107,651 US6237039B1 (en) 1998-06-30 1998-06-30 Method and apparatus for downloading auxiliary data to a client from a network during client idle periods
US09/149,405 US6317791B1 (en) 1998-06-30 1998-09-08 System and method for distributing data over a communications network for display during start-up

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/107,651 Continuation-In-Part US6237039B1 (en) 1998-06-30 1998-06-30 Method and apparatus for downloading auxiliary data to a client from a network during client idle periods
US09/149,407 Continuation-In-Part US6317780B1 (en) 1998-06-30 1998-09-08 System and method for distributing data over a communications network

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/457,882 Continuation-In-Part US6338094B1 (en) 1998-09-08 1999-12-09 Method, device and system for playing a video file in response to selecting a web page link

Publications (2)

Publication Number Publication Date
US6317791B1 US6317791B1 (en) 2001-11-13
US20010044832A1 true US20010044832A1 (en) 2001-11-22

Family

ID=46256073

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/149,405 Expired - Fee Related US6317791B1 (en) 1998-06-30 1998-09-08 System and method for distributing data over a communications network for display during start-up

Country Status (1)

Country Link
US (1) US6317791B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502076B1 (en) * 1999-06-01 2002-12-31 Ncr Corporation System and methods for determining and displaying product promotions
US20030158904A1 (en) * 2002-02-18 2003-08-21 Nec Corporation E-mail server and service e-mail providing system using the same
US20030182126A1 (en) * 2000-06-07 2003-09-25 Chai-Mok Ryoo Internet advertisement system and method in connection with voice humor services
US20060294258A1 (en) * 2005-06-28 2006-12-28 Microsoft Corporation Advertisement refresh rules for network applications
US7181574B1 (en) * 2003-01-30 2007-02-20 Veritas Operating Corporation Server cluster using informed prefetching
US20080225815A1 (en) * 2002-01-31 2008-09-18 Qualcomm Incorporated System and method for providing messages on a wireless device connecting to an application server
US20090144396A1 (en) * 2007-11-30 2009-06-04 At&T Knowledge Ventures, L.P. Preloader employing enhanced messages
US8886933B1 (en) * 2013-12-17 2014-11-11 Google Inc. Streamlined provisioning and configuration of computing devices
US20150046596A1 (en) * 2011-09-13 2015-02-12 Amazon Technologies, Inc. Speculative generation of network page components
US9479615B1 (en) * 2014-01-31 2016-10-25 Google Inc. Systems and methods for providing interstitial content
US20180081497A1 (en) * 2004-04-30 2018-03-22 Ebay Inc. Method and system to display a pop-up window when a user leaves a website
US20220224978A1 (en) * 2019-09-26 2022-07-14 Beijing Bytedance Network Technology Co., Ltd. Video content display method, client, and storage medium

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173316B1 (en) * 1998-04-08 2001-01-09 Geoworks Corporation Wireless communication device with markup language based man-machine interface
US6308202B1 (en) * 1998-09-08 2001-10-23 Webtv Networks, Inc. System for targeting information to specific users on a computer network
US6704864B1 (en) 1999-08-19 2004-03-09 L.V. Partners, L.P. Automatic configuration of equipment software
US6823388B1 (en) 1998-09-11 2004-11-23 L.V. Parners, L.P. Method and apparatus for accessing a remote location with an optical reader having a programmable memory system
US7386600B1 (en) 1998-09-11 2008-06-10 Lv Partners, L.P. Launching a web site using a personal device
US6615268B1 (en) * 1998-09-11 2003-09-02 Lv Partners, L.P. Method for controlling a computer using an embedded unique code in the content of dat media
US6526449B1 (en) * 1998-09-11 2003-02-25 Digital Convergence Corporation Method and apparatus for controlling a computer from a remote location
US7379901B1 (en) 1998-09-11 2008-05-27 Lv Partners, L.P. Accessing a vendor web site using personal account information retrieved from a credit card company web site
US7392945B1 (en) 1998-09-11 2008-07-01 Lv Partners, L.P. Portable scanner for enabling automatic commerce transactions
US7440993B1 (en) 1998-09-11 2008-10-21 Lv Partners, L.P. Method and apparatus for launching a web browser in response to scanning of product information
US6636896B1 (en) 1998-09-11 2003-10-21 Lv Partners, L.P. Method and apparatus for utilizing an audibly coded signal to conduct commerce over the internet
US6745234B1 (en) 1998-09-11 2004-06-01 Digital:Convergence Corporation Method and apparatus for accessing a remote location by scanning an optical code
US7191247B1 (en) 1998-09-11 2007-03-13 Lv Partners, Lp Method for connecting a wireless device to a remote location on a network
US6868433B1 (en) 1998-09-11 2005-03-15 L.V. Partners, L.P. Input device having positional and scanning capabilities
US20070255810A1 (en) * 1998-10-30 2007-11-01 Shuster Brian M Modifying apparent browser operation
US7051351B2 (en) * 1999-03-08 2006-05-23 Microsoft Corporation System and method of inserting advertisements into an information retrieval system display
US7051357B2 (en) * 1999-05-28 2006-05-23 Intel Corporation Communicating ancillary information associated with a plurality of audio/video programs
US6574795B1 (en) * 1999-05-28 2003-06-03 Intel Corporation Reliable communication of data by supplementing a unidirectional communications protocol
US20010003184A1 (en) * 1999-07-16 2001-06-07 Ching Jamison K. Methods and articles of manufacture for interfacing, advertising and navigating with internet television
US7949722B1 (en) 1999-09-29 2011-05-24 Actv Inc. Enhanced video programming system and method utilizing user-profile information
US6763379B1 (en) 1999-10-14 2004-07-13 Ideaflood, Inc. System, apparatus and method for presenting and displaying content on a wide area network
WO2001046869A2 (en) 1999-12-10 2001-06-28 United Video Properties, Inc. Systems and methods for coordinating interactive and passive advertisement and merchandising opportunities
AU2001238245A1 (en) * 2000-02-15 2001-08-27 Klipmart Corporation Method and system for collecting and providing multimedia content
EP1269354B1 (en) * 2000-03-31 2004-09-29 Ritzaus Medienet A/S A method and system for pushing information
WO2001076242A2 (en) 2000-03-31 2001-10-11 Intellocity Usa, Inc. System and method for local meta data insertion
US6681298B1 (en) * 2000-07-12 2004-01-20 Powertv, Inc. Hypertext markup language cache system and method
US20020023081A1 (en) * 2000-08-15 2002-02-21 Bazan Silvia L. System and method for providing medical information via the internet without the need for broadband connectivity
US7251695B2 (en) * 2000-08-17 2007-07-31 Aspen Technology, Inc. Computer network communication method and apparatus
US20020049831A1 (en) * 2000-09-01 2002-04-25 Lifefiles.Com,Inc. System for generating a web document
US20020156909A1 (en) * 2001-02-15 2002-10-24 Harrington Jeffrey M. System and method for server side control of a flash presentation
JP2003006085A (en) * 2001-06-20 2003-01-10 Nec Corp Contents distribution system, its method and contents distribution program
US20030110516A1 (en) * 2001-10-31 2003-06-12 Sony Corporation System and method for embedding data in broadcast
US6996394B2 (en) 2002-08-30 2006-02-07 Qualcomm Incorporated Server processing in providing messages for a wireless device connecting to a server
US7039398B2 (en) 2002-08-30 2006-05-02 Qualcomm Incorporated Server processing of interactive screens for a wireless device
US20040103444A1 (en) * 2002-11-26 2004-05-27 Neal Weinberg Point to multi-point broadcast-quality Internet video broadcasting system with synchronized, simultaneous audience viewing and zero-latency
US7930716B2 (en) 2002-12-31 2011-04-19 Actv Inc. Techniques for reinsertion of local market advertising in digital video from a bypass source
JP2007509386A (en) * 2003-10-02 2007-04-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ How to play multimedia content sent by third parties on user devices
US8112784B1 (en) * 2004-04-28 2012-02-07 Echostar Corporation Device comprising multiple channel selectors
US8087057B2 (en) 2004-04-28 2011-12-27 Echostar Technologies L.L.C. Television converter device including an internet protocol interface
US7543319B2 (en) 2004-08-13 2009-06-02 Microsoft Corporation Presenting notifications in response to viewer-initiated actions
US8732610B2 (en) * 2004-11-10 2014-05-20 Bt Web Solutions, Llc Method and apparatus for enhanced browsing, using icons to indicate status of content and/or content retrieval
US8327440B2 (en) 2004-11-08 2012-12-04 Bt Web Solutions, Llc Method and apparatus for enhanced browsing with security scanning
US20080046921A1 (en) * 2004-11-12 2008-02-21 Yusuke Fujimaki Advertisement Management Device, Advertisement Distribution Device, Advertisement Display Device, Advertisement Distribution Method, And Advertisement Display Method
US8683081B2 (en) * 2005-11-14 2014-03-25 Sandisk Technologies Inc. Methods for displaying advertisement content on host system using application launched from removable memory device
US8683082B2 (en) * 2005-11-14 2014-03-25 Sandisk Technologies Inc. Removable memory devices for displaying advertisement content on host systems using applications launched from removable memory devices
US8069461B2 (en) 2006-03-30 2011-11-29 Verizon Services Corp. On-screen program guide with interactive programming recommendations
US8418217B2 (en) 2006-09-06 2013-04-09 Verizon Patent And Licensing Inc. Systems and methods for accessing media content
US20080077784A1 (en) * 2006-09-21 2008-03-27 Gerri's Marketing & Advertising Concepts, Llc Electronic marketing on a computing device during select time windows
US8464295B2 (en) 2006-10-03 2013-06-11 Verizon Patent And Licensing Inc. Interactive search graphical user interface systems and methods
US8566874B2 (en) 2006-10-03 2013-10-22 Verizon Patent And Licensing Inc. Control tools for media content access systems and methods
US8028313B2 (en) 2006-12-21 2011-09-27 Verizon Patent And Licensing Inc. Linear program guide for media content access systems and methods
US8510780B2 (en) 2006-12-21 2013-08-13 Verizon Patent And Licensing Inc. Program guide navigation tools for media content access systems and methods
US8015581B2 (en) 2007-01-05 2011-09-06 Verizon Patent And Licensing Inc. Resource data configuration for media content access systems and methods
US8103965B2 (en) 2007-06-28 2012-01-24 Verizon Patent And Licensing Inc. Media content recording and healing statuses
US8051447B2 (en) 2007-12-19 2011-11-01 Verizon Patent And Licensing Inc. Condensed program guide for media content access systems and methods
KR20110011975A (en) * 2009-07-29 2011-02-09 삼성전자주식회사 Broadcast receiving apparatus and method for displaying the same
CN102238139A (en) * 2010-04-27 2011-11-09 华为技术有限公司 Method, device and system for inserting advertisement
KR20120060134A (en) * 2010-08-16 2012-06-11 삼성전자주식회사 Method and apparatus for reproducing advertisement
US8966528B2 (en) * 2010-10-14 2015-02-24 Sony Corporation System and method of providing an interactive menu through streaming video
US8347329B2 (en) * 2010-10-14 2013-01-01 Sony Corporation System and method of providing an interactive menu through streaming video
KR102277668B1 (en) * 2014-11-05 2021-07-15 삼성전자 주식회사 Broadcast signal receiving apparatus, broadcast signal receiving system and controlling method thereof
US10321206B2 (en) * 2016-03-25 2019-06-11 Qingdao Hisense Electronics Co., Ltd. Method for switching an audio/video application, apparatus and smart TV

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305195A (en) 1992-03-25 1994-04-19 Gerald Singer Interactive advertising system for on-line terminals
WO1996030864A1 (en) 1994-03-23 1996-10-03 Futurevision Of America Corp. Interactive advertising system and device
US5740549A (en) 1995-06-12 1998-04-14 Pointcast, Inc. Information and advertising distribution system and method
US5913040A (en) * 1995-08-22 1999-06-15 Backweb Ltd. Method and apparatus for transmitting and displaying information between a remote network and a local computer
US5737619A (en) * 1995-10-19 1998-04-07 Judson; David Hugh World wide web browsing with content delivery over an idle connection and interstitial content display
US5572643A (en) 1995-10-19 1996-11-05 Judson; David H. Web browser with dynamic display of information objects during linking
US6034652A (en) * 1996-03-22 2000-03-07 Interval Research Corporation Attention manager for occupying the peripheral attention of a person in the vicinity of a display device
US5828837A (en) * 1996-04-15 1998-10-27 Digilog As Computer network system and method for efficient information transfer
US5905492A (en) * 1996-12-06 1999-05-18 Microsoft Corporation Dynamically updating themes for an operating system shell
US6009452A (en) * 1997-05-02 1999-12-28 Microsoft Corporation Apparatus and methods for optimally using available computer resources for task execution during idle-time based on probabilistic assessment of future task instances
US6028600A (en) * 1997-06-02 2000-02-22 Sony Corporation Rotary menu wheel interface
US5978381A (en) * 1997-06-06 1999-11-02 Webtv Networks, Inc. Transmitting high bandwidth network content on a low bandwidth communications channel during off peak hours
US6081629A (en) * 1997-09-17 2000-06-27 Browning; Denton R. Handheld scanner and accompanying remote access agent
US6134584A (en) * 1997-11-21 2000-10-17 International Business Machines Corporation Method for accessing and retrieving information from a source maintained by a network server

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502076B1 (en) * 1999-06-01 2002-12-31 Ncr Corporation System and methods for determining and displaying product promotions
US20030182126A1 (en) * 2000-06-07 2003-09-25 Chai-Mok Ryoo Internet advertisement system and method in connection with voice humor services
US20080225815A1 (en) * 2002-01-31 2008-09-18 Qualcomm Incorporated System and method for providing messages on a wireless device connecting to an application server
US8660613B2 (en) * 2002-01-31 2014-02-25 Qualcomm Incorporated System and method for providing messages on a wireless device connecting to an application server
US20030158904A1 (en) * 2002-02-18 2003-08-21 Nec Corporation E-mail server and service e-mail providing system using the same
US7203727B2 (en) * 2002-02-18 2007-04-10 Nec Corporation Service email system for transmitting advertisement email to a group of terminals only if transfer constraint and transmission conditions are satisfied
US7181574B1 (en) * 2003-01-30 2007-02-20 Veritas Operating Corporation Server cluster using informed prefetching
US20180081497A1 (en) * 2004-04-30 2018-03-22 Ebay Inc. Method and system to display a pop-up window when a user leaves a website
US20060294258A1 (en) * 2005-06-28 2006-12-28 Microsoft Corporation Advertisement refresh rules for network applications
US8069267B2 (en) * 2005-06-28 2011-11-29 Microsoft Corporation Advertisement refresh rules for network applications
US8745507B2 (en) * 2007-11-30 2014-06-03 At&T Intellectual Property I, L.P. Preloader employing enhanced messages
US9479608B2 (en) 2007-11-30 2016-10-25 At&T Intellectual Property I, L.P. Preloader employing enhanced messages
US20090144396A1 (en) * 2007-11-30 2009-06-04 At&T Knowledge Ventures, L.P. Preloader employing enhanced messages
US11425212B2 (en) 2007-11-30 2022-08-23 At&T Intellectual Property I, L.P. Preloader employing enhanced messages
US20220400165A1 (en) * 2007-11-30 2022-12-15 At&T Intellectual Property I, L.P. Preloader employing enhanced messages
US20150046596A1 (en) * 2011-09-13 2015-02-12 Amazon Technologies, Inc. Speculative generation of network page components
US9917788B2 (en) * 2011-09-13 2018-03-13 Amazon Technologies, Inc. Speculative generation of network page components
US8886933B1 (en) * 2013-12-17 2014-11-11 Google Inc. Streamlined provisioning and configuration of computing devices
US9479615B1 (en) * 2014-01-31 2016-10-25 Google Inc. Systems and methods for providing interstitial content
US20220224978A1 (en) * 2019-09-26 2022-07-14 Beijing Bytedance Network Technology Co., Ltd. Video content display method, client, and storage medium
US11750879B2 (en) * 2019-09-26 2023-09-05 Beijing Bytedance Network Technology Co., Ltd. Video content display method, client, and storage medium

Also Published As

Publication number Publication date
US6317791B1 (en) 2001-11-13

Similar Documents

Publication Publication Date Title
US6317780B1 (en) System and method for distributing data over a communications network
US6317791B1 (en) System and method for distributing data over a communications network for display during start-up
US6237022B1 (en) System and method for distributing preferenced data over a communications network
US6268856B1 (en) System and method for controlling delivery of content over a communications network
US6892354B1 (en) Method of advertising on line during a communication link idle time
US8539043B2 (en) System and method for adding targeted content in a web page
US6338094B1 (en) Method, device and system for playing a video file in response to selecting a web page link
JP3167109B2 (en) Method and apparatus for automatically displaying an Internet homepage on a television screen in cooperation with a television program
US20090132377A1 (en) Internet protocol-based interstitial advertising
US7152091B2 (en) Contents distributing method and contents distributing program
US20010039658A1 (en) Television receiving and internet browsing apparatus
WO2002079951B1 (en) Network banner advertisement system and method
NZ538377A (en) Internet based delivery system for delivering auxiliary content such as advertisements
US20080162623A1 (en) Video Encoder and Content Distribution System
JP3532075B2 (en) Information processing method
US6938033B1 (en) System and method of using e-mail centered internet interaction
JPH11306116A (en) One-site multi-display system
KR20020000985A (en) Internet service server system, computer system and advertising method thereof
WO1999052280A1 (en) Automatic transmission and printout by a home printer via a multiple-user network
WO2002023372A2 (en) Communicating information on the internet
JP2001351015A (en) Advertisement service method on internet

Legal Events

Date Code Title Description
AS Assignment

Owner name: WEBTV NETWORKS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COHN, ALAN;BRUCK, TIMO;PERLMAN, STEPHEN G.;REEL/FRAME:009618/0384;SIGNING DATES FROM 19981109 TO 19981111

AS Assignment

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: MERGER;ASSIGNOR:WEBTV NETWORKS, INC.;REEL/FRAME:015320/0254

Effective date: 20020530

FPAY Fee payment

Year of fee payment: 4

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20131113

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034766/0001

Effective date: 20141014