US20020010499A1 - Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses - Google Patents

Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses Download PDF

Info

Publication number
US20020010499A1
US20020010499A1 US09/940,611 US94061101A US2002010499A1 US 20020010499 A1 US20020010499 A1 US 20020010499A1 US 94061101 A US94061101 A US 94061101A US 2002010499 A1 US2002010499 A1 US 2002010499A1
Authority
US
United States
Prior art keywords
electrode
electric
sensor
connector
stimulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/940,611
Inventor
Pierre Rigaux
Felix Buhlmann
Pierre-Yves Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compex Medical SA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/940,611 priority Critical patent/US20020010499A1/en
Publication of US20020010499A1 publication Critical patent/US20020010499A1/en
Priority to US10/429,891 priority patent/US20030195587A1/en
Assigned to COMPEX MEDICAL S.A. reassignment COMPEX MEDICAL S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COMPEX S.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/048Electrodes characterised by a specific connection between lead and electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes

Definitions

  • the invention concerns an electrical neuromuscular stimulator for measuring muscle reactions generated by electrical stimulation pulses.
  • the stimulator includes an electrical pulse generator arranged in a case, at least one pair of stimulation electrodes intended to be placed on the skin of an user in the vicinity of the motor points of the muscles to be stimulated, each electrode being connected to one end of an electric cable, the other end of which is connected to the case to receive the electric pulses from the generator, at least one sensor sensitive to the muscle reactions caused by the electric stimulation pulses and arranged for transmitting electric measuring signals representative of said muscle reactions to electronic means in the stimulator case.
  • the invention also concerns an electric cable and a stimulation electrode for a neuromuscular electric stimulator.
  • the sensor supplies data regarding the useful muscle reactions in particular in order to know the fatigue level of the electrically stimulated muscles.
  • the measurements obtained from the sensor allow the parameters of the electric stimulation pulses to be adjusted either manually by viewing the shape of the signals received by the sensor on a display or automatically by adjusting the electric stimulation parameters as a function of the muscle fatigue. Adjusting the parameters consists in correcting either the frequency of the pulses, or the amplitude or duration of the voltage or current pulses, or the duration of muscle contraction and relaxation, or the number of contraction/relaxation cycles, or any combination of the preceding parameters.
  • the object of electric stimulation or electrostimulation is to control working of the muscles by the intermediary of electric voltage or current pulses as a function of programmed parameters.
  • Each voltage or current pulse provides excitation of the nerve fibres which control the muscle fibres via the motor end-plate This excitation causes an elementary mechanical muscle response called a twitch with a duration of the order of 0.1 seconds.
  • the voltage or current pulse is repeated over time at an adjustable frequency. If this frequency is low, for example 10 Hz, the working power of the muscles is slight, whereas for a high frequency, for example 100 Hz, the working power of the stimulated muscle fibres is very high. This very high power corresponds to a powerful tetanic contraction.
  • the muscle fibre twitches can no longer be separated after each pulse at this high frequency, which means that a temporal summation of the twitches occurs which leads to a tetanic contraction.
  • the exercising session consists in alternating contraction periods and rest periods.
  • the rest phase allows the fibres to relax and recover prior to the next contraction phase.
  • electric stimulators are used to assist handicapped persons or accident victims so as to overcome deficiencies in muscular activity or to allow them to rehabilitate withered musculature.
  • Electric current or voltage pulses are transmitted to said muscles via the electrodes placed on the skin or subcutaneously in order to make them work passively.
  • Measurements of the muscle reaction caused by the electrically evoked twitch allows the electric pulses to be transmitted to the electrodes to be adjusted as a function of the level of the electrical or mechanical amplitude measured on the innervated muscles without thereby excessively tiring the muscles stimulated.
  • This adjustment of the electrical parameters of the stimulator is used in particular for handicapped persons or accident victims, to prevent them being continually obliged to ask for external help when they have to move one or other of their deficient limbs.
  • a stimulator of this type is shown in U.S. Pat. No. 5,070,873 which discloses a control loop for the electric pulses to be supplied to the muscles to give them sufficient motricity.
  • electromyographic sensors detect the voluntary muscle activity which in the case of a handicapped person is lacking.
  • the voltage measurement obtained by the sensors represents the low contraction state of the activated muscles which leads to adjusting the electric pulses from the pulse generator to send voltage pulses adjusted to the expected reaction to the muscle motor nerves, in particular to allow automatism in the coordination of movements desired by the handicapped person.
  • the electromyographic sensors can be separated from the stimulation electrodes, but may also be combined therewith. In the latter case, a third electrode is necessary. If the same active surface of the electrode is used both as stimulation electrode and sensor, this involves controlling, with difficulty, the signals originating from the sensor following the electric pulses sent across the electrode.
  • the combination of the sensor with the electrode requires rectangular biphasic voltage pulses to be sent to perform the measurements by the sensor. It is to be noted that in this case, for voltage pulses, the stimulation current provided depends on the impedance of the electrode and the skin. This impedance is not the same from one person to another, or can vary rapidly over time in the same person, which leads to different muscle reactions for identical voltage pulses sent to the electrodes.
  • French Patent No. FR 2 425 865 also discloses a bioelectrically controlled electric muscle stimulator.
  • a carrier frequency generator provides an electric signal to the muscles to be stimulated which is adjusted as a function of the bioelectrical activity of the innervated muscles. With this adjustment of the electric pulses as a function of the measured muscle reaction, this stimulator offers a wide range of uses. It allows, in particular, a certain motor automatism of movements for example during sports exercising or for assisting handicapped persons.
  • the measurement sensors are of the electromyographical type and can also be combined with the stimulation electrodes, but in this case, since the voltage pulses sent to the muscles are mainly voltages of the sinusoidal order, drawing the EMG signals originating from the same stimulation electrodes using filters does not pose too much of a problem, which is not the case with rectangular voltage pulses.
  • the muscular contraction measurement means for providing data as to the state of reaction of the stimulated muscles can be performed in many ways.
  • the measurement can be either electrical using electromyographical sensors, or mechanical followed by an electrical conversion for example using acoustic sensors (microphones).
  • acoustic sensors microphones
  • two microphones are placed at different locations where the innervated muscles respond mechanically by a twitch to the voltage pulse generated by an electric pulse generator.
  • a feedback circuit takes account of the voltage signals given by the two microphones in order to adjust the twitch or the electric pulses which the generator generates for the muscles.
  • Strain gauges like any other type of electric conversion mechanical sensor can be used as described in U.S. Pat. No. 5,507,788.
  • the strain gauges are used to measure a torque developed by the stimulated muscles. They are arranged at a distance from the stimulation electrodes. The signals thereby obtained from the gauges are processed by a set of circuits in the stimulator in order to adjust the stimulation parameters of the pulse generator as a function in particular of the muscle fatigue.
  • strain gauges can only be applied in the case where it is possible to be able to measure a torque.
  • a sensor of this type is not, however, appropriate if measurements are made for dorsal or pectoral muscles for example, which do not involve movement of a segment.
  • One object of the invention is to use a structure combining a stimulation electrode with a sensor for measuring muscle reactions which overcomes the drawbacks of the stimulators described hereinbefore.
  • Another object of the invention consists in allowing an user to think only of placing the electrodes on the muscles as for a standard electric stimulator while in addition providing, via the sensors combined with the respective electrodes, measurements of the muscle reactions at the locations stimulated.
  • the objects of the invention are achieved as a result of the stimulator indicated hereinbefore which is characterised in that the sensor is mechanically connected to one of the electrodes or to the end of one of the cables on the electrode side, and in that at least one conductor wire per electric cable connects the respective electrode independently of the sensor.
  • the objects of the invention are also achieved as a result of the electric cable for a stimulator which is characterised in that one end of the cable on the electrode side has a connector for being connected to the structure of a stimulation electrode via removable securing means also acting as an electric contact for the active surface or surfaces of the electrode, in that the connector includes at least one portion of a muscle reaction measurement sensor, and in that it includes in an insulating sheath at least one conductor wire for connecting the active surface or surfaces of the stimulation electrode independently of the sensor.
  • the stimulation electrode for a stimulator which is characterised in that it comprises at least one conductive active surface for receiving the electric pulses and in that the active surface is electrically connected to removable securing means to a cable connector.
  • One advantage of the stimulator with the electrode and measuring sensor combination consists in facilitating the placing of said elements for example for the passive training of a sportsman using such a stimulator or for all other applications.
  • the sportsman knows where to place the electrodes on the motor points of the muscles which he wishes to exercise.
  • When first using such a stimulator he has had to learn to situate the motor points for the muscles to be exercised.
  • Through habit he easily knows how placing them at the desired locations and thus beginning the exercising session.
  • the stimulator includes means for receiving signals from the sensor able to act on the pulse generator, the electric voltage or current pulses sent to the stimulation electrodes are automatically adjusted as a function of the muscle fatigue thereby avoiding any subsequent handling by the user.
  • the measurement signals transmitted from the sensor to the stimulation reception means either pass via a different conductor wire to the electrode conductor wire, insulated in the electric cable sheath, or using signal transmitting means without any connecting wire.
  • One advantage of using a sensor of the electromyographical type or with mechanical-electrical conversion of the accelerometric or acoustic type lies in the fact that they can be used for any muscle in the body.
  • Dorsal muscles are one of the examples of muscles in which the reaction measurement is not possible using a strain gauge sensor or more generally using a torque or force sensor.
  • Another advantage in the use of an electromyographical sensor with an electrode consists in having two active surfaces, one for the sensor and the other for the electrode. Consequently, the muscle responses are measured while minimising the disturbances originating from the active surface of the stimulation electrode.
  • Another advantage of the stimulator according to the invention consists in minimising the number of electrodes combined with the measuring sensors necessary on the one hand for stimulating the muscles and on the other hand for measuring the muscle reactions.
  • One pair of electrodes combined with at least one sensor is sufficient to stimulate the muscles at the desired locations and to provide data as to the reactions of the stimulated muscles.
  • the conductor wires connecting the sensor and the respective electrode are regrouped in a single electric cable. The manufacturing costs are thus reduced to a minimum.
  • FIGS. 1 a and 1 b show the stimulator before and after the connection of the electric cables to the electrodes placed on a user's skin
  • FIG. 2 shows a partial cross-section of a first embodiment of an electric cable connector with an integrated measuring sensor fixed onto a stimulation electrode
  • FIGS. 3 a and 3 b show a partial vertical cross-section and a bottom view of a second embodiment of an arrangement of an electromyographical sensor and electrode
  • FIG. 4 shows a partial cross-section of a third embodiment of an electric cable connector with an integrated measuring sensor fixed to a stimulation electrode
  • FIG. 5 shows diagrams of the electric signals sent to the electrodes and the muscle response.
  • the stimulator described hereinafter relates preferably to a stimulator used within the field of sport and re-education in which muscle stimulation is used to exercise them passively. Rectangular current pulses are supplied to electrodes 7 placed on the skin at the motor points of the muscles to be stimulated. In response to this stimulation, the muscles contract generating a mechanical twitch. As previously described, current pulses have proved preferable to voltage pulses, since one is not dependent upon the variable impedance of the electrode and the skin of the person using the stimulator.
  • the stimulator is represented by a case 1 enclosing in particular the current pulse generator and the means for receiving the signals originating from the sensor.
  • programme selection buttons 2 are used to select the desired exercising mode as a function of the sport usually practised or the stimulation programme as a function of the pathological state (amyotrophy, hypotony, . . . ) of the muscle to be re-educated.
  • the stimulator also includes a visual display device 3 for displaying in particular the programmes selected, the stimulation pulses, the muscle reaction measurement responses, or even statistics for the exercising sessions. Display 3 is formed for example by a liquid crystal display.
  • One end 4 of a pair of electric cables 5 is connected in a removable manner to one of the signal input and output sockets of stimulator case 1 .
  • Other sockets for connecting the cable are accessible for connecting several pairs of electric cables 5 . From the connection to the corresponding socket, the two cables are joined so that they are not twisted when stored. They are however separated over the second half of the length of the cables so that their connector 6 can be fixed to separated electrodes 7 .
  • the connectors have complementary means which can be fixed in a removable manner to studs 8 of electrode structure 7 .
  • Muscle reaction measuring sensors which are not visible in FIGS. 1 a and 1 b , are housed in electrode structure 7 or in connector 6 .
  • the sensors are housed either in one of the electrodes or in one of the connectors or in both. Measurement of the muscle reactions usually occurs at the location where the current pulse reaches the electrodes, since the other electrode is used only for the return of the current.
  • a battery housed in the case supplies the stimulator with power, but it is also conceivable that the stimulator receives an external voltage supply through connection to the 220V or 110V mains supply via a transformer.
  • FIG. 1 a the two connectors 6 are shown in a position at a distance from electrodes 7 , since initially, the user places flexible self-adhesive electrodes 7 with their active surface in contact with the skin generally on the motor points.
  • the self-adhesive surrounds for example the active surface which occupies more than half of the surface of the electrode structure.
  • connectors 6 are fixed to electrodes 7 , as can be seen in FIG. 1 b .
  • connectors 6 are mounted so as to rotate freely on studs 8 .
  • FIG. 2 shows a first embodiment of the sensor assembly with the stimulation electrode.
  • Sensor 11 is embedded in the body 18 of connector 6 in the case in which it is obtained by moulding a plastic material.
  • complementary means 10 for the fixation thereof to stud 8 of the electrode there is an acceleration meter forming sensor 11 arranged on a printed circuit 13 which includes all the components 12 for amplifying and processing the acceleration meter signals.
  • the acceleration obtained by the vibration of the stimulated muscles is of the order of several g.
  • an acoustic sensor such as a microphone can be mounted on the printed circuit to perform muscle reaction measurements.
  • At least two insulated conductor wires preferably three wires 14 are fixed onto metal pads of the printed circuit to bring on the one hand the electric power supply originating from the stimulator case to the printed circuit components and on the other hand to send the muscle vibration measurement signals to the stimulator case.
  • Another insulated conductor wire 15 is fixed to metal means 10 to bring the current pulses to the electrode. All the insulated conductor wires 14 and 15 are enclosed in a sheath of an electric cable 5 .
  • the electrode structure is composed of a base plane 17 made of a flexible insulating material, such as a fabric or an elastomer, able to match the shape onto which it is placed, for example a user's arm.
  • a conductive film is fixed, for example by bonding or deposition of conductive particles, over a large portion of the surface of structure 17 .
  • This conductive film constitutes active surface 9 of the electrode via which the current pulses excite the motor-nerves of the muscles to be stimulated.
  • Metal film 9 is connected through a conductive hole 16 , in particular a metallised hole, made in structure 17 to metal stud 8 .
  • Electrode 9 The contour of the active surface of electrode 9 is coated with a self-adhesive material or a self-adhesive film so as to be able to hold electrode 7 on a user's skin.
  • These electrodes are in principle disposable electrodes which can be used for one exercising session or for several sessions.
  • the fixing of the connector to the electrode structure via a snap fastener can be reversed by placing complementary means 10 on base plane 17 and stud 8 on connector 6 .
  • FIGS. 3 a and 3 b show a second embodiment of the electrode sensor assembly.
  • the sensor used in this embodiment is of the electromyographical type.
  • connector 6 which is obtained by plastic moulding 18 can include on the interior thereof all the electronic components for processing the signals originating from the EMG sensor, but in this variant of FIG. 3 a , all the electronic components are integrated in the stimulator case.
  • Connector 6 includes two metal pots 10 and 20 each connected, for example by soldering, to the end of a respective insulated conductor wire 14 and 15 , or conversely.
  • the pots in addition to a length of the conductor wires and the end of a flexible sleeve 19 of electric cable 5 , are moulded in plastic material 18 of the connector.
  • Electric cable 5 encloses, in this case, only two insulated conductor wires 14 and 15 in its insulating sheath.
  • the electrode structure includes, under base plane 17 , a first active conductive surface 9 of the stimulation electrode and a second active conductive surface 11 which has no contact with the first active surface forming the EMG sensor.
  • the second active surface is placed beside the first active surface.
  • first active surface 9 is made for example with a greater dimension than second active surface 11 .
  • the base plane is coated or covered with a self-adhesive material or film to keep it on the user's skin without using other means.
  • the shape of the active surfaces is approximately rectangular, but other embodiments are entirely conceivable, for example having first active surface 9 in a circular shape placed at the centre of the electrode structure and the second active surface in the shape of a ring placed coaxially to the first surface.
  • Each active surface 9 and 11 is connected, through conductive holes 16 , in particular metallised holes, to a corresponding metal stud 8 and 21 situated on the other side of the base plane. Since these studs 8 and 21 are chamfered on their top portion they are inserted with a certain mechanical resistance into metal pots 10 and 20 of the connector to be held therein during use. The forced insertion into the metal pots using chamfers for guiding assures a good electric contact for the transmission of the current pulses to the electrode and the electric measurement of the muscle reactions.
  • FIG. 2 can also be applied in this second embodiment.
  • active surfaces 9 and 11 can be placed under base plane 17 .
  • the active stimulation or measuring surfaces are either all electrically connected at the surface of base plane 17 through metallised holes 16 , or each connected to a corresponding stud. In the latter case, a multipolar connector has to be used.
  • the two studs 8 and 21 , and the two metal pots 10 and 20 can be designed closer together, but this involves making metal conductors on base plane 17 on the side of the connector connecting metallised holes 16 with each of studs 8 and 21 .
  • the electrodes have a flexible structure to match the surface of the skin on which they are placed, but there is nothing to prevent them having a rigid structure.
  • FIG. 4 shows a third embodiment with a sensor 11 which is identical to that shown in FIG. 2.
  • the elements which are the same as those of FIG. 2 bear the same reference signs, and will not all be explained again.
  • cable 5 includes only one conductor wire 15 in an insulating sheath for bringing the electric pulses to the electrode.
  • the measuring signals from sensor 11 , processed or unprocessed in connector 6 are, however, sent by wireless measuring signal transmitting means 22 via electromagnetic waves 23 or other waves to electronic receiving means in the stimulator case. These transmitting means are placed on printed circuit 13 to receive the measuring signals from sensor 11 . Waves 23 picked up by the receiving means of the case are converted into electric signals representing the measurement values of sensor 11 to be displayed on a display and/to adjust the stimulation parameters.
  • a power source for all the electronic components 11 , 12 and 22 is provided in connector 6 in the form of an electric battery 27 .
  • the positive and negative poles of battery 27 are in contact in a battery housing with a metal wall 24 for one of the poles and with a metal base 25 for the other pole.
  • the battery is kept in its housing by a plug 26 pressing the battery 27 against its contacts 24 and 25 . This plug 26 is either screwed in, driven by force, or soldered.
  • Plug 26 could also be omitted, if the battery in its housing was embedded in the body of connector 6 , in the event that it were not deemed necessary to change it when it becomes flat.
  • the connector is mounted in a removable manner on the electrode structures whether in the first, second or third embodiments to allow the user to first place the electrodes at the selected locations without being inconvenienced by the electric cables.
  • the connector could also be integral with the electrode structure.
  • the means for fixing the connector to the respective electrode can take various other forms than those mentioned previously.
  • FIG. 5 shows by way of illustration three diagrams of the signals reaching the stimulation electrodes and those drawn from the muscle reaction or response measurement whether by an acceleration meter (VMG) or an electromyographical sensor (EMG).
  • VMG acceleration meter
  • EMG electromyographical sensor
  • a current pulse is first imposed on the stimulation electrode.
  • This pulse can be monophase, but is preferably biphase as shown in FIG. 5.
  • the maximum amplitude of the current I A is graduated from 0 to 120 mA. The higher this amplitude, the higher the number of muscle fibres recruited. This thus corresponds to the spatial recruitment of the fibres which perform the work required by the selected programme.
  • the second diagram of FIG. 5 shows the schematic shape of the skin electrode voltage. This voltage passes through a maximum value Vmax of around 100 V and a minimum value of ⁇ 10 V. After the current pulse has returned to 0, there remains a residual voltage Vrés of several volts across the electrodes, which is why it is difficult to use the same active surface to measure the stimulated muscle reaction voltage variations using an EMG sensor, since the voltage measured by the sensor Vmes is of the order of a few millivolts.
  • the acceleration meter provides a signal only during the initial and final phases of the contraction. Conversely, the EMG sensor gives a signal even during the muscle contraction phase.
  • the acceleration signal generated can be measured either by one or more muscle twitches between the muscle contraction periods, or by the initial or final phase of the muscle contraction.
  • the frequency of the pulses is high, whereas for an endurance programme, this frequency is low. It should be noted that for slow muscle fibres, the frequency is 30 Hz, whereas for fast muscle fibres, it is 60 Hz.

Abstract

The electrical stimulator includes an electrical pulse generator arranged in a case, stimulation electrodes (7) to be placed on a user's skin on the motor points of the muscles to be stimulated, each electrode (7) being connected to an electric cable (5) connector, the other end of the cable being connected in a removable manner to a signal input and/or output socket of the case for receiving the electric pulses, at least one sensor (11) for measuring the muscle reactions caused by the electric pulses, and electronic means in the case for receiving the measurements from the sensor. The sensor (11) is intrinsically linked to one of the electrodes (7) or to the connector (6). At least one conductor wire (15) of the cable connects the electrode (7) independently of the sensor (11).
The stimulator finds application in particular in the field of sports for the passive exercising of muscles stimulated by electric pulses, or in the re-education of atrophied muscles. In this case, the sensor (11) is used to provide data as to the reactivity of the stimulated muscles and their fatigue level. This data is seen on a display of the stimulator and is used to adjust the stimulation parameters manually or automatically.

Description

  • The invention concerns an electrical neuromuscular stimulator for measuring muscle reactions generated by electrical stimulation pulses. The stimulator includes an electrical pulse generator arranged in a case, at least one pair of stimulation electrodes intended to be placed on the skin of an user in the vicinity of the motor points of the muscles to be stimulated, each electrode being connected to one end of an electric cable, the other end of which is connected to the case to receive the electric pulses from the generator, at least one sensor sensitive to the muscle reactions caused by the electric stimulation pulses and arranged for transmitting electric measuring signals representative of said muscle reactions to electronic means in the stimulator case. [0001]
  • The invention also concerns an electric cable and a stimulation electrode for a neuromuscular electric stimulator. [0002]
  • The sensor supplies data regarding the useful muscle reactions in particular in order to know the fatigue level of the electrically stimulated muscles. The measurements obtained from the sensor allow the parameters of the electric stimulation pulses to be adjusted either manually by viewing the shape of the signals received by the sensor on a display or automatically by adjusting the electric stimulation parameters as a function of the muscle fatigue. Adjusting the parameters consists in correcting either the frequency of the pulses, or the amplitude or duration of the voltage or current pulses, or the duration of muscle contraction and relaxation, or the number of contraction/relaxation cycles, or any combination of the preceding parameters. [0003]
  • The object of electric stimulation or electrostimulation is to control working of the muscles by the intermediary of electric voltage or current pulses as a function of programmed parameters. Each voltage or current pulse provides excitation of the nerve fibres which control the muscle fibres via the motor end-plate This excitation causes an elementary mechanical muscle response called a twitch with a duration of the order of 0.1 seconds. [0004]
  • The voltage or current pulse is repeated over time at an adjustable frequency. If this frequency is low, for example 10 Hz, the working power of the muscles is slight, whereas for a high frequency, for example 100 Hz, the working power of the stimulated muscle fibres is very high. This very high power corresponds to a powerful tetanic contraction. The muscle fibre twitches can no longer be separated after each pulse at this high frequency, which means that a temporal summation of the twitches occurs which leads to a tetanic contraction. [0005]
  • If the stimulated muscles are stimulated at a high frequency, they will tend to become tired. In this case, the exercising session consists in alternating contraction periods and rest periods. The rest phase allows the fibres to relax and recover prior to the next contraction phase. [0006]
  • In the medical field, electric stimulators are used to assist handicapped persons or accident victims so as to overcome deficiencies in muscular activity or to allow them to rehabilitate withered musculature. Electric current or voltage pulses are transmitted to said muscles via the electrodes placed on the skin or subcutaneously in order to make them work passively. Measurements of the muscle reaction caused by the electrically evoked twitch allows the electric pulses to be transmitted to the electrodes to be adjusted as a function of the level of the electrical or mechanical amplitude measured on the innervated muscles without thereby excessively tiring the muscles stimulated. This adjustment of the electrical parameters of the stimulator is used in particular for handicapped persons or accident victims, to prevent them being continually obliged to ask for external help when they have to move one or other of their deficient limbs. [0007]
  • A stimulator of this type is shown in U.S. Pat. No. 5,070,873 which discloses a control loop for the electric pulses to be supplied to the muscles to give them sufficient motricity. In a first phase, electromyographic sensors detect the voluntary muscle activity which in the case of a handicapped person is lacking. The voltage measurement obtained by the sensors represents the low contraction state of the activated muscles which leads to adjusting the electric pulses from the pulse generator to send voltage pulses adjusted to the expected reaction to the muscle motor nerves, in particular to allow automatism in the coordination of movements desired by the handicapped person. [0008]
  • The electromyographic sensors can be separated from the stimulation electrodes, but may also be combined therewith. In the latter case, a third electrode is necessary. If the same active surface of the electrode is used both as stimulation electrode and sensor, this involves controlling, with difficulty, the signals originating from the sensor following the electric pulses sent across the electrode. [0009]
  • The combination of the sensor with the electrode requires rectangular biphasic voltage pulses to be sent to perform the measurements by the sensor. It is to be noted that in this case, for voltage pulses, the stimulation current provided depends on the impedance of the electrode and the skin. This impedance is not the same from one person to another, or can vary rapidly over time in the same person, which leads to different muscle reactions for identical voltage pulses sent to the electrodes. [0010]
  • The use of a current pulse generator allows one to be rid of the drawbacks of a voltage pulse generator, since the pulse is kept constant whatever the impedance of the skin and the electrode, and thus allows the same number of fibres recruited for stimulation to be maintained. [0011]
  • One drawback of this combination of active surfaces of the sensor and the electrode lies in the fact that after the sequence of sent biphasic voltage pulses, there remains a residual voltage which can have a value of ten volts, whereas the measurement voltage drawn from the muscles by the sensor is of the order of a few millivolts. It is thus necessary to attenuate this residual voltage in order to be able to make an accurate measurement in particularly of the fatigue level of the stimulated muscles. This is why sensors separated from the electrodes provide better results than those combined as described hereinbefore. [0012]
  • French Patent No. [0013] FR 2 425 865 also discloses a bioelectrically controlled electric muscle stimulator. A carrier frequency generator provides an electric signal to the muscles to be stimulated which is adjusted as a function of the bioelectrical activity of the innervated muscles. With this adjustment of the electric pulses as a function of the measured muscle reaction, this stimulator offers a wide range of uses. It allows, in particular, a certain motor automatism of movements for example during sports exercising or for assisting handicapped persons.
  • The measurement sensors are of the electromyographical type and can also be combined with the stimulation electrodes, but in this case, since the voltage pulses sent to the muscles are mainly voltages of the sinusoidal order, drawing the EMG signals originating from the same stimulation electrodes using filters does not pose too much of a problem, which is not the case with rectangular voltage pulses. [0014]
  • The muscular contraction measurement means for providing data as to the state of reaction of the stimulated muscles can be performed in many ways. The measurement can be either electrical using electromyographical sensors, or mechanical followed by an electrical conversion for example using acoustic sensors (microphones). Such an arrangement is shown in U.S. Pat. No. 4,805,636 in which the vibrations of the contracting muscles are measured. [0015]
  • In this Patent document, two microphones are placed at different locations where the innervated muscles respond mechanically by a twitch to the voltage pulse generated by an electric pulse generator. A feedback circuit takes account of the voltage signals given by the two microphones in order to adjust the twitch or the electric pulses which the generator generates for the muscles. [0016]
  • Strain gauges like any other type of electric conversion mechanical sensor can be used as described in U.S. Pat. No. 5,507,788. The strain gauges are used to measure a torque developed by the stimulated muscles. They are arranged at a distance from the stimulation electrodes. The signals thereby obtained from the gauges are processed by a set of circuits in the stimulator in order to adjust the stimulation parameters of the pulse generator as a function in particular of the muscle fatigue. [0017]
  • The use of strain gauges can only be applied in the case where it is possible to be able to measure a torque. A sensor of this type is not, however, appropriate if measurements are made for dorsal or pectoral muscles for example, which do not involve movement of a segment. [0018]
  • One object of the invention is to use a structure combining a stimulation electrode with a sensor for measuring muscle reactions which overcomes the drawbacks of the stimulators described hereinbefore. [0019]
  • Another object of the invention consists in allowing an user to think only of placing the electrodes on the muscles as for a standard electric stimulator while in addition providing, via the sensors combined with the respective electrodes, measurements of the muscle reactions at the locations stimulated. [0020]
  • The objects of the invention are achieved as a result of the stimulator indicated hereinbefore which is characterised in that the sensor is mechanically connected to one of the electrodes or to the end of one of the cables on the electrode side, and in that at least one conductor wire per electric cable connects the respective electrode independently of the sensor. [0021]
  • The objects of the invention are also achieved as a result of the electric cable for a stimulator which is characterised in that one end of the cable on the electrode side has a connector for being connected to the structure of a stimulation electrode via removable securing means also acting as an electric contact for the active surface or surfaces of the electrode, in that the connector includes at least one portion of a muscle reaction measurement sensor, and in that it includes in an insulating sheath at least one conductor wire for connecting the active surface or surfaces of the stimulation electrode independently of the sensor. [0022]
  • The objects of the invention are also achieved as a result of the stimulation electrode for a stimulator which is characterised in that it comprises at least one conductive active surface for receiving the electric pulses and in that the active surface is electrically connected to removable securing means to a cable connector. [0023]
  • One advantage of the stimulator with the electrode and measuring sensor combination consists in facilitating the placing of said elements for example for the passive training of a sportsman using such a stimulator or for all other applications. The sportsman knows where to place the electrodes on the motor points of the muscles which he wishes to exercise. When first using such a stimulator, he has had to learn to situate the motor points for the muscles to be exercised. Through habit, he easily knows how placing them at the desired locations and thus beginning the exercising session. [0024]
  • The supplementary addition of a sensor with the electrode which he positions will not pose any additional problem. In addition to stimulation, he will be able to take account of the fatigue of the stimulated muscles for example on a display of the stimulator. [0025]
  • Likewise, if the stimulator includes means for receiving signals from the sensor able to act on the pulse generator, the electric voltage or current pulses sent to the stimulation electrodes are automatically adjusted as a function of the muscle fatigue thereby avoiding any subsequent handling by the user. The measurement signals transmitted from the sensor to the stimulation reception means either pass via a different conductor wire to the electrode conductor wire, insulated in the electric cable sheath, or using signal transmitting means without any connecting wire. [0026]
  • One advantage of using a sensor of the electromyographical type or with mechanical-electrical conversion of the accelerometric or acoustic type lies in the fact that they can be used for any muscle in the body. Dorsal muscles are one of the examples of muscles in which the reaction measurement is not possible using a strain gauge sensor or more generally using a torque or force sensor. [0027]
  • Another advantage in the use of an electromyographical sensor with an electrode consists in having two active surfaces, one for the sensor and the other for the electrode. Consequently, the muscle responses are measured while minimising the disturbances originating from the active surface of the stimulation electrode. [0028]
  • Another advantage of the stimulator according to the invention consists in minimising the number of electrodes combined with the measuring sensors necessary on the one hand for stimulating the muscles and on the other hand for measuring the muscle reactions. One pair of electrodes combined with at least one sensor is sufficient to stimulate the muscles at the desired locations and to provide data as to the reactions of the stimulated muscles. The conductor wires connecting the sensor and the respective electrode are regrouped in a single electric cable. The manufacturing costs are thus reduced to a minimum.[0029]
  • The objects, advantages and features of the stimulator will appear more clearly, in a non limiting manner, in the following description of the different embodiments illustrated by the drawings, in which: [0030]
  • FIGS. 1[0031] a and 1 b show the stimulator before and after the connection of the electric cables to the electrodes placed on a user's skin,
  • FIG. 2 shows a partial cross-section of a first embodiment of an electric cable connector with an integrated measuring sensor fixed onto a stimulation electrode, [0032]
  • FIGS. 3[0033] a and 3 b show a partial vertical cross-section and a bottom view of a second embodiment of an arrangement of an electromyographical sensor and electrode,
  • FIG. 4 shows a partial cross-section of a third embodiment of an electric cable connector with an integrated measuring sensor fixed to a stimulation electrode, and [0034]
  • FIG. 5 shows diagrams of the electric signals sent to the electrodes and the muscle response.[0035]
  • The stimulator described hereinafter relates preferably to a stimulator used within the field of sport and re-education in which muscle stimulation is used to exercise them passively. Rectangular current pulses are supplied to [0036] electrodes 7 placed on the skin at the motor points of the muscles to be stimulated. In response to this stimulation, the muscles contract generating a mechanical twitch. As previously described, current pulses have proved preferable to voltage pulses, since one is not dependent upon the variable impedance of the electrode and the skin of the person using the stimulator.
  • Current pulses are supplied over time at a given frequency. According to the pulse repetition frequency, the muscles do not have time to relax before the next pulse which increases the working power of the muscles, but on the other hand, they become tired. It is thus advantageous to know the fatigue of the stimulated muscles in order to know the state of the muscles being exercised and also to be able to take advantage of this measurement in order to adjust the stimulation parameters automatically. [0037]
  • In FIGS. 1[0038] a and 1 b, the stimulator is represented by a case 1 enclosing in particular the current pulse generator and the means for receiving the signals originating from the sensor. On said case 1, programme selection buttons 2 are used to select the desired exercising mode as a function of the sport usually practised or the stimulation programme as a function of the pathological state (amyotrophy, hypotony, . . . ) of the muscle to be re-educated. The stimulator also includes a visual display device 3 for displaying in particular the programmes selected, the stimulation pulses, the muscle reaction measurement responses, or even statistics for the exercising sessions. Display 3 is formed for example by a liquid crystal display.
  • One [0039] end 4 of a pair of electric cables 5 is connected in a removable manner to one of the signal input and output sockets of stimulator case 1. Other sockets for connecting the cable are accessible for connecting several pairs of electric cables 5. From the connection to the corresponding socket, the two cables are joined so that they are not twisted when stored. They are however separated over the second half of the length of the cables so that their connector 6 can be fixed to separated electrodes 7. The connectors have complementary means which can be fixed in a removable manner to studs 8 of electrode structure 7.
  • Muscle reaction measuring sensors, which are not visible in FIGS. 1[0040] a and 1 b, are housed in electrode structure 7 or in connector 6. The sensors are housed either in one of the electrodes or in one of the connectors or in both. Measurement of the muscle reactions usually occurs at the location where the current pulse reaches the electrodes, since the other electrode is used only for the return of the current.
  • A battery housed in the case supplies the stimulator with power, but it is also conceivable that the stimulator receives an external voltage supply through connection to the 220V or 110V mains supply via a transformer. [0041]
  • In FIG. 1[0042] a, the two connectors 6 are shown in a position at a distance from electrodes 7, since initially, the user places flexible self-adhesive electrodes 7 with their active surface in contact with the skin generally on the motor points. In one embodiment, the self-adhesive surrounds for example the active surface which occupies more than half of the surface of the electrode structure.
  • Once the electrodes have been placed on the skin, [0043] connectors 6 are fixed to electrodes 7, as can be seen in FIG. 1b. In this embodiment, connectors 6 are mounted so as to rotate freely on studs 8.
  • FIG. 2 shows a first embodiment of the sensor assembly with the stimulation electrode. [0044] Sensor 11 is embedded in the body 18 of connector 6 in the case in which it is obtained by moulding a plastic material. In the connector, just above complementary means 10 for the fixation thereof to stud 8 of the electrode, there is an acceleration meter forming sensor 11 arranged on a printed circuit 13 which includes all the components 12 for amplifying and processing the acceleration meter signals. The acceleration obtained by the vibration of the stimulated muscles is of the order of several g.
  • Instead of [0045] acceleration meter 11, an acoustic sensor, such as a microphone can be mounted on the printed circuit to perform muscle reaction measurements.
  • At least two insulated conductor wires, preferably three [0046] wires 14 are fixed onto metal pads of the printed circuit to bring on the one hand the electric power supply originating from the stimulator case to the printed circuit components and on the other hand to send the muscle vibration measurement signals to the stimulator case. Another insulated conductor wire 15 is fixed to metal means 10 to bring the current pulses to the electrode. All the insulated conductor wires 14 and 15 are enclosed in a sheath of an electric cable 5.
  • The electrode structure is composed of a [0047] base plane 17 made of a flexible insulating material, such as a fabric or an elastomer, able to match the shape onto which it is placed, for example a user's arm. Below structure 17, a conductive film is fixed, for example by bonding or deposition of conductive particles, over a large portion of the surface of structure 17. This conductive film constitutes active surface 9 of the electrode via which the current pulses excite the motor-nerves of the muscles to be stimulated. Metal film 9 is connected through a conductive hole 16, in particular a metallised hole, made in structure 17 to metal stud 8.
  • The contour of the active surface of [0048] electrode 9 is coated with a self-adhesive material or a self-adhesive film so as to be able to hold electrode 7 on a user's skin. These electrodes are in principle disposable electrodes which can be used for one exercising session or for several sessions.
  • In an alternative embodiment, the fixing of the connector to the electrode structure via a snap fastener can be reversed by placing [0049] complementary means 10 on base plane 17 and stud 8 on connector 6.
  • FIGS. 3[0050] a and 3 b show a second embodiment of the electrode sensor assembly. The sensor used in this embodiment is of the electromyographical type.
  • As in the first embodiment discussed hereinabove, [0051] connector 6 which is obtained by plastic moulding 18 can include on the interior thereof all the electronic components for processing the signals originating from the EMG sensor, but in this variant of FIG. 3a, all the electronic components are integrated in the stimulator case.
  • [0052] Connector 6 includes two metal pots 10 and 20 each connected, for example by soldering, to the end of a respective insulated conductor wire 14 and 15, or conversely. The pots, in addition to a length of the conductor wires and the end of a flexible sleeve 19 of electric cable 5, are moulded in plastic material 18 of the connector.
  • [0053] Electric cable 5 encloses, in this case, only two insulated conductor wires 14 and 15 in its insulating sheath.
  • The electrode structure includes, under [0054] base plane 17, a first active conductive surface 9 of the stimulation electrode and a second active conductive surface 11 which has no contact with the first active surface forming the EMG sensor. The second active surface is placed beside the first active surface. As shown in FIG. 3b, first active surface 9 is made for example with a greater dimension than second active surface 11. Around the active surfaces, the base plane is coated or covered with a self-adhesive material or film to keep it on the user's skin without using other means.
  • In FIG. 3[0055] b, the shape of the active surfaces is approximately rectangular, but other embodiments are entirely conceivable, for example having first active surface 9 in a circular shape placed at the centre of the electrode structure and the second active surface in the shape of a ring placed coaxially to the first surface.
  • Each [0056] active surface 9 and 11 is connected, through conductive holes 16, in particular metallised holes, to a corresponding metal stud 8 and 21 situated on the other side of the base plane. Since these studs 8 and 21 are chamfered on their top portion they are inserted with a certain mechanical resistance into metal pots 10 and 20 of the connector to be held therein during use. The forced insertion into the metal pots using chamfers for guiding assures a good electric contact for the transmission of the current pulses to the electrode and the electric measurement of the muscle reactions. Of course, an arrangement as shown in FIG. 2 can also be applied in this second embodiment.
  • Several [0057] active surfaces 9 and 11, whether for electric stimulation or measurement, can be placed under base plane 17. The active stimulation or measuring surfaces are either all electrically connected at the surface of base plane 17 through metallised holes 16, or each connected to a corresponding stud. In the latter case, a multipolar connector has to be used.
  • The two [0058] studs 8 and 21, and the two metal pots 10 and 20 can be designed closer together, but this involves making metal conductors on base plane 17 on the side of the connector connecting metallised holes 16 with each of studs 8 and 21.
  • It is also conceivable to provide [0059] studs 8 and 21 on connector 6 and metal pots 10 and 20 on base plane 17.
  • As previously, the electrodes have a flexible structure to match the surface of the skin on which they are placed, but there is nothing to prevent them having a rigid structure. [0060]
  • FIG. 4 shows a third embodiment with a [0061] sensor 11 which is identical to that shown in FIG. 2. The elements which are the same as those of FIG. 2 bear the same reference signs, and will not all be explained again.
  • In this third embodiment, [0062] cable 5 includes only one conductor wire 15 in an insulating sheath for bringing the electric pulses to the electrode. The measuring signals from sensor 11, processed or unprocessed in connector 6 are, however, sent by wireless measuring signal transmitting means 22 via electromagnetic waves 23 or other waves to electronic receiving means in the stimulator case. These transmitting means are placed on printed circuit 13 to receive the measuring signals from sensor 11. Waves 23 picked up by the receiving means of the case are converted into electric signals representing the measurement values of sensor 11 to be displayed on a display and/to adjust the stimulation parameters.
  • A power source for all the [0063] electronic components 11, 12 and 22 is provided in connector 6 in the form of an electric battery 27. The positive and negative poles of battery 27 are in contact in a battery housing with a metal wall 24 for one of the poles and with a metal base 25 for the other pole. The battery is kept in its housing by a plug 26 pressing the battery 27 against its contacts 24 and 25. This plug 26 is either screwed in, driven by force, or soldered.
  • Plug [0064] 26 could also be omitted, if the battery in its housing was embedded in the body of connector 6, in the event that it were not deemed necessary to change it when it becomes flat.
  • The connector is mounted in a removable manner on the electrode structures whether in the first, second or third embodiments to allow the user to first place the electrodes at the selected locations without being inconvenienced by the electric cables. The connector could also be integral with the electrode structure. [0065]
  • The means for fixing the connector to the respective electrode can take various other forms than those mentioned previously. One can envisage fixing means using a magnet housed either in the connector, or on the electrode structure, and a metal part placed either on the electrode structure or on the connector. This fixing arrangement has to guarantee the contact between metal pads between the two elements for supplying electric pulses or also for the sensor measurement. [0066]
  • FIG. 5 shows by way of illustration three diagrams of the signals reaching the stimulation electrodes and those drawn from the muscle reaction or response measurement whether by an acceleration meter (VMG) or an electromyographical sensor (EMG). [0067]
  • A current pulse is first imposed on the stimulation electrode. This pulse can be monophase, but is preferably biphase as shown in FIG. 5. [0068]
  • The maximum amplitude of the current I[0069] A is graduated from 0 to 120 mA. The higher this amplitude, the higher the number of muscle fibres recruited. This thus corresponds to the spatial recruitment of the fibres which perform the work required by the selected programme.
  • The second diagram of FIG. 5 shows the schematic shape of the skin electrode voltage. This voltage passes through a maximum value Vmax of around 100 V and a minimum value of −10 V. After the current pulse has returned to 0, there remains a residual voltage Vrés of several volts across the electrodes, which is why it is difficult to use the same active surface to measure the stimulated muscle reaction voltage variations using an EMG sensor, since the voltage measured by the sensor Vmes is of the order of a few millivolts. [0070]
  • The variations in voltage due to the muscle vibrations and measured by the acceleration meter (several g) and the EMG sensor for low frequency current pulses are shown in the third diagram. [0071]
  • At higher frequency pulses, when the muscle is contracted, the acceleration meter provides a signal only during the initial and final phases of the contraction. Conversely, the EMG sensor gives a signal even during the muscle contraction phase. [0072]
  • Thus, in order to obtain measurements using an acceleration meter, the acceleration signal generated can be measured either by one or more muscle twitches between the muscle contraction periods, or by the initial or final phase of the muscle contraction. [0073]
  • For a strength programme, the frequency of the pulses is high, whereas for an endurance programme, this frequency is low. It should be noted that for slow muscle fibres, the frequency is 30 Hz, whereas for fast muscle fibres, it is 60 Hz. [0074]
  • Following the description which has just been given, several other alternative embodiments of a stimulator combining an electrode with a measuring sensor can be envisaged within the reach of those skilled in the art without departing from the scope of the invention. [0075]

Claims (18)

What is claimed is:
1. An electrical neuromuscular stimulator for measuring muscle reactions generated by electrical stimulation pulses, including an electrical pulse generator arranged in a case of the stimulator, at least one pair of stimulation electrodes intended to be placed on an user's skin on the motor points of the muscles to be stimulated, each electrode being connected to one end of an electric cable, the other end of which is connected to the case to receive the electric pulses from the generator, at least one sensor sensitive to the muscle reactions caused by the electric stimulation signals and arranged for transmitting electric measuring signals representative of said muscle reactions to electronic means in the stimulator case, wherein the sensor is mechanically connected to one of the electrodes or to the end of one of the cables on the electrode side, and wherein at least one conductor wire per electric cable connects the respective electrode independently of the sensor.
2. A stimulator according to claim 1, wherein each end of the electric cables on the electrode side is securely fixed to the respective electrode structure.
3. A stimulator according to claim 1, wherein each cable end on the electrode side has a connector connected to the respective electrode structure by removable fixing means.
4. A stimulator according to claim 3, wherein the removable fixing means are of the snap fastening type also acting as electric contact between the connector and at least one active conducting surface of the respective electrode.
5. A stimulator according to claim 3, wherein the removable fixing means, acting also as electric contact between the connector and at least two active surfaces of the electrode, include at least two conductive studs inserted with a certain mechanical resistance in two conductive pots, the studs forming part of the electrode structure and the pots forming part of the connector, or vice versa.
6. A stimulator according to claim 1, wherein the measuring sensor is an electromyographical sensor having at least one active conductive surface placed without electric contact beside at least one other active conductive surface of the electrode receiving the electric pulses, said active surfaces being placed on the motor points of the muscles to be stimulated.
7. A stimulator according to claim 1, wherein the sensor is an acceleration meter or a microphone integrated in the connector of the end of the cable on the electrode side or in the structure of one of the respective electrodes.
8. A stimulator according to one of claims 6 and 7, wherein the means for processing the signals received from the sensor are integrated in the connector or in the electrode structure.
9. A stimulator according to claim 1, wherein the sensor is in communication with the electronic means of the stimulator via wireless signal transmitting and/or receiving means housed in the cable connector or in the electrode structure, or via at least one conductor wire of the cable other than that of the electrode.
10. A stimulator according to claim 9, wherein an electric power source is housed in the connector or in the electrode structure for supplying power to the electronic components for measuring muscle reactions.
11. A stimulator according to claim 1, wherein it includes, on the case, a visual display device capable of displaying in particular electric stimulation programmes and data relating to the electric muscle reaction measuring signals.
12. An electric cable for a stimulator according to claim 1, wherein one end of the cable on the electrode side has a connector for connection to the structure of a stimulation electrode via removable fixing means also acting as electric contact for the active surface or surfaces of the electrode, wherein the connector includes at least a part of a sensor sensitive to muscle reactions, and wherein it includes in an insulating sheath at least one conductor wire for connecting the active surface or surfaces of the stimulation electrode independently of the sensor.
13. An electric cable according to claim 12, wherein the connector encloses processing means for the signals supplied by the sensor.
14. An electric cable according to claim 12, wherein the means for fixing to the electrode are of the snap fastening type or of the multicontact type.
15. An electric cable according to claim 12, wherein the connector includes wireless signal transmitting and/or receiving means, and an electric power source for the electronic components for measuring the muscle reactions.
16. A stimulation electrode for a stimulator according to claim 1, wherein it includes at least one active conductive surface for receiving the electric pulses, and wherein the active surface is electrically connected to removable means for fixing to a cable connector.
17. A stimulation electrode according to claim 16, wherein it includes an electromyographical sensor having at least one other active conductive surface arranged without electric contact beside the active surface receiving the electric pulses, or an acceleration meter or a microphone placed on the electrode structure.
18. A stimulation electrode according to claim 16, wherein its structure is flexible so as to be able to match the shape onto which it is placed, and wherein a portion of its structure, surrounding the active surface or surfaces in the form of a metal wire, is coated or covered with a self-adhesive material or film so as to be able to stay on the skin without using additional holding elements.
US09/940,611 1999-11-01 2001-08-29 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses Abandoned US20020010499A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/940,611 US20020010499A1 (en) 1999-11-01 2001-08-29 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US10/429,891 US20030195587A1 (en) 1999-11-01 2003-05-06 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/431,080 US6324432B1 (en) 1999-11-01 1999-11-01 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US09/940,611 US20020010499A1 (en) 1999-11-01 2001-08-29 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/431,080 Division US6324432B1 (en) 1999-11-01 1999-11-01 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/429,891 Division US20030195587A1 (en) 1999-11-01 2003-05-06 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses

Publications (1)

Publication Number Publication Date
US20020010499A1 true US20020010499A1 (en) 2002-01-24

Family

ID=23710364

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/431,080 Expired - Lifetime US6324432B1 (en) 1999-11-01 1999-11-01 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US09/940,611 Abandoned US20020010499A1 (en) 1999-11-01 2001-08-29 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US09/940,608 Abandoned US20020010498A1 (en) 1999-11-01 2001-08-29 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US10/429,891 Abandoned US20030195587A1 (en) 1999-11-01 2003-05-06 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US10/429,855 Abandoned US20030195586A1 (en) 1999-11-01 2003-05-06 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/431,080 Expired - Lifetime US6324432B1 (en) 1999-11-01 1999-11-01 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses

Family Applications After (3)

Application Number Title Priority Date Filing Date
US09/940,608 Abandoned US20020010498A1 (en) 1999-11-01 2001-08-29 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US10/429,891 Abandoned US20030195587A1 (en) 1999-11-01 2003-05-06 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US10/429,855 Abandoned US20030195586A1 (en) 1999-11-01 2003-05-06 Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses

Country Status (1)

Country Link
US (5) US6324432B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050283205A1 (en) * 2004-06-10 2005-12-22 Samsung Electronics Co., Ltd. Apparatus, method, and medium controlling electrical stimulation and/or health training/monitoring
US20060276870A1 (en) * 2005-06-03 2006-12-07 Mcginnis William J Osseus stimulating electrodes
US20080172106A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Osteogenic stimulus device, kit and method of using thereof
US20080172107A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Stand alone osteogenic stimulus device and method of using
US20080171304A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Dental implant kit and method of using same
US7629670B2 (en) * 2003-06-27 2009-12-08 Osram Opto Semiconductors Gmbh Radiation-emitting semi-conductor component
US9254388B2 (en) * 2003-07-10 2016-02-09 Codes Of Life, Llc Method and system for regulation of endocrine and exocrine glands by means of neuro-electrical coded signals
CN106037730A (en) * 2016-06-22 2016-10-26 吴建萍 Electromyogram intelligent detection device
US9533155B2 (en) 2014-08-15 2017-01-03 Axonics Modulation Technologies, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US9555246B2 (en) 2014-08-15 2017-01-31 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US10092762B2 (en) 2014-08-15 2018-10-09 Axonics Modulation Technologies, Inc. Integrated electromyographic clinician programmer for use with an implantable neurostimulator
US11154238B2 (en) 2015-08-07 2021-10-26 Electroceuticals, Llc Systems, methods and apparatuses for providing bioelectronic neurocode-based therapies to mammals
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11950923B2 (en) 2021-07-28 2024-04-09 Electroceuticals, Llc Systems, methods and apparatuses for providing bioelectronic neurocode-based therapies to mammals

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01007069A (en) 1999-01-11 2002-09-18 Bmr Res & Dev Ltd An electrotherapy device and method.
EP1121956A1 (en) * 2000-01-31 2001-08-08 Carmelo Bosco Automatic device for optimized muscular stimulation
US6553245B1 (en) * 2000-11-02 2003-04-22 Lawrence J. Grace Method and apparatus for self-diagnostic evaluation of nerve sensory latency
EP2260900A1 (en) * 2001-01-16 2010-12-15 BMR Research & Development Limited Apparatus for stimulating a muscle of a subject
US7065397B2 (en) * 2001-06-18 2006-06-20 Inovise Medical, Inc. Multi-parameter acquisition of ECG and related physiologic data employing multi-parameter sensor and conventional ECG lead conductors, and enabled for remote operational management communication
US7035691B2 (en) * 2002-01-15 2006-04-25 Therapeutic Innovations, Inc. Resonant muscle stimulator
WO2005051201A1 (en) * 2003-11-26 2005-06-09 Thomas Hemmerling Monitoring of neuromuscular blockade using phonomyography
JP2005198849A (en) * 2004-01-16 2005-07-28 Tanita Corp Impedance type myosthenometer
US7499746B2 (en) * 2004-01-30 2009-03-03 Encore Medical Asset Corporation Automated adaptive muscle stimulation method and apparatus
JP4542793B2 (en) * 2004-02-02 2010-09-15 株式会社タニタ Impedance type reaction capacity measuring device
US20060020291A1 (en) * 2004-03-09 2006-01-26 Gozani Shai N Apparatus and method for performing nerve conduction studies with multiple neuromuscular electrodes
WO2005122740A2 (en) * 2004-06-15 2005-12-29 Compex Technologies, Inc. Interferential and neuromuscular electrical stimulation system and apparatus
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US20110190772A1 (en) 2004-10-15 2011-08-04 Vahid Saadat Powered tissue modification devices and methods
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US9101386B2 (en) * 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US7578819B2 (en) 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US7857813B2 (en) 2006-08-29 2010-12-28 Baxano, Inc. Tissue access guidewire system and method
US8617163B2 (en) 2004-10-15 2013-12-31 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
WO2006044727A2 (en) 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue removal
US7959577B2 (en) 2007-09-06 2011-06-14 Baxano, Inc. Method, system, and apparatus for neural localization
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US8140165B2 (en) 2005-01-28 2012-03-20 Encore Medical Asset Corporation Independent protection system for an electrical muscle stimulation apparatus and method of using same
EP1874404B1 (en) 2005-04-19 2015-11-04 Compex Technologies, Inc. Electrical stimulation device
US20060276782A1 (en) * 2005-06-06 2006-12-07 Tewodros Gedebou Nerve stimulator for use as a surgical guide
US8165685B1 (en) * 2005-09-29 2012-04-24 Case Western Reserve University System and method for therapeutic neuromuscular electrical stimulation
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US20070232966A1 (en) * 2005-11-30 2007-10-04 Robert Applebaum Apparatus for skin and muscle treatment
US7634314B2 (en) * 2005-11-30 2009-12-15 Ak Beauty Enterprises, Llc Powered stimulation device
US9630003B2 (en) * 2006-06-15 2017-04-25 Htk Enterprises, Inc. Non-invasive neuro stimulation system
US20080015658A1 (en) * 2006-07-12 2008-01-17 Chao-Man Tseng Sound sensed electric stimulation control device
WO2008031209A1 (en) * 2006-09-16 2008-03-20 Terence Gilhuly Improved sensors and sensing for monitoring neuromuscular blockade
US8109883B2 (en) 2006-09-28 2012-02-07 Tyco Healthcare Group Lp Cable monitoring apparatus
US20100174342A1 (en) * 2006-11-26 2010-07-08 Leon Boston Tremor reduction systems suitable for self-application and use in disabled patients
US8668651B2 (en) 2006-12-05 2014-03-11 Covidien Lp ECG lead set and ECG adapter system
US8620438B1 (en) 2007-02-13 2013-12-31 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US9084550B1 (en) 2007-10-18 2015-07-21 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8343079B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural monitoring sensor
US8343065B2 (en) * 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural event detection
US20090105788A1 (en) * 2007-10-18 2009-04-23 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8942797B2 (en) * 2007-10-18 2015-01-27 Innovative Surgical Solutions, Llc Neural monitoring system
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
CA2646037C (en) 2007-12-11 2017-11-28 Tyco Healthcare Group Lp Ecg electrode connector
US9737225B2 (en) 2008-06-24 2017-08-22 Biosense Webster, Inc. Patch and sensor assembly for use in medical device localization and mapping systems
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8409206B2 (en) * 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8892210B2 (en) 2008-07-02 2014-11-18 Niveus Medical, Inc. Devices, systems, and methods for automated optimization of energy delivery
CA2727498C (en) 2008-07-02 2020-04-21 Niveus Medical, Inc. Systems and methods for automated muscle stimulation
MX348805B (en) 2008-07-14 2017-06-28 Baxano Inc Tissue modification devices.
US8265763B2 (en) * 2008-08-26 2012-09-11 Niveus Medical, Inc. Device, system, and method to improve powered muscle stimulation performance in the presence of tissue edema
US9149386B2 (en) 2008-08-19 2015-10-06 Niveus Medical, Inc. Devices and systems for stimulation of tissues
USD737979S1 (en) 2008-12-09 2015-09-01 Covidien Lp ECG electrode connector
WO2010096776A2 (en) * 2009-02-20 2010-08-26 Niveus Medical, Inc. Systems and methods of powered muscle stimulation using an energy guidance field
MX2011009165A (en) * 2009-03-13 2011-09-26 Baxano Inc Flexible neural localization devices and methods.
US8712556B2 (en) * 2009-04-01 2014-04-29 JusJas LLC Composite conductive pads/plugs for surface-applied nerve-muscle electrical stimulation
DE102009018179B4 (en) * 2009-04-22 2014-07-10 Otto Bock Healthcare Gmbh Structural element for an orthopedic device and orthopedic device
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
DE102009035018A1 (en) * 2009-07-28 2011-02-03 Dräger Medical AG & Co. KG Medical sensor device
US8694080B2 (en) 2009-10-21 2014-04-08 Covidien Lp ECG lead system
JP5856566B2 (en) * 2009-11-11 2016-02-10 ニヴェウス メディカル, インコーポレーテッド Synergistic muscle activation device
CA2746944C (en) 2010-07-29 2018-09-25 Tyco Healthcare Group Lp Ecg adapter system and method
US9669226B2 (en) 2010-09-07 2017-06-06 Empi, Inc. Methods and systems for reducing interference in stimulation treatment
US9375179B2 (en) 2010-12-23 2016-06-28 Biosense Webster, Inc. Single radio-transparent connector for multi-functional reference patch
US9114255B1 (en) 2011-06-17 2015-08-25 Customkynetics, Inc. Exercise device for use with electrical stimulation and related methods
CN103687537B (en) 2011-07-22 2016-02-24 柯惠有限合伙公司 Ecg electrode connector
US8634901B2 (en) 2011-09-30 2014-01-21 Covidien Lp ECG leadwire system with noise suppression and related methods
US9301711B2 (en) 2011-11-10 2016-04-05 Innovative Surgical Solutions, Llc System and method for assessing neural health
US8983593B2 (en) 2011-11-10 2015-03-17 Innovative Surgical Solutions, Llc Method of assessing neural function
US8855822B2 (en) 2012-03-23 2014-10-07 Innovative Surgical Solutions, Llc Robotic surgical system with mechanomyography feedback
WO2013176744A1 (en) 2012-05-22 2013-11-28 Arizona Board Of Regents For And On Behalf Of Arizona State University Apparatus, system, and method for neurostimulation by high frequency ultrasound
DE102012013534B3 (en) 2012-07-05 2013-09-19 Tobias Sokolowski Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields
US9039630B2 (en) 2012-08-22 2015-05-26 Innovative Surgical Solutions, Llc Method of detecting a sacral nerve
US8892259B2 (en) 2012-09-26 2014-11-18 Innovative Surgical Solutions, LLC. Robotic surgical system with mechanomyography feedback
WO2014071471A1 (en) * 2012-11-07 2014-05-15 Oliveira De Souza E Silva Paulo Eug Nio Henricus - intensive care/neuromuscular electrical stimulator
US11033731B2 (en) 2015-05-29 2021-06-15 Thync Global, Inc. Methods and apparatuses for transdermal electrical stimulation
US9440070B2 (en) 2012-11-26 2016-09-13 Thyne Global, Inc. Wearable transdermal electrical stimulation devices and methods of using them
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
US9391394B2 (en) 2012-12-21 2016-07-12 Koninklijke Philips N.V. Magnetic connector assembly
US8870798B2 (en) 2013-03-14 2014-10-28 CyMedica, Inc. Systems and methods for treating human joints
US9072898B2 (en) 2013-03-14 2015-07-07 CyMedica, Inc. System and methods for treating or supporting human joints or a portion of the human body
ES2726185T3 (en) 2013-03-15 2019-10-02 Kpr Us Llc Electrode connector with a conductive element
USD771818S1 (en) 2013-03-15 2016-11-15 Covidien Lp ECG electrode connector
US9408546B2 (en) 2013-03-15 2016-08-09 Covidien Lp Radiolucent ECG electrode system
WO2014195139A1 (en) * 2013-06-05 2014-12-11 Koninklijke Philips N.V. Adaptor
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
CN105934261B (en) 2013-06-29 2019-03-08 赛威医疗公司 For changing or induction cognitive state transcutaneous electrostimulation device and method
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US10478096B2 (en) * 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
CA2866025A1 (en) 2013-10-03 2015-04-03 Quiang Song Sensor unit for a functional electrical stimulation (fes) orthotic system
CA2866027A1 (en) 2013-10-03 2015-04-03 Farsad Kiani Controller unit for a functional electrical stimulation (fes) orthotic system
US9333345B2 (en) 2013-10-03 2016-05-10 Ensilver Canada Electrical stimulation for a functional electrical stimulation system
CN106573138A (en) 2014-02-27 2017-04-19 赛威医疗公司 Methods and apparatuses for user control of neurostimulation
US10035016B2 (en) * 2014-04-14 2018-07-31 Elidah, Inc. Electrical stimulation device
EP3148639A4 (en) 2014-05-17 2018-04-18 Cerevast Medical Inc. Methods and apparatuses for the application of ensemble waveforms using transdermal neurostimulation
FR3020955B1 (en) * 2014-05-19 2016-06-24 Commissariat Energie Atomique ELECTRICAL CONNECTOR, IN PARTICULAR FOR A CUTANE DEVICE.
US9393401B2 (en) 2014-05-25 2016-07-19 Thync Global, Inc. Wearable transdermal neurostimulator having cantilevered attachment
US9333334B2 (en) * 2014-05-25 2016-05-10 Thync, Inc. Methods for attaching and wearing a neurostimulator
GB2540089B (en) * 2014-07-10 2020-11-11 Ye Chen Eric Wireless electrical stimulation system
WO2016011515A1 (en) * 2014-07-25 2016-01-28 Ferreira Ricardo José Rodriguez Monopolar stimulation probe for electromyography
US9364657B2 (en) 2014-10-31 2016-06-14 Ensilver Canada Cuff unit for a functional electrical stimulation system
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
WO2016109851A1 (en) 2015-01-04 2016-07-07 Thync, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
US20160206224A1 (en) * 2015-01-20 2016-07-21 Medicomp, Inc. Ecg electrode snap connector and associated methods
US10213604B2 (en) 2015-04-14 2019-02-26 Medtronic, Inc. Controlling electrical stimulation based on evoked compound muscle action potential
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20170000373A1 (en) * 2015-07-02 2017-01-05 Wake Forest University Health Sciences Methods, systems, and devices for assessing neuromuscular status of ligamentous and soft tissues
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
WO2017106411A1 (en) 2015-12-15 2017-06-22 Cerevast Medical, Inc. Electrodes having surface exclusions
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
CN109069830B (en) 2016-03-22 2023-03-10 席拉博迪股份有限公司 Compact muscle stimulator
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
BR112019006867A2 (en) * 2016-10-05 2019-06-25 Elidah Inc electrical stimulation device
US11278724B2 (en) 2018-04-24 2022-03-22 Thync Global, Inc. Streamlined and pre-set neuromodulators
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
WO2020208590A1 (en) 2019-04-11 2020-10-15 Btl Medical Technologies S.R.O. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method
EP4091664A4 (en) 2020-01-13 2023-09-13 Zandona Freitas, Ângelo Eustáquio Process and system for artificial activation and monitoring of neuromuscular tissue based on artificial intelligence
KR20230000081U (en) 2020-05-04 2023-01-10 비티엘 헬쓰케어 테크놀로지스 에이.에스. Device and method for unattended treatment of patients
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2065295A (en) * 1935-05-16 1936-12-22 Arthur G Sullivan Therapeutic appliance
US4082086A (en) * 1976-12-13 1978-04-04 M I Systems, Inc. Ecg monitoring pad
US4207904A (en) 1977-01-28 1980-06-17 Greene Ronald W Constant power density electrode adapted to be useful in bio-medical applications
US4165750A (en) 1978-03-18 1979-08-28 Aleev Leonid S Bioelectrically controlled electric stimulator of human muscles
DE3130104A1 (en) 1981-07-30 1983-02-17 Messerschmitt-Bölkow-Blohm GmbH, 8000 München ARRANGEMENT FOR STIMULATING A HUMAN MUSCLE
US4580339A (en) 1982-08-05 1986-04-08 Empi, Inc. Method for fabricating a disposable electrode for transcutaneous nerve stimulator
US4619266A (en) * 1983-05-11 1986-10-28 Hodgson John A Electrode array for muscle stimulation and recording
US4811742A (en) 1985-06-11 1989-03-14 Verimed, Inc. Proportional response electrical muscle stimulation
US4805636A (en) 1986-02-24 1989-02-21 The University Of Michigan System for controlling muscle response
US5070873A (en) 1987-02-13 1991-12-10 Sigmedics, Inc. Method of and apparatus for electrically stimulating quadriceps muscles of an upper motor unit paraplegic
US5233472A (en) * 1988-10-15 1993-08-03 Asahi Kogaku Kogyo Kabushiki Kaisha Method of controlling a zoom lens assembly
JP2794196B2 (en) * 1989-06-20 1998-09-03 チェスト株式会社 Apnea prevention stimulator
US5131401A (en) * 1990-09-10 1992-07-21 Axon Medical Inc. Method and apparatus for monitoring neuromuscular blockage
US5168875A (en) * 1991-04-11 1992-12-08 Staodyn, Inc. Elongated strip electrode arrangement and method
EP0548435B1 (en) 1991-12-27 1997-03-19 Gilles Ascher Electrode connector, particularly electrocardiogram electrode, and at the same time electrode consisting of such a connector
US5300096A (en) 1992-06-03 1994-04-05 Hall H Eugene Electromyographic treatment device
US5324317A (en) * 1992-09-30 1994-06-28 Medserve Group, Inc. Interferential stimulator for applying low frequency alternating current to the body
US5549656A (en) * 1993-08-16 1996-08-27 Med Serve Group, Inc. Combination neuromuscular stimulator and electromyograph system
GB9321086D0 (en) 1993-10-13 1993-12-01 Univ Alberta Hand stimulator
US5507788A (en) 1994-08-11 1996-04-16 The Regents Of The University Of California Method and apparatus for controlling skeletal muscle fatigue during electrical stimulation
US5540735A (en) 1994-12-12 1996-07-30 Rehabilicare, Inc. Apparatus for electro-stimulation of flexing body portions
US5628722A (en) * 1995-03-03 1997-05-13 Solomonow; Moshe Method for maintaining knee stability of a user suffering from damage of a knee ligament
US6233472B1 (en) * 1995-06-06 2001-05-15 Patient Comfort, L.L.C. Electrode assembly and method for signaling a monitor
IE960224A1 (en) * 1996-03-15 1997-09-24 Bmr Res & Dev Ltd An electrode
US6129666A (en) * 1997-04-04 2000-10-10 Altec, Inc. Biomedical electrode
ES2253828T3 (en) * 1997-10-03 2006-06-01 Yaman Ltd. LEOTARDS WITH ELECTRODES FOR A SUITCASE OF IMPULSES THAT ALLOW THE REMODELING OF THE SILHOUETTE.
CA2217920A1 (en) 1997-10-08 1999-04-08 Neuromotion Inc. Garment having controller that is activated by mechanical impact
US6002965A (en) * 1998-06-10 1999-12-14 Katz; Amiram Self applied device and method for prevention of deep vein thrombosis
US6445955B1 (en) * 1999-07-08 2002-09-03 Stephen A. Michelson Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
WO2002013673A2 (en) * 2000-08-15 2002-02-21 Stimel Ltd. Electrostimulation system with electromyographic and visual biofeedback

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629670B2 (en) * 2003-06-27 2009-12-08 Osram Opto Semiconductors Gmbh Radiation-emitting semi-conductor component
US9254388B2 (en) * 2003-07-10 2016-02-09 Codes Of Life, Llc Method and system for regulation of endocrine and exocrine glands by means of neuro-electrical coded signals
US20050283205A1 (en) * 2004-06-10 2005-12-22 Samsung Electronics Co., Ltd. Apparatus, method, and medium controlling electrical stimulation and/or health training/monitoring
US20090240305A1 (en) * 2004-06-10 2009-09-24 Samsung Electronics Co., Ltd. Apparatus controlling electrical stimulation and/or health training/monitoring
US8620439B2 (en) 2004-06-10 2013-12-31 Samsung Electronics Co., Ltd. Apparatus controlling electrical stimulation and/or health training/monitoring
US20060276870A1 (en) * 2005-06-03 2006-12-07 Mcginnis William J Osseus stimulating electrodes
US20080172106A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Osteogenic stimulus device, kit and method of using thereof
US20080172107A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Stand alone osteogenic stimulus device and method of using
US20080171304A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Dental implant kit and method of using same
US9561372B2 (en) 2014-08-15 2017-02-07 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US10729903B2 (en) 2014-08-15 2020-08-04 Axonics Modulation Technologies, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US9555246B2 (en) 2014-08-15 2017-01-31 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US11730411B2 (en) 2014-08-15 2023-08-22 Axonics, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US9855423B2 (en) 2014-08-15 2018-01-02 Axonics Modulation Technologies, Inc. Systems and methods for neurostimulation electrode configurations based on neural localization
US10092762B2 (en) 2014-08-15 2018-10-09 Axonics Modulation Technologies, Inc. Integrated electromyographic clinician programmer for use with an implantable neurostimulator
US10406369B2 (en) 2014-08-15 2019-09-10 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US9533155B2 (en) 2014-08-15 2017-01-03 Axonics Modulation Technologies, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US11116985B2 (en) 2014-08-15 2021-09-14 Axonics, Inc. Clinician programmer for use with an implantable neurostimulation lead
US11497916B2 (en) 2014-08-15 2022-11-15 Axonics, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US11154238B2 (en) 2015-08-07 2021-10-26 Electroceuticals, Llc Systems, methods and apparatuses for providing bioelectronic neurocode-based therapies to mammals
CN106037730A (en) * 2016-06-22 2016-10-26 吴建萍 Electromyogram intelligent detection device
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11950923B2 (en) 2021-07-28 2024-04-09 Electroceuticals, Llc Systems, methods and apparatuses for providing bioelectronic neurocode-based therapies to mammals

Also Published As

Publication number Publication date
US20030195586A1 (en) 2003-10-16
US20020010498A1 (en) 2002-01-24
US20030195587A1 (en) 2003-10-16
US6324432B1 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
US6324432B1 (en) Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
JP4295425B2 (en) Electromuscular nerve stimulator for measuring muscle response to electrical stimulation pulses
US11883645B2 (en) Neurostimulation or electromyography cuff
AU2015243083B2 (en) Non-invasive neuro stimulation system
US4492233A (en) Method and apparatus for providing feedback-controlled muscle stimulation
CA2441669C (en) Pacemaker for bilateral vocal cord autoparalysis
US7239920B1 (en) Neural stimulation system providing auto adjustment of stimulus output as a function of sensed pressure changes
US6026328A (en) Functional neuromuscular stimulation system with shielded percutaneous interface
US7221980B2 (en) Electrostimulation system with electromyographic and visual biofeedback
EP1575664B1 (en) Method for determining stimulation parameters
CA2732732A1 (en) Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
AU2002309179A1 (en) Pacemaker for bilateral vocal cord autoparalysis
WO2006107994A2 (en) Medical electronics electrical implantable medical devices
KR20190088300A (en) Nerve stimulation device
US20060161215A1 (en) Weld plate contact for implanted medical devices
US20180093091A1 (en) Device for functional electrical stimulation and measurement of electromyogram, comprising means for short-circuiting and earthing a pair of electrodes, and associated transcutaneous electrode
KR101638238B1 (en) Apparatus for stumulation and diagnosis connecting with terminal and method thereof
CN219231215U (en) Exoskeleton with common reference electrode
Donaldson The role of platinum metals in neurological prostheses
EP1575663B1 (en) Electrical stimulator
KR20240035055A (en) transcutaneous electric stimulation device including a plurality of electrodes
KR20230122305A (en) Ems low frequency device
WO2022035740A1 (en) Systems and methods for duty cycle interferential current stimulation and therapy
EP1051221B1 (en) Muscle electrostimulator conformed in such a way as to avoid sensations of pain and reddening of the skin
TWM488321U (en) Transcutaneous electronic nerve stimulation device

Legal Events

Date Code Title Description
AS Assignment

Owner name: COMPEX MEDICAL S.A., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMPEX S.A.;REEL/FRAME:014033/0660

Effective date: 20030407

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION